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ABSTRACT
The recen t adv ances in radio and em beddedsystem tech-
nologies ha ve enabled the proliferation of wireless micro-
sensor net w orks.Suc h wirelessly connected sensors are re-
leased in many div erse en vironments to perform various mon-
itoring tasks. In many suc h tasks, location aw areness is in-
heren tly one of the most essen tial system parameters. It
is not only needed to report the origins of events, but also
to assist group querying of sensors, routing, and to answer
questions on the netw ork co verage.In this paper we presen t
a no vel approach to the localization of sensors in an ad-
hoc net w ork.We describe a system called AHLoS (Ad-Hoc
Localization System) that enables sensor nodes to discover
their locations using a set distributed iterative algorithms.
The operation of AHLoS is demonstrated with an accuracy
of a few centimeters using our prototype testbed while scal-
abilit y and performance are studied through simulation.
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1. INTRODUCTION
1.1 Sensor Networks and Location Discovery
No w ada ys, wireless devices enjoy widespread use in numer-
ous div erse applications including that of sensor netw orks.
The exciting new �eld of wir eless sensor networks breaks
aw ay from the traditional end-to-end communication of voice
and data systems, and introduces a new form of distributed
information exchange. Myriads of tiny embedded devices,
equipped with sensing capabilities, are deplo yed in the en-
vironment and organize themselves in an ad-hoc netw ork.
Information exchange among collaborating sensors becomes
the dominant form of communication, and the netw ork es-
sentially beha vesas a large, distributed computation ma-
chine. Applications featuring such netw ork eddevices are
becoming increasingly prevalen t, ranging from environmen-
tal and natural habitat monitoring, to home netw orking,

medical applications and smart battle�elds. Net w ork ed sen-
sors can signal a machine malfunction to the control cen ter
in a factory , or alternatively w arn about smoke on a remote
forest hill indicating that a dangerous �re is about to start.
Other wireless sensor nodes can be designed to detect the
ground vibrations generated by the silen t footsteps of a cat
burglar and trigger an alarm.

Naturally, the question that immediately follows the actual
detection of events, is: wher e? Where are the abnormal vi-
brations detected, where is the �re, which house is about to
be robbed? T o answer this question, a sensor node needs
to possess knowledge of its physical location in space. Fur-
thermore, in large scale ad-hoc netw orks, knowledge of node
location can assist in routing [5] [6], it can be used to query
nodes o ver a specic geographicalarea or it can be used to
study the coverage properties of a sensor netw ork [31].Addi-
tionally, we envision that location aw areness developed here
will enjoy a wide spectrum of applications. In tactical envi-
ronments, it can be used to track the movements of targets.
In a smart kindergarten [32] it can be used to monitor the
progress of c hildren by trac king their interaction with toys
and with each other ; in hospitals it can keep trac k of equip-
ment, patien ts,doctors and nurses or it can drive con text
aw are services similar to the ones described in [4], [29].

The incorporation of location aw arenessin wireless sensor
netw orks is far from a trivial task. Since the netw ork can
consist of a large number of nodes that are deployed in an
ad-hoc fashion, the exact node locations are not known a-
priori. Unfortunately, the straigh tforw ard solution of adding
GPS to all the nodes in the netw ork is not practical since:

� GPS cannot work indoors or in the presence of dense
vegetation, foliage or other obstacles that bloc k the
line-of-sigh t from the GPS satellites.

� The pow er consumption of GPS will reduce the bat-
tery life on the sensor nodes thus reducing the e�ective
lifetime of the entire netw ork.

� The production cost factor of GPS can become an issue
when large numbers of nodes are to be produced.

� The size of GPS and its antenna increases the sensor
node form factor. Sensor nodes are required to be
small and inobstrusive.
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To this end, we seek an alternative solution to GPS that
is low cost, rapidly deployable and can operate in many di-
verse environments without requiring extensive infrastruc-
ture support.

Figure 1: WINS Sensor Node from RSC

1.2 Our Work
We propose a new distributed technique that only requires a
limited fraction of the nodes (beacons) to know their exact
location (either through GPS or manual con�guration) dur-
ing deployment and that nevertheless can attain network-
wide �ne-grain location awareness. Our technique, which
we call AHLoS (Ad-Hoc Localization System), relieves the
drawbacks of GPS as it is low cost, it can operate indoors
and does not require expensive infrastructure or pre-planning.
AHLoS enables nodes to dynamically discover their own lo-
cation through a two-phase process, ranging and estimation.
During the ranging phase, each node estimates its distance
from its neighbors. In the estimation phase, nodes with un-
known locations use the ranging information and known bea-
con node locations in their neighborhood to estimate their
positions. Once a node estimates its position it becomes a
beacon and can assist other nodes in estimating their posi-
tions by propagating its own location estimate through the
network. This process iterates to estimate the locations of
as many nodes as possible.

The �rst part of our work examines the ranging challenges.
Since almost all ranging techniques rely on signal propaga-
tion characteristics, they are susceptible to external biases
such as interference, shadowing and multipath e�ects, as
well as environmental variations such as changes in tem-
perature and humidity. These physical e�ects are diÆcult
to predict and depend greatly on the actual environment in
which the system is operated. It is therefore critical to char-
acterize the behavior of di�erent ranging alternatives exper-
imentally in order to determine their usefulness in sensor
networks. To justify our rangining choice we performed a de-
tailed comparison of two promising ranging techniques: one
based on received RF signal strength and the other based on
the Time of Arrival (ToA) of RF and ultrasonic signals. Our
experiments of distance discovery with RF signal strength
were conducted on the WINS wireless sensor nodes [12] (�g-
ure 1) developed by the Rockwell Science Center (RSC). To
perform our evaluation of ToA, we have designed and im-
plemented a testbed of ultrasound-equipped sensor nodes,

called Medusa (from Greek mythology - a monster with
many heads) nodes (�gure 2). To address the variation of
propagation characteristics of ultrasound from place to place
AHLoS estimates the propagation characteristics on the 
y
in the actual deployment environment. The second part of
our work uses the ranging techniques described above, to
develop a set of distributed localization algorithms. Node
positions are estimated using least squares estimation in an
iterative multilateration process. This ability of AHLoS to
estimate node locations in an ad-hoc setting with a few cen-
timeters accuracy is demonstrated on a testbed comprised
of �rst generation Medusa nodes. Error propagation, sys-
tem scalability and energy consumption are studied through
simulation.

