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Abstract—Advances in processor, memory, and radio tech- moving?” These queries result in sensors within the specified
nology will enable small and cheap nodes capable of sensing,region beingtaskedto start collecting information. Once
communication, and computation. Networks of such nodes can j,qjvidual nodes detect pedestrians or vehicle movements, they
coordinate to _perform distributed sensing of en_wro_nmental phe- miaht collaborate with neighborina nodes to disambiquate
nomena. In this paper, we explore thalirected-diffusionparadigm g . ) . 9 9 ; ; g
for such coordination. Directed diffusion is data-centric in thatall ~ Pedestrian location or vehicle movement direction. One of these
communication is for named data. All nodes in a directed-diffu- nodes might then report the result back to the human operator.
sion-based network are application aware. This enables diffusion  Motivated by robustness, scaling, and energy-efficiency re-
to achieve energy savings by selecting empirically good paths and ¢\ jirements, this paper examines a new data dissemination para-
by caching and processing data in-network (e.g., data aggrega- digm for such sensor networks. This paradigm, which we call
tion). We explore and evaluate the use of directed diffusion for .g ; ; s " p gm,

a simple remote-surveillance sensor network analytically and directed diffusioft is data-centric. Data generated by sensor
experimentally. Our evaluation indicates that directed diffusion nodes is named by attribute-value pairs. A node requests data
can achieve significant energy savings and can outperform ide- py sendingnterestsfor named data. Data matching the interest
alized traditional schemes (e.g., omniscient multicast) under the is then “drawn” down toward that node. Intermediate nodes can
investigated scenarios. cache, or transform data and may direct interests based on pre-

Index Terms—Data aggregation, data-centric routing, dis- viously cached data Section II.
tributed sensing, in-network processing, wireless sensor networks. Using this communication paradigm, our example might be

implemented as follows. The human operator’s query would be

|. INTRODUCTION transformed into an interest thatd#fused(e.g., broadcasted,

I N THE NEAR future, advances in processor, memory, ar%eographlcally routed) toward nodes in regions X or Y. When

radio technoloav will enable small and chean nodes ca ag] node in that region receives an interest, it activates its sensors
9y P PadRich begin collecting information about pedestrians. When the

of V\_/l_reless communlcatlon _a_nd significant co_mputat_lon. Ths?ensors report the presence of pedestrians, this information re-
addition of sensing capability to such devices will mak

—_ i . A . . rns along the reverse path of interest propagation. Interme-
distributed microsensing—an activity in which a collection of.. . .
. . ; -diate nodes migtaggregatehe data, e.g., more accurately pin-
nodes coordinate to achieve a larger sensing task—possib|

Such technology can revolutionize information gatherin int the pedestrign’s location by comb.ining rep.orts.from sev-
and processing in many situations. Large scale, dynamic %ral sensors. An |mportant_feature of d|recte.d diffusion is that
changing, and robussensor netwo.rkscan be de,ployed inqr}ferest.and .data pr_opagatlon and aggregation are deterr_nlned
) L2 : ) ?X localized interactiongmessage exchanges between neigh-
inhospitable physical environments such as remote geograplic o odes within some vicinity)

regions or toxic urban locations. They will also enable low Directed diffusion is significantl.y different from IP-style

maintenance sensing in more benign, but less accessible, CQ¥hmunication where nodes are identified by their end-points

B er 0l nerode communicaton s yered on n e end
' P elivery service provided within the network. In this paper,

how such a sensor network will work. One or more human op- . : e .
R/e_ describe directed diffusion and illustrate one example of

?rators pose, to any _node in the network, qgestmns of the fo_rm..s paradigm for sensor query dissemination and processing.
How many pedestrians do you observe in the geographnv?}

region X?” or “In what direction is that vehicle in region Y € show that, by using directed diffusion, one can realize
9 ’ 9 robust multipath delivery, empirically adapt to a small subset
of network paths, and achieve significant energy savings when
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Fig. 1. Simplified schematic for directed diffusion. (a) Interest propagation. (b) Initial gradients setup. (c) Data delivery along reinforced pat

so, we show how the directed-diffusion paradigm differs fromnterval =20 ms // send events every 20 ms
traditional networking and qualitatively argue that this paradigduration = 10 s // for the next 10 s
offers scaling, robustness and energy efficiency benefits. \et = [-100,100,200,400] // from sensors within

quantify some of these benefits via detailed packet-level simrectangle.

ulation of directed diffusion (Section V). . .
( ) For ease of exposition, we choose the subregion represen-

Il. DIRECTED DIFFUSION tation to be a rectangle defined on some coordinate system; in

Directed diffusion consists of several elements: interests, d@f&ctice, this might be based on GPS coordinates. Intuitively,
messages, gradients, and reinforcementsnfamestmessage is the task description Specifies an interest for data matching the
a query or an interrogation which specifies what a user wang@dtributes. For this reason, such a task description is called an
Each interest contains a description of a sensing task that is stierest The data sent in response to interests are also named
ported by a sensor network for acquiring data. Typicalta Using a similar naming scheme. Thus, for example, a sensor that
in sensor networks is the collected or processed informationdgtects a wheeled vehicle might generate the following data (see
a physical phenomenon. Such data can bewent which is a Section 1I-C for an explanation of some of these attributes):
s_hort description of the sen;ed phenomen_on. In direc_:ted dif{yﬁe — wheeled vehicle // type of vehicle seen
sion, data |snamedu3|_ng gttrlbu.te—value pairs. A sensing task.ioval = truck // instance of this type
(orasubta§kthereof) is disseminated .thrqughogtth'e SeNnsor fetsion = [125,220] // node location
work as arinterestfor named data. This dissemination sets URtensity
gradlentsw[thm the_ network desgned to “d_rawt’ events (|.e.imensity — 085 J/ confidence in the match
data matchlng the interest). Speuﬁt:_albgra@enﬂs direction timestamp = 01:20:40 // event generation time.
state created in each node that receives an interest. The gradient
direction is set toward the neighboring node from which the in- Given a set of tasks supported by a sensor network, then,
terest is received. Events start flowing toward the originators &¢lecting a naming scheme is the first step in designing directed
interests along multiple gradient paths. The sensor netveark diffusion for the network. For our sensor network, we have
inforcesone or a small number of these paths. Fig. 1 illustrate§osen a simple attribute-value based interest and data naming
these elements. scheme. In general, each attribute has an associated value

In this section, we describe these elements of diffusion witange. For example, the range of thgpe attribute is the set
specific reference to a particular kind of sensor network—oreé codebook values representing mobdlejects (vehicles,
that supports a location tracking task. As we shall see, severaimal, humans). The value of an attribute can be any subset of
design choices present themselves even in the context of fkgange. In our example, the value of thgpe attribute in the
specific instantiation of diffusion. We elaborate on these desigierest is that corresponding to wheeled vehicles.
choices while describing the design of our sensor network. OurThere are other choices for attribute value ranges (e.g., hier-
initial evaluation (Section 1V) focuses only a subset of these derchical) and other naming schemes (such as intentional names
sign choices. Different design choices result in different variarits] ). To some extent, the choice of naming scheme can affect
of diffusion (see also [16] for another variant). Moreover, evethe expressivity of tasks and may impact performance of a dif-
though we describe this diffusion variant for rate-based applidasion algorithm. In this paper, our goal is to gain an initial un-
tions, diffusion also works for event-triggered applications. derstanding of the diffusion paradigm. For this reason, the ex-

ploration of possible haming schemes is beyond the scope of
A. Naming this paper, but we have begun that exploration elsewhere (see
Section V) [14].

