
Design of an Application-Cooperative Management
System for Wireless Sensor Networks

Gilman Tolle
EECS Department

University of California, Berkeley
Berkeley, CA 94720

Email: get@cs.berkeley.edu

David Culler
EECS Department

University of California, Berkeley
Berkeley, CA 94720

Email: culler@cs.berkeley.edu

Abstract— This paper argues for the usefulness of an
application-cooperative interactive management system for
wireless sensor networks, and presents SNMS, a Sensor
Network Management System. SNMS is designed to be
simple and have minimal impact on memory and network
traffic, while remaining open and flexible. The system is
evaluated in light of issues derived from real deployment
experiences.

I. I NTRODUCTION

During the spring of 2004, 80 mica2dot sensor net-
work nodes were placed into two 60 meter tall redwood
trees in Sonoma, California. These nodes would collect
environmental readings every five minutes, and forward
them through a multihop network to a base station
located between the two trees. One month later, initial
examination of the gathered data showed that the nodes
in one tree had been entirely unable to contact the base
station. Of the 33 remaining nodes, 15% returned no
data. Of the 80 deployed nodes, 65% returned no data
at all, from the very beginning.

This problem was not detected on the day of the
deployment for two reasons: the algorithm used to form
the collection tree was designed to converge slowly, and
with a 5 minute wait between opportunities to contact
each node, the deployers were unable to adequately test
the network in their allotted time. We suggest that the
deployed application was incompatible with the needs of
human managers, due to the tightly constrained power
budget. However, we argue that every sensor network,
running any application, should be able to present a
human manager with the ability to quickly determine
whether a deployed network is functioning.

One week into the Sonoma deployment, another 15%
of the nodes died, likely due to premature battery ex-
haustion caused by a time synchronization failure that
prevented the node from entering sleep mode. But,

this was later inferred from the collected data, and no
records exist of the events that may have caused this
failure. Authors of TinyOS components have the ability
to check for these failure conditions arising from lower-
level systems, and combine this data to determine higher-
level failure conditions. But, this data is rarely available
to a human manager. We argue that every sensor network
should be able to record these events to permanent local
storage for post-mortem analysis, and that this event
record should also be accessible to a human manager
in real time.

II. SNMS DESIGN PRINCIPLES

This paper presents SNMS, an application-cooperative
management system for wireless sensor networks. SNMS
provides two core services, as suggested by the scenarios
above:
• a query system to enable rapid, user-initiated acqui-

sition of network health and performance data
• a logging system to enable recording and retrieval

of system-generated events.
Because SNMS is intended to operate alongside any

sensor network application, we place the following re-
strictions upon our design:

1) SNMS must occupy a minimal amount of RAM.
2) SNMS must generate network traffic only in re-

sponse to direct human action, and should generate
no network traffic in the steady state.

3) SNMS must be simple and robust.
4) SNMS must depend on the application as little as

possible, to ensure that it will continue to function
even when the application fails.

This last requirement gives rise to a third core service
provided by SNMS:
• a lightweight network layer that can operate in

parallel with the application’s networking layer.



In addition to operating in an application-cooperative
mode, we also envision that SNMS will also be used
as a fallback system. In conjunction with the Deluge
[1] network programming system, a compiled binary
containing the core SNMS functionality can be loaded
in response to a runtime command or an application
failure that causes a watchdog timer to reboot the node.
Thus, even if the application cannot admit SNMS, SNMS
could still provide management services during the initial
deployment, and during catastrophic application failure.

By working with hardware developers to preload
SNMS onto sensor network nodes, we also hope to
establish an “out-of-box experience” for wireless sensor
networks. Using SNMS in this way may encourage more
advanced research, by lessening the amount of time spent
trying to get the network to “say hello”. A preloaded
program could also assist in calibration of the nodes prior
to deployment, and lessen the burden of assigning unique
addresses, but we leave this for future work.

To meet our requirements of simplicity and robustness,
we have designed SNMS to clearly separate mecha-
nism from policy. The mechanisms provided by SNMS
include marshalling, transport, and unmarshalling for
commands, data, events, and schema attributes. The
policies of what can be managed, what will be managed,
and which nodes will participate are decided by the users
of the system. Furthermore, SNMS clearly separates
the responsibilities of policymaking. The author of a
component must decide which attributes it will export
and which events it will generate, in addition to the
names of the attributes and the descriptions of the events.
The network manager must decide which attributes and
events should be monitored, and then must interpret the
results.

SNMS does not impose any semantics of its own. The
system does not depend on a fore-ordained taxonomy
of attribute types, like “tree parent” and “number of
dropped packets”, nor does it categorize and prioritize
events by any means other than the natural ownership
boundaries of components. This open architecture will
ensure that SNMS is usable by the largest number of
developers.

We begin by detailing the SNMS network architecture
in Section III, and then examine the two core SNMS
management services in Section IV and Section V. We
describe a collection of higher-level management ser-
vices built atop SNMS in Section VI. Finally, we evalu-
ate the networking performance of SNMS in Section VII,
and suggest a number of ways in which an application-
cooperative management system could improve the qual-

ity of data obtained from a real deployment.

III. N ETWORK ARCHITECTURE

Because SNMS is intended to cooperate with an ap-
plication, but continue functioning when the application
fails, we argue that a management system should contain
its own networking stack that can run in parallel with the
application’s. The alternate approach of allowing SNMS
to use the application’s stack would require less RAM,
less code, and would prevent redundant network main-
tenance traffic, but these drawbacks can be minimized
with careful design of the networking layer. Thus, our
exploration of the design space has been shaped by a
decision to deliberately create redundancy in an environ-
ment that has previously admitted none. However, SNMS
is structured as a collection of separate components, and
if the application designer would prefer to eliminate this
redundancy, then SNMS could cooperate with any layer
providing the proper interfaces.

