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Experimental studies have demonstrated that the behavior of real links in low-power wireless net-
works (such as wireless sensor networks) deviates to a large extent from the ideal binary model
used in several simulation studies. In particular, there is a large transitional region in wireless
link quality that is characterized by significant levels of unreliability and asymmetry, significantly
impacting the performance of higher-layer protocols. We provide a comprehensive analysis of the
root causes of unreliability and asymmetry. In particular, we derive expressions for the distribu-
tion, expectation, and variance of the packet reception rate as a function of distance, as well as
for the location and extent of the transitional region. These expressions incorporate important en-
vironmental and radio parameters such as the path loss exponent and shadowing variance of the
channel, and the modulation, encoding, and hardware variance of the radios.
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1. INTRODUCTION

Wireless sensor network (WSN) protocols are often evaluated through simula-
tions that make simplifying assumptions about the link layer, such as the ideal
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binary model. In this model, packets are received only within the circular radio
range of the transmitter. However, the real characteristics of low-power wireless
links differ greatly from those of the ideal model; chiefly among these differ-
ences are the unreliable and asymmetric nature of real links. The significant
differences between the ideal model and real behavior can lead to erroneous
performance evaluation of upper-layer protocols (network layer and above).

Several studies [Ganesan et al. 2003; Zhao and Govindan 2003; Woo et al.
2003] have classified low-power wireless links in three distinct reception re-
gions: connected, transitional, and disconnected. In the connected region, links
are often of good quality, stable, and symmetric. By contrast, the transitional
region is characterized by the presence of unreliable and asymmetric links; and
the disconnected region presents no practical links for transmission. Unfortu-
nately, the transitional region is often quite significant in size, and in dense
deployments such as those envisioned for sensor networks, a large number of
the links in the network (even greater than 50% [Zhao and Govindan 2003])
can be unreliable.

Recent studies have shown that unreliable and asymmetric links can have
a major impact on the performance of upper-layer protocols. In Ganesan et al.
[2003], it is shown that the dynamics of even the simplest flooding mechanism
can be significantly affected due to asymmetric and occasional long-distance
links. In Kotz et al. [2003], it is argued that routing structures formed by tak-
ing into account unreliable links can be significantly different from structures
based on the simple binary model. Similarly, the authors of Zhou et al. [2006]
report that such unreliable links can have a negative impact on routing proto-
cols, particularly geographic forwarding schemes.

Other works [Woo et al. 2003; De Couto et al. 2005] have proposed mecha-
nisms to take advantage of nodes in the transitional region. For instance, the
authors of De Couto et al. [2005] found that protocols using a traditional mini-
mum hop-count metric perform poorly in terms of throughput, and that a new
metric called ETX (expected number of transmissions), which uses nodes in the
transitional region, has better performance.

The significant impact of real link characteristics on the performance of
upper-layer protocols has created increased understanding for the need for
realistic link-layer models for wireless sensor networks. In order to address
this need, some recent works [Woo et al. 2003; Zhou et al. 2006; Cerpa et al.
2005] have proposed new link models based on empirical data. However, these
models do not provide significant mathematical insight into how channel and
radio dynamics affect link unreliability and asymmetry. Also, some of these
works [Cerpa et al. 2005; Woo et al. 2003] are valid only for the specific channel
and radio parameters used in the deployment.

In this study, we use analytical tools from communication theory, simula-
tions, and experiments to present an in-depth analysis of unreliable and asym-
metric links in low-power multihop wireless networks. The main contributions
of this work are twofold. First, our work allows quantifying the impact of the
wireless environment and radio characteristics on link reliability and asymme-
try. Second, we propose a systematic way to generalize models for the link layer
so as to enhance simulation accuracy.
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Table I. Organization

Topic Section
Related Work 2
Channel Dynamics 3

Link Model 3.1
Impact on Link Reliability 3.2
Expectation and Variance of PRR 3.3
Comparison with Available Models 3.4

Hardware Variance 4
Hardware Variance Model 4.1
Impact on Link Asymmetry 4.2
Impact on Link Reliability 4.3

Empirical Validation 5

We also derive expressions for both the packet reception rate as a func-
tion of distance, and for the size of the transitional region. These expressions
incorporate several radio parameters such as modulation, encoding, output
power, frame size, receiver noise floor, and hardware variance, as well as im-
portant channel parameters, namely, the path loss exponent and log-normal
variance.

Table I presents the organization of the article. In Section 2, we present
related work. Section 3 studies the impact of multipaths on link reliability.
First, we present a model for the packet reception rate as a function of distance
in Section 3.1. Based on this model, in Section 3.2 we study the impact of
channel and radio parameters on link reliability by analyzing their effect on the
extent of the transitional region. Then, in Section 3.3 we present approximate
expressions for the expectation and variance of the packet reception rate as
a function of distance. The section ends with a comparison of available link
models with the one proposed in this work (Section 3.4).

We study the impact of hardware variance in Section 4. Hardware variance
has already been identified as the cause of link asymmetry [Cerpa et al. 2005],
and in addition, we also show that it can play a significant role on the extent
of the transitional region. In Section 4.1, we present a model for hardware
variance. Based on this model, the impact of hardware variance on link asym-
metry and reliability is quantified in Sections 4.2 and 4.3, respectively. Finally,
in Section 5 we present empirical measurements, based on a testbed of mica2
motes, which validate some analytical insights of our work. Our conclusions
are presented in Section 6.

Before proceeding, we present the scope of our work. Our study is focused
on static and neither low-dynamic environments and considers interference
effects nor the nonisotropic property of radio coverage. However, it can be com-
plemented with other research efforts to incorporate these dynamics. For in-
stance, in Son et al. [2006] the authors focus on interference in wireless sensor
networks, Cerpa et al. [2005] study some temporal properties and Zhou et al.
[2006] provide an interesting model for the nonisotropic characteristic of radio
coverage; the models presented in these works can be used to complement ours.
Appendix A. A presents some guidelines on how to combine the nonisotropic
RIM model [Zhou et al. 2006] with our work.
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2. RELATED WORK

The unrealistic nature of some common assumptions used in mobile ad hoc
networks (MANET) research is presented in Kotz et al. [2003]. In real scenarios,
packet losses lead to different connectivity graphs, and coverage ranges that
are neither circular nor convex and often noncontiguous.

Several researchers have pointed out that simplistic assumptions may lead
to erroneous performance evaluations of upper-layer protocols. In one of the
earliest works [Ganesan et al. 2003], the authors present empirical results on
the behavior of simple flooding in a dense sensor network. They found that the
flooding tree exhibits high clustering behavior in contrast to the more uniformly
distributed tree obtained with the ideal binary model.

In De Couto et al. [2005], the authors present measurements for DSDV and
DSR over a 29-node 802.11b testbed and show that when real channel charac-
teristics are not taken into account, the minimum hop-count metric has poor
performance. By incorporating the effects of link loss ratios, asymmetry, and
interference, they present the expected transmission count metric which finds
high throughput paths. Along similar lines, Woo et al. [2003] study the effect of
link connectivity on distance-vector-based routing in sensor networks. By eval-
uating link estimators, neighborhood table management, and reliable routing
protocol techniques, they found that cost-based routing using a minimum ex-
pected transmission metric shows good performance.