= 0.6 /I signal amplitude measure

In directed diffusion, task descriptions aramedby, for ex-
ample, a list of attribute-value pairs that describe a task. A vg- |nterests and Gradients
hicle-tracking task might be described as (this is a simplified

description: see Section 1-B for more details) The named task description of Section II-A constitutegan

terest An interest is usually injected into the network at some
type = wheeled vehicle // detect vehicle loca- (possibly arbitrary) node in the network. We use the temk
tion to denote this node.
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1) Interest Propagation:Given our choice of naming LRiffusionclement D:'i‘(f“"‘““
. . .  Floodin
SCheme, we now describe how Intel’EStS(ﬁffﬂsedthl’OUQ h the Interest Propagation . Constraﬁ'ned or directional flooding based on location
sensor netWOfk. Su ppose that a taSk Wlth a Sped’.fﬁd and o Directional propagation based on previously cached data
. ! .  Reinforcement to single path delivery
rect, aduration of 10 min and aninterval of 10 MS, IS | Data Propagation © Multipath delivery with selective quality along different paths
instantiated at a particular node in the network. Theerval * Multipath delivery with probabilistic forwarding

M i o For robust data delivery in the face of node failure
parameter specifies an event data rate; thus, in our exam] Datacaching and aggregation |  For coordinated sensing and data reduction

the specified data rate is 100 events per second. This sink n R e merTore

records the task; the task state is purged from the node after| Reinforcement * Rules for how many neighbors to reinforce

time indicated by th@uration attribute. 2 Tegatlve reinforcement mechanisms and rules
For each active task, the sink periodicaioadcastsan in- g 5 partial design space for diffusion.

terest message to each of its neighbors. (More efficient methoo?s

to send the interest will be discussed later.) This initial interest ) ] ]

contains the specifiedlect andduration attributes, but con- (€rest. The interest entry also contains sevgratiient fields,

tains a much largetnterval attribute. Intuitively, this initial UP to one per neighbor. Each gradient contaiéistarate field

interest may be thought of &xploratory it tries to determine requested by the specified neighbor, derived fromititerval

if there indeed are any sensor nodes that detect the Whe@gﬂlbute of the interest. It also Containdla'ationﬁeld, derived

vehicle. To do this, the initial exploratory interest specifies #0m thetimestamp andexpiresAt attributes of the interest

low data rate (in our example, one event per secérid)Sec- and indicating the approximate lifetime of the interest. This du-

tion 1I-D, we describe how the desired data rate is achievé&ation must be longer than the network delay.

by reinforcement. Then, the initial interest takes the following When a node receives an interest, it checks to see if the in-

form: terest exists in the cache. If no matching entry exists (where a
match is determined by the definition of distinct interests spec-
type = wheeled vehicle ified above), the node creates an interest entry. The parameters
interval =1 's of the interest entry are instantiated from the received interest.
rect = [-100,200, 200, 400] This entry has a single gradient toward the neighbor from which

timestamp = 01:20:40 // hh:mm:ss

_ the interest was received, with the specified event data rate. In
expiresAt = 01 : 30 : 40.

our example, a neighbor of the sink will set up an interest entry
ith a gradient of one event per second toward the sink. For this,

Before we describe how interests are processed, we empWa-

size that the interest is soft state [19], [29], [32] that will bét must be possible to distinguish individual neighbors. Any lo-

periodicallyrefreshedby the sink. To do this, the sink simplyCally unique neighbor i.d.entifier may be used for this purpose.
resends the same interest with a monotonically increasil':r amples of suchidentifiers include 802.11 MAC addresses [8],

timestamp attribute. This is necessary because interests ae'€tooth [13] cluster addresses, or locally unique ephemeral
not reliably transmitted throughout the network. The refredfentifiers [11]. If there exists an interest entry, but no gradient
rate is a protocol design parameter that trades off overhead o the sender of the interest, the node adds a gradient with
increased robustness to lost interests. the specified value. It also updates the enttfisestamp and
Every node maintains an interest cache. Each item in tAaration fields appropriately. Finally, if there exists both an
cache corresponds todistinctinterest. Two interests are dis-entryanda gradient, the node simply updates thestanp
tinct, in our example, if theitype attribute differs, or theirect ~ andduration fields. _ _
attributes are (possibly partially) disjoint. Interest entries in the In Section 1I-C, we describe how gradients are used. When
cachedo not contain information about the sirbut just about a gradient expires, it is removed from its interest entry. Not all
the immediately previous hop. Thus, interest state scales wittadients will expire at the same time. For example, if two dif-
the number of distinct active interests. Our definition of diderent sinks express indistinct interests with different expiration
tinct interests also allows interemggregation Two interestd;  times, some node in the network may have an interest entry with
and I, with identical types, completely overlappimgct at- different gradient expiration times. When all gradients for an
tributes, can, in some situations, be represented with a singleerest entry have expired, the interest entry itself is removed
interest entry. Other interest aggregation is a subject of futiffem a cache.
research. _ _ _ After receiving an interest, a node may decide to resend the
Anentryinthe interest cache has several fieldsifestamp interest to some subset of its neighbors. To its neighbors, this
field indicates the timestarhpf the last received matching in-interestappears to originate from the sending no@dthough
2This is not the only choice, but represents a performance tradeoff. Since H}Emg_ht have_ come f'_’om a dISta_nt sink. ThIS is an example of a
location of the sources is not precisely known, interests must necessarilyl@€al interaction In this manner, interestiffusethroughout the
diffused over a broader section of the sensor network than that covered by fieéhwork. Not all received interests are resent. A node may sup-
potential sources. As a result, if the sink had chosen a higher initial data rate, a . . . L
higher energy consumption might have resulted from the wider disseminatigﬁeSS areceived interest if it recently resent a matching interest.
of sensor data. However, with a higher initial data rate, the time to achieve high-Generally speaking, there are several possible choices for
fidelity tracking is reduced. ; ; ; ; ;

4 At o ) neighbors (Fig. 2). The simplest alternative isrédroadcast
3This may require time synchronization among nodes in the network. HO\f\ﬁ int t to all iahb This i ivalent to flooding th
ever, time can be synchronized using GPS [22], NTP [14], or usosg-facto e interest to all neighbors. 'Sf IS equivalent 1o _00 Ing . e
messaging [12]. interest throughout the network; in the absence of information
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Fig. 3. lllustrating different aspects of diffusion. (a) Gradient establishment. (b) Reinforcement. (c) Multiple sources. (d) Multiple dréqai(e)

about which sensor nodes are likely to be able to satisfy the may support many different task types. Interest propagation rules
terest, this is the only choice. This is also the alternative that weay be different for different task types. For example, atask type
simulate in Section IV. In our example sensor network, it mayf the form “Count the number of distinct wheeled vehicles in
also be possible to perform geographic routing, using somerettangleR seen over the next seconds” cannot leverage the
the techniques described in the literature [7], [23], [34]. Thievent data rate as our example does. However, some elements of
can limit the topological scope for interest diffusion, therebinterest propagation are similar to both: the form of the cache
resulting in energy savings. Finally, in an immobile sensor negntries, the interest redistribution rules, etc. In our implemen-
work, a node might use cached data (see Section II-C) to dir¢ation (Section V), we have culled these similarities intdifa
interests. For example, if in response to an earlier interest, a ndaigionsubstrate at each node, so that sensor network designers
heard from some neighbérdata sent by some sensor within thean use a library of interest propagation techniques (or, for that
region specified by theect attribute, it can direct this interestmatter, rules discussed in the subsequent sections for data pro-
to A, rather than broadcasting to all neighbors. cessing and reinforcement) for different task types.