The SNMS networking architecture supports two traf-
fic patterns: Collection and Dissemination [2]. Collection
is required to obtain health data from the network,
and Dissemination is required to distribute management
commands and queries. The need for these traffic pat-
terns reflects the absence of point-to-point connections
between individual nodes.

The first contribution of the SNMS networking stack
is a collection tree construction protocol that minimizes
state requirements by not requiring a neighbor table, and
minimizes network traffic by requiring explicit initiation
of tree construction. The tree construction protocol does
remain adaptive to changing network conditions, and
makes no assumptions about the underlying topology.

The second contribution is an interface and stack
for transport-level reliable dissemination of messages.
Other implementations of reliable dissemination have so
far been application-specific [1] [3] [4]. Currently, this
networking layer is the only one supported by SNMS,
but it has been separately developed so that future work
can study how well SNMS would perform atop an
application’s network stack, and how well the SNMS
network stack would support other applications.

A. Collection

The initial task of network management is the col-
lection of operational data from the network under
study. In order to retrieve data from the managed nodes,
and transport it to a management workstation, SNMS
requires a protocol that will generate a network structure
for data collection.



Many such protocols have been developed for the
sensor network space. The MintRoute protocol organizes
a collection of nodes into a tree rooted at a specific node
that acts as a base station. Each node in a MintRoute
network periodically sends an announcement message,
which is used for link quality estimation by every neigh-
boring node. Performing this link estimation requires
each node to maintain a table containing every other
neighboring node, which greatly increases the storage
cost of using the MintRoute routing layer. These link
quality estimates are then used to form a tree that min-
imizes the expected number of transmissions necessary
to forward a message to the root [5].

The interest diffusion process of Directed Diffusion
also creates a tree rooted at the node generating the
interest, called the sink. Instead of using periodic bea-
cons to maintain a constant tree, each node selects the
neighbor from which it first received a flooded interest
message [6]. Other studies have shown this approach to
be problematic in the presence of widely varying link
qualities. To improve the quality of this link-reversal
tree, Directed Diffusion also uses a large amount of
storage to maintain link qualities in a neighbor table,
and only considers sufficiently well-connected nodes to
be neighbors.

1) Tree Construction and Refinement:SNMS uses a
collection tree construction protocol that combines these
two approaches. Because SNMS runs alongside other
sensor network applications, we argue that SNMS should
not generate any maintenance traffic when the network is
not being actively managed. Thus, our tree construction
protocol cannot use periodic beacons as MintRoute does,
and must only construct a tree in response to a message
sent from the root. However, to construct a higher-quality
tree than the one produced by selecting the neighbor that
sent first, we continually update the parent selection as
new messages arrive. We avoid contention while flooding
the construction message by randomly staggering the
retransmission time for each node.

Because SNMS does not have periodic traffic to
estimate the quality of each potential parent, and does
not have a neighbor table in which to store this informa-
tion, SNMS must use an estimator that can produce an
estimate immediately upon receipt of a tree construction
message. The protocol estimates link qualities between
nodes by measuring the received signal strength of
the incoming tree construction message. Upon receipt
of each tree construction message, the node adds the
message’s RSSI to the cumulative RSSI value in the
message and selects the sender if the new total is less

than the current parent’s path cost. By only maintaining
the single best parent, we remove the need for a RAM-
consuming neighbor table. Future work for the protocol
will examine the benefits of maintainingk best parents
instead of the single best parent.

Minimizing the sum of RSSI values along a path will
produce a path with maximally strong signal. In addition,
the tree constructed by this protocol will contain more
hops over stronger links. This may not be desirable when
the number of forwarding nodes must be minimized, but
minimizing energy consumption is not required for short-
lived interactive management applications. Additionally,
this approach may result in more contention, but quanti-
fying the exact properties of this RSSI tree construction
technique will be left for future work.

However, this protocol may construct trees containing
asymmetric links because the RSSI value only indicates
the strength of the inbound link. The SNMS tree con-
struction protocol accounts for link asymmetry by com-
bining RSSI with a real-time link quality metric. This
metric requires link-layer acknowledgement messages to
be sent in response to every forwarded message. After
selecting a new parent, a node begins to maintain a
windowed moving average of the acknowledgement rate
for messages forwarded to that parent. The inverse of
this rate is then scaled to the same range as the RSSI
value, and added to the current estimate. For purposes
of comparison, the message success rate of a potential
parent is assumed to be 50%. Again, maintaining this
estimate only adds a constant amount of state to the
routing layer.

2) Management-Specific Tree Enhancements:Most
deployed wireless sensor networks connect to an exter-
nal network at a single point. Future sensor networks,
however, may be designed with multiple interconnection
points. In addition, a sensor network could be managed
from a mobile workstation or PDA-class device located
within the physical boundaries of the network itself. To
accommodate these multiple-root scenarios, our collec-
tion tree protocol includes the identifier of the root node
in the construction message. The parent selection process
then doubles as a root selection process.

Multiple trees may be constructed simultaneously or
sequentially, which introduces the problem of tree selec-
tion. When construction of one tree from one root ceases,
and construction of a new tree begins at a new root, the
protocol must allow nodes to leave the old tree and join
the new. Nodes close to the original root, if allowed to
maintain their most recent path cost estimate, would not
shift to a new root because it would require an increase



in the path cost.
We address this problem by setting a minimum rate

for tree construction messages. If enough messages are
missed in sequence, the node will begin to increase its
link cost estimate to the currently selected parent and
will eventually select a new parent from an active tree.
This requirement does place a non-zero lower bound on
the amount of traffic required, but this traffic is only
necessary during active maintenance of the management
tree. If no data is being collected, the tree can be allowed
to remain static, and the aging timer can be stopped.