Figure 2: Medusa experimental node

1.3 Paper Organization
This paper is organized as follows: In the next section we
provide some background on localization and we survey the
related work. Section 3 presents the evaluation of our two
candidate ranging methods: Received signal strength and
time of arrival. Section 4 describes the localization algo-
rithms and section 5 is a short study on node and beacon
node placement. In section 6 we discuss our implementation
and experiments. Section 7 discusses the tradeo�s between
centralized and distributed localization and section 8 con-
cludes this paper.

2. BACKGROUND AND RELATED WORK
2.1 Background
The majority of existing location discovery approaches con-
sist of two basic phases: (1) distance (or angle) estimation
and (2) distance (or angle) combining. The most popular
methods for estimating the distance between two nodes are:

� Received Signal Strength Indicator (RSSI) tech-
niques measure the power of the signal at the receiver.
Based on the known transmit power, the e�ective prop-
agation loss can be calculated. Theoretical and empiri-
cal models are used to translate this loss into a distance
estimate. This method has been used mainly for RF
signals.
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� Time based methods (ToA,TDoA) record the time-
of-arrival (ToA) or time-di�erence-of-arrival (TDoA).
The propagation time can be directly translated into
distance, based on the known signal propagation speed.
These methods can be applied to many di�erent sig-
nals, such as RF, acoustic, infrared and ultrasound.

� Angle -of -Arrival (AoA) systems estimate the an-
gle at which signals are received and use simple geo-
metric relationships to calculate node positions.

A detailed discussion of these methods can be found in [20].
For the combining phase, the most popular alternatives are:

� The most basic and intuitive method is called hyper-
bolic tri-lateration. It locates a node by calculating
the intersection of 3 circles (�gure 3a).

� Triangulation is used when the direction of the node
instead of the distance is estimated, as in AoA systems.
The node positions are calculated in this case by using
the trigonometry laws of sines and cosines (�gure 3b).

� The third method is Maximum Likelihood (ML) esti-
mation (�gure 3c). It estimates the position of a node
by minimizing the di�erences between the measured
distances and estimated distances. We have chosen
this technique as the basis of AHLoS for obtaining the
Minimum Mean Square Estimate(MMSE) from a set
of noisy distance measurements.

Cosines Rule

Sines Rule

b

c

(a)

(c)

(b)

a

C

B

A

A

sina
= B

sinb
= C

sinc

C
2 = A

2 + B
2 + 2ABcos(c)

B
2 = A

2 + C
2
� 2BCcos(b)

A2 = B2 + C2
� 2BCcos(a)

Figure 3: Localization Basics a) Hyperbolic tri-
lateration, b) Triangulation, c) ML Multilateration

2.2 Related Work
In the past few decades, numerous localization systems have
been developed and deployed. In the 1970s, the automatic
vehicle location (AVL) systems were deployed to determine
the position of police cars and military ground transporta-
tion vehicles. A set of stationary base stations acting as
observation points use ToA and TDoA techniques to gen-
erate distance estimates. The vehicle position is then de-
rived through multilaterations, using Taylor Series Expan-
sion to transform a non-linear least squares problem to a

linear [7][8]. Similar approaches can also be found in mili-
tary applications for determining the position of airplanes.

In 1993, the well-known Global Positioning System (GPS)
[34] system was deployed, which is based on the NAVSTAR
satellite constellation (24 satellites). LORAN [28] operates
in a similar way to GPS but uses ground based beacons
instead of sattelites. In 1996, the U.S Federal Communica-
tions Commission (FCC) required that all wireless service
providers give location information to the Emergency 911
services. Cellular base stations are used to locate mobile
telephone users within a cell [9][10]. Distance estimates are
generated with TDoA. The base station transmits a bea-
con and the handset re
ects the signal back to the base
station. Location information is again calculated by mul-
tilateration using least squares methods. By October 2001,
FCC requires a 125-meter root mean square(RMS) accuracy
in 67% of the time and by October 2006 a 300-meter RMS
accuracy for 95% of the times is required.

Recently, there has been an increasing interest for indoor lo-
calization systems. The RADAR system [1] can track the lo-
cation of users within a building. To calculate user locations
the RADAR system uses RF signal strength measurements
from three �xed base stations in two phases. First, a com-
prehensive set of received signal strength measurements is
obtained in an o�ine phase to build a set of signal strength
maps. The second phase is an online phase during which
the location of users can be obtained by observing the re-
ceived signal strength from the user stations and matching
that with the readings from the o�ine phase. This process,
eliminates multipath and shadowing e�ects at the cost of
considerable preplanning e�ort.

The Cricket location support system [4] is also designed for
indoor localization. It provides support for context aware
applications and is low cost. Unlike the systems discussed so
far, it uses ultrasound instead of RF signals. Fixed beacons
inside the building distribute geographic information to the
listener nodes. Cricket can achieve a granularity of 4 by 4
feet. Room level granularity can be obtained by the active
badge [22] system, which uses infrared signals. The next
development in this area on indoor localization is BAT [29]
[30]. A BAT node carries an ultrasound transmitter whose
signals are picked up by an array of receivers mounted on
the ceiling. The location of a BAT can be calculated via
multilateration with a few centimeters of accuracy. An RF
base station coordinates the ultrasound transmissions such
that interference from nearby transmitters is avoided. This
system relies heavily on a centralized infrastructure.