2) Gradient EstablishmentFig. 3(a) shows the gradients .
established in the case where interests are flooded througft-aPata Propagation
sensor field. Unlike the simplified description in Fig. 1(b), no- A sensor node that is within the specifiedct processes
tice that every pair of neighboring nodes establishes a gradiarerests as described in the previous section. In addition, the
toward each other. This is a crucial consequence of local interaede tasks its local sensors to begin collecting samples (to save
tions. When a node receives an interest from its neighbor, it Hz@wer, sensors are off until tasked). In this paper, we do not dis-
no way of knowing whether that interest was in response to ofiss the details of target recognition algorithms. Briefly, these
it sent out earlier, or is an identical interest from another sink @gorithms simply match sampled waveforms against a library
the “other side” of that neighbor. Such two-way gradients cal presampled stored waveforms. This is based on the observa-
cause a node to receive one copy of low data rate events friign that a wheeled vehicle has a different acoustic or seismic
each of its neighbors. However, as we show later, this technicf@@tPrint than, for example, a human being. The sampled wave-
can enable fast recovery from failed paths or reinforcement 9fMm may match the stored waveform to varying extents; the
empirically better paths (Section 11-D) and does not incur pefi90rithms usually associate a degree of confidence with the
sistent loops (Section 11-C). match. Furthermore, the intensity of the sampled waveform may

Note that for our sensor network, a gradient specifies botH%ughly indicate distance of the signal origin, though perhaps

data rate and a direction in which to send events. More generaﬂ?,t direction.

a gradient specifies @alueand a direction. The directed-diffu- A sensor node that detects a target searches its interest cache
for a matching interest entry. In this case, a matching entry is one

sion paradigm gives the designer the freedom to attach dif'ferer’ioserect encompasses the sensor location anckthe of
sem:_;mncs to grad_|ent val_ues._ We haV(_a ShO_W” two examplestﬁ) entry matches the detected target type. When it finds one, it
gradient usage. Fig. 1(c) implicitly .dep'CtS binary valued gradlz'omputes the highest requested event rate among all its outgoing
ents.. In our sensor n'etworks, gradients have two values that' aﬁa'dients. The node tasks its sensor subsystem to generate event
termine event reporting rate. In other sensor networks, gradigQfyjeg at this highest data rate. In our example, this data rate
values might be used to, for example, probabilistically forward initially one event per second (until reinforcement is applied:;
data along different paths, achieving some measure of load hgly seciion 11-D). The source then sends to each neighbor for

ancing (Fig. 2). _ _ whom it has a gradient an event description every second of the
In summary, interest propagation sets up state in the netwegkm

(or parts thereof) to facilitate “pulling down” data toward the
sink. The interest propagation rules doeal and bear some ype = wheeled vehicle // type of vehicle seen

resemblance to join propagation in some Internet multicagktance = truck // instance of this type
routing protocols [10]. One crucial difference is that joinocation = [125,220] // node location
propagation can leverage unicast routing tables to direct joigensity = 0.6 // signal amplitude measure
toward sources, whereas interest propagation cannot. confidence = 0.85 // confidence in the match

In this section, we have described interest propagation rut@sestamp = 01 : 20 : 40 // local event generation
for a particular type of task. More generally, a sensor networkime.
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Thisdatamessage is, in effect, unicast individually to the relunseen event. To reinforce this neighbor, the sink resends the
evant neighbors. (The exact mechanism used is a function of thiginal interest message but with a smaliaterval (higher
radio’s medium-access control (MAC) layer and can have a sigata rate), as follows:
nificant impact on performance, as evaluated in Section IV-D).

A node that receives a data message from its neighbdfae = wheeled vehicles

attempts to find a matching interest entry in its cache. Ti']réterval_ 1:001(;0815200 100

matching rule is as described in the previous paragraph. If F_’Tac?t t_ - _’01 "92 -’3’ ]

match exists, the data message is silently dropped. If a malestamp = 0122 35
expiresAt = 01 : 30 : 40.

exists, the node checks thiata cacheassociated with the
matching interest entry. This cache keeps track of recently seenyhen the neighboring node receives this interest, it notices
data items. It has several potential uses, one of which is logp it already has a gradient toward this neighbor. Furthermore,
prevention. If a received data message has a matching daigotices that the sender’s interest specifies a higher data rate
cache entry, the data message is silently dropped. Otherwiggin before. If this new data rate is also higher than that of
the received message is added to the data cache and the gig{aexisting gradient (intuitively, if the “outflow” from this
message is resent to the node’s neighbors. node has increased), the node must also reinforce at least one
By examining its data cache, a node can determine the dataghbor. The node uses its data cache for this purpose. Again,
rate of received eventsTo resend a received data message,tRe same local rule choices apply. For example, this node might
node needs to examine the matching interest entry’s gradigAbose that neighbor from whom it first received the latest
list. If all gradients have a data rate that is greater than or eqegknt matching the interest. Alternatively, it might choose all
to the rate of incoming events, the node may simply send the reeighbors from which new events were recently received. This
ceived data message to the appropriate neighbors. Howeveiimiplies that we reinforce that neighbor only if it is sending
some gradients have a lower data rate than others (caused bysgploratory events. Obviously, we do not need to reinforce
lectively reinforcing paths; see Section 1I-D), then the node maighbors that are already sending traffic at the higher data
downconverto the appropriate gradient. For example, considedite. This is the alternative we evaluate in Section IV. Through
a node that has been receiving data at 100 events per sectimd,sequence of local interactions, a path is established from
but one of its gradients (e.g., set up by a second sink originatisgurce to sink transmission for data.
an indistinct task with a largeinterval) is at 50 events per The local rule we described above, therlects an empiri-
second. In this case, the node may only transmit every alterneadly low-delay pathFig. 3(b) shows the path that can result
event toward the corresponding neighbor. Alternately, it mighthen the sink reinforces the path]. It is very reactive to changes
interpolate two successive events in an application-specific wimypath quality; whenever one path delivers an event faster than
(in our example, it might choose the sample with the higher coathers, the sink attempts to use this path to draw down high
fidence match). quality data. However, because it is triggered by receiving one
Loop prevention and downconversion illustrate the power 88w event, this could be wasteful of resources. More sophisti-
embedding application semantics in all nodes (Fig. 2). Althougiated local rules are possible (Fig. 2), including choosing that
this design is not pertinent to traditional networks, it is feasibReighbor from which the most events have been received, or that
with application-specific sensor networks. Indeed, as we shé®ighbor whichconsistentlysends events before other neigh-

in Section IV-D, it can significantly improve network perfor-bors. These choices trade off reactivity for increased stability.
mance. 2) Path Establishment for Multiple Sources and Sinks:

describing reinforcement so far, we may have appeared to im-

D. Reinforcement for Path Establishment and Truncation ~ Plicitly describe a single-source scenario. In fact, the rules we

. . ... have described work with multiple sources. To see this, con-
In the scheme we have described so far, the sink initial . o _— )
. ) sider Fig. 3(c). Assume initially that all initial gradients are ex-
and repeatedly diffuses an interest for a low-rate event notifi-

. . . loratory. According to this topology, data from both sources
cation. We call thesexploratoryevents, since they are intende teaches the sink via both of its neighb@sandD. If one of

for path setup and repair. We call the gradients set up for e neighbors, say; has consistently lower delay, our rules

ploratqry eventsexploratorygradlents. Once a source detects il only reinforce the path througl (this is depicted in the
matching target, it sends exploratory events, possibly along mul-

tiple paths, toward the sink. After the sink starts receiving theigure)' However, if the sink heal's events earlier vid, but

exploratory events, ieinforcesone particular neighbor in order " > events earlier viaC , the sink will attempt to draw down
b Y ' P 9 high-quality data streams froboth neighbors (not shown). In

to “draw down” realdata(i.e., events at a higher data rate that : . ) /
allow high quality tracking of targets). We call the gradients saé?ls case, the sink gets both sources’ data from both neighbors,

up for receiving high-quality tracking evendatagradients. a potential source of energy inefficiency. Such problem can be

1) Path Establishment Using Positive Reinforcement: avoided with some added complexity [16].