B. Dissemination

The Simple Network Management Protocol [7] relies
on point-to-point transport that will deliver control mes-
sages and queries to an individual device being managed.
In contrast, wireless sensor networks act in aggregate,
and thus, a wireless sensor network management system
must be able to manage in the aggregate. Aggregate
management requires a dissemination protocol that can
deliver messages reliably to a set of nodes within a
sensor network. The underlying algorithm used by our
dissemination layer is the Trickle algorithm [8]. Trickle
uses periodic retransmissions to ensure eventual delivery
of the message to every node in the network. To mini-
mize the number of required messages, retransmissions
can be suppressed by prior transmissions of similar mes-
sages, and randomization is used to prevent permanent
suppression. Our dissemination layer takes the Trickle
retransmission algorithm and builds a transport-layer
interface atop it.

1) Unnamed Reliable Dissemination:The SNMS dis-
semination protocol, named Drip, provides a transport-
layer interface to multiple channels of reliable message
dissemination. Implemented as a TinyOS component,
Drip provides a standard message reception interface.
Each component wishing to use Drip registers a spe-
cific identifier, which represents a reliable dissemina-
tion channel. Messages received on that channel will
be delivered directly to the component. Each node is
responsible for caching the data extracted from the
most recent message received on each channel to which
it subscribes, and returning it in response to periodic
rebroadcast requests. In our implementation, space for
this cache is allocated by the subscribing component, and
data is retrieved from the cache in response to an upcall
[9] issued prior to retransmission. The Drip protocol
uses a sequence number with half-space wraparound to
determine whether a received message is new, and upon
receipt of a new message, the data is delivered to the

subscribing component for required caching and optional
action.

The Drip protocol uses the message as the unit of
reliability, and the component as the unit of caching. This
design allows Drip to function as a standard transport-
layer protocol. But, it does introduce extra complexity
for a component that has several independent variables
which must be reliably synchronized among all nodes
in the network. To solve this problem, the component
must collect the current value of each variable into a
single reliably disseminated message. This method will
produce independent reliability for each variable, as long
as every node stores the same value of every variable.

This problem could also be solved by selecting the
variable as the unit of reliability and caching, and by
associating a unique key with each variable instead of
associating a channel with each message. However, this
approach would require a significantly larger keyspace,
and would blur the boundary between protocol and data
storage.

2) Named Reliable Dissemination:To implement a
useful command layer using the unnamed dissemination
provided by Drip, we must be able to name individual
nodes or subsets of the network that should act upon the
command. This ability is provided by a separate compo-
nent implementing a naming interface. The SNMS nam-
ing component places three extra header fields into each
Drip message: destination address, destination group,
and Time To Live. The naming component is called by
the client component after receiving and caching each
Drip message, and if the message is destined for the
node or for the group to which the node belongs, the
client component acts on the message. During the upcall
issued before retransmitting the cached Drip message,
the naming component can prevent retransmission if
the TTL has expired. Our particular implementation of
the Naming interface is only one of many potential
implementations. These methods could support attribute-
directed dissemination, or any other naming scheme
which can distinguish between intermediary nodes and
endpoint nodes.

The combination of Naming and Drip does slightly
lessen the reliability guarantees provided by Drip. If
messageA intended for node setS is injected, and before
A has reached every node inS, messageB is injected
for node setS’, some nodes in setS and not in setS’
may never receive valueA. Solving this problem would
require independently caching each distinct message and
recipient set indefinitely, which we rule out due to
limited space available on the nodes.



3) Commands:The Drip dissemination layer as de-
scribed above has proven itself to be a useful service for
controlling sensor network nodes. Node commands are
interpreted by individual components responsible for a
well-defined aspect of the TinyOS program, and the Drip
layer itself is used to dispatch incoming commands to the
appropriate components. Due to the eventual consistency
provided by Drip, commands should take the form of
idempotent assignments to state, and not modifications
or actions.

IV. QUERY SYSTEM

Understanding the health of a sensor network requires
a combination of automated data gathering and human
interpretation. One of the two key contributions of
SNMS is a middleware layer that allows programmers
of TinyOS components to easily expose “interesting”
attributes of their components to human eyes, over a
deployed multihop network. Because the number of
potential attributes in all components is large, SNMS
provides a runtime query system by which subsets of
these attributes may be selected for collection. This
system is intended to be simple and robust.

Network export of interesting parameters is not a new
process in sensor networks, but prior to SNMS, it has
often performed in an ad-hoc fashion. For example, the
MintRoute collection tree component can periodically
send a specific Debug message, which contains the
current parent, current link estimates, and current path
costs. This data can be used to graph a network in real-
time and study its stability. But from a developer’s point
of view, MintRoute’s debugging protocol is lacking in
several ways. The Debug message can only be enabled
at compile time, and once enabled, is constantly sent at a
fixed period. In addition, a monitoring application must
understand the specific format of the message used by
MintRoute in order to display the data, and if more fields
are added to the Debug message, then the monitoring
application will break. Under the SNMS query system,
current parent and link quality become separate attributes
that can be selected for remote monitoring at a user
defined time and period, placing management at the
user’s control, not at the compiler’s.

A. Attribute Export

Because a TinyOS program is constructed from a
collection of components, created by many different de-
velopers, the set of potentially queryable attributes may
change with each compilation, and will grow as more
components are developed. This process, applied by a

highly active TinyOS developer community, suggests
that a static taxonomy of attributes that representing
classes with well-defined semantics will quickly become
outdated.