In the ad-hoc domain, fewer localization systems exist. An
RF based proximity method is presented in [21], in which
the location of a node is given as a centroid. This centroid is
generated by counting the beacon signals transmitted by a
set of beacons pre-positioned in a mesh pattern. A di�erent
approach is taken in the Picoradio project at UC Berkeley.
It provides a geolocation scheme for an indoor environment
[11], based on RF received signal strength measurements
and pre-calculated signal strength maps.

Our system, AHLoS, also belongs to the ad-hoc class. Al-
though uses RF and ultrasound transmissions similar to the
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Cricket and BAT Systems, it also has some key di�erences.
AHLoS does not rely on a preinstalled infrastructure. In-
stead, it is a fully ad-hoc system with distributed localiza-
tion algorithms running at every node. This results in a

exible system that only requires a small initial fraction of
the nodes to be aware of their locations. Furthermore, it
enables nodes to estimate their locations even if they are
not within range with the beacon nodes. From a power
awareness perspective, it also ensures that all nodes play an
equal role in the location discovery process resulting in an
even distribution of power consumption. The resulting lo-
calization system provides �ne-grained localization with an
accuracy of a few centimeters, similar to the BAT system
without requiring infrastructure support. Finally, unlike all
the systems discussed so far, AHLoS provisions for dynamic
on-line estimation of the ultrasound propagation character-
istics. This renders our approach extremely robust even in
the presence of changing environments.

3. RESEARCH METHODOLOGY
As a �rst step in our study, we characterize the ranging ca-
pabilities of our two target technologies: Received RF signal
strength using the WINS nodes and RF and ultrasound ToA
using the Medusa nodes.

3.1 Ranging Characterization
3.1.1 Received Signal Strength
The signal strength method uses the relationship of RF sig-
nal attenuation as a function of distance. From this rela-
tionship a mathematical propagation model can be derived.
From detailed studies of the RF signal propagation charac-
teristics[18], it is well known that the propagation charac-
teristics of radio signals can vary with changes in the sur-
rounding environment (weather changes, urban / rural and
indoor / outdoor settings). To evaluate signal strength mea-
surements we conducted some experiments with the target
system of interest, the WINS sensor nodes [12]. The WINS
nodes have a 200MHz StrongARM 1100 processor, 1MB
Flash, 128KB RAM and the Hummingbird digital cordless
telephony (DECT) radio chipset that can transmit at 15
distinct power levels ranging from -9.3 to 15.6 dBm (0.12 to
36.31 mW). The WINS nodes carry an omni-directional an-
tenna hence the radio signal is uniformly transmitted with
the same power in all directions around the node. As part
of the radio architecture, the WINS nodes provide a pair of
RSSI (Received Signal Strength Indicators) resisters. RSSI
registers are a standard feature in many wireless network
cards [23]. Using these registers we conducted a set of mea-
surements in order to derive an appropriate model for rang-
ing. We performed measurements in several di�erent set-
tings (inside our lab, in the parking lot and between build-
ings). Unfortunately, a consistent model of the signal atten-
uation as a function of distance could not be obtained. This
is mainly attributed to multipath, fading and shadowing ef-
fects. Another source of inconsistency is the great variation
of RSSI associated with the altitude of the radio antenna.
For instance, at ground level, the radio range at the max-
imum transmit power level the usable radio transmission
range is around 30m whereas when the node is placed at
a height of 1.5m the usable transmission range increases to
around 100m. Because of these inconsistencies, we were only
able to derive a model for an idealized setting; in a football

�eld with all the nodes positioned at ground level. For this
setup we developed a model based on the RSSI register read-
ings at di�erent transmission power levels and di�erent node
separations.

A model (equation 1) is derived by obtaining a least square
�t for each power level. PRSSI is the RSSI register reading
and r is the distance between two nodes. Parameters X and
n are constants that can be derived as functions of distance
r for each power level. Averaged measurements and the
corresponding derived models are shown in �gure 4. Table
1 gives the X and n parameters for each case.

PRSSI =
X

rn
(1)
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Figure 4: Radio Signal Strength Radio Characteri-
zation using WINS nodes(power levels P=7,13)

Table 1: RSSI Ranging Model Parameters for WINS
nodes

Power Level dBm mW X n

7 2.5 1.78 21778.338 0.178186
13 14.4 27.54 25753.63 0.198641

With all the nodes placed on a 
at plane, signal strength
ranging can provide a distance estimate with an accuracy
of a few meters. In all other cases, this experiment has
shown that the use of radio signal strength can be very
unpredictable. Another problem with the received signal
strength approach is that radios in sensor nodes are low cost
ones without precise well-calibrated components, such as the
DECT radios in Rockwell's nodes or the emerging Bluetooth
radios. As a result, it is not unusual for di�erent nodes to
exhibit signi�cant variation in actual transmit power for the
same transmit power level, or in the RSSI measured for the
same actual received signal strength. Di�erences of several
dBs are often seen. While these variations are acceptable for
using transmit power adaptation and RSSI measurements
for link layer protocols, they do not provide the accuracy
required for �ne-grained localization. A potential solution
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would be to calibrate each node against a reference node
prior to deployment, and store gain factors in non-volatile
storage so that the run-time RSSI measurements may be
normalized to a common scale.

3.1.2 ToA using RF and Ultrasound
To characterize ToA ranging on theMedusa nodes we mea-
sure the time di�erence between two simultaneously trans-
mitted radio and ultrasound signals at the receiver (�gure
5).