; . e ; Similarly, if two sinks express identical interests, our interest
general, this novel feature of directed diffusion is achieved . . ; .

. . ropagation, gradient establishment, and reinforcement rules
by data drivenlocal rules. One example of such a rule is t

reinforce any neighbor from which a node receives a previouslyNote that in directed diffusion, the sink would not be able to associate a
source with an event. Thus, the phrages‘events” is somewhat misleading.
4In our simulations in Section 1I-D, as a simplification, we include the dat#hat we really mean is that data generatedltlgat is distinguishable in content
rate in the event descriptions. from data generated 5.
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Fig. 4. Negative reinforcement for path truncation and loop removal. (a) Multiple paths. (b) Removable loop. (c) Unremovable loop.

work correctly. Without loss of generality, assume that sihk to being exploratory gradients. Another approach, one that we
in Fig. 3(d) has already reinforced a high-quality path to thevaluate in this paper, is to explicitly degrade the path through
source. Note, however, that other nodes continue to recelveby sending a negative reinforcement messaga tdn this
exploratory events. When a human operator tasks the netwoske-based diffusion, the negative reinforcement is the interest
at sinkX with an identical interesi can use the reinforcementwith the lower data rate. Whef receives this interest, it de-
rules to achieve the path shown. To determine the empiricaiyades its gradient toward the sink. Furthermdral] its gradi-
best pathX need not waifor data—rather, it can use its dataents are now exploratonA negatively reinforces those neigh-
cache to immediately draw down high-quality data towardors that have been sending data to it (as opposed to exploratory
itself. eventsy. This sequence of local interactions ensures that the
3) Local Repair for Failed Paths:So far, we have describedpath throughA is degraded rapidly, but at the cost of increased
situations in which reinforcement is triggered by a sink. Howresource utilization.
ever, in directed diffusiorintermediatenodes on a previously To complete our description of negative reinforcement, we
reinforced path can apply the reinforcement rules. This is usefided to specify what local rule a node uses in order to decide
to enablelocal repair of failed or degraded paths. Causes fowhether to negatively reinforce a neighbor or not. Note that this
failure or degradation include node energy depletion and emde is orthogonal to the choice of mechanism for negative rein-
vironmental factors affecting communication (e.g., obstaclesprcement. One plausible choice for such a rule is to negatively
Consider Fig. 3(e), in which the quality of the link between thgeinforce that neighbor from which no new events have been re-
source and node degrades and events are frequently corruptegkived (i.e., other neighbors have consistently sent events before
When C detects this degradation—either by noticing that thgis neighbor) within a window oV events or tim&". The local
event reporting rate from its upstream neighbor (the sourcekige we evaluate in Section IV is based on a time windoW pf
now lower, or by realizing that other neighbors have been trargrosen to be 2 s in our simulations. Such a rule is a bit conserva-
mitting previously unseen location estimates—it can apply thige and energy inefficient. For example, even if one eventin ten
reinforcement rules to discover the path shown in the figurgas received first from neighbdy, the sink will not negatively
Eventually,C negatively reinforces the direct link to the sourcgginforce that neighbor. Other variants include negatively rein-

(notshown in the figure). Our description so far has glossed o\gfcing that neighbor from which fewer new events have been
the fact that a straightforward application of reinforcement rulggceived.

will cause all nodes downstream of the lossy link to also initiate 5y | oop Removal Using Negative Reinforcemeint:addi-

reinforcement proc_e_dures. This will eventually lead tp the digpn to suppressing high-delay or lossy paths, our local rule for
covery of one empirically good path, but may result in wastéghgative reinforcement s also used for loop removal because the
resources. One way to avoid this is forto interpolate location looping paths never deliver events firgFig. 4(b)]. Although
estimate_s from t_he eyents th_at it rec_eives so that downstreﬂ{g looping message will be immediately suppressed using a
nodes still perceive high-quality tracking. message cache, in general, we would still benefit from trun-
4) Path Truncation Using Negative Reinforcemefihe al- .40 the looping paths for resource savings. However, such
gorlthm_desc_nbed in Section 11-D1 can r_esult In more t_han O,rfgop removal is not always appropriate, specifically for some
path belng reinforced. For exa"_‘p'e' in Fig. 4(a), if the smk r€lhared high-rate gradient maps with multiple sources and sinks.
forces neighboA, but then receives a new event from neighbgr |- example [Fig. 4(c)], if both sources send distinguishable

B, It V.V',l[l retllnfgr(;fz the path thdeQB'Gt Ifbthfe Z}a(’:h througii is d events, the gradield8—C andC-B should not be truncated be-
consistently better (".eB sends events beto oes), we nee cause each of them is necessary for delivering events for a par-
a mechanism toegatively reinforcéhe path througl.

One mechanism for negative reinforcement is soft state, i.e.7This local rule works even if the path throughand the path through are

to time out all data gradients in the network unless they are aoartially joint. The joint links will not be negatively reinforced unless both paths
plicitly reinforced. With this approach, the sink would periodi2" "egatvely reinforced. _ ,

. . . . . Given that only neighbors that sent the exploratory event first are reinforced,
Ca”y.re'nforce neighbaB and cease reinforcing neighbarAll one may expect that the looping paths would never be reinforced (particularly for
gradients along the path throughwould eventually degrade single-source-single-sink scenarios). However, the reinforced paths in a given

round of exploratory events may differ from those in the previous rounds. Al-
6This path may or may not be completely disjoint from the path througihough no looping path is reinforced, a union of reinforced paths from multiple
neighborA. rounds may contain loops.
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ticular source—sink pair. Although such gradients may deliveyr made to find one loop-free path between source and sink
some looping events, they also consistently deliver new everlisfore data transmission commences. Instead, constrained or
With our conservative rule for negative reinforcement, thosirectional flooding is used to set up a multiplicity of paths and
gradients will not be negatively reinforced. data messages airgtially sent redundantly along these paths.
Furthermore, even without loops, it is still reasonable to keégecond, soon thereafter, reinforcement attempts to reduce this
our negative reinforcement rule conservative so that useful pathsltiplicity of paths to a small number, based on empirically
will not be truncated. For example [Fig. 3(c)], both sources ma&pserved path performance. Finally, a message cache is used
consistently send distinguishable events but they may also sé&xdoerform loop avoidance. The interest and gradient setup
identical events once in a while. Although originating from difmechanisms themselves do not guarantee loop-free paths
ferent sources, the identical events are considered duplicated¥@fiween source and sink.
diffusion® The path from one of the sources will be truncated Why this peculiar choice of design? At the outset of this re-
if the negative reinforcement rule is too aggressive against di@arch, we consciously chose to explore path setup algorithms

plicates. Conversely, given our conservative rule, no source wiit establish network paths using strickyal (neighbor-to-
be negatively reinforced. neighbor) communication. The intuition behind this choice is

the observation that physical systems (e.g., ant colonies [5]) that
build up transmission paths using such communication scale

. . , . e well and are extraordinarily robust (see also Section VI). How-
In introducing the various elements of directed diffusion, Wge\. sing strictly local communication implies that path setup

also implicitly described a particularsage—interests set Up cannot use globabpologymetrics; local communication im-
gradients drawing down data. The directed-diffusion paradigifie that, as far as a node knows, the data that it received from a
itself does not limit thg designer to this partu_:ular usage. Othﬁéighborcamefrom that neighbi®iThis can be energy efficient
usages are alsq possible, such as the one n W,h',Ch nodgs Wghly dynamic networks when changes in topology need not
propagate data in the absence of interests, implicitly setting Y onagated across the network. Of course, the resulting com-
gradients when doing so. This is useful, for example, t0 SPOR; ication paths may be suboptimal. However, the energy in-
taneously propagate an important event to some section of iiigeio\cy due to path suboptimality can be countered by care-
sensor field. A sensor node can use this to warn other SeN&Af designed in-network aggregation techniques. Overall, we

nodes of impendin_g ac_tivity. Moreover, qther d(_asign choices fBEIieve that this approach trades off some energy efficiency for
each element of diffusion are also possible (Fig. 2). increased robustness and scale.