In designing SNMS, we have chosen to leave inter-
pretation to the human posing the query, and taxonomy
to the component developer. The author of each compo-
nent chooses which attributes to export, and gives them
human-readable names indicating their meaning. Each
programmer-selected name then becomes the canonical
name of its associated attribute. To prevent namespace
collisions, we prefix each human-readable attribute name
with the name of its enclosing component. The set of
attributes is then formed by taking the union of every
attribute exported by every component.

Once an attribute has been exported, the component is
then responsible for providing the attribute in response
to an upcall. Because the variable is accessed with an
upcall instead of by copying from a memory location, the
component can perform an arbitrary computation before
copying the value into the buffer. Potential computations
include rollover detection for counters, or access to
external data. If the computation may be long-running,
the component can returnFAIL to the original upcall,
and call a separate function once the value has been
computed. Additionally, the storage location passed as
an argument to the upcall can be transient, which enables
the value to occupy no RAM at all if it can be computed
or obtained from external sources.

B. Schema Construction

Because the canonical name of an attribute is a human-
readable string, query by name is infeasible due to the
small message size and limited bandwidth of nodes in a
sensor network. This stands in opposition to the TinyDB
and Tiny Diffusion query systems, which directly send
short strings through the network as queries. Instead,
SNMS uses a compact representation of each name. At
compile-time, each exported attribute is assigned a small
integer key, which is meaningful only in terms of the set
of components comprising the TinyOS program. It is
this key which will be placed into later queries. In order
to establish a mapping between canonical names and
local keys, the source code is scanned for all exported
attributes, and then a schema is generated and stored as
a file containing a list of canonical names and local keys,
as well as the size of the value in bytes.

We could have required the programmer to select a
fully global key for each exported attribute. This could
be drawn from a flat space, as is current practice for



selecting Active Message identifiers, or it could be drawn
from a hierarchical space by selecting a global key for
each component and creating a locally unique key for
each attribute exported by the component. This method
would obviate the need for the schema file, but it also
presents several drawbacks. Requiring each programmer
to select a unique integer, without a central controlling
authority, would be much more likely to result in colli-
sions. The programmer already assigns a unique human-
readable name to each component, the selection of which
can be made easier by the programmer’s knowledge
of other existing components. So, we argue that the
extra complexity caused by the need to map from long
names to short names is outweighed by the much lesser
probability of collisions in name selection. Additionally,
the programmer would most likely desire to describe
each attribute to a human querier, which would require
a schema file mapping keys in the reverse direction – to
names.

Using a variable-length key instead of our fixed 2-
byte integer keys would use less message space and not
unnecessarily bound the size of the keyspace. But, the
earlier decision to use local keys naturally supports a
smaller keyspace, and we believe that variable-length
keys would create unnecessary complexity.

The decision to require a schema file in order to gen-
erate queries does raise additional problems. When the
program executing within a sensor network is changed,
new queries must use a schema specific to the new pro-
gram to ensure that names are translated into the correct
local keys. In future deployments, different nodes may
be executing different application codebases simultane-
ously, which would require retrieving a specific schema
for each node to be queried, and then constructing a
query may actually require constructing different queries
for each codebase.

We suggest that this problem may be solved by storing
the schema in the persistent storage of each mote at
program install time, thus associating it permanently
with the appropriate program. The schema file or files
could then be retrieved prior to query construction. This
schema could be stored as an opaque data object and
retrieved in its entirety, or stored as a programmatically-
accessible structure that supports remote translation of
individual names to keys. However, our current im-
plementation uses offline schema synchronization, by
requiring the querier to specify an appropriate file.

C. Query Processing and Response

A SNMS management query is composed of a list
of attribute keys and a sample period. Upon receipt of a
new active query, the node sets a response timer with the
period specified in the query, and a random phase. When
the timer fires, a message buffer is allocated and a pointer
is initialized to the beginning of the payload portion.
For each attribute in the query, the query system signals
the component exporting the event, and the component
writes the current value of the attribute into the buffer at
the location of the pointer. This creates a list of values
in the same order as the attributes in the original query,
without the need for temporary storage. The system
waits until all attributes have been filled, then sends
the response message through the collection tree. If the
query is repeating, the node resets the timer, and if it is
marked as one-shot, the query is cleared.

Using the query engine to pack the results into a single
message buffer creates less preamble and message header
overhead than returning values individually. Addition-
ally, it guarantees atomicity for a collection of results:
for every sample period, either all values will be returned
or none will. To keep the packet processing simple and
robust, we require the user to submit multiple queries in
order to obtain more values than will fit into a single
message.

To retrieve continuous results with a one-shot query,
the base station must re-inject the query every period.
Using a one-shot query in this fashion acts as a safeguard
against wasted network traffic caused by results from a
continuous query being sent to a base station that has
stopped receiving, or into a network that has become
disconnected.

The packed list of values in each query result is not
a self-describing data structure. Correctly parsing the
result requires knowledge of the keys in the originally
submitted query, their order, and the sizes of their
returned values. We chose to make the results non-self-
describing to lower overhead, at the cost of being unable
to interpret results returning from a query when the list
of keys contained in the original query has been lost. If
this is necessary, then SNMS will respond to a command
message that returns the details of the currently active
queries.

Effectively, we are dynamically generating a response
message structure for each injected query. This is as
efficient an encoding as the earlier pattern of creating
individual structures for each component’s debugging
message, but comes with the benefit of runtime control.



