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Abstract—Molecular Communication (MC) is a promising bio-
inspired paradigm in which molecules are transmitted, propa-
gated and received between nanoscale machines. One of the main
challenges is the theoretical study of the maximum achievable
information rate (capacity). The objective of this paper is to
provide a mathematical expression for the capacity in MC
nanonetworks when the propagation of the information relies
on the free diffusion of molecules. Solutions from statistical
mechanics and thermodynamics are used to derive a closed-form
expression for the capacity as function of physical parameters,
such as the size of the system, the temperature and the number
of molecules as well as of the bandwidth of the system and the
transmitted power. An extremely high order of magnitude of the
capacity numerical values demonstrates the enormous potential
of the diffusion-based MC systems.

I. INTRODUCTION

Molecular Communication (MC) is a promising paradigm
for communication in nanonetworks [1], where molecules are
used to encode, transmit and receive information. Nanonet-
works are interconnections of nanomachines, i.e., devices
consisting of nanoscale-precise components and able to sense,
compute, actuate and communicate. Unlike classical commu-
nication techniques, we believe that the integration process of
MC transceivers in nanomachines is more feasible due to their
size and natural domain. Amongst others [10], we focus on the
diffusion-based architecture, as it represents the most general
and simple MC architecture.
Up to date, very limited research has addressed the prob-

lem of modeling and analyzing the information capacity in
diffusion-based MC in nanonetworks. While in [2] some open
questions about nanoscale information theory are outlined,
concrete mathematical solutions for diffusion-based MC chan-
nel modeling are not provided. In [3], a MC receiver model
is developed, but without taking into account the molecule
diffusion-based propagation theory. A more recent approach
to information theory applied to a specific case of molecu-
lar communication, namely, calcium signaling, can be found
in [9]. In [11], a physical model of the diffusion-based MC is
developed in terms of end-to-end information delivery.
The objective of this paper is to provide a mathematical

expression of capacity in MC when the propagation of infor-
mation relies on the free diffusion of molecules. The diffusion-

based molecular environment is based on radically different
mechanisms than the mechanisms underlying classical EM-
based communication. For this, some assumptions used by
Shannon [12] for expressing the capacity of an EM channel are
no longer valid, such as the assumption of having an additive
white gaussian noise source. As a consequence, there is a need
to rethink the basis of information theory from the perspective
of the diffusion-based MC scenario. For this, we study the
relationship between thermodynamic entropy and information
entropy and derive a closed-form expression for the capacity
in diffusion-based MC in nanonetworks. We define a physical
reference model as the most basic realization of a nanonetwork
with molecular communication and we express the capacity
as function of physical parameters, such as the size of the
system, the temperature and the number of molecules as well
as of the bandwidth of the system and the transmitted power.
We provide numerical results to evaluate the capacity of MC.
The remainder of the paper is organized as follows. In

Sec. II, we detail the schematic diagram of a diffusion-based
MC system and we define the physical reference model.
The closed-form expression of the capacity is derived in
Sec. III, together with the relation between thermodynamic
entropy and information entropy, the input signal entropy and
the equivocation. Numerical results are provided in Sec. IV.
Finally, in Sec. V, we conclude the paper.

II. A DIFFUSION-BASED MOLECULAR COMMUNICATION
SYSTEM AND THE PHYSICAL REFERENCE MODEL

The schematic diagram of a diffusion-based MC system is
shown in Fig. 1, where the system is depicted as a cascade of
different parts, namely, the information source, the transmitter,
the channel, the noise source, the receiver and the destination.
The schematic diagram in Fig. 1 specializes the scheme
presented in [12] in light of the diffusion-based MC paradigm.
In the following, we detail each different part.
The information source produces messages to be commu-

nicated to the destination. The type of message depends on the
particular application in which the diffusion-basedMC channel
is deployed. In nanomachine communication [2] the message
can be any function of the time which carries data such as
nanomachine states or sensory measurements [1].