Transmitter Receiver

Distance = (T2-T1) x S

T1

T2

Radio Signal

Ultrasound Pulse

Distance

Figure 5: Distance measurement using ultrasound
and radio signals

The ultrasound range on the Medusa nodes is about 3 me-
ters (approximately 11-12 feet). We found this to be a conve-
nient range for performing multihop experiments in our lab
but we note that longer ranges are also possible at higher
cost and power premiums. The Polaroid 6500 ultrasonic
ranging module [17] for example has a range of more than
10 meters (the second generation ofMedusa nodes will have
a 10-15 meter range). We characterize ToA ranging by us-
ing two Medusa nodes placed on the 
oor of our lab. We
recorded the time di�erence of arrival at 25-centimeter in-
tervals. The results of our measurements are shown in �gure
6. The x axis represents distance in centimeters and the y
axis represent the microcontroller timer counter value.
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Figure 6: Ulrasound Ranging Characterization

The speed of sound is characterized in terms of the micro-
controller timer ticks. To estimate the speed to sound as
a function of microcontroller time, we perform a best line
�t using linear regression (equation 2). s is the speed of
sound in timer ticks, d is the estimated distance between 2

nodes and k is a constant. For this model s = 0:4485 and
k = 21:485831.

t = sd+ k (2)

This ranging system can provide an accuracy of 2 centime-
ters for node separations under 3 meters. Like the RF sig-
nals, ultrasound also su�ers from multipath e�ects. Fortu-
nately, they are easier to detect. ToA measurement use the
�rst pulse received ensuring that the shortest path(straight
line) reading is observed. Re
ected pulses from nodes that
do not have direct line of sight are �ltered out using statis-
tical techniques similar to the ones used in [30].

3.2 Signal Strength vs. ToA ranging
On comparing the two ranging alternatives, we found that
ToA using RF and ultrasound is more reliable than received
signal strength. While received signal strength is greatly af-
fected by amplitude variations of the received signal, ToA
ranging only depends on the time di�erence, a much more
robust metric. Based on our characterization results we
chose ToA as the primary ranging method for AHLoS. Simi-
lar to RF signals, the ultrasound signal propagation charac-
teristics may change with variations in the surrounding en-
vironment. To minimize these e�ects, AHLoS dynamically
estimates the signal propagation characteristics every time
suÆcient information is available. This ensures that AHLoS
will operate in many diverse environments without prior cal-
ibration. If the sensor network is deployed over a large �eld,
the signal propagation characteristics may vary from region
to region across the �eld. The calculation of the ultrasound
propagation characteristics in the locality of each node en-
sures better location estimates accuracy. Table 2 summa-
rizes the comparison between signal strength and ultrasound
ranging. One possible solution we are considering for our
future work is to combine received signal strength and ToA
methods. Since the received signal strength method has
the same e�ective range as the radio communication range,
it can be used to provide a proximity indication in places
where the network connectivity is very sparse for ToA local-
ization to take place. The ultrasound approach will provide
�ne grained localization in denser parts of the networks. For
this con�guration, we plan to have the Medusa boards act
as location coprocessors for the WINS nodes.

4. LOCALIZATION ALGORITHMS
Given a ranging technology that estimates node separation
we now describe our localization algorithms. These algo-
rithms operate on an ad-hoc network of sensor nodes where
a small percentage of the nodes are aware of their positions
either through manual con�guration or using GPS. We re-
fer to the nodes with known positions as beacon nodes and
those with unknown positions as unknown nodes. Our goal
is to estimate the positions of as many unknown nodes as
possible in a fully distributed fashion. The proposed loca-
tion discovery algorithms follow an iterative process. After
the sensor network is deployed, the beacon nodes broadcast
their locations to their neighbors. Neighboring unknown
nodes measure their separation from their neighbors and
use the broadcasted beacon positions to estimate their own
positions. Once an unknown node estimates its position,
it becomes a beacon and broadcasts its estimated position
to other nearby unknown nodes, enabling them to estimate
their positions. This process repeats until all the unknown
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Table 2: A comparison of RSSI and ultrasound ranging
Property RSSI Ultrasound

Range same as radio communication range 3 meters (up to a few 10s of meters)
Accuracy O(m), 2-4m for WINS O(cm), 2cm for Medusa
Measurement Reliability hard to predict, multipath and

shadowing
multipath mostly predictable,time
is a more robust metric

Hardware Requirements RF signal strength must be avail-
able to CPU

ultrasound transducers and ampli-
�er circuitry

Additional Power Requirements none tx and rx signal ampli�cation
Challenges large variances in RSSI readings,

multipath, shadowing, fading ef-
fects

interference, obstacles, multipath

nodes that satisfy the requirements for multilateration ob-
tain an estimate of their position. This process is de�ned
as iterative multilateration which uses atomic multilatera-
tion as its main primitive. In the following subsections we
provide the details of atomic and iterative multilateration.
Furthermore, we describe collaborative multilateration as an
additional enhanced primitive for iterative multilateration
and we provide some suggestions for further optimizations.

4.1 Atomic Multilateration
Atomic multilateration makes up the basic case where an
unknown node can estimate its location if it is within range
of at least three beacons. If three or more beacons are avail-
able, the node also estimates the ultrasound speed of prop-
agation for its locality. Figure 7a illustrates a topology for
which atomic multilateration can be applied.

The error of the measured distance between an unknown
node and its ith beacon can be expressed as the di�erence
between the measured distance and the estimated Euclidean
distance (equation 3). x0 and y0 are the estimated coordi-
nates for the unknown node 0 for i = 1; 2; 3:::N , where N is
the total number of beacons, and ti0 is the time it takes for
an ultrasound signal to propagate from beacon i to node 0,
and s is the estimated ultrasound propagation speed.
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Figure 7: Multilateration examples

fi(x0; y0; s) = sti0 �
p
(xi � x0)2 + (yi � y0)2 (3)

Given that an adequate number of beacon nodes are avail-
able, a Maximum Likelihood estimate of the node's position
can be obtained by taking the minimum mean square esti-
mate (MMSE) of a system of fi(x0; y0; s) equations (equa-
tion 4). Term � represents the weight applied to each equa-
tion. For simplicity we assume that � = 1.

F (x0; y0; s) =
NX
i=1

�
2
f(i)2 (4)

If a node has three or more beacons a set of three equa-
tions of the form of (3) can be constructed yield an over-
determined system with a unique solution for the position
of the unknown node 0. If four or more beacons are avail-
able, the ultrasound propagation speed s can also be esti-
mated. The resulting system of equations can be linearized
by setting fi(x0; y0; s) = equation 3, squaring and rearrang-
ing terms to obtain equation 5.