Zhou et al. [2006] reported that radio irregularity has significant impact on
routing protocols, but a relatively small impact on MAC protocols. They found
that location-based routing protocols such as geographic routing perform worse
in the presence of radio irregularity than on-demand protocols such as AODV
and DSR.

Through empirical studies, the previous works bring to light the impact that
unreliable and asymmetric links have on protocol performance at different lay-
ers. Nevertheless, while on-site deployment is arguably the best testing proce-
dure for small-scale networks, it may be unfeasible for medium- and large-scale
networks, for which simulators are usually the best option. In order to help over-
come this problem some tools and models have been recently proposed to obtain
more accurate link-layer models.

In Woo et al. [2003], the authors derive a packet loss model based on ag-
gregate statistical measures such as the mean and standard deviation of the
packet reception rate. The model assumes a Gaussian distribution of the packet
reception rate for a given transmitter-receiver distance, which, it will be shown
in Section 3, is not accurate.

Using the SCALE tool [Cerpa et al. 2003], Cerpa et al. [2005] identify other
factors for link modeling. They capture features of the groups of links associated
with a particular receiver and transmitter, as well as links associated with a
group of radios in close proximity. Using several statistical techniques, they
provide a model spectrum of increasing complexity and accuracy.

A more recent model, called the radio irregularity model (RIM), was pro-
posed in Zhou et al. [2006]. Based on experimental data, RIM provides a radio
model that takes into account both the nonisotropic properties of propagation
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media and the heterogeneous properties of devices to build a richer link
model.

Temporal properties in dynamic environments have been studied as well.
In Cerpa et al. [2005], the authors study short-term temporal issues such as
autocorrelation of individual and reverse links, and long-term temporal prop-
erties such as the length of time needed to measure the channel and how often
to obtain accurate link quality metrics. The authors also propose new routing
algorithms to take advantage of the temporal properties of wireless links.

While the described models are important steps toward a realistic link qual-
ity model, they do not provide significant mathematical insight on how the
channel and radio parameters affect link unreliability and asymmetry. Also,
some of these models [Woo et al. 2003; Cerpa et al. 2005] do not provide a sys-
tematic way to generalize the models (i.e., extend their validity and accuracy)
beyond the specific radio and environment conditions of the experiments from
which the models are derived.

On the other hand, years of research in wireless communications, partic-
ularly cellular networks, provide a rich set of models and tools for analyzing
the physical layer [Rappaport 2002].1 Two of these tools are of significance to
understand the transitional region, the log-normal path loss model (to model
the wireless channel), and the bit-error performance of various modulation
and encoding schemes with respect to the signal-to-noise ratio (to model the
radio).

Hitherto, research has identified the link-layer modeling problem and its
impact on upper-layer protocols. It also has identified some of its causes and
proposed some realistic link quality models. However, what is missing is a clear
analytical understanding of the root causes of link behavior. Our work presents
an in-depth analysis of unreliable and asymmetric links and provides simple
analytical models for the link layer.

3. IMPACT OF CHANNEL DYNAMICS

The extent of the transitional region is the result of placing specific devices,
such as mica2 motes, in a specific environment like the aisle of a building. If
the characteristics of one of these elements is altered (radio or channel) then
the extent of the transitional region is also altered. With the intent of analyzing
how the channel and radio determine this extent, we first define models for both
elements and subsequently study their interaction. Then we present approx-
imated expressions for the expectation and variance of the packet reception
rate with respect to distance. Finally, we compare our model with a previously
proposed model.

From the network-layer perspective, a desired abstraction for link quality
is the packet reception rate as a function of distance. This abstraction can be
derived by composing the channel model, which provides the received signal
strength (RSS) as a function of distance, with the radio-receiver model, which

1In cellular systems the transitional region is not of interest (except for modeling intercell inter-
ference), as cells are designed to fit only the connected region.
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Table II. Mathematical Notation

Description Symbol
Packet Reception Rate Parameters
– packet reception rate (PRR) �

– a specific PRR value in the range of � ψ

– high PRR ψh
– low PRR ψ�

Signal to Noise Ratio Parameters
– signal to noise ratio (SNR) ϒ

– a specific SNR value in the range of ϒ γ

– SNR value corresponding to ψh γh
– SNR value corresponding to ψ� γ�

– mean of SNR (Gaussian) for distance d μ(d )
– bit error rate as a function of SNR β

– bit error rate as a function of SNR in dB B
Channel Parameters
– path loss exponent η

– standard deviation σ

– output power Pt
– received power Pr
– noise floor Pn
– Gaussian random variable N
Transitional Region Parameters
– transitional region coefficient 


– beginning of transitional region db
– end of transitional region de

provides the packet reception rate (PRR) as a function of the signal-to-noise
ratio (SNR).

In the remainder of the article, the SNR function is denoted by ϒ and the
PRR function by �. Also, the lowercase greek letter γ = ϒ(.) and ψ = �(.)
represent values taken by ϒ and �, respectively, for specific points in their
respective domains. Table II presents a summary of the notation used in this
article.

3.1 Channel and Radio Receiver Models

—Channel: When an electromagnetic signal propagates, it may be diffracted,
reflected, and scattered. These effects have two important consequences on the
signal strength. First, the signal strength decays exponentially with respect to
distance, and second, for a given distance d , the signal strength is random and
log-normally distributed about the mean distance-dependent value.

Due to the unique characteristics of each environment, most radio prop-
agation models use a combination of analytical and empirical methods. One
of the most common radio propagation models is the log-normal path loss
model [Rappaport 2002]. This model can be used for large and small cov-
erage systems [Seidel and Rappaport ]. Furthermore, empirical studies have
shown that the log-normal model provides more accurate multipath channel
models than the well-known Nakagami and Rayleigh models for indoor envi-
ronments [Nikookar and Hashemi 1993].
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According to this model, the received power (Pr ) in dB is given by

Pr (d ) = Pt − PL(d0) − 10 η log10

(
d
d0

)
+ N (0, σ ), (1)

where Pt is the output power, η is the path loss exponent that captures the rate
at which the signal decays with respect to distance, N (0, σ ) is a Gaussian ran-
dom variable with mean 0 and variance σ (standard deviation due to multipath
effects), and PL(d0) is the power decay for the reference distance d0.

Eq. (1) does not consider nonisotropic transmission, which is an important
characteristic of low-power wireless links. In Appendix A we present some
guidelines on how to incorporate these nonisotropic effects into our model by
using the expressions derived in the RIM model [Zhou et al. 2006]. Appendix A
also presents some information on how to include the path loss effect caused by
obstacles.

Radio receiver. The receiver response is given by the packet reception rate
as a function of the SNR. The packet reception rate can be derived from bit-
error rate expressions that are widely available in the wireless communication
literature.

For a modulation M , the packet reception rate (�) is defined in terms of the
bit-error rate (βM ) as2

�(γ ) = (1 − βM (γ )) f , (2)

where f is the number of bits transmitted, and step 3 in Table VII presents
expressions of βM for some common narrowband modulation schemes.