Our description points out several key features of diffusion iy it might appear that the particular instantiation that
and how it differs from traditional networking. First, dn‘fusmnWe chose, location tracking, has limited applicability. We be-
is data-kcentrlc; all communication in a d|ff3$|((j)n-based Segsﬁ)éte, however, that such location tracking captures many of the
networ Uses mtere_sts _to s_pemfy name ?ta- Secon_,é’g ential features of a large class of remote surveillance sensor
communication in dlfoS.IOI’]. IS _nelghk_)pr-to-nelghbor, unIIk?1etworks. We emphasize that, even though we have discussed
tr:ﬁ end-tcc)j-end commgmpaﬂor: mdt,fa_\dmonal data rtlewvlc:rlrs-tgbr tracking network in some detail, much experimentation and
otherwords, every node Is an ‘end-in a sensor hework. in %@aluation of the various mechanisms is necessary before we

sense, there are no “routers” in a sensor network. Each se understand the robustness, scale, and performance impli-

nﬁd_e can m:i_r p(;e:) dfﬁa tani 'Sntg(r:.ef.sct.tmgfsig]esz'r -;Z'ts :rek%' ions of diffusion in general and some of our mechanisms in
choice is justiied by the task Specilicity of netw articular. The next two sections take initial steps in this direc-
Sensor networks are not general-purpose communication ret-

works. Third, sensor nodes do not need to have globally unique ~
identifiers or globally unique addresses. Nodes, however, do
need to distinguish among neighbors. Finally, in an IP-based
sensor network, for example, sensor data collection andin this section, we present an analytic evaluation of the
processing might be performed by a collection of specializethta-delivery cost for directed diffusion and two idealized
servers which may, in general, be far removed from the senssghemes:omniscient multicastand flooding This analysis
phenomena. In our sensor network, because every node sarves to sanity check the intuition behind directed diffusion
cache, aggregate, and more generally, process messages,ahdshighlights some of the differences between diffusion and
generally desirable to perform coordinated sensing close to the other approaches.
sensed phenomena. Diffusion is clearly related to traditionalFor analytic tractability, we analyze these three schemes in
network data-routing algorithms. In some sense, ithsegtive a very simple idealized setting. We assume a square grid con-
routing technique, since “routes” are established on demasikting of N nodes. In this grid, node transmission ranges are
However, it differs from othemd hocreactive routing tech- such that each node can communicate with exactly eight neigh-
niques in several ways (see also Section VI). First, no atteniiring nodes on the grid. Fig. 5 shows links between pairs of
nodes that can communicate with each othernAdlources are

9In diffusion, events are independgnt from their sources (i.e.,_a node_ wo faced along nodes on the left edge of the grid, whereas all
not be able to associate a source with an event). The current instantiatior of . - .
diffusion maintains only the high-rate paths along which useful (new) data a%nks are pIaced along the ”ght edge' The first source is at the
consistently sent, regardless of the sources. Thus, generally, we do not guarantee
that there will be at least one high-rate path from every source to every sink (e.g1%The location information in a data message might reveal otherwise, but that
when some of the sources are not generating useful data). information still does not contain topology metrics.

E. Discussion

I1l. ANALYTIC EVALUATION
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intuition for how the choice of in-network processing mecha-
nism effects performance.

For omniscient multicast, the data-delivery costis determined
by twice the number of links on its source-specific shortest
path trees. However, even in this simple grid topology, there
are several shortest paths for each source—sink pair. We choose
the shortest path using the following simple deterministic rule.
From a sink to a source, a diagonal link is always the next hop

cource 4 C) v) —

Source 2 {J\ . Y

\: v - ‘ ‘
g4 =1hop | ‘ PaN |
i)

{ L)
Source 1 “n A

|
Source 3Q;)I”\ ) 4 as long as it leads to a shortest path. Otherwise, a horizontal
N link is selected. This path-selection rule is repeated until the
sowree P source is reached. Thus, no shortest path includes vertical links.

For example, if we denote a shortest path tree rooted at source
j by 1}, then the number of links offi; has two components:
Fig. 5. Example of square-grid topology. the number of horizontal links (N — 1) and diagonal links
(dm|m/2](|m/2] + 1) = dpm|m/2]((m — 1)mod 2)). Other
center of the left border. Thigh source isl,, |i/2] hops above (if choices could result in a different cost, since the number of
i is even) or below (if is odd) the first source. This placementhared links on the tree could be different.
scheme is also used for sinks except that the distance betweenhe cost of omniscient multicast, is the sum of the costs
two adjacent sinks id,,, hops rather thad,, hops. Given that of , trees, one rooted at each source. If we denot€ (#; ) the
sources and sinks are vertically placed oRfyy cannot be less cost to transmit an event from sourgt turns out that we can
thanmax(ndy,, mdm, ). express this cost in terms @ asC/(1}) = C(11) + C(Tj —
) Ty) — C(Ty — T;). C(T; — Ty) is interpreted as the cost of
A. Flooding transmission and reception along the tree formed by removing,
In thefloodingscheme, sources flood all events to every nodeom 7, those links that are common1 andT3,. Furthermore,
in the network. Flooding is a watermark for directed diffusiorfor ease of expositior;/(7;) can be expressed as the sum of two
if the latter does not perform better than flooding does, it cannatsts: the cost of transmission and reception along the horizontal
be considered viable for sensor networks. links H(T;) and the analogous cost along the diagonal links
In this analytic evaluation, our measure of performance is tH&(7;).
total cost of transmission and reception of one event from eachNe can then write’, as
source to all the sinks. We define cost as one unit for message ,,

transmission and one unit for message reception. These assump-=- Z{D (Ty)+H (Tj)+ D (T; = Ty) = D (Tl — Tj> }
)

“—————— Gquare root of N = 5 nodes _—

tions are clearly idealized in two ways. Transmission and recep- ;=
tion costs may not be identical and there might be other metrics
of interest. We consider more realistic measures with simulatieere

in Section IV. j
By this measure, the cost of flooding, denoted b¥ (7;) = 2{\/N— 1- QEJ dn
C¢(N,n,m, d,,d,,), or simplyCy, is given by

A (HESH T I)

Cy =nN + 2n (2(\/N— VN +2(VN — 1)2) 2| dp |’ 2 "
®)