�x2i � y
2
i =

(x20 + y
2
0) + x0(�2xi) + y0(�2yi)� s

2
t
2
i0

(5)

for k such equations we can eliminate the (x20 + y20) terms
by subtracting the kth equation from the rest.

�x2i � y
2
i + x

2
k + y

2
k = 2xo(xk � xi)

+2y0(yk � yi) + s
2(tik

2 � ti0
2)

(6)

this system of equations has the form y = bX and can be
solved using the matrix solution for MMSE [25] given by
b = (XTX)�1XT y where
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X =

2
6664

2(xk � x1) 2(yk � y1) tk0
2 � tk1

2

2(xk � x2) 2(yk � y2) tk0
2 � tk2

2

...
...

...
2(xk � xk�1) 2(yk � yk�1) tk0

2 � tk(k�1)
2)

3
7775

y =

2
6664
�x21 � y21 + x2k + y2k
�x22 � y22 + x2k + y2k

...
x2k�1 � y2k�1 + x2k + y2k

3
7775

and

b =

2
4 x0

y0
s2

3
5

Based on this solution we de�ne the following requirement
for atomic multilateration.

Requirement 1. Atomic multilateration can take place
if the unknown node is within one hop distance from at least
three beacon nodes. The node may also estimate the ultra-
sound propagation speed if four or more beacons are avail-
able.

Although requirement 1 is necessary for atomic multilater-
ation, it is not always suÆcient. In the special case when
beacons are in a straight line, a position estimate cannot be
obtained by atomic multilateration. If this occurs, the node
will attempt to estimate its position using collaborative mul-
tilateration. We also note that atomic multilateration can
be performed in 3-D without requiring an additional beacon
[33].

4.2 Iterative Multilateration
The iterative multilateration algorithm uses atomic multilat-
eration as its main primitive to estimate node locations in
an ad-hoc network. This algorithm is fully distributed and
can run on each individual node in the network. Alterna-
tively, the algorithm can also run at a single central node or
a set of cluster-heads, if the network is cluster based. Fig-
ure 8 illustrates how iterative multilateration would execute
from a central node that has global knowledge of the net-
work. The algorithm operates on a graphG which represents
the network connectivity. The weights of the graph edges
denote the separation between two adjacent nodes. The al-
gorithm starts by estimating the position of the unknown
node with the maximum number of beacons using atomic
multilateration. Since at a central location all the the entire
network topology is known so we start from the unknown
node with the maximum number of beacons to obtain better
accuracy and faster convergence (in the distributed version
an unknown will perform a multilateration as soon as in-
formation from three beacons). When an unknown node
estimates its location, it becomes a beacon. This process
repeats until the positions of all the nodes that eventually
can have three or more beacons are estimated.

boolean iterativeMultilateration (G)
(MaxBeaconNode, BeaconCount)  unknown
node with most beacons

while BeaconCount � 3
setBeacon (MaxBeaconNode)
(MaxBeaconNode, BeaconCount)  unknown
node with most beacons

Figure 8: Iterative Multilateration Algorithm as it
executes on a centralized node

A drawback of iterative multilateration is the error accu-
mulation that results from the use of unknown nodes that
estimate their positions as beacons. Fortunately, this error
accumulation is not very high because of the high precision
of our ranging method. Figure 9 shows the position errors
in a simulated network of 50 Medusa nodes when 10% of
the nodes are initially con�gured as beacons. The nodes are
deployed on a square grid of side 15 meters. The simulation
considers two types of errors: 1) ranging errors and 2) bea-
con placement errors. In both cases a 20mm white Gaussian
error is used. In both cases the estimated node positions are
within 20 cm from the actual positions.
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Figure 9: Iterative Multilateration Accuracy in a
network of 50 nodes and 10% beacons

4.3 Collaborative Multilateration
In an ad-hoc deployment with random distribution of bea-
cons, it is highly possible that at some nodes, the condi-
tions for atomic multilateration will not be met; i.e. an
unknown node may never have three neighboring beacon
nodes therefore it will not be able to estimate its position
using atomic multilateration. When this occurs, a node may
attempt to estimate its position by considering use of loca-
tion information over multiple hops in a process we refer
to as collaborative multilateration. If suÆcient information
is available to form an over-determined system of equations
with a unique solution set, a node can estimate its position
and the position of one or more additional unknown nodes
by solving a set of simultaneous quadratic equations. Fig-
ure 7b illustrates one of the most basic topologies for which
collaborative multilateration can be applied. Nodes 2 and 4
are unknown nodes, while nodes 1,3,5,6 are beacon nodes.
Since both nodes 2 and 4 have three neighbors (degree d = 3)
and all the other nodes are beacons, a unique position es-
timate for nodes 2 and 4 can be computed. More formally,
collaborative multilateration can be stated as follows: Con-
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sider the ad-hoc network to be a connected undirected graph
G = (N;E) consisting of jN j = n nodes and a set E of n�1
or more edges. The beacon nodes are denoted by a set B
where B � N and the set of unknown nodes is denoted by
U where U � G. Our goal is to solve for

xu; yu 8u � U by minimizing

f(xu; yu) = Diu �
p
(xi � xu)2 + (yi � yu)2 (7)

for all participating node pairs i; u where i � B or i � U
and u � U . Subject to:
xi; yi are known if i � B, and every node pair i; u is a
participating pair. Participating nodes and participating
pair are de�ned as follows:

Definition 1. A node is a participating node if it is ei-
ther a beacon or if it is an unknown with at least three par-
ticipating neighbors.

In �gure 7b if collaborative multilateration starts at node
2, node 2 must have at least three participating neighbors.
Nodes 1 and 3 are beacons therefore they are participating.
Node 4 is unknown but has two beacons: nodes 5 and 6.
Node 4 is also connected to node 2 thus making both of
them participating nodes.

Definition 2. A participating node pair is a beacon-unknown
or unknown-unknown pair of connected nodes where all un-
knowns are participating.