Note that nothing in our method precludes statistical
in-network aggregation of an attribute’s values, as they
can be returned within the same slot that would have
stored an individual node’s value. However, aggregation
techniques that are neither Distributive nor Algebraic ac-
cording to the TAG terminology [4], techniques requiring
more space to contain the aggregate than to contain the
value produced by a single node, are not possible within
this system.

V. EVENT LOGGING SYSTEM

While the Query System supports the continuous user-
driven monitoring of known parameters, post-mortem
analysis and real-time monitoring of unexpected events
require a second fundamental management system. The
SNMS Event Logging System supports program-driven
notification of one-time events. This event logging sys-
tem is also structured according to the SNMS de-
sign principles of minimal footprint, simple and robust
design, programmer-initiated direct naming, dynamic
schema generation, and user control.

A. Programmer Interface

We draw inspiration for the SNMS Event Logger
from the TOSSIM TinyOS simulation environment [10].
TOSSIM supports debugging calls, which are embedded
within a nesC [11] application and display output to the
terminal during execution of the program. A debugging
call is effectively a call toprintf , combining a human-
readable string with the contents of multiple variables.
Because TOSSIM is only a simulation environment,
these debugging calls are stripped out during compilation
for actual mote hardware. The SNMS Event Logger
enables the programmer to use debugging calls like
TOSSIM, but on mote hardware at runtime.

The event logging system, like the query system,
does not embed meaning within the messages, nor does
it interpret them in any way. Instead, every event is
represented by a programmer-created string, which is
intended to be meaningful to a human manager of the
system. This string is associated with a set of values to
be captured from variables at runtime. This aspect of the
design was also inspired by the UNIX “syslog” facility,
which has the benefit of being time-tested.

At compile-time, each call to the event logger is
transformed. A unique key is assigned to each different
event message, and inserted into the code. This key
is drawn from a flat local keyspace, as in the key
generation process for exported attributes. The strings
are removed from the code, and the each variable is

translated into a command that pushes the value into a
message buffer. A second schema is then stored in a file.
This schema contains the human-readable strings, the list
of parameters and their sizes, and the unique keys.

When sending or storing a log event, the values are
packed into a single message as is done in the responses
to management queries. This reduces the cost of sending
multiple messages and provides an atomicity guarantee
for events. When a log event message is received by
a workstation, the associated key is used to select the
correct schema entry, which provides the parameter size
information necessary to unpack the parameters from the
message. Theprintf placeholders in the string are
then replaced with the parameter values, and the string
is output for interpretation.

B. Event Storage and Delivery

In TOSSIM simulation, log events have only one des-
tination: standard output. Log messages generated on a
running mote have three potential destinations: persistent
local storage, the radio, or the local serial connection.
The third is feasible only in testbed deployments, but
we do provide it as an option. The second, sending log
event messages directly to the radio, does not provide a
strong enough guarantee that the event will be received,
given the commonly observed packet loss rates across
multihop sensor networks and the lack of totally reliable
delivery without custody transfer. Thus, we have focused
on logging events to persistent local storage, commonly
realized as flash RAM.

Each event record contains a fixed-length header and a
variable length data payload, and is written sequentially
to persistent storage. The event record header contains
the key, a sequence number, and a timestamp. This
timestamp may be a local time, measured in milliseconds
since the program began execution, or it may be a
globally synchronized time. The event logging system
can be made to use any available time synchronization
component. The variable-length data payload is neces-
sary because the number of parameters is not fixed,
and each parameter may be of a different size. The
event logger supports variable-length data payloads by
including a length field in the header.

To retrieve the event log, the manager sends a remote
playback command using the command dissemination
layer, which directs a set of nodes to begin reading the
log and sending the events over the multihop collection
tree. Events are returned with a user-specified period,
which can be used to bound the network bandwidth
consumed by log events. When many nodes are sending



events simultaneously, this can be used to prevent event
traffic from overwhelming the network. Additionally,
this playback interface can enable real-time retrieval of
events immediately after they are stored, by moving the
“play head” to the head of the log.

The event log as described above is a sequence of
independent events. SNMS also provides the option to
associate a component identifier with each log event,
transforming the event stream into a collection of inter-
leaved streams, one per component. The user can then
include a list of component identifiers in the log playback
message, which will filter the events prior to network
delivery.

The current version of the SNMS Event Logger del-
egates the responsibility of defining log events to the
component author. However, a component author might
not define a program event for every actual event in
which a manager may be interested. Additionally, this
model does not admit events dependent on information
from multiple components, unless a higher-level compo-
nent explicitly aggregates this information and generates
its own event. Future work for SNMS includes remote
specification of user-defined log triggers, which will use
the attributes exported by the query system as input, and
output user-defined events. We are interested in using the
Maté application-specific virtual machine as a language
and interpreter for these triggers.

VI. A PPLICATIONS

As described above, SNMS supports node control,
attribute query, and event logging. To test the viability of
SNMS and provide a core set of management services,
we have built a collection of node control components
that use the command layer, and instrumented compo-
nents that use the attribute query system.

A. Identification

The changing connectivity and node failure seen in
sensor networks suggests that enumeration of running
nodes should be a core management service. SNMS
enables the managing user to enumerate the network ad-
dress, network group identifier, and unique serial number
for each node in a network, in real time.

SNMS also supports identification of the program
executing on each node, with the human-readable name
of the program and a globally-unique identifier assigned
at compile-time.

To provide basic enumeration capabilities even with-
out an active multihop collection tree, this information
can also be gathered with a special “ping” message,

which prompts a link-local response. These link-local
identification messages are also sent at startup, providing
immediate assurance that a node has begun to execute
normally.