=nN + 4n(V'N — 1)(2V'N —1). (1) m+ (j mod2)7 | j

The transmission cost for flooding events (one event from (T; v { { 2 -‘ {ZJ

each source) ia N because each node sends only one MAC min(| [j/2]dn /dm |,|m—(; MOd2)/2])

broadcast per event. Conversely, each node can receive the same_. <dn {_J — ldm> }

event from all neighbors. Thus, the reception cost for those =1 2

events is determined byn2times the number of links in the 4)

network ¢n(v/N — 1)(2v/N — 1)). The data-delivery cost for lm—(j mod2),2

flooding isO(nAV), which is asymptotically higher than the costy, (T, = T;) = 2{ Z min (dn VJ .ldm> }
of other schemes (see Sections I1I-B and I1I-C). ! — 2]

e . )
B. Omniscient Multicast

In the omniscient multicasscheme, each source transmits Asymptotically, the data-delivery cost of omniscient multi-
its events along a shortest path multicast tree to all sinks. 4AStCo is O(nv/'N) form < v/N.
our analysis, as well as in the simulations described in Sec- o
tion IV, we do notaccount for the cost of tree constructionC- Directed Diffusion
Omniscient multicast instead indicates the best possible perforThe analysis of diffusion proceeds along the same lines as that
mance achievable in an IP-based sensor network without cofi-omniscient multicast. To simplify the analysis, we assume

sidering overhead. We use this scheme to give the reader sdha the tree that diffusion’s localized algorithms construct is



10 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 11, NO. 1, FEBRUARY 2003

the “union” of the shortest path tree rooted at each source. TRisction Ill. This section describes our methodology, compares
assumption is approximately valid when the network operatdge performance of diffusion against some idealized schemes,
at low-load levels. Furthermore, of the many available shorteben considers impact of network dynamics on simulation.
paths, diffusion chooses one according to the following rule:
from a sink to a source, a diagonal link is always the next hgp Goals, Metrics, and Methodology
as long as it is along the shortest path to a source; otherwise,a . ] ) ]
horizontal link is selected. This rule is the same one we used foMVeé implemented our vehicle tracking instance of di-
omniscient multicast. rected diffusion in thens-2 [2] simulator (the currentins
Despite using the same path-selection scheme, the cost of ff€ase with diffusion support can be downloaded from
fusion C; differs from that of omniscient multicast, primarily "ttP://www.isi.edu/nsnam/ns). Our goals in conducting this
because of application-level data processing. Specifically, if &yaluation study were fourfold: 1) verify and complement our

sources send identical target location estimates, then, given @pglytic evaluation; 2) understand the impact of dynamics—

diffusion can perform application-level duplicate suppressioﬁ}mh as node failures—on diffusion; 3) explore. the influence
the data-delivery cost of diffusion is twice the number of link@! the radio MAC layer on diffusion performance; and 4) study

in the union of all shortest path trees rooted at the source. Her’(i) %Z?;;'g;’e'té of directed-diffusion performance to the choice

Cq=C(UT1-») We choose three metrics to analyze the performance of di-
=C(Th) rected diffusion and to compare it to other schemes: average dis-
" sipated energy, average delay, and distinct-event delivery ratio.
+ Z{H (Tj _ UTH(FD) +D (Tj _ UT1H(]'1))} Average dissipated energymeasures the ratio of total dissi-
= pated energyer nodein the network to the number alistinct
(6) events seen by sinks. This metric computes the average work
done by a node in delivering useful tracking information to the

where sinks. The metric also indicates the overall lifetime of sensor
nodes.Average delaymeasures the average one-way latency
H(T;=UT1—(j—)) = H () () observed between transmitting an event and receiving it at each
_ m + (j mod?2) sink. This metric defines the temporal accuracy of the location
D(Tj-UTy_ 1)) =29 | ——| dn . , ;
2 estimates delivered by the sensor netwd@lstinct-event de-
min(|13/2]dn /du ], lm—(; MOC2)/2)) _ livery ratio is the ratio of the number of distinct events received
. J to the number originally sent. A similar metric was used in ear-
+ min|d,,d, | = | —Ild., |p. .. .
lier work to compared hocrouting schemes [4]. We study these

=1 . . .
@8) metrics as a function of sensor network size.

In order to study the performance of diffusion as a function of

SimilartoC,, C, is O(n\/ﬁ) form < V/N. network size, we generate a variety of sensor fields of different
sizes. In each of our experiments, we study five different sensor
D. Comparison fields, ranging from 50 to 250 nodes in increments of 50 nodes.

The data-delivery cost of flooding’; is several orders Our 50-node sensor field generated by randomly placing the
of magnitude higher than that of omniscient multicagt. nodes in a 166 160 m square. Each node has a radio range
However, C, is still higher than the diffusion cost, of 40 m. Other sizes are generated by scaling the square and

becauseD(T1) — D(Ty — T;) > 0 and D(Tj — T) > keeping the radio range constant in order to approxim&esbp

D(Tj — UTy_(;_yy)- To validate this reasoning, the data-dethe averagelensity of sensor nodes constaf do this because

livery cost (normalized by network size) for directed diffusioftn€ macroscopic connectivity of a sensor field is a function of the

and omniscient multicast is plotted using various parameté’r%erage density. If we had kept the sensor field area constant but
increased network size, we might have observed performance

(i.e.,N, m, andn). As the number of sources and sinks in-
creases [Fig. 6(a) and (b)], the cost saving due to in-netwo?ﬁeds not only due to the larger number of nodes but also due to

processing (e.g., duplicate suppression) of diffusion becoM%Ereased connecélvnr):. Qur meth?dologyljagtorslout the latter,
more evident (given that'; increases at a lower rate théaf). allowing us to study the impact of network size alone on some

Of particular interest is the plot of cost versus network siz%f our mech_amsms._
[Fig. 6(c)]. Since diffusion can suppress application-level dupli- The_ns—25|_mulator 'mp'em‘?’_‘ts 1.6 Mb/s802.11 MAC layer.
cates, one would expect th@} is merelynC;. The main reason Our 5|mul_at|_ons use a modified 802.11 M.AC layer. To more
this does not hold is that our analysis somewhat conservativ | sely mimic realistic sensor network rao!los [.21]' we altergd
estimates diffusion costs. In practice, diffusion would have ne i_sarlist;irv?/gfaebnoetj?)?%mg\j/\?l jﬁﬁg;ﬂ;‘t f(r)]((;olglfei;gr?:cgslvgep:oc\j/:zr
atively reinforced several of the links that our analysis include issipation (395 mW) and about 5% of its transmit power dis-
sipation (660 mW). This MAC layer is not completely satisfac-
tory, since energy efficiency provides a compelling reasons for

In this section, we use packet-level simulation to explore, Belecting a time-division multiple-access (TDMA)-style MAC
some detail, the implications of some of our design choice®r sensor networks rather than one using contention-based pro-

Such an examination complements and extends our analysisombls [28]. Briefly, these reasons have to do with energy con-

IV. SIMULATION
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Fig. 6. Impact of various parameters on directed diffusion and omniscient multicast. (a) Impact of the number of sinks. (b) Impact of the numbes.of sour
(c) Impact of network size.