In this formulation, the nodes participating in collabora-
tive multilateration make up a subgraph of G, for which an
equation of the form of 7 can be written for each edge E
that connects a pair of participating nodes. To ensure a
unique solution, all nodes considered must be participating.
In �gure 7b for example, we have �ve edges thus a set of
�ve equations can be obtained. In some cases other cases ,
we may have a well-determined system of n equations and
n unknowns such as in the case shown �gure 7c. We can
easily observe however, that node X can have two possible
positions that would satisfy this system therefore the solu-
tion is not unique and node X is not a participating node. If
the above conditions are met, the resulting system of non-
linear equations can be solved with optimization methods
such as gradient descend [26] and simulated annealing [27].

The algorithm in �gure 10 provides a basic example of how
a node determines whether it can initiate collaborative mul-
tilateration. The parameter node denotes the node id from
where the search for a collaborative multilateration begins.
The second parameter callerId holds the node id of the node
that calls the particular instance of the function. isInitia-
tor is a boolean variable that is set to true if the node was
the initiator of the collaborative multilateration process and
false otherwise. This is used to set the limit 
ag that drives
the recursion.

boolean isCollaborative (node, callerId, isInitiator)
if isInitiator==true limit  3
else limit  2
count  beaconCount(node)
if count � limit return true
for each unknown neighbor i not previously visited
if isCollaborative (i, node, false) count++
if count == limit return true

return false

Figure 10: Algorithm for checking the feasibility for
collaborative multilateration

Collaborative multilateration can be used to assist iterative
multilateration in places of the network where the beacon
density is low and the requirement for atomic multilateration
is not satis�ed. Figure 11 illustrates how iterative multi-
lateration would call collaborative multilateration when the
requirement for atomic multilateration is not met.

boolean iterativeMultilateration (G)
(MaxBeaconNode, BeaconCount)  unknown
node with most beacons

while BeaconCount � 3
setBeacon (MaxBeaconNode)
(MaxBeaconNode, BeaconCount)  unknown
node with most beacons

while isCollaborative (MaxBeaconNode, -1, true)
set all nodes in collaborative set as beacons
(MaxBeaconNode, BeaconCount)  unknown
node with most beacons

while BeaconCount � 3
setBeacon (MaxBeaconNode)
(MaxBeaconNode, BeaconCount)  unknown
node with most beacons

Figure 11: Enhanced Iterative Multilateration

Collaborative multilateration can help in situations where
the percentage of beacons is low. This e�ect is shown in
�gure 12. This scenario considers a sensor �eld of 100 by
100 and a sensing range of 10 and two network sizes of 200
and 300 nodes. As shown in the �gure, if the percentage of
beacons is small, the number of node locations that can be
resolved is substantially increased with collaborative mul-
tilateration. This result also shows how network density is
related to the localization process. In the 300 node network,
more node locations can be estimated than in the 200 node
network with the same percentage of beacons. This is due
to the higher degree of connectivity. The e�ects of node and
beacon placement on the localization process is studied in
more detail in section 5.

4.4 Further Optimizations
The accuracy of the estimated locations in the multilater-
ation algorithms described in this section may be further
improved with two additional optimizations. First, error
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Figure 12: E�ect of collaborative multilateration top, 300 nodes, bottom 200 nodes

propagation can be reduced by using weighted multilatera-
tion. In this scheme, beacons with higher certainty about
their location are weighted more than beacons with lower
certainty during a multilateration. As new nodes become
beacons, the certainty of their estimated location can also
be computed and used as a weight in future multilaterations.
Additionally, by applying collaborative multilateration over
a wider scope, the accumulated error can be reduced. The
solution methodology and further evaluation of these opti-
mizations are part of our future work and will be the subject
of a future paper.

5. NODE AND BEACON PLACEMENT
The success of the location discovery algorithm depends on
network connectivity and beacon placement. In this section,
we conduct a brief probabilistic analysis to determine how
the connectivity requirements can be met when nodes are
uniformly deployed in a �eld. Based on these results, we
later perform a statistical analysis to get an indication on
the percentage of beacons required. When considering node
deployment, the main metric of interest is the probability
with which any node in the network has a degree of three or
more, assuming that sensor nodes are uniformly distributed
over the sensor �eld. In a network of N nodes deployed in a
square �eld of side L, the probability P (d) of a node having
degree d is given by the binomial distribution in equation 8
and the probability PR being in transmission range.

P (d) = P
d

R:(1� PR)
N�d�1

:

 
N � 1

d

!
(8)

PR =
�R2

L2
(9)

For large values of N tending to in�nity, the above bino-
mial distribution converges to a Poisson distribution. When
taking into account that � = N:PR we get equation 10, the

probability of a node have degree of three or more can be
calculated. Also, an indication of the number of nodes re-
quired per unit area can be calculated in terms of �. Table
3 shows the number of nodes required to cover a square �eld
of size L = 100 and range R = 10 as well as the probabil-
ity for a node to have degree greater than three or four for
di�erent values of �. These probabilities are obtained from
equation 11.

P (d) =
�d

d!
:e
�� (10)

P (d � n) = 1�
n�1X
i=0

P (i) (11)

Table 3: Probability of node degree for di�erent �
values

� P(d � 3) P(d � 4) nodes/10,000m2

2 0.323324 0.142877 39
4 0.761897 0.56653 78
6 0.938031 0.848796 117
8 0.986246 0.95762 157
10 0.997231 0.989664 196
12 0.999478 0.997708 235
14 0.999906 0.999526 274
16 0.999984 0.999907 314
18 0.999997 0.999982 353
20 1 0.999997 392