βM is a function of the SNR. The SNR can be obtained from Eq. (1) and is
given by

ϒ(d ) = Pr (d ) − Pn

= N (μ(d ), σ ), (3)

where N (μ(d ), σ ) is a Gaussian random variable with mean μ(d ), variance σ 2,
and Pn is the noise floor.3 Specifically, μ(d ) can be derived by inserting Eq. (1)
into Eq. (3), which leads to

μ(d ) = Pt − PL(d0) − 10 η log10

(
d
d0

)
− Pn. (4)

Given that the SNR in Eq. (3) is in dB, let us redefine the packet reception
rate in Eq. (2) as a function of the SNR in dB. Denoting ω(x) = 10x/10 and the
bit-error rate for SNR in dB as BM (γdB) = βM (ω (γdB)), the packet reception rate
� can be redefined as

�(γdB) = (1 − BM (γdB)) f . (5)

2For ease of explanation, the encoding is assumed to be NRZ. Table VII presents expressions for
other encoding techniques.
3The focus of this article is on static interference-free environments. In these scenarios Pn is given
only by thermal noise and is constant, which in turn leads to constant packet reception rates in
time, as shown in Son et al. [2004]. Nevertheless, in most scenarios Pn changes with time, either
because of interference or because of large changes in temperature. For these scenarios Pn can be
modeled as a random process.
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while the previous equation is general and valid for any modulation M , the
figures in this section assume noncoherent FSK (NCFSK) modulation. The
figures are for illustrative purposes and any modulation would serve that
purpose. NCFSK was chosen because the empirical evaluation presented in
Section 5 uses NCFSK radios (i.e., CC1000 equipped mica2 motes).

3.2 Impact on Link Reliability (Extent of Transitional Region)

In this subsection our aim is to quantify the impact of channel dynamics on the
extent of the transitional region. Given that the channel model is a function
of SNR versus distance and the receiver response is a function of PRR versus
SNR, we can derive the behavior of PRR versus distance by linking both ex-
pressions through the SNR metric. First, we derive the SNR values that deter-
mine the beginning and end of the transitional region in the receiver response,
and then we determine how these SNR values map to distance in the channel
model.

Even though there are no strict definitions for the different regions in the
literature, two valid definitions the following are.

Definition 1. In the connected region, links have a high probability (> ph)
of having high packet reception rates (> ψh).

Definition 2. In the disconnected region, links have a high probability
(> p�) of having low packet reception rates (< ψ�) where ph and p� can be
chosen as any numbers close to 1 and 0, respectively.

Letting B−1
M (.) be the inverse4 of BM (γdB), and �−1(ψ) = B−1

M (1 − ψ1/ f ) the
inverse of �, the PRR values ψh and ψ� from the preceding definitions can
be mapped to their corresponding SNR values in dB: γh = �−1(ψh) and γ� =
�−1(ψ�). These SNR values determine the beginning and end of the transitional
region.

Figure 1(a) shows how ψh and ψ� determine three different regions in the
radio-receiver response (Eq. (5)), and Figure 1(b) shows how γh and γ� interact
with the channel (Eq. (3)) to determine the extent of the connected, transitional,
and disconnected regions.

According to Definition 1, the beginning of the transitional region (db) satis-
fies the following condition:

p(� > ψh) = ph, ∵ � is injective
⇒ p(ϒ > γh) = ph, ∵ ϒ is Gaussian

⇒ Q
(

γh − μ(db)
σ

)
= ph

(6)

4BER functions are injective. Hence, while there might not be a closed-form expression for their
inverse function, the SNR in the domain can always be obtained numerically.
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Fig. 1. (a) A receiver response where ψ� and ψh determine different regions of link quality; (b)
interaction of γ� and γh with the channel to determine the transitional region; (c) analytical repre-
sentation of Eq. (6) and (7).
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Moreover, according to Definition 2, the end of transitional region (de) satifies

p(� < ψ�) = p�, ∵ � is injective
⇒ p(ϒ < γ�) = p�,
⇒ p(ϒ ≥ γ�) = (1 − p�), ∵ ϒ is Gaussian

⇒ Q
(

γ� − μ(de)
σ

)
= (1 − p�),

(7)

where Q(.) is the tail integral of a unit Gaussian probability density function
(pdf ) and μ(.) is given by Eq. (4). Figure 1(c) depicts an analytical representation
of the previous equations. The figure shows how the interaction between the
channel and receiver response determines the extent of the transitional region.
Finally, db and de can be derived from Eq. (6) and (7)

db = 10
γh−σ Q−1(ph)−Pt +Pn+PL(d0)

−10n

de = 10
γ�−σ Q−1(1−p� )−Pt +Pn+PL(d0)

−10n

(8)

while Eq. (8) provides absolute values for the extent of the different regions,
it may not be useful to compare the link qualities of different scenarios. With
that aim, we define the transitional region coefficient 
, which is the ratio of the
extent of the transitional with respect to the extent of the connected region.


 = de−db
db

= 10
(γh−γ� )+σ (Q−1(1−p� )−Q−1(ph))

10n − 1
(9)

The lower the coefficient 
, the smaller the transitional region compared to
the connected one. For example, for the ideal binary model where γh = γ� and
σ = 0, the coefficient 
 = 0. Notice that 
 is independent of the noise floor
Pn and output power Pt ; a higher output power would increase the connected
region, but would increase the transitional region as well, keeping a constant
ratio.

Eq. (9) predicts the impact of the channel on the transitional region. Given
that ph and p� are high probabilities, (Q−1(1 − p�) − Q−1(ph)) is positive and
hence, while a small σ decreases the relative extent of the transitional region, a
small η increases it. Therefore, scenarios with high η and low σ reduce the rel-
ative size of the transitional region. Figure 2(a) presents 
 for different values
of η and σ , where p� = ph = 0.9, γh = 10.23 dB, and γ� = 8.20 dB.5

Figure 2(b) depicts analytically the impact of η and σ on the extent of the
transitional region. The SNR bounds on the radio receiver (γh and γ�) are fixed
and independent of environment. When σ increases from 1 to 2, the signal
values ( y axis) have a higher probability of entering the transitional region
more closely to the transmitter and leaving it at farther distances, resulting in
a larger transitional region. When η is increased (left arrow), the faster decay
of the signal strength decreases the width of the transitional region.

5γh and γ� were obtained for an NCFSK radio with Manchester encoding and a frame size of 100
bytes. Different modulations, encodings, and packet sizes do not have a significant impact on 
,
and the results are not presented due to space constraints. Some of these results are available
in Zuniga and Krishnamachari [2004].
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Fig. 2. Impact of σ and η: (a) on extent of transitional region; (b) 
 for different values of η and σ .
Solid curves represent average power decay, and dotted lines the [−2σ , 2σ ] interval of the variance.

Eq. (9) also predicts the impact of the receiver. The sharper the receiver
threshold, the smaller (γh −γ�) and the smaller the 
 coefficient. However, even
with a perfect threshold receiver (γh = γ�), such as that used on the ideal model,
the transitional region would still exist due to channel dynamics (σ ). Figure 3(a)
depicts analytically the behavior of a perfect threshold receiver in a real chan-
nel, and Figure 3(b) shows an instance of link behavior. Notice that in this
hypothetical scenario, the transitional region would consist only of 0/1 links.