. . Data Delivery Cost .
(per distinct data unit and network size)
T
s

sumed by the radio during idle intervals; with a TDMA-styleB. Comparative Evaluation
MAGC, it is possible to put the radio in standby mode during o first experiment compares diffusion to omniscient mul-

such intervals. By contrast, an 802.11 radio consumes as MyeBt and the flooding scheme for data dissemination in net-
power when itis idle as Whgn it receives transmissions. In S_%Orks. Fig. 7(a) shows the average dissipated energy per packet
tion IV-D, we analyze the impact of a MAC energy model inys g function of network size. Omniscient multicast dissipates
wh|c_h_l|sten|ng for transmissions dissipates as much energy fgiile less than half as much energy per packet per node than
receving t_hem. _ _ ) flooding. It achieves such energy efficiency by delivering events
Finally, in most of our simulations, we use a fixed worka|ong a single path from each source to every sink. Directed dif-
load which consists of five sources and five sinks. All sourcegsion has noticeably better energy efficiency than omniscient
are randomly selected from nodes in ax7@0 m square at the my|ticast. For some sensor fields, its dissipated energy is only
bottom left corner of the sensor field. Sinks are uniformly scaggos that of omniscient multicast. As with omniscient multi-
tered across the sensor field. Each source generates two evgaés, it also achieves significant energy savings by reducing the
per second. The rate for exploratory events was chosen tofignber of paths over which redundant data is delivered. In ad-
one eventin 50 s. Events were modeled as 64-byte packets giién, diffusion benefits significantly fronm-network aggre-
interests as 36-byte packets. Interests were periodically gengition In our experiments, the sources deliver identical loca-
ated every 5 s and the interest duration was 15 s. We chosetibg estimates and intermediate nogeppressiuplicate loca-
window for negative reinforcement to be 2 s. These parametiin estimates. This corresponds to the situation where there is,
choices were informed both by the particular sensor netwofds example, a single vehicle in the specified region.
under consideration (small event descriptions, sources within avhy then, given that there are five sources, is diffusion
geographic region) and by our desire to explore a regime of tfith negative reinforcement) not nearly five times more en-
sensor network in a noncongested regime (to simplify our usrgy efficient than omniscient multicast? First, both schemes
derstanding of the results). Data points in each graph represexjjend comparable—and nonnegligible—energy listening
the mean of ten scenarios with 95% confidence intervals.  for transmissions. Second, our choice of reinforcement and
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0.018

i nearly one (nhot shown), since this experiment ignored network
oote | 1 dynamics and was congestion free.

0.014 -

C. Impact of Dynamics

0012 - : 1 To study the impact of dynamics on directed diffusion, we
oot L | simulated node failures as follows. For each sensor field, we re-
. ) peatedly turned off a fixed fraction (10% or 20%) of nodes for
0008 - ‘3\6\6\6—8 1 30 s. These nodes were uniformly chosen from the sensor field,
0006 - j : : ] with the additional constraint that an equal fraction of nodes on
s the sources to sinks shortest path trees was also turned off for
o004 ] the same duration. The intent was to create node failures in the
oifusion —m— 1 paths diffusion is most likely to use and to create random fail-
. . . o s 5 ures elsewhere in the network. Furthermore, unlike the previous
0 50 100 150 200 250 a0 experiment, each source sends different location estimates (cor-
Network Size responding to the situation in which each source “sees” different
@ vehicles). We did this because the impact of dynamics is less
o 1 evident when diffusion suppresses identical location estimates
Omniscient fhultcast —5— E from other sources. We could also have studied the impact of
; 1 dynamics on other protocols, but, because omniscient multicast
is an idealized scheme that does not factor in the cost of route
recomputation, it is not entirely clear that such a comparison is
meaningful.

Our dynamics experiment imposes fairly adverse conditions
for a data-dissemination protocol. At any instant, 10% or 20% of
the nodes in the network are unusable. Furthermore, we do not
permit any “settling time” between node failures. Even so, dif-
fusion is able to maintain reasonable, if not stellar, event delivery
005 b il [Fig. 8(c)]whileincurring less than 20% additional average delay

2 8 [Fig. 8(b)]. Moreover, the average dissipated energy actiraly
f . s . s provesin some cases, in the presence of node failures. Thisis a
° % oy e ° 20 *®  pit counterintuitive, since one would expect that directed diffu-
() sion would expend energy to find alternative paths. As it turns
Fig. 7. Directed diffusion compared to flooding and omniscient muIticas?.m’ however, our neg?‘tlve remforcemem rU|eS.are conservative
(a) Average dissipated energy. (b) Average delay. énoughthat several reinforced paths (high-quality paths) are kept
alive in normal operation. Thus, at the levels of dynamics we sim-

negative reinforcement results in directed diffusion fre uentPIate’ diffusion does notneed to do extrawork. The lower energy
9 9 Issipation results from the failure of some high-quality paths.

drawmg_ down high-quality da_ta along mul_tlple paths, thereby We take these results to indicate that the mechanisms in dif-
expending more energy. Specifically, our reinforcement rule that . . .
reinforces a neighbor who sends a breviously unseen evenitaon are relatively stable at the levels of dynamics we have

1€1g prev y %xplored. By this, we mean that diffusion does not, under dy-
very aggressive. Conversely, our negative reinforcement rulg,; =~ = : Lo

; . . . . damics, incur remarkably higher energy dissipation or event de-
which negatively reinforces neighbors who only con&stentx/

- ; : . ery delays.
send duplicate (i.e., previously seen) events, is very conservative.

Fig. 7(b) plots the average delay observed as a function§f |mpact of Data Aggregation and Negative Reinforcement
network size. Directed diffusion has a delay comparable to om- lain wh i ) iHfusion’ ‘
niscient multicast. This is encouraging. To a first approximation, 1° €xPlain what contributes to directed diffusion’s energy ef-
in an uncongested sensor network and in the absence of obstf{f#€ncy, we now describe two separate experiments. In both
tions, the shortest path is also the lowest delay path. Thus, ourdgthese experiments, we do not simulate node failures. First,
inforcement rules seem to be finding the low-delay paths. HoW compute the energy efficiency of diffusion with and without
ever, the delay experienced by flooding is almost an order ggregation. Recall from Section IV-B that in our simulations,
magnitude higher than other schemes. This is an artifact of #{§ implement a simple aggregation strategy, in which a node
MAC layer: to avoid broadcast collisions, a randomly choseft/Ppresses identical data sent by different sources. As Fig. 9(b)
delay is imposed on all MAC broadcasts. Flooding uses MAghows, diffusion expends nearly five times as much energy, in
broadcasts exclusively. Diffusion only uses such broadcastsstgaller sensor fields, as when it can suppress duplicates. In
propagate the initial interests. On a sensor radio that employtgeger sensor fields, the ratio is 3. Our conservative negative re-
TDMA MAC-layer, we might expect flooding to exhibit a delayinforcement rule accounts for the difference in the performance
comparable to the other schemes. of diffusion without suppression as a function of network size.

In summary, directed diffusion exhibits better energy dissiith the same number of sources and sinks, the larger network
pation than omniscient multicast and has good latency propbas longer alternate paths. These alternate paths are truncated by

ties. Finally, all three schemes incurred an event delivery ratiomégative reinforcement because they consistently deliver events
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Fig. 8. Impact of node failures on directed diffusion. (a) Average dissipated energy. (b) Average delay. (c) Event delivery ratio.

with higher latency. As a result, the larger network expends lelSs Sensitivity Analysis
energy without suppression. We believe that suppression alsg1y we evaluate the sensitivity of our comparisons (Sec-

exhibits the same behavior, but the energy difference is relg;, IV-B) to our choice of energy model. Sensitivity of diffu-

tively small. , , __ sion to other factors (numbers of sinks, size of source region) is
The second mechanism whose benefits we quantify is negas. ,ssed in greater detail in [18].

tive reinforcement. This mechanism prunes off higher latency |, 5r comparisons, we selected radio power dissipation pa-

paths_and can contribgte significantly to energy savings. In higyaters to more closely mimic realistic sensor radios [21]. We
experiment, we selectively turn off negative reinforcement and, 5, the comparisons of Section IV-B, but with power dissi-
compare the performance of directed diffusion with and Withob%\tion comparable to the AT&T Wavelan: 1.6-W transmission
reinforcement. Intuitively, one would expect negative reinforce-5_\y reception, and 1.15-W idle [30]. In this case, as Fig. 9(c’)
ment to contribute significantly to energy savings. Indeed, @5, the distinction between the schemes disappears. In this
Fig. 9(a) shows_, diffusion without negative remfort_:eme_nt e>fégime, we are better off flooding all events. This is because
pends nearly twice as much energy as when negative reinforgga time energy utilization completely dominates the perfor-

mentis employed. This suggests that even our conservative NgGince of all schemes. This is the reason why sensor radios try
ative reinforcement rules prune off paths which deliver consi§éry hard to minimize listening for transmissions.

tently higher latency.