Fig. 1. Schematic diagram of a diffusion-based MC system.
The transmitter receives the messages from the information

source and produces a signal suitable for the transmission over
the channel. The signal is produced by modulating one or
more molecular features. Molecular features are properties of
the molecules that the transmitter can vary and whose value is
propagated by the channel towards the receiver. The molecular
features considered in this paper are the local particle number
and the particle type.
The channel is the medium that propagates the signal from

the transmitter to the receiver. In diffusion-based MC, the
channel propagates the signal by means of the molecule diffu-
sion process. Molecule diffusion is defined as the movement
of molecules from an area of higher concentration to an area
of lower concentration by means of Brownian motion [5].
The noise source operates a random unwanted perturbation

on the signal while it propagates from the transmitter to the
receiver. In diffusion-based MC the noise is related to the
randomness present in the particle propagation and it is due
to Brownian motion of the particles.
The receiver reconstructs the messages sent by the transmit-

ter from the received signal coming from the channel and the
noise source. It reads the changes that the transmitter operated
on the molecule features during their modulation.
The destination is the recipient of the messages coming

from the receiver. Upon reception of a message, it reacts
according to the meaning and to the particular application.
The transmitter, the channel, the noise source and the

receiver are functions of physical parameters, such as the tem-
perature or the chemical composition of the environment, and
depend on how the diffusion-based MC system is physically
realized. We define a physical reference model as the most
basic realization of a diffusion-based MC system as follows:
• The physical reference model is contained in the space S,
whose shape is spherical with radius rS .

• All the molecules are considered as mono-atomic and with
negligible spatial dimension (zero-dimensional point parti-
cles) when compared to the size of the space S. Each particle
is randomly-moving in the space following the Brownian
motion random process and we assume the same particle
diffusion coefficient D for all the particles.

• Each particle i is characterized by two quantities, namely,
the location x̄i and the momentum ρ̄i. The location of a
particle is a vector x̄i = [xi, yi, zi] containing the values of
the three space coordinates where the particle is located. The
momentum ρ̄i of a particle is the product of the velocity
v̄i, which is a vector containing all the velocity components
v̄i = [vxi , v

y
i , v

z
i ], by the particle mass m. The set containing

the locations and momenta of all the particles in the system
define the Phase Space Φ of the system.

• The transmitter has a spherical shape of radius rT , where
rT << rS , while the receiver is point-wise. The location of
the transmitter corresponds to the center [xT , yT , zT ] of the
spherical space S and the receiver is at a distance d from the
transmitter, where rT < d < rS .
Given the above statements, the particles of the physical
reference model behave according to the theory of the ideal
gases [6]. The ideal gas concept allows us to define the
following physical parameters for the physical reference
model when it is in a state of thermodynamic equilibrium [5]:
the temperature T , the pressure P , the volume V and the
number of particles Np. The physical parameters define the
state of the system and they are bound by the Ideal Gas Law.
The information capacity of a communication system is

defined as the maximum rate of transmission at the information
source that allows the reception of all the sent information at
the destination. The goal of the research work detailed in this
paper is the study of the information capacity as a function of
the physical parameters that control the diffusion-based MC
systems in the physical reference model.

III. INFORMATION CAPACITY OF A DIFFUSION-BASED
MOLECULAR COMMUNICATION SYSTEM

The information capacity of a communication system is
expressed by the general formula from Shannon [12]. The gen-
eral formula defines the information capacity as the maximum
difference between the entropy H(x) of the signal x in input
to the channel and the equivocation HY (x):

C = max
fX (x)

{H(x)−HY (x)} (1)

where the maximum is found with respect to the probability
density function fX(x) in the values of the input signal x.
Definition 3.1: The entropy H(x) of the input signal x is

defined [12] as the opposite of the integral of the probability
density function fX(x) multiplied by its base 2 logarithm in
the space of all the possible values of the input signal x:

H(x) = −
∫

fX(x) log2 (fX(x)) dx (2)

where H(x) is the entropy expressed in bits per transmitted
sample [12] [bit/sample]. If we assume that the system has
a bandwidth W , the entropy H ′(x) of the input signal [12]
expressed in bits per second [bit/sec] is the entropy in
[bit/sample] multiplied by the maximum rate of samples per
second, which is equal to 2W . The formula is [12]:

H ′(x) = 2WH(x) (3)

Definition 3.2: The equivocation HY (x) is defined as the
entropy of the signal x in input given the output signal y.
The equivocation HY (x) is computed as the opposite of
the integral of the joint input-output distribution fX,Y (x, y)
multiplied by the base 2 logarithm of the probability density
function fX|Y (x|y) of the input signal x given the output
signal y. The integral is computed over all the possible values



of the input signal x and the output signal y:

HY (x) = −
∫ ∫

fX,Y (x, y) log2
(

fX|Y (x|y)
)

dx dy (4)