The model also allows providing the cumulative distribution function (cdf )
of the packet reception rate as a function of distance. According to Eq. (5),

F (ψ) = p(� < ψ)

= p(ϒ < �−1(ψ))

= 1 − Q
(

�−1(ψ) − μ(d )
σ

)
,

(10)
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Fig. 3. Impact of perfect receiver threshold on extent of transitional region; (a) analytical repre-
sentation; (b) an instance of PRR vs. distance.

where μ(d ) is the average SNR decay (Eq. (4)). Figure 4 shows an example
of the cumulative distribution F (ψ) for η = 3 and σ = 3. Three different
transmitter-receiver distances are shown: the end of the connected, middle of
the transitional, and beginning of the disconnected region. We can notice that
independent of the region where the receiver is, the link has a higher proba-
bility of being either good or bad (above 0.9 or below 0.1 PRR) than of being
unreliable (between 0.9 and 0.1). For instance, in the middle of the transitional
region the link has a 30% probability of being unreliable; and the probability
of observing unreliable links at the end of the connected region or beginning
of the disconnected is small (<5%). Empirical measurements in Cerpa et al.
[2005] and Zuniga and Krishnamachari [2004] agree with the analytical cdf in
Eq. (10).

We remark that the obtained cdfs are valid only for the scope of this work
(static and low-dynamic environments); highly dynamic environments add a
new dimension of time to the cdfs.
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Fig. 4. The cdfs for packet reception rate for receivers in different regions in a specific environment
(η = 3, σ = 3).

3.3 Expectation and Variance of Packet Reception Rate

Even though longer distance does not necessarily imply lower packet reception
rate, the expected value of the packet reception rate does decrease monoton-
ically with distance in a given propagation direction.6 In this subsection, we
present approximate expressions for the expectation and variance of the packet
reception rate �. These expressions are important because they confirm math-
ematically that the transitional region has a higher variability in PRR than the
connected region.

First we present general expressions for the expectation and variance in
Eqs. (11) and (12). These expressions depend on the PRR versus distance (re-
ceiver response in Eq. (5)) and the probability density functions (pdf ) of the SNR
for a given distance d (which is log-normally distributed). Given the mathemat-
ical complexity of dealing with the receiver response and pdf, we present linear
approximations for both that are used to derive approximate expressions for
the expectation and variance of the packet reception rate �.

In general, the first two moments of � are defined by

E[�] =
∫ ∞

−∞
�(γdB) f (γdB, d ) δγdB (11)

E[�2] =
∫ ∞

−∞
�2(γdB) f (γdB, d ) δγdB , (12)

where f (γdB, d ) represents the pdf of SNR (a Gaussian random variable with
parameters μ(d ) and σ ).

6The radio model used in this work is isotropic, but this is not true of practical antennas. By linearity
of expectation, since E[�a(d )] is monotonic with distance for a given propagation direction a, it can
be shown that the expected PRR averaged over all angles is also monotonic with distance; however,
it should be kept in mind that expected PRR values at different angles may show nondistance-
monotonic behavior with respect to each other.
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Fig. 5. Linear approximation of receiver threshold and Gaussian SNR; the mean of the Gaussian
depends on the transmitter-receiver distance.

The sharp thresholds of � and �2 permit the linear approximations

�(γ ) ≈ �L(γ ) =
⎧⎨
⎩

0, γ ≤ γ0e

me γ + be, γ0e < γ < γ1e

1, γ ≥ γ1e

(13)

�2(γ ) ≈ �2
L(γ ) =

⎧⎨
⎩

0, γ ≤ γ0v

mv γ + bv, γ0v < γ < γ1v

1, γ ≥ γ1v,
(14)

where me, mv and be, bv are the slopes and y-intercepts of the linear approxima-
tions �L and �2

L, and γ is in dB. Figure 5(a) shows the approximation procedure
for �L; the procedure for �2

L is similar. The mechanism to obtain the slopes, y-
intercepts, and limit points of Eqs. (13) and (14) is presented later.

The linear models lead to the following approximations of Eqs. (11) and (12):

E[�] ≈
∫ ∞

γ0e

�L(γdB) f (γdB, d ) δγdB

=
∫ γ1e

γ0e

(me γ + be) f (γdB, d ) δγdB

+Q
(

γ1e − μ(d )
σ

)
(15)

E[�2] ≈
∫ ∞

γ0v

�2
L(γdB) f (γdB, d ) δγdB

=
∫ γ1v

γ0v

(mv γ + bv) f (γdB, d ) δγdB

+Q
(

γ1v − μ(d )
σ

)
(16)
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In the preceding approximations f (γdB, d ) is evaluated separately on intervals
[γ0e, γ1e] and [γ0v, γ1v] for E[�] and E[�2], respectively. Both intervals represent
linear approximations of the sharp thresholds of � and �2, and these thresholds
are narrow compared to the [μ−4σ , μ+4σ ] domain of f (γdB, d ),7 hence, linear
approximations can be used as well for f (γdB, d ) in [γ0e, γ1e] and [γ0v, γ1v].

Let us denote f�(γdB, d ) and f�2 (γdB, d ) as the linear approximations of
f (γdB, d ) for intervals [γ0e, γ1e] and [γ0v, γ1v]:

f�(γdB, d ) = mgeγ + bge (17)

f�2 (γdB, d ) = mgvγ + bgv , (18)

where

mge = f (γ1e, d ) − f (γ0e, d )
γ1e − γ0e

bge = f (γ0e, d )γ1e − f (γ1e, d )γ0e

γ1e − γ0e

mgv = f (γ1v, d ) − f (γ0v, d )
γ1v − γ0v

bgv = f (γ0v, d )γ1v − f (γ1v, d )γ0v

γ1v − γ0v
.

Figure 5 shows the approximation procedure for f�(γdB, d ) (Gaussian SNR
curve for E[�]); the procedure for f�2 (γdB, d ) is similar.

Finally, based on Eqs. (15) and (16), the first and second moment approxi-
mations of the packet reception rate are given by

E[�] ≈
∫ γ1e

γ0e

(me γ + be) f�(γdB, d ) δγdB

+Q
(

γ1e − μ(d )
σ

)

=
∫ γ1e

γ0e

(me γ + be) (mge γ + bge) δγdB

+ Q
(

γ1e − μ(d )
σ

)
(19)

=
(

(me × mge)
γ 3

3
+ (bemge + bgeme)

γ 2

2

+ bebgeγ

)
|γ1e
γ0e

+ Q
(

γ1e − μ(d )
σ

)

E[�2] ≈
∫ γ1v

γ0v

(mv γ + bv) f�2 (γdB, d ) δγdB

+ Q
(

γ1v − μ(d )
σ

)

7While the domain of a Gaussian random variable is [−∞, +∞], the interval [μ − 4σ, μ + 4σ ]
contains most of the probability space (.999), and this is wide compared to the sharp threshold of
the receiver for common values of σ [Sohrabi et al. 1999].
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Fig. 6. Comparison of E[�] and Var[�] with their linear approximations E[�L] and Var[�L].