B. Remote Sleep and Wakeup

Because sensor nodes have a limited supply of energy,
SNMS provides remote power management as a core
service. A command can place a set of nodes into a
fully-awake state, a sleep state that can be woken with
a disseminated message, or a hibernation mode from
which a node must be awoken with a physical reset.

Entering the sleep state requires cooperation from a
basic power management system, and waking from the
sleep state requires cooperation with the network stack.
The SNMS power management system places the radio
stack into low-power listening mode, as defined by B-
MAC [12], disables upper-level components, and lets
the CPU enter sleep mode. The network stack remains
active, but listens only for messages destined for the Drip
dissemination layer, and the Drip layer listens only for
the specific command channel used to control the power
state.

Because each sleeping node samples the channel
with a very long period, the wakeup message must be
preceded by a very long preamble. Disseminating this
message requires a small amount of special-case logic,
which is easily supported by the upcall system used by
Drip. During the upcall prior to periodic rebroadcast of
the wakeup message, the power management component
places the radio stack into long-preamble transmission
mode before sending the message. This ensures that even
after a node has woken from sleep, it can wake up its
sleeping neighbors.

C. Physical Parameters

Because the split-phase attribute interface supports
reading from physical sensors, we can use SNMS to
monitor physical parameters of the node’s environment.
We have implemented a small component that measures
battery voltage, which can be used to predict node
failures [13]. Temperature and humidity around the mote
also function as predictors of upcoming failure, and
could be measured by appropriate components and then
exported to the query system.

D. Task Queue

TinyOS computations are executed in interrupt context
or in task context. Tasks are scheduled using a queue, in
which the current task must finish executing before the



next task can begin. The size of this queue is fixed at
compile-time, but tasks can be entered into this queue
at any time and in any number. Thus, a program with a
large number of components that frequently post tasks
may experience queue overflows, and some tasks may
be prevented from executing. Failure to post a task may
lead to an upcall that never arrives at a higher-level
component, which could leave that component locked
forever.

SNMS provides monitoring of the task queue as a core
service, by including a component that tracks the number
of times the task queue has overflowed, and stores the
memory address of the function for which posting has
most recently failed. The counter will make the manager
aware of queue overflows, and the stored pointer can
assist the manager in identifying the affected component.

E. Reboot Counters

TinyOS motes often protect themselves from software
failures using watchdog timers, which forcibly reboot
the mote if the application does not periodically reset
a flag. Another type of protection from failures is the
grenade timer, which reboots the mote after the program
has been allowed to execute for a fixed amount of time.
The TinyOS bootloader can distinguish between these
resets, in addition to resets caused by power cycling
the node, resets caused by low-voltage brownouts, resets
in response to a flash error detected while transferring
a new program image from external to internal flash,
and resets initiated by the system or user. The TinyOS
bootloader, in cooperation with SNMS, keeps separate
counters for each type of failure-initiated node reboot
and another counter for reboots manually initiated by
the TinyOS application. These counters, as well as a
history of thek most recent reasons for node reboot,
are accessible through SNMS.

F. Radio Stack

Performance of sensor network algorithms is com-
monly measured by the number of messages sent and
received. Contention can be measured directly by the
number of corrupt packets received, instead of indirectly
by tracking missed packets across nodes as is done
in the simulation analysis of Deluge [1]. Additionally,
contention between TinyOS components for the radio
stack can result in performance degradation and lost
messages. In deployments, nodes can fail and emit
streams of spurious packets (jabbering), which can be
detected by neighboring nodes.

To assist the user in analyzing these aspects of ra-
dio stack performance and failure, SNMS includes an
instrumented stack that provides a rich set of remotely
queryable counters. The stack counts incoming and
outgoing message notifications, several types of receive
and send failures, and actual message deliveries in both
directions. This instrumented stack provides information
previously available only in simulation, allowing for
profiling of algorithms in real deployments.

The counters in this instrumented radio stack actually
consume more than double the RAM occupied by the
rest of the stack. This highlights the tension between
management and resource consumption, but it is not
the management system consuming the resources. Future
work includes developing a system by which developers
can select an appropriate level of monitoring for standard
system components.

G. Node Binding

To support fine-grained management of large sensor
networks with multiple interconnection nodes, SNMS
includes a system for dividing a network into subgroups
which can be used to limit the propagation of commands
and data. The actual selection of nodes for each sub-
group can be assisted by the tree construction protocol
described earlier.

When multiple base stations construct trees in parallel,
each node will join the tree presenting the smallest total
path cost to a base station. Tree membership, then, will
divide the network into a number of groups that will
cover the deployment area. After every node has selected
a root, the manager can send a group establishment
command that sets the group ID tox for all nodes with
tree ID y. This message solidifies the dynamic divisions
into static divisions, which can be used to limit the scope
of newly disseminated messages. However, a command
can still be disseminated across groups by addressing
it to the broadcast group. This group establishment
command, when sent to the broadcast group, can be used
to re-establish, modify, or remove previously created
divisions.

Future work will include establishing divisions by
setting a common radio frequency for a collection of
nodes. Because messages sent on different frequencies
are rejected in hardware, the frequency equivalent of the
broadcast group may require modification of the radio
driver to listen on both a current frequency and a well-
known hailing frequency.



TABLE I

DELIVERY PERFORMANCE OFSNMS COLLECTION

Basic RSSI RSSI + ACK
Msgs/Node Mean 25.5 25.6

Max 29 30
Min 4 12

Yield/Node Mean 91% 92%
Max 100% 100%
Min 15% 52%

Xmits/Msg Mean 3.6 3.1
Max 7.7 6.5
Min 1 1

VII. E VALUATION

To truly evaluate SNMS, we must study both the
performance of the underlying network architecture, and
the effects on the deployment process that may result
from having an integrated management system. The first
can be analyzed in the laboratory. We choose to analyze
the second by inferring the effect that SNMS would have
had on previous deployments.