The connectivity results in �gure 13 show the probabilities of
a node having 0,1,2 or 3 and more neighbors. In addition to
node connectivity, we determine percentage of initial bea-
con nodes required for the convergence of the localization
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Figure 13: Connectivity result for a 100 x 100 �eld
and sensor range 10

algorithm by statistical analysis. Using the same network
setup as before, we report the percentage of nodes that es-
timate their locations while varying the percentage of nodes
and beacons. The results in �gure 14 are the averages over
100 simulations. The �gure shows the percentage of bea-
cons required to complete the iterative multilateration pro-
cess using only atomic multilaterations. We note that the
percentage of required beacons decreases as network den-
sity increases. Also as the network density increases, the
transitions in the required number of beacons become much
sharper since the addition of a few more beacon nodes rein-
forces the progress of the iterative multilateration algorithm.
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6. IMPLEMENTATION AND EXPERIMEN-
TATION

6.1 Medusa Node Architecture
TheMedusa node design (�gure 2) is based on the AVR 8535
processor [13] which carries 8KB of 
ash memory, 512 bytes
SRAM and 512 bytes of EEPROM memory. The radio we
use is the DR3000 radio module from RF Monolithics[14].
This radio supports two data rates (2.4 and 19.2 kbps) and
two modulation schemes (ASK and OOK). The ultrasound

circuitry consists of six (60 degree detect angle) pairs of
40KHz ultrasonic transducers arranged in a hexagonal pat-
tern at the center of the board (note that for experimental
purposes the Medusa node in �gure 2 has 8 transducers).
Each ultrasound transceiver is supported by a pair of solid
core wires at an approximate height of 15 cm above the
printed circuit board. We found this very convenient setup
for experimentation since it allows the transceivers to be ro-
tated in di�erent directions. The �rst generation board is
3" x 4" and it is powered by a 9V battery. The Medusa
�rmware is based on an event driven �rmware implementa-
tion suggested in [15]. The radio communication protocols
use a variable size framing scheme, 4-6 bit encoding [16]
and 16 bit CRC. The code for ranging is integrated in the
ad-hoc routing protocol described in the next subsection.

6.2 Location Information Dissemination and
Routing

In our experimental setup all measurements from the nodes
are forwarded to a PC basestation. To route messages to
the base station, we implemented a lightweight version of
the DSDV [19] routing algorithm, which we refer to as DS-
DVlite. Instead of maintaining a routing table with the
next hop information to every node, DSDVlite only main-
tains a short routing table that holds next hop information
for the shortest route to gateway. Furthermore, this algo-
rithm drives the localization process by carrying the location
information of beacons, and by ensuring that the received ul-
trasound beacon signals originate from the same source node
as the radio signals. The ultrasound beacon signal transmis-
sion begins right after the transmission of the start symbol
for each routing packet. After this, the transmission of data
and ultrasound signals proceed simultaneously. By ensuring
that the duration of the data transmission is longer than the
ultrasound transmission, the receiver can di�erentiate be-
tween erroneous ultrasound transmissions from other nodes.
If the data packet is not correctly received because of a col-
lision with another transmission, it also implies a collision of
ultrasound signals hence the ultrasound time measurement
is discarded.

Figure 15: 9 node scenario
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6.3 Experimental Setup
Our experimental testbed consists of 9Medusa nodes and a
Pentium II 300MHz PC. One node is con�gured as a gateway
and it is attached to the PC through the serial port. Some
of the nodes are pre-programmed with their locations and
they act as beacons. All the nodes perform ranging and they
transmit all the ranging information to the PC that runs
the localization algorithms and displays the node positions
on a sensor visualization tool. The node positions on the
sensor visualization tool are updated at 5-second intervals.
Figures 16 and 15 show some snapshots of node locations.
The beacons are shown as black dots, the unknown nodes
are white circles and the node position estimates are shown
as gray dots. In all of our experiments all the node position
estimates for each unknown node always fall within the 3"
x 4" surface area of the Medusa boards.

Figure 16: 5 node scenario

6.4 Power Characterization
In the previous subsection we veri�ed the correct operation
of our localization system. Our experimental setup will pro-
vide a reasonable solution for a small network but as the
network scales, the traÆc to the central gateway node will
increase substantially. Before we can evaluate the trade-
o�s between estimating locations at the nodes and estimat-
ing locations at a central node we �rst characterize power
consumption of the Medusa nodes at di�erent operational
modes. Using an HP 1660 Logic Analyzer, a bench power
supply and a high precision resistor we characterized the
RFM radio and the AVR microcontroller on the Medusa
nodes.
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Figure 17: Power and Energy Relationships and
Measurement Setup

The measurement setup and power/energy relationships are

shown in �gure 17. The power consumption for di�erent
modes of the AVR microcontroller are shown in table 4.
The power consumption for the di�erent modes of the RFM
radio are shown in �gure 18 and table 5.

Table 4: AVR 8535 Power Characterization
AVR Mode Current Power

Active 2.9mA 8.7mW
Sleep 1.9mA 5.9mW

Power Down 1�A 3�W
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Figure 18: RFM Radio power consumption at dif-
ferent operational modes

7. TRADEOFFS BETWEEN CENTRALIZED
AND DISTRIBUTED SCHEMES

One important aspect that needs to be determined is whether
the location estimation should be done in a centralized or
distributed fashion. In the former case, all the ranging mea-
surements and beacon locations are collected to a central
base station where the computation takes place and the re-
sults are forwarded back to the nodes. In the latter, each
node estimates its own location when the requirements for
atomic multilateration are met. For the AHLoS system, we
advocate that distributed computation would be a better
choice since a centralized approach has several drawbacks.
First, to forward the location information to a central node,
a route to the central node must be known. This implies the
use of a routing protocol other than location based routing
and also incurs some additional communication cost which
is also a�ected by the eÆciency of the existing routing and
media access control protocols. Second, a centralized ap-
proach, creates a time synchronization problem. Whenever
there is a change in the network topology the node's knowl-
edge of location will not instantaneously updated. To cor-
rectly keep track of events, the central node will need to
cache node locations to ensure consistency of event reports
in space and time. Third, the placement of the central node
implies some preplanning to ensure that the node is easily
accessible by other nodes. Also, because of the large volume
of traÆc to and from the central node, the battery lifetime
of the nodes around the central node will be seriously im-
pacted. Fourth, the robustness of the system su�ers. If
the routes to the central node are broken, the nodes will
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Table 5: RFM Power Characterization
Mode Power