=
∫ γ1v

γ0v

(mv γ + bv) (mgv γ + bgv) δγdB

+ Q
(

γ1v − μ(d )
σ

)
(20)

=
(

(mv × mgv)
γ 3

3
+ (bvmgv + bgvmv)

γ 2

2

+ bvbgvγ

)
|γ1v
γ0v

+ Q
(

γ1v − μ(d )
σ

)
.

In general, the parameters of �L and �2
L (slopes, y-intercepts, and limit points

of Eqs. (13) and (14)) can be obtained by curve-fitting � and �2 through least
squares regression techniques. Nevertheless, our studies suggest that choosing
a line that passes through points A and B with PRRs of 0.1 and 0.9 provides
an accurate approximation.8 Hence, A and B defined as (�−1(0.1), 0.1) and
(�−1(0.9), 0.9) can be used to obtain the different parameters of �L:

me = 0.9 − 0.1
γB − γA

be = 0.1γB − 0.9γA

γB − γA

γ0v = −be

me
γ1v = 1 − be

me
,

where γA = �−1(0.1) and γB = �−1(0.9), both in dB. For �2
L, points A and B are

(�−1(
√

0.1), 0.1) and (�−1(
√

0.9), 0.9).
Figure 6 shows an example of numerically calculated curves for the expecta-

tion and variance (from Eqs. (11) and (12)), and their approximations through
Eqs. (19) and (20) for η = 3 and σ = 3. In general, the error depends on the
parameters of f (γdB, d ) (i.e., the pdf of SNR). The smaller the σ , the larger
the error because the width of the receiver threshold starts to be comparable

8Actually, no significant differences were found if points A and B are chosen in intervals [0.01, 0.2]
and [0.8, 0.99], respectively.
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Fig. 7. Comparison of cdfs between the Gaussian model (black curves) and our analytical model
(dotted curves) for receivers in different regions.

with the width of the bell of the Gaussian curve, which leads to less accurate
linearization. However, for common values of σ [Sohrabi et al. 1999], the bell
is significantly wider than the receiver threshold and the approximation er-
rors are not significant. Also, while the expectation decreases monotonically
with distance, the variance has a bell shape whose maximum lies in the tran-
sitional region; this behavior agrees with empirical observations in Woo et al.
[2003].

3.4 Comparison With Available Link Models

Some popular wireless network simulators [Levis et al. 2003; Girod et al. 2004]
and recent studies [Woo et al. 2003] have been using a Gaussian random vari-
able to represent the packet reception rate. The PRR function based on the
Gaussian model (�G) has the following form:

�G =

⎧⎪⎨
⎪⎩

1, X > 1
x, 0 ≤ X ≤ 1
0, X < 0,

(21)

where X is a Gaussian random variable with parameters μ = E[�] and σ 2 =
Var(�). The Gaussian model leads to the following cdf FG :

FG(ψ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 − Q
(−E[�]√

V [�]

)
, ψ = 0

1 − Q
(

ψ − E[�]√
V [�]

)
, 0 < ψ < 1

1, ψ = 1

(22)

Figure 7 shows a comparison between the cdfs of the Gaussian model (Eq. (22))
and our analytical model (Eq. (10)) for receivers in connected, transitional,
and disconnected regions. Contrary to the analytical cdf where links have
higher probability of being either good or bad (above 0.9 or below 0.1 PRR), the
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Gaussian model leads to links that have a high probability of being between 0.9
and 0.1; or 60% for the transitional region and 40% for the connected region,
which may lead to misleading results in protocol testing. The results shown are
for η = 3, σ = 3, and a noncoherent FSK radio, but similar trends are obtained
for different parameters.

4. IMPACT OF HARDWARE VARIANCE

In the previous section it was assumed that all radios have the same output
power Pt and noise floor Pn, however, hardware variance induces some fluctu-
ation around the output power that is set by the user and around the average
noise floor. This variance problem is partially solved during the manufactur-
ing process, where radios with a low output power and/or high noise floor (low
sensitivity) are usually discarded. However, no upper bound is used in the fil-
tering process and hardware variance remains a problem. As stated in Poor
[2004]: This filtering process is justifiable, since radios that are more powerful
or more sensitive are generally desirable.

Hardware variance has already been identified as the cause of asymmetric
links [Ganesan et al. 2003]. In this section, we not only quantify the effect of
hardware variance on link asymmetry, but also show that hardware variance
can have a significant impact on the extent of the transitional region.

It is important to notice that while the output power variance can be cali-
brated to the same value for all radios, the noise floor variance cannot be elim-
inated through calibration, since it depends on the thermal noise generated by
the underlying solid-state structure.

4.1 Model

Hardware variance causes Gaussian distributions (in dB) in the output power
and noise floor [Poor 2004]. In order to capture these effects, let us redefine
Eq. (3) by denoting SNRAB as the signal-to-noise ratio measured at B for the
output power of A. Then SNRAB (ϒAB) is given by

ϒAB = PtA − PL(d ) − PnB

= N (Pt , σtx) − PL(d ) − N (Pn, σrx), (23)

where σ 2
tx are σ 2

rx are the variances of the output power the noise floor, respec-
tively, and PL(d ) = PL(d0) + 10 η log10( d

d0
) + N (0, σ ) is the channel path loss

(which is identical in both directions: A → B and B → A).
Empirical measurements (see Section 5) show that there is some correlation

between the output power and noise floor within the same radio. Our model
captures this correlation by representing the output power and noise floor as a
multivariate Gaussian distribution, as shown next:(

T
R

)
∼ N

((
Pt

Pn

)
,
(

ST STR

SRT SR

))
, (24)

where Pt is the nominal output power, Pn the average noise floor, S the covari-
ance matrix between the output power and noise floor, and T and R the actual
output power and noise floor of a specific radio, respectively.

ACM Transactions on Sensor Networks, Vol. 3, No. 2, Article 7, Publication date: June 2007.



An Analysis of Unreliability and Asymmetry in Low-Power Wireless Links • 19

Fig. 8. Impact of hardware variance on asymmetric links.

4.2 Impact on Asymmetric Links

When the output power level of all nodes is set to the same value, radios with
identical nonvariant hardware (σtx = 0, σrx = 0) lead to the same SNR in both
directions (ϒAB = ϒBA according to Eq. (23)), which in turn leads to the same
packet reception rate (i.e., symmetric links).

For radios with hardware variance, ϒAB can differ from ϒBA. Figure 8 shows
the effect of ϒAB − ϒBA on link asymmetry. Due to the sharp threshold of the
receiver, a small value of ϒAB−ϒBA (∼ 3.2 dB) may lead to significantly different
packet reception rates in both directions (1.0 and 0.4).

ϒAB −ϒBA is a random variable and the larger the variance of this difference,
the higher the probability of link asymmetry. In order to quantify the impact of
hardware variance on link asymmetry we will analyze the variance of (ϒAB −
ϒBA).