A. Networking Evaluation

We evaluated the performance of SNMS on a 55-node
subset of our in-house 78-node testbed. Each node is a
mica2dot mote, connected to an Ethernet channel for
reprogramming and data collection. As a feasibility test
for SNMS, this Ethernet channel was not used during
the following evaluation, and all data was collected over
the network as though the nodes were deployedin situ.

1) Collection: The SNMS collection layer must meet
three requirements: fast tree construction, high-yield data
retrieval, and successful adaptation to node failure. To
determine whether the ACK estimator made the tree
construction more adaptive and selected higher-quality
links without affecting the initial construction time, we
examined the performance of the collection layer with
and without the ACK estimator. A query was dissem-
inated to every node, and each node responded every
32 seconds for 15 minutes. This period was chosen to
be high enough to prevent contention effects, but could
easily be adapted to the specific network at hand.

Table I presents a summary of the data retrieval quality
results. The data indicate that basing the link quality
on both the signal strength and an estimate of the
acknowledgement rate improves the worst-case paths,
and improves the overall quality of the paths as measured
in the number of transmissions required to retrieve a
message.

We then measured the time-variant behavior, including
tree construction and response to node failure, in a

0 64 128 192 256 320 384 448 512 576 640 704 768
0

5

10

15

20

25

30

35

40

45

50

55

Seconds

R
ep

or
tin

g 
N

od
es

RSSI+ACK
RSSI

Fig. 1. Tree construction and failure response

second set of experiments under the same conditions as
the first set. The tree construction message was initiated
at the 32 second mark, after every one-hop neighbor of
the base station had returned one query result. Because
we are monitoring the responses to a query with a
period of 32 seconds, the tree appears to require over
a minute of construction time. In fact, the tree was
likely constructed more quickly, but we chose to focus
on the functional metric of query response over the
abstract metric of tree construction. After 10 samples
were received and all nodes had joined the tree, a node
that had been selected as the parent by the most other
nodes was disabled.

Figure VII-A.1 shows the number of nodes reporting
in each period over time. We see that the basic RSSI
estimator takes longer to re-establish a full tree, as
compared to an estimator that measures quality based
on acknowledged packets.

We found that the ACK estimator did not affect the
time necessary to construct the tree, but greatly increased
the speed of adaptation following a node failure.

2) Dissemination:We tested the performance of the
dissemination layer on 88 nodes deployed in an office
environment. The SNMS power management system
requires dissemination of a sleep message, which we
use as the normal case for Drip, and dissemination of
a wakeup message that must be transmitted with an
extremely long preamble because sleeping nodes sample
the channel with a much lower frequency. This wakeup
message represents a special challenge for the suppres-
sion mechanisms within Drip, because of its length. We
compare the time to completely disseminate a message
using a simple high-speed flood with no suppression or
retransmissions, Drip using retransmissions but without
suppression, and Drip using both retransmissions and



0 2 4 6 8 10 12 14
0

10

20

30

40

50

60

70

80

90

100

Seconds

P
er

ce
nt

ag
e

Basic Flood Performance

Wake
Sleep

Fig. 2. No retransmissions, no suppression

0 2 4 6 8 10 12 14
0

10

20

30

40

50

60

70

80

90

100
Drip Performance (Without Suppression)

Seconds

P
er

ce
nt

ag
e

Wake
Sleep

Fig. 3. Retransmissions, no suppression

0 2 4 6 8 10 12 14
0

10

20

30

40

50

60

70

80

90

100
Drip Performance (With Suppression)

Seconds

P
er

ce
nt

ag
e

Wake
Sleep

Fig. 4. Retransmissions and suppression

suppression. (Figs. 2-4).

As expected, we see that the dissemination takes
longer when the messages have longer preambles. We
also see that using suppression resulted in a shorter total
time to complete dissemination, and a lighter tail in
the reception CDF. The reception rate was 100% in all
three tests, even without retransmissions. We attribute
this to the high density of our testbed, and will study
the performance under a wide range of more adverse
conditions in future work.

3) Memory Footprint:One of the key SNMS design
requirements was a small RAM footprint. Table II gives
a detailed breakdown of the SNMS RAM requirements
by component. Because SNMS is a cooperative system,
there are many parameters that may be modified to trade
off RAM footprint for program features.

The static allocation system used in TinyOS requires
us to allocate buffers for each potentially active query
ahead of time. We have chosen to allocate space for
four simultaneously active queries, but this could easily
be reduced to one. We have chosen to allocate separate
buffers for the basic identification system and the input
half of the event logger, to decrease the likelihood of
temporary failure. We chose to finely instrument several
components, but the space occupied by instrumentation
counters could be reduced by accepting less detailed data
gathering.

When added to the underlying components necessary
to access the radio, UART, and flash memory, as well
as the standard system support components, the total
RAM usage of the null application plus the full SNMS
configuration rises to 1281 bytes out of 4k of available
RAM. With a trimmed version of SNMS, or one that
makes use of the application’s networking components,
the amount of RAM available to the application could
be increased even further. As a point of comparison,

the Tiny Application Sensor Kit, which also provides
multihop query processing and collection, requires 2870
bytes of RAM. This is not a feature-to-feature com-
parison, because SNMS does not provide in-network
aggregation of query results, but TASK does not provide
event logging support, scoped dissemination for node
control, or dynamic schema generation.