A. Information Entropy from Thermodynamic Entropy

The thermodynamic entropy is defined by Gibbs [7] as a
measure of the disorder in a thermodynamic system. For the
physical reference model introduced in Sec. II, the thermody-
namic entropy Sr is expressed as follows:

Sr = −Kb

∫

φεΨ
fΦ(φ) ln (fΦ(φ)) dφ (5)

where φ is a particular value for the phase space Φ of the
system, fΦ(φ) is the distribution of phase space values for a
specific set of values for the physical parameters and Ψ is the
set of all the possible phase space values.
As stated in Sec. II, the physical reference model behaves

according to the ideal gas theory. According to the Sackur-
Tetrode equation [4], the entropy of an ideal gas in thermo-
dynamic equilibrium has a closed-form expression as function
of the physical parameters. Therefore, the entropy Sr of the
physical reference model is [4]:

Sr = Np Kb

[

ln

(

V

Np

(

2πmKbT

h2

)
3

2

)

+
5

2

]

(6)

where Np is the number of particles present in the system, Kb

is the Boltzmann constant [7], V and T are the volume and
the absolute temperature of the system, respectively, m is the
particle mass and h is the Planck’s constant [4].
The thermodynamic entropy formula in (5) can be reduced

to the information entropy formula in (2) if the Boltzmann
constant Kb is removed and the logarithm ln is set to log2. In
the case of a diffusion-based MC system, we can interpret the
thermodynamic entropy as an information entropy where the
input signal values are the phase space values φ of the physical
reference model. The Boltzmann constant Kb relates only to
the conventional units of the temperature and it has meaning
only in thermodynamics [7]. The logarithm ln is converted into
the log2 because [12] the units of the information entropy are
[bit/sample] or [bit/sec]. Thus, the information entropy Href

of the physical reference model can be expressed as follows:

Href = Np

[

log2

(

V

Np

(

2πmKbT

h2

)
3

2

)

+
5

2

]

(7)

B. Input Signal Entropy

The input signal in the physical reference model introduced
in Sec. II corresponds to the modulation of the molecular
features (the local particle number and the particle type)
operated by the transmitter.
A local entropy can be defined for the transmitter when

it modulates the molecular features. The local information
entropy depends on the molecular features and it can be
computed from (7). The local entropy HT at the transmitter
is a function of the set M of all possible particle types,
the number Nm for each particle type m from the set M ,

the absolute temperature T of the system and the transmitter
volume VT :

HT =
∑

mεM

Nm

[

log2

(

VT

Nm

(

2πmKbT

h2

)
3

2

)

+
5

2

]

(8)

where the transmitter volume VT is equal to (4/3)πr3T . Due
to the Gibbs theorem [7], (8) is the sum of each contribution
coming from the application of (7) to each particle type at the
transmitter, considered as independent contributions.
The total entropy Hmod

ref of the physical reference model
when the transmitter is modulating the particle features can
be written as the sum of HT from (8) and Href from (7):

Hmod
ref = HT +Href (9)

While the transmitter modulates, it inserts information in
the system. This information, according to the Second Law
of Thermodynamics [6], eventually will fade out when the
physical reference model will reach a new thermodynamic
equilibrium state, characterized by a higher entropy Hnew

ref ,
which is expressed as follows:

Hnew
ref = Ntot

[

log2

(

V

Ntot

(

2πmKbT

h2

)
3

2

)

+
5

2

]

(10)

where Ntot = Np +
∑

mεM Nm is the total number of
particles in the system andNp is the number of particles before
modulation. In order to quantify the input signal entropy, we
subtract the total entropy Hmod

ref from the entropy Hnew
ref :

H(x) = Hnew
ref −Hmod

ref (11)
where H(x) is the input signal entropy in [bit/sample]
If we consider a bandwidthW for the system, we can trans-

mit 2W samples per second without equivocation. According
to (3) the input signal entropy in [bit/sec] becomes:

H ′(x,W ) = 2W
(

Hnew
ref −Hmod

ref

)

(12)

C. Equivocation
The received signal in the physical reference model intro-

duced in Sec. II corresponds to the reading of the changes in
the molecular features operated by the receiver.
The propagation of the signal from the transmitter to the

receiver affects the value of the local entropy at the receiver.
The variation in the local entropy at the receiver HR at instant
t and distance d corresponds to the variation in the entropy
of the spherical surface at instant t and distance d, divided by
the spherical surface area 4πd2:

HR(d, t) =
Hsph

R (d, t)