Letting (TA, RA) and (TB, RB) be the respective output power and noise floor
of radios A and B, then

ϒAB − ϒBA = (TA − PL(d ) − RB)
−(TB − PL(d ) − RA)

= (TA + RA) − (TB + RB).
(25)

Here, (TA + RA) and (TB + RB) are Gaussian random variables representing the
sum of the output power and noise floor of different radios (A and B), and can
be assumed independent.9 Moreover, (TA + RA) and (TB + RB) are generated
from the same multivariate Gaussian distribution and can be represented by

9The manufacturing process can create some correlation among different radios if different batches
are produced from special high- (low-) quality materials, but we assume that all radios belong to
the same process.
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(T + R), hence Var(ϒAB − ϒBA) = 2 × Var(T + R),10 and

Var(T + R) = E[(T + R)2] − E2[T + R]

= E[T 2] − E2[T ] + E[R2] − E2[R]
+ 2(E[T R] − E[T ]E[R])

= Var(T ) + Var(R) + 2Cov(T, R)
= ST + SR + 2STR,

(26)

which leads to

Var(ϒAB − ϒBA) = 2(ST + SR + 2STR), (27)

where ST , SR , and STR are elements of the covariance matrix in Eq. (24).
Eq. (27) shows that a positive correlation (i.e., positive STR) between the

output power and noise floor of a radio leads to high variance of ϒAB − ϒBA

(i.e., higher probability of link asymmetry), while a negative correlation (neg-
ative STR) reduces the variance (lower probability of link asymmetry). Hence,
a negative correlation between the output power and noise floor leads to the
lowest probability of link asymmetry, followed by zero correlation and positive
correlation. Notice that a negative correlation implies that nodes with output
powers higher than Pt (i.e., better transmitter) will usually have a noise floor
lower than Pn (better receiver), and vice versa.

4.3 Impact on Extent of Transitional Region

In Eq. (3), the randomness of the SNR was due uniquely to multipath effects, but
the variance of the output power and noise floor introduces two other sources of
randomness. The combined effect of output power variance, channel multipaths,
and noise floor variance leads to a new expression for the SNR (Eq. (23)). Based
on this equation the SNR ϒ is given by

ϒ = N (Pt , σtx) − PL(d ) − N (Pn, σrx)
= N (Pt − Pn, σhw) − PL(d ), (28)

where σ 2
hw = σ 2

tx + σ 2
rx. Finally, ϒ is given by

ϒ = N (Pt − Pn, σhw) − PL(d0) + N (0, σch)
= N (Pt − PL(d0) − Pn, σt),

(29)

where PL(d0) = PL(d0) + 10 η log10( d
d0

), and the total variance of the system
(σt) is given by

σ 2
t = σ 2

ch + σ 2
tx + σ 2

rx

= σ 2
ch + σ 2

hw,
(30)

Hardware variance generates a pseudopath loss variance (σhw). Eq. (9) shows
that the larger the variance, the larger the extent of the transitional region;

10This is derived from the facts that for a random variable X , Var(X ) = Var(−X ); and for i.i.d
random variables X i , Var(

∑
i X i) = ∑

i Var(X i).
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hence, radios with hardware variance will always increase the extent of the
transitional region.

To obtain accurate results for the extent of the transitional region, σ should
be replaced by σt in all corresponding equations in Section 3. The impact of
hardware variance on the extent of the transitional region can be observed in
Figure 9, which presents simulated link qualities for η = 3, σch = 3, and σhw = 3.
Figure 9(a) shows the transitional region when invariant hardware is placed in
a real channel (i.e., effect of σ 2

ch) and Figure 9(b) presents a hypothetical scenario
where variant hardware is placed in an ideal scenario (i.e., no multipath effects).
We observe that even in the absence of multipath effects, a transitional region
is observed due to the pseudovariance σ 2

hw. Finally, Figure 9(c) presents the
combined effects of σch and σhw, showing a larger transitional region than in
Figures 9(a) and (b).

5. EMPIRICAL VALIDATION

We now present empirical results conducted in static and low-dynamic envi-
ronments to validate our analytical results on the impact of η, σch, and σhw on
the extent of the transitional region. We will also observe that the correlation
between output power and noise floor in mica2 motes is negative, which is the
least damaging in terms of link asymmetry among the different correlations
(positive, zero, negative).

We considered two environments: an indoor environment (aisle of a building),
and an outdoor environment (football field). All measurements were made using
mica2 motes. These devices use noncoherent FSK modulation at 915 MHz with
Manchester encoding and provide data rates of 38.4Kbaud.

5.1 Channel and Radio Parameters

—Channel: Two motes were used to measure the path loss exponent (η), vari-
ance (σ 2

ch), and initial decay PL(d0) of the channel. Table III presents the values
for η and σch. The reference distance (d0) of the log-normal model was set to 1m
and its corresponding power decay was found to be 55 dB.

—Radio: One mote was selected as a common receiver and sender to capture
the variance of the output power Pt and noise floor Pn. The measurements were
done in an isolated empty room, where each mote had the same source power
and was placed at the same physical position with respect to the reference
mote. Figure 10 presents the empirical measurements, which show a negative
correlation between output power and noise floor. From our experiments, the
resultant covariance matrix is given by

S =
(

6.0 −3.3
−3.3 3.7

)
.

The standard deviations of the output power (σtx) and noise floor (σrx) are
presented in Table IV; these values lead to σhw = 3.0. Different power levels
were tested and all levels showed a similar variance.

The negative correlation of mica2 motes is due to several factors. Nowa-
days, chip implementation is moving toward single-chip design, hence,
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Fig. 9. Impact of channel and radio dynamics on extent of transitional region: (a) impact of channel
dynamics (real channel + identical nonvariant hardware); (b) impact of hardware variance (ideal
channel + hardware variance); (c) combined impact of channel and radio dynamics.

the performance of the transmitter and receiver is determined by the common
underlying solid-state structure. Board implementation and antenna gains fur-
ther enhance this correlation, since a common path goes from the antenna to
the chip. Hence, a radio with a good solid-state structure (low thermal noise)
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Table III. Channel Parameters

environment η (95% conf. bounds) σch (95% conf. bounds)
outdoor 4.7 (4.3–5.1) 3.2 (2.6–3.8)
indoor 3.3 (2.1–4.5) 5.5 (4.6–6.8)

Fig. 10. Correlation between output power and noise floor.

and a high path-antenna gain will lead to higher output powers (i.e., good
transmitter), and a lower noise floor (good receiver). Also, while our measure-
ments where done in controlled scenarios, characteristics of real deployments,
such as the remaining output power of batteries, may further enhance the
correlation.

It is important to observe that this negative correlation leads to some nodes
being good transmitters and receivers, which may create some cluster behavior,
as observed in some empirical studies [Ganesan et al. 2003; Cerpa et al. 2005].

Negative correlation has a direct impact on the relation between the out-
degree and in-degree of nodes.11 In Section 4.2 we had stated that the negative
correlation between the output power and noise floor leads to the lowest level
of link asymmetry, which implies that the in-degree and out-degree of nodes
will be more similar than for positive and zero correlations. Figure 11 shows
simulation results for the relation between in-degree and out-degree for posi-
tive and negative correlations between the output power and noise floor. The
close relation between in-degree and out-degree for negative correlation can
be observed. Figure 12 shows the empirical in-degree/out-degree relation of all
nodes for all tested power levels,12 and we can observe that the empirical trend
agrees with the simulation results. This close relation between in- and out-
degree is highly desirable, given the strong dependance that several medium
access and network-layer protocols have on symmetric links. Hence, from all

11In-degree is the number of neighbors that can communicate with a specific node, whereas out-
degree is the number of neighbors that a specific node can communicate with.
12Links were considered valid if they had a PRR above 10%. The same trend is observed for any
blacklisting threshold.
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Table IV. Radio Parameters

(95% conf. bounds)
output power σtx 2.3 (1.7–3.5)
noise floor σrx 1.9 (1.4–3.1)

Fig. 11. Simulation results for the relation between in-degree and out-degree: (a) positive corre-
lation; (b) negative correlation.

types of hardware variances a negative correlation between output power and
noise floor is the least damaging in terms of link asymmetry.