B. Management Evaluation

SNMS, and the components built atop it, could as-
sist in the process of sensor network deployment and
health monitoring. In the Great Duck Island deployment
[14], nodes that were overhearing and forwarding traffic
were found to have shorter lifetimes. The instrumented
network stack of SNMS, in conjunction with the radio
duty cycle control, can provide enough information to
estimate power consumption due to the radio and gather
that data in real time for use in failure prediction.
Future deployments could also estimate CPU power
consumption by instrumenting the scheduler, and sensing
power consumption by instrumenting the sensor drivers.
SNMS provides a flexible system upon which to build
these health monitoring facilities.

A lesson learned from GDI is the desirability of per-
sistent data logging for post mortem analysis. The SNMS
event logging system provides just such an ability, using
an application-cooperative API that will allow integration
into existing system with little programmer effort.

During the deployment of the GDI network, real-time
information on the network neighborhood and reachable
nodes would have assisted the deployers in constructing
a more reliable network. This information should be
accessible from both a base station and a field tool.
The SNMS multiple-root data collection system, coupled
with epidemic dissemination for commands and queries,
would allow this data to be gathered from both places
simultaneously.



TABLE II

RAM USAGE OFSNMS COMPONENTS(IN BYTES)

Component Fixed Cost Variable Costs Chosen Variable Cost Instrumentation Total
Identification 11 43× 1 msg buffer 43 0 54

Collection 15 45× 2 msg buffers 90 14 119
Dissemination 1 8 × 9 channels 72 0 73

Management Attrs 0 1 × 43 attrs 43 0 43
Management Query 10 25× 4 query slots 100 0 110

Event Logger 18 43× 1 msg buffer 43 0 61
Sleep & Wake 5 0 0 0 5
Node Binding 8 0 0 0 8

Reboot 9 0 0 0 9
Radio Stack 24 24
Task Queue 1 1

Timer 10× 7 timers 70 0 70
Shared Msg Buf 43× 1 msg buffer 43 0 43

TOTAL 77 504 39 620

VIII. C ONCLUSION

We have described SNMS, a simple and robust
application-cooperative Sensor Network Management
System. SNMS provides a core set of services to enable
management: query-based health data collection and per-
sistent event logging. These services occupy a minimal
amount of RAM and code size, and can be rapidly
integrated into TinyOS applications. To ensure that these
services are usable for management and will continue
to function in the event of application failure, SNMS
also includes a new lightweight network architecture for
collection and dissemination. Finally, SNMS provides a
number of specific management components for selective
inclusion into sensor network applications. The network-
ing layer has been shown to perform acceptably, and the
management functionality meets several needs derived
from prior TinyOS sensor network deployments.

REFERENCES

[1] J. Hui and D. Culler, “The dynamic behavior of a data dis-
semination protocol for network programming at scale,” in
Proceedings of the Second ACM Conference on Embedded
Networked Sensor Systems (SenSys), 2004.

[2] P. Levis, S. Madden, D. Gay, J. Polastre, R. Szewczyk, A. Woo,
E. Brewer, and D. Culler, “The emergence of networking
abstractions and techniques in tinyos,” inProceedings of the
First USENIX/ACM Symposium on Network Systems Design
and Implementation (NSDI), 2004.

[3] P. Levis and D. Culler, “Mat́e: A tiny virtual machine for sensor
networks.” inProceedings of the 10th International Conference
on Architectural Support for Programming Languages and
Operating Systems (ASPLOS X), 2002.

[4] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong,
“Tag: a tiny aggregation service for ad-hoc sensor networks,”
in Proceedings of the ACM Symposium on Operating System
Design and Implementation (OSDI), dec 2002.

[5] A. Woo, T. Tong, and D. Culler, “Taming the underlying
challenges of reliable multihop routing in sensor networks,”
in Proceedings of the First ACM Conference on Embedded
Networked Sensor Systems (SenSys). ACM Press, 2003, pp.
14–27.

[6] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed
diffusion: A scalable and robust communication paradigm for
sensor networks,” inProceedings of the International Confer-
ence on Mobile Computing and Networking, 2000.

[7] J. Case, R. Mundy, D. Partain, and B. Stewart, “Introduction
to version 3 of the internet-standard network management
framework (rfc 2570),” Internet Engineering Task Force, April
1999.

[8] P. Levis, N. Patel, D. Culler, and S. Shenker, “Trickle: A
self-regulating algorithm for code maintenance and propaga-
tion in wireless sensor networks,” inProceedings of the First
USENIX/ACM Symposium on Network Systems Design and
Implementation (NSDI), 2004.

[9] D. D. Clark, “The structuring of systems using upcalls,” in
Proceedings of the ACM Symposium on Operating Systems
Principles (SOSP), 1985.

[10] P. Levis, N. Lee, M. Welsh, and D. Culler, “Tossim: Accurate
and scalable simulation of entire tinyos applications,” inPro-
ceedings of the First ACM Conference on Embedded Networked
Sensor Systems (SenSys), 2003.

[11] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer,
and D. Culler, “The nesC language: A holistic approach to
networked embedded systems,” inProceedings of the ACM
SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), June 2003.

[12] J. Polastre, J. Hill, and D. Culler, “Versatile low power media
access for wireless sensor networks,” inProceedings of the Sec-
ond ACM Conference on Embedded Networked Sensor Systems
(SenSys), 2004.

[13] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. An-
derson, “Wireless sensor networks for habitat monitoring,” in
Proceedings of the ACM International Workshop on Wireless
Sensor Networks and Applications, 2002.

[14] R. Szewczyk, A. Mainwaring, J. Polastre, J. Anderson, and
D. Culler, “An analysis of a large scale habitat monitoring
application,” in Proceedings of the Second ACM Conference
on Embedded Networked Sensor Systems (SenSys), 2004.