Level
OOK Modulation ASK Modulation

2.4Kbps 19.2Kbps 2.4Kbps 19.2Kbps
mW mA mW mA mW mA mW mA mW

Tx 0.7368 4.95 14.88 5.22 15.67 5.63 16.85 5.95 17.76
Tx 0.5506 4.63 13.96 4.86 14.62 5.27 15.80 5.63 16.85
Tx 0.3972 4.22 12.76 4.49 13.56 4.90 14.75 5.18 15.54
Tx 0.3307 4.04 12.23 4.36 13.16 4.77 14.35 5.04 15.15
Tx 0.2396 3.77 11.43 4.04 12.23 4.45 13.43 4.77 14.35
Tx 0.0979 3.13 9.54 3.40 10.35 3.81 11.56 4.08 12.36
Rx - 4.13 12.50 4.13 12.50 4.13 12.50 4.13 12.50
Idle - 4.08 12.36 4.08 12.36 4.08 12.36 4.08 12.36
Sleep - 0.005 0.016 0.005 0.016 0.005 0.016 0.005 0.016

not be able to communicate their location information to
the central node and vice versa. Finally, since all the raw
data is required, the data aggregation that can be performed
within the network to conserve communication bandwidth
is minimal. One advantage of performing the computation
at a centralized location is that more rigorous localization
algorithms can be applied such as the one presented in [35].
Such algorithms however require much more powerful com-
putational capabilities than the ones available at low cost
sensor nodes. Overall, a centralized implementation will not
only reduce the network lifetime but it will also increase its
complexity and compromise its robustness. On the other
hand, if location estimation takes place at each node in a
distributed manner the above problems can be alleviated.
Topology changes will be handled locally and the location
estimate at each node can be updated at minimal cost. In
addition, the network can operate totally on location based
routing so the implementation complexity will be reduced.
Also since each node is responsible for determining its loca-
tion, the localization is more tolerant to node failures.

To evaluate energy consumption tradeo�s between the cen-
tralized and distributed approaches we run some simulations
on a typical sensor network setup. In our scenario the cen-
tral node is placed at the center of a square sensor �eld.
Furthermore, we assume the use of an ideal, medium access
control(MAC) and routing protocols. The MAC protocol is
collision free and the routing protocol always uses the short-
est route to the central node. The total number of bytes
transmitted by all the nodes during both distributed and
centralized localization is recorded. The network size var-
ied with the network density kept constant by using a value
of � = 6 or 117 nodes for every 10,000m2 (from table 3).
The simulation setup considers the same packet sizes as the
implementation on the medusa nodes. For the centralized
system each node forwards the range measurements between
all its neighbors. If the node is beacon it also forwards its
location information (this is 96 bits long which is equiva-
lent to a GPS reading). Once the location is computed, the
central node will forward the results back to node the cor-
responding unknown nodes. In the distributed setup, each
node transmits a short beacon signal (radio and ultrasound
pulse) followed by the senders location if the sender is a
beacon. In both cases, the simulation runs for one full cycle
of the localization process(until all feasible unknown node

positions are resolved). The average number of transmitted
bytes for each case are shown in �gures 19 and 20 for 10%
and 20% beacon density respectively. The results shown in
the �gure are averages of over 100 simulations with random
node placement following a uniform distribution.
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Figure 19: TraÆc in distributed and centralized im-
plementations with 10% beacons

Figure 21 shows the average energy consumption per node
for the Medusa nodes when the radio transmission power
is set to 0.24mW. This result is based on the power char-
acterization of the Medusa nodes from the previous sec-
tion. We also node that the energy overhead for the ultra-
sound based ranging is the same for both centralized and
distributed schemes therefore it is not included in the en-
ergy results presented here. These results show that in the
distributed setup has six to ten times less communiocation
overhead than the centralized setup. Another interesting
trend to note is that in the centralized setup, network traf-
�c increases as the percentage of beacon nodes increases. In
the distributed setup however, the traÆc decreases as the
percentage of beacon nodes increases. This decrease in traf-
�c is mainly attributed to the fact that most of the times
the localization process can converge faster if more beacon
nodes are available; hence less information exchange has to
take place between the nodes.

177



Figure 21: Average energy spent at a node during localization with a) 10% beacons, b) 20% beacons
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Figure 20: TraÆc in distributed and centralized im-
plementations with 20% beacons

8. CONCLUSIONS
We have presented a new localization scheme for wireless
ad-hoc sensor networks. From our study we found that the
use of ToA ranging is a good candidate for �ne-grained lo-
calization as it is less sensitive to physical e�ects. Received
RF signal strength ranging on the other hand is not suit-
able for �ne-grained localization. Furthermore, we conclude
that our �ne-grained localization scheme should operate in
a distributed fashion. Although more accurate location esti-
mations can be obtained with centralized implementation, a
distributed implementation will increase the system robust-
ness and will result in a more even distribution of power
consumption across the network during localization. Fur-
thermore, the implementation of our testbed proved to be
an indispensable tool for understanding and analyzing the
strengths and limitations of our approach. Although our
system performed very well for our experiments, we rec-
ommend the use of a more powerful CPU on the on the

sensor nodes for the following reasons. First, RF and ul-
trasound ToA ranging requires the use of a dedicated high
speed timer. In our implementation the 4MHz AVR micro-
controller is dedicated to localization and this is suÆcient.
If however, the microcontroller is expected to perform ad-
ditional tasks at the same time a higher performance pro-
cessor is highly recommended. Based on our experience, we
are currently developing a second generation of theMedusa

nodes. These nodes will be capable of performing hybrid
ranging by introducing the fusion of both ultrasonic ToA
ranging and received signal strength RF ranging. Finally,
in this initial study we found that the accuracy of iterative
multilateration is satisfactory for small networks but needs
to be improved for larger scale networks. To this end, as
part of our future work we plan to extend our algorithms
to achieve better accuracy by limiting the error propagation
across the network.
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