—Noise floor: Given that our work does not consider interference, the noise
floor can be obtained by the well-known thermal noise equation [Rappaport
2002], which leads to a value of –115 dBm for the parameters of the radio
chip [Chipcon 2007]. However, our measurements showed that the average
noise floor is approximately –105 dBm; the 10 dB difference is mainly due to
losses from the output pin of the chip to the antenna, which are not considered
in the thermal noise equation. These losses depend on board implementation

ACM Transactions on Sensor Networks, Vol. 3, No. 2, Article 7, Publication date: June 2007.



An Analysis of Unreliability and Asymmetry in Low-Power Wireless Links • 25

Fig. 12. Empirical correlation between in-degree and out-degree for different power levels: (a)
indoor environment; (b) outdoor environment.

and are beyond the scope of this work. Hence, for the model the average noise
floor Pn will be set to –105 dBm.

Finally, it is important to consider that bit-error rate that expressions are
usually given in terms of Eb

N0
(known as the SNR per bit). However, most commer-

cially available radios provide only RSSI measurements which can be converted
to SNR per packet (ϒ). Note that ϒ has a simple relation with Eb

N0
: ϒ = Eb

N0

R
BN

for
mica2 motes R = 19.2 kbps (i.e., data rate) and BN = 30 kHz (noise bandwidth).
Hence, all RSSI measurements can be converted to Eb

N0
values.

5.2 Chain Topologies

For each environment, a chain topology of 21 motes was deployed with nodes
spaced 1 meter apart. The frame size was 50 bytes with a preamble of 28 bytes. A
simple TDMA protocol was implemented to avoid collisions. Every mote trans-
mitted 100 packets at a rate of 5 packets/sec. Upon reception of a packet, the se-
quence number and received signal strength (Pr ) were stored; simultaneously,
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Table V. Comparison of σt

Expected σt Measured σt Measured σch
indoor 6.3 6.1 5.5
outdoor 4.8 5.1 3.2

Fig. 13. Kolmogorov-Smirnov test between the empirical and model-generated packet reception
rate for medium- and high-output powers in a grass area.

the noise floor was sampled. The average SNR and packet reception rate were
measured for all links in the network.

According to Eq. (30), the expected total variance is the sum of channel and
radio variances (sum of variances of Tables III and IV). Table V shows the ex-
pected σt , measured σt , and σch. The expected σt is derived from the σch and σhw

of Tables III and IV, and the measured σt is obtained from the chain topology
experiment. We observe that the expected and measured σt are similar. It can
also be observed that σch is smaller than σt (especially for the outdoor envi-
ronment), confirming that hardware variance contributes to the total variance,
and consequently to the extent of the transitional region.

In order to validate our model, we present two comparisons. The first is a
formal method based on the Kolmogorov-Smirnov (K-S) test and the second is
a comparison of packet reception rate versus distance between empirical and
simulated data. Figure 13 presents the cumulative distribution of the packet
reception rate for the chain topology described earlier. Two power levels, namely
−7 dBm and 5 dBm, are presented for the outdoor environment. For the num-
ber of links in the chain topology (i.e., 420) and a confidence interval of 10%,
the K-S table has a threshold value of 0.06. For practical purposes let us define
links with PRR above 0.9 as reliable and neglect links with PRR below 0.1.13

Then the distance D of the K-S test is considered to be between 0.1 and 0.9.
We observe that low-density networks such as the medium-power case would
not pass the test (0.17 > 0.06), but high-density networks such as the high-
power case do (0.05 < 0.06), hence both distributions can be considered similar

13A very reasonable assumption, considering that links below 0.1 would incur significant losses or
high numbers of retransmissions.
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(i.e., empirical and simulated). It is also important to notice that the empirical
data shows that most of the probability mass is either above 0.9 or below 0.1
for any output power, as shown in Section 3.4. The next comparisons will illus-
trate why low-density networks are predicted less accurately than high-density
ones.

Figure 14 shows the empirical packet reception rate versus distance com-
pared to their analytical counterparts. It can be observed that the model pro-
vides a reasonable approximation of real behavior. Table VI shows the expected
beginning and end of the transitional region, according to Eq. (8), for the sce-
narios in Figure 14. We can observe that this equation provides reasonable
predictions for the empirical observations. Several power levels were tested,
from –20 dBm to 5 dBm in increments of 1 dBm, and all power levels showed
similar behavior to the proposed model. A comparison of Figures 14(b) and (e)
provides a better understanding of why the K-S test fails to asses both distribu-
tions as similar. In the simulated case (Figure 14(e)), the model tends to classify
more links as good than does the empirical data. For instance, the simulated
data shows that all links under a distance of 2 meters are considered to be 1.0,
while the empirical data shows some unreliable links at a distance of 2 meters.
Also, for distances 5 and 6, some links are good (>0.9) in the simulated data,
while in the empirical data most are below 0.9. Since the transitional region
is narrow, the disagreement on a few links leads to approximately 15% of the
mass probability shifting from bad to good links, which causes the failure of
the K-S test. Nevertheless, it is also worth considering that the major disagree-
ment is only on differences at the extremes (good and bad links), while the slope
for unreliable links is similar, showing that both empirical and modeled data
have a close approximation on the number of unreliable links. It is important to
mention that our model is not meant to be an exact replica of the environment,
but an approximation.

6. CONCLUSION

The impact that channel and radio dynamics have on the performance of upper-
layer protocols in wireless sensor networks requires a clear understanding of
the behavior of the wireless link. The analysis presented allowed us to quantify
the impact of channel multipaths and hardware variance on unreliable and
asymmetric links. The main contributions of this work are:

— a systematic approach to obtain mathematical link-layer models for the sta-
tistical variation of packet reception rates with respect to distance. Model
generators can be downloaded from http://ceng.usc.edu/∼anrg/downloads.
html; and

— analytical expressions for the boundaries of the transitional region were
derived.

The advantage of our model is that the communication theory literature has
channel parameters for different environments, and even though every environ-
ment is unique, these parameters can be used to obtain a first approximation of
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Fig. 14. Comparison of empirical measurements and instances of analytical model: (a) empirical
indoor Pt = −7dB; (b) empirical outdoor Pt = −7dB; (c) empirical outdoor Pt = 5dB; (d), (e), and
(f) are the analytical counterparts.
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Table VI. Analytical Extent of Transitional Region

Beginning (m) End (m)
indoor Pt = −7dB 4.8 23.4
outdoor Pt = −7dB 3.4 8.1
outdoor Pt = 5dB 6.1 14.6

link behavior. If channel measurements are already available for the type of en-
vironment where the motes will be deployed, then there is no need to deploy the
motes in situ to obtain the behavior of the link. The characteristics of the radio
can be determined independently, that is, both receiver response (PRR versus
SNR) and hardware variance, and when combined with the channel measure-
ments, will give an approximation of the link behavior. In cases where there
are no prior measurements of the channel, all the previous proposed models
(including ours) require in situ measurements.