4πd2
(13)

The variation in the entropy in the spherical surface can be
computed from (7) with a number of particles Nm

eq and a
volume Veq . The variation in the entropy Hsph

R (d, t) in the
spherical surface is:

Hsph
R (d, t) =

∑

mεM

Nm
eq

[

log2

(

Veq

Nm
eq(d, t)

(

2πmKbT

h2

)
3

2

)

+
5

2

]

(14)
The equivalent number of particlesNm

eq (d, t) of the ideal gas
corresponds to the number of particles that diffuse from the



transmitter to the receiver located at a distance d, expressed as
the number Nm of transmitter particles (of type m) multiplied
by the probability for each particle of shifting by a distance d
at a time instant t, according to the Brownian motion [5]:

Nm
eq (d, t) = Nm

1√
4πDt

e−
d2

4Dt (15)

The value of the equivalent volume Veq divided by the
equivalent number of particles Nm

eq(d, t) the inverse of the
concentration of type m particles at the spherical surface at
instant t and distance d. This is expressed as follows:

Nm
eq (d, t)

Veq
=

Nm

VT

1√
4πDt

e−
d
2

4D∆t =
Nm

eq (d, t)

VT
(16)

The equivocation formula in (4) corresponds to the increase
in entropy of the signal as it propagates in the channel,
and it depends on the number of particles that reach the
receiver location in a certain time t. The equivocation HY (x)
is expressed as follows:

HY (x) = HR(d, t)−
HT

VT
(17)

where HT

VT
is the entropy of the transmitted signal per unit vol-

ume and HR(d, t) is the entropy of the received signal, (13).
If we consider a bandwidth W for the system, we can

receive up to 2W samples per second without equivocation.
The variation in the entropy Hsph

R,W in a spherical surface with
bandwidth W at distance d is computed through:

Hsph
R,W =

∑

mεM

Nm
eq,W

[

log2

(

Veq

Nm
eq,W

(

2πmKbT

h2

)
3

2

)

+
5

2

]

(18)
where Nm

eq,W is equal to the number of particles that diffuse
from the transmitter to the receiver located at a distance d
and for a bandwidth W , under the hypothesis of not having
influences between the diffusion of two different samples. This
will result in an overestimation of the capacity. Nm

eq,W is
expressed as follows:

Nm
eq,W = Nm

√

2W

4πD
e−

2Wd2

4D (19)

As a consequence, the variation in the local entropy at the
receiver HR(W ) with bandwidth W and distance d is:

HR(W ) =
Hsph

R,W

4πd2
(20)

The equivocation formula in [bit/sec] becomes:

HY (x,W ) = 2W

(

HR(W )−
HT

VT

)

(21)

where HR(W ) is computed through (20), HT through (8) and
VT is defined in Sec. (III-B).

D. Capacity

The information capacity of the diffusion-based MC system,
given the physical reference model detailed in Sec. II, is
expressed by the formula in (1), where the input signal entropy
H(x) is given by (11) and the equivocation is given by (17).

The final expression of the capacity becomes:

C = max
fX (x)

{

Hnew
ref −Hmod

ref −
(

HR −
HT

VT

)}

(22)

with reference to (10), (9), (13) and (8).
If we consider a bandwidth W for the system, the infor-

mation capacity C(W ) of the diffusion-based MC system is
expressed as a function of W by the formula in (1), where
the input signal entropy H(x,W ) is given by (12) and the
equivocation HY (x,W ) is given by (21).

C(W ) = max
fX(x)

2W

{

Hnew
ref −Hmod

ref −
(

HR(W )−
HT

VT

)}

(23)
with reference to (10), (9), (20) and (8).
A closed form expression for the capacity of the diffusion-

based MC system is given by the input signal probability
density function fX(x) that maximizes (1). Such a value
for fX(x) can be found by setting a constraint on the total
transmitted power, namely, the transmitter enthalpy power PH:

PH = 2HW (24)
where H is the transmitter enthalpy and W is the bandwidth.
Definition 3.3: The transmitter enthalpy is defined as the

energy necessary to insert N particles in the system and to
heat these particles up to a temperature T when the system
has the pressure P and the volume V [6]. In our case, the
transmitter enthalpy can be computed from:

H = PV +
3

2
KbT

∑

mεM

Nm (25)

where P and V are the pressure and the volume of the physical
reference model, respectively. M is the set of all possible
particle types that the transmitter can emit, Nm is the number
of particles of type m, Kb is the Boltzmann constant and T
is the absolute temperature of the system.
The entropy Hmod

ref from (9) can be written as function of
the transmitter power by expressing Nm as a function of Pm