In the absence of negative reinforcement or suppression, dif-
fusion delay increases by factors of three to eight (the graphs
are not included for lack of space). This is an artifact of the We have so far described directed diffusion using a specific
802.11 MAC layer. In diffusion, data traffic is transmitted usingpplication as an example. However, it is desirable to avoid
MAC unicast. As more paths are used (in the absence of negatiggnplementing diffusion mechanisms for every new appli-
reinforcement), or more copies of data are sent (without sugation. To this end, we have implemented a generic diffusion
pression), MAC-layer channel contention increases, resultingsnbstrate and ported this code to multiple platforms including
backoffs and subsequent delays. WINSNng 2.0 nodes, USC/ISI PC/104 nodes, Motes, and as

V. IMPLEMENTATION
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Fig. 9. Impact of various factors on directed diffusion. (a) Negative reinforcement. (b) Duplicate suppression. (c) High idle radio power.

a module in thens-2 simulator (the diffusion code can be In diffusion, data is named using a collection of attribute-
downloaded from http://www.isi.edu/scadds/testbeds.htmalue pairs. A key feature of the network routing API is that it
On top of this substrate, several applications (e.g., collabordefines a generic attribute class. Each attribute has several fields,
tive detection, nested query, adaptive fidelity) are developes follows:

in collaboration with researchers at BAE Systems, Cornell « thekey which indicates the semantics of the attribute (lat-
University, and Pennsylvania State University. Details of our itude, longitude, frequency);

platforms, applications, experiences, and how the attribute « the operator which describes how the attribute will

system affects applications are available elsewhere [14]. match when two attributes are compared [operators
Our generic diffusion substrate exports two application pro- include equality, other simple comparisons (inequality,
gramming interfaces (APIs) [6]: aetwork routingAPI and a less than, greater than, etc.) and “attribute present”
filter API. The former is invoked on sources and sinks, while  (equals-anything)];
the latter enables in-network processing of events. » the type which indicates what algorithms to run when
matching attributes [we have currently implemented
A. Network API 32-bit integer, 32- and 64-bit floats, string, and blob

The network routing AP! is based on a publish/subscribe par- ~ (Uninterpreted) attributesy; _ _
adigm and was developed with D. Coffin and D. van Hook of * thevalueof the attribute (its data) and ilsngth(if length
Lincoln Laboratories, Massachusetts Institute of Technology. IS Notimplicit from the type). o
The interface supports two operations. Sinks sabscribeto This approach has the advantage of standardizing the syntax
named events and sources gaiblishevents. The diffusion sub- and structure of attributes and allowing applications to reuse
strate hides the details of how published data is delivered @ribute handling and matching code.
subscribers, namely, the routing algorithms we have described _.
in Section Il. Events are sent and arrive asynchronously. When Filter API
events arrive at a node, they trigger callbacks to relevant appli-While the publish/subscribe API allows end-points to send
cations (those that have subscribed with matching attributes)and receive data, in-network processing with the filter APl is key
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to diffusion performance. Application-specificodulescan in- and negative reinforcements are similar to joins and prunes in
stallfiltersin the diffusion substrate to influence data as it moveshared-tree construction [10]. The initial interest dissemination
through the network. Each filter is specified using a list of aknd gradient setup is similar to data-driven shortest path tree
tributes to match incoming data. When a data event that matcketup [9]. The difference, of course, is that where Internet
a filter is received, the substrate passes the event to the applma&tocols rely on underlying unicast routing to aid tree setup,
tion module. The module may perform some application-spdiffusion cannot. Diffusion can, however, do in-network
cific processing on the event; it may aggregate the data, genegiecessing of data (caching and aggregation) unlike existing
reinforcements, or even issue new subscriptions using the natilticast routing schemes.
work routing API. In case the event matches filters belonging to Finally, interest dissemination, data propagation, and caching
more than one application module, a static priority ordering di directed diffusion are all similar to some of the ideas used
termines which module is handed the event first. That module adaptive Web caching [35]. In these schemes, caches self-
may then decide to also allow other application modules carrganize into a hierarchy of cooperative caches through which
responding to lower priority filters to handle the event, or magequests for pages are effectiveliffused
choose not to do so.

VII. CONCLUSION

V1. RELATED WORK In this paper, we described the directed-diffusion paradigm

Distributed sensor networks have begun to receive attentiiori designing distributed sensing algorithms. There are several
during the last few years. However, our work has been informé&$sons we can draw from our preliminary evaluation of diffu-
and influenced by a variety of other research efforts, which vi&on. First, directed diffusion has the potential for significant
now describe. energy efficiency. Even with relatively unoptimized path se-

Distributed sensor networks are a specific instance of ubiqdﬁ.ction, it outperforms an idealized traditional data dissemina-
tous computing as envisioned by Weiser [33]. Early ubiquitod@n scheme like omniscient multicast. Second, diffusion mech-
computing efforts, however, did not approach the issues of scalisms are stable under the range of network dynamics consid-
able node coordination, focusing more on issues in the desRji¢d in this paper. Finally, for directed diffusion to achieve its
and packaging of small, wireless devices. More recent effortdll potential, careful attention has to be paid to the design of

such as WINS [28] and Piconet [3] considered networking af§nsor radio MAC layers.

communication issues for small wireless devices. The WINS
project made significant progress in identifying feasible radio
designs for low-power environmental sensing. Their project hag/1]
focused also on low-level network synchronization necessary
for network self-assembly. Our directed-diffusion primitives
provide inter-node communication once network self-assembly(2]
is complete. The Piconet project is more focused on enabling
home and office information discovery. Their work relies on
centralized infrastructures rather than self-assembly networks.

In addition, recent efforts, including SPIN [24] and LEACH
[15], have pointed out some of the advantages of diffusion-like
application-specificity in the context of sensor networks. Partic- [4]
ularly, SPIN showed how embedding application semantics in
flooding can help achieve energy efficiency. LEACH and diffu-
sion explore some of these same ideas in the context of more sqgs)
phisticated distributed sensing algorithms. Specifically, LEACH
can achieve energy savings by processing application-level dat
atits cluster heads, whereas diffusion can process such data any-
where in the network.

Some of the inspiration for directed diffusion comes from bi-
ological metaphors, such as reaction-diffusion models for mor-
phogenesis [31] and models of ant-colony behavior [5].

Directed diffusion borrows heavily from the literature ad
hoc unicast routing. Specifically, it is a close kin of the class
of several reactive routing protocols proposed in the literature
[20], [26], [27]. Of these, it is possibly closest to [26] in its [
attempt to localize repair of node failures and its deemphasigg;
of optimal routes. The differences betwegsh hocrouting and
directed diffusion were discussed in Section II-E.

Directed diffusion is influenced by the design of multicast
routing protocols. In particular, propagation of reinforcements

(3]

(8]

(11]
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