The key conclusions of our study are:

—The relative size of the transitional region (
 coefficient) is higher for lower
path loss exponents and higher variances;

—hardware variance induces a pseudovariance which increases the size of the
transitional region;

—negative correlation between the output power and noise floor leads to lower
levels of asymmetry, which is highly desirable, given the number of protocols
that heavily depend on symmetric links;

—negative correlation also leads to nodes that are good transmitters and re-
ceivers, which helps explain the clustering behavior observed in previous
works [Ganesan et al. 2003; Cerpa et al. 2005]; and

—even with a perfect-threshold radio, the transitional region still exists, so
long as there are multipath effects.

Even though the simulations and empirical validation were based on radios
using NC-FSK modulation and Manchester encoding, the model can be easily
extended to other radio characteristics. Table VII presents the steps required
for other common modulation techniques and encoding schemes.

It is important to highlight that while different modulations, encodings, and
packet sizes lead to different sizes of regions, they do not significantly affect
the 
 coefficient, hence the results were not presented in the interest of space.
Some of the results are presented in Zuniga and Krishnamachari [2004].

Our work contributes to a better understanding of the behavior of low-power
wireless links, but is not exhaustive. It can be complemented with other studies
to capture other important phenomena present in real scenarios; for instance,
contention models from Son et al. [2006], temporal properties from Cerpa et al.
[2005], and correlations due to direction of propagation from Zhou et al. [2006]
(see Appendix A).

It is important to recall that physical-layer dynamics, appearing as the tran-
sitional region at the link layer, are not only potential causes of negative impact,
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Table VII. Theoretical Models for the Link Layer

STEP 0: Radio Obtain output power and noise floor for all nodes

Can use Cholesky decomposition to generate
multivariate r.v. Eq. (24)

For mica2: −20 dBm < Pt < 5 dBm, Pn = −105dBm

STEP 1: Channel Obtain channel parameters PL(d0), n, σ

Can be obtained through own empirical measurements,
or from some published results [Sohrabi et al. 1999]

STEP 2: SNR Obtain SNR in dB (γdB) as a function of distance d
γdB(d ) = T − PL(d0) − 10nlog10( d

d0
) − N (0, σ ) − R

STEP 3: Modulation Select modulation and insert γ (d ) from previous step,

but not in dB (i.e., γ = 10
γdB
10 )

Convert from Eb
N0

to RSSI by inserting appropriate
bit data rate R and noise bandwidth BN

According to modulation select appropriate BER (Pe)

ASK noncoherent: 1
2 [exp− γ (d )

2
BN
R +Q(

√
γ (d ) BN

R )]

ASK coherent: Q(
√

γ (d )
2

BN
R )

FSK noncoherent: 1
2 exp− γ (d )

2
BN
R

FSK coherent: Q(
√

γ (d ) BN
R )

PSK binary: Q(
√

2γ (d ) BN
R )

PSK differential: 1
2 exp−γ (d ) BN

R

STEP 4: Encoding Select packet reception rate

Select according to encoding scheme, then insert frame,
preamble length, and Pe obtained in previous step

NRZ: (1 − Pe)8�(1 − Pe)8( f −�)

4B5B: (1 − Pe)8�(1 − Pe)8( f −�)1.25

Manchester: (1 − Pe)8�(1 − Pe)8( f −�)2.0

SECDED: (1 − Pe)8�((1 − Pe)8 + 8Pe(1 − Pe)7)( f −�)3.0

but can have positive impact as well. For example, Miorandi and Altman [2005]
and Bettstetter and Hartmann [2005] report that multipath effects have a
positive impact on the connectivity of random topologies, and in Seada et al.
[2004], an early version of the model presented in this article [Zuniga and
Krishnamachari 2004] was used to obtain optimal forwarding distances for
geographic routing. Hence, given the requirements of the application, our work
provides a tool for the network designer to improve the overall performance of
the protocols.

Finally, from preliminary results (see Appendix B), we find that even spread
spectrum radios show transitional region effects; we therefore believe there is
value in extending this work to other settings.

APPENDIX A

In Zhou et al. [2006] the authors present the degree of irregularity (DOI) coeffi-
cient as a mean to capture the variation per unit degree change in the direction
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of radio propagation. In that work the received power is given by

Pr (d ) = Pt − DOIAdjustedPathLoss + N (0, σ )
= Pt − Path Loss × Ki + N (0, σ ), (31)

where Ki is a coefficient to represent the difference in path loss in different
directions, and the method to obtain it is presented in the RIM model [Zhou
et al. 2006]. Hence, denoting PL(d0) = PL(d0) + 10 η log10( d

d0
), Eq. (1) can be

modified to include nonisotropic effects.

Pr (d ) = Pt − PL(d0) × Ki + N (0, σ ) (32)

The effect of obstacles can be included by inserting a new variable on the previ-
ous equation. Let us denote denote 
vw as the path loss in dB due to an obstacle
between nodes v and w, for example, a wall. Then, letting v be the transmitter,
the received power at w is given by

Prw (d ) = Ptv − (PL(d0) + 
vw) × Ki + N (0, σ ). (33)

Hence, if the layout of the environment is provided, the previous equation can
be used to include additional path loss for each pair of nodes according to the
obstacles between them.

APPENDIX B

Some preliminary empirical evaluations were done with micaZ devices. These
motes have a 2.4 GHz IEEE 802.15.4/ZigBee(tm) RF transceiver, which uses
DSSS modem with 2 Mchips/s and 250kbps effective data rate. A chain topology
with the same methodology as Section 5.2 was deployed in the same indoor
environment as mica2 motes.

Figure 15 presents empirical measurements for the channel, radio, and link
for mica2 and micaZ. The nominal output power for both types of motes was
–10 dBm. We observe that the transitional region still has a significant extent.
However, for the same output power, micaZ radios seem to have larger connected
and transitional regions.

No major differences were found in the shadowing standard deviation for
both deployments (i.e., around 6.1 for both). However, the path loss exponent
for micaZ measurements is 1.94 (1.65, 2.23), which is smaller than the corre-
sponding value for mica2 in Table III (η = 3.3) . According to Eq. (8), a smaller
η increases the size of both regions, which provides some intuition as to why
the extent of the regions is larger for micaZ motes for the same output power.

Spread spectrum techniques seem to partially combat multipath by decreas-
ing η, consequently providing larger coverage for the same output power. How-
ever, as stated in Eq. (9), a lower η implies a larger transitional region, which
increases the number of unreliable and asymmetric links. An in-depth study of
the impact of low-cost spread spectrum radios in the transitional region is part
of our future work.
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Fig. 15. Comparison of empirical measurements for channel, radio, and link between mica2 and
micaZ motes, Pt = −10 dBm for both type of motes: (a) channel mica2; (b) radio mica2; (c) link
mica2; (d), (e), and (f) are their micaZ counterparts.
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