H :

NP
m =

Pm
H − 2WPV

3WKbT
(26)

where Pm
H is the fraction of the power assigned to each particle

type m and P and V are the pressure and the volume of the
physical reference model, respectively. The maximum of the
input signal entropy H(x,W ) corresponds to the distribution
of the power that results in the minimum Hmin

T of HT

from (8), which is the even distribution of the power Pm
H

among all the M types of particles that the transmitter can
send:

Pm
H =

PH

M
→ HT = Hmin

T (27)

The equivocation HY (x) as function of the transmitter
enthalpy power is computed through (21) where both HT

and HR(W ) can be expressed as function of the fraction
of power Pm

H assigned to each particle type m. The optimal
distribution of power in (27) minimizes HT

VT
, and it minimizes

also Hsph
R,W and, consequently, HR(W ) from (20). We can

logically assume that if d is sufficiently large, the entropy HT

VT



Fig. 2. Capacity in relation to: (a) the transmitter-receiver distance for values of bandwidth W , (b) the bandwidth W and for values of the distance d, (c)
the bandwidth W and values of the system temperature T .

is negligible with respect to the contribution of HR(W ):

HR(W ) >>
HT

VT
(28)

Therefore, the minimum of the equivocation HY (x) cor-
responds roughly to the minimum of HR(W ), denoted as
Hmin

R (W ), given by the even power distribution in (27).
A closed form expression for the capacity of the diffusion-

based MC system is:

C(W ) = 2W

[

Hnew
ref −Hmod,min

ref −
(

Hmin
R (W )−

Hmin
T

VT

)]

(29)
with reference to (10), (9), (20), (8), evaluated with (27). The
transmitter volume VT is defined in Sec. (III-B) andHmod,min

ref

is equal to (9) where HT is substituted with Hmin
T .

IV. NUMERICAL RESULTS

In this section, we provide numerical results for the capacity
in MC nanonetworks. All the results are computed for a
common set of parameters, whose values are assigned as
follows: the total transmitter enthalpy power PH = 1µW
(arbitrary value), the radius of the space rS = 1cm, while
the radius of the transmitter rT = 1µm, the mass of the
particles m = 1.66053878283x10−27kg (standard atomic
mass unit [8]), the number of particles Np is set equal to
one mole [6] 6.0221417930x1023, the number M = 5. The
diffusion coefficient D is set [11] to 10−9[m2/sec] for a
temperature of 25 ◦C as a reference, and it is varied according
to the actual temperature values by following the Einstein-
Stokes equation [5].
All the results come from the evaluation of (29), (20), (10)

and (8), given the condition of having an even distribution of
the transmitted power among all the types of particles, (27).
The results in Fig. 2 (a), (b) and (c), show extremely high

values for the capacity which are on the order of magnitude
of 1036[bit/sec]. They can be physically explained as follows:
we consider a transmitted sample as any combination of the
number of particles of any possible type out of M , bounded
by the transmitter power using (26). We achieve a maximum
number of molecules NP

m (Eq. (27) and (26)) on the order of
magnitude of 1012 per each type m. Therefore, the number
of combinations we can achieve using the optimal modulation
scheme is extremely high and, consequently, also the capacity.
In Fig. 2 (a) and (b) we show the capacity of a diffusion-

based Molecular Communication nanonetwork in relation to
the transmitter-receiver distance from 1 µm to 100 µm and

different values of the bandwidth W , from 1 Hz to 45 Hz. In
Fig. 2 (c) we show the capacity dependent on the bandwidthW
ranging from 1 Hz to 45 Hz and the temperature T . Different
lines refer to different system temperature T values, from 0 ◦C
to 100 ◦C.

V. CONCLUSION
Molecular Communication (MC) is a promising paradigm

for communication in nanonetworks. The objective of this
paper is to provide a mathematical expression for capacity
in MC when the propagation of information relies on the free
diffusion of molecules. Molecular communication capacity is
derived as a function of the physical parameters as well as the
bandwidth of the system and the transmitter power. Numerical
results have an extremely high order of magnitude if compared
to capacity values in classical EM-communication systems.
Further investigation will be focused in the future on finding
more stringent upper bounds to the performance (e.g., using a
given modulation scheme at the transmitter).
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