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I. INTRODUCTION

Network management is the process of managing, mon-
itoring, and controlling the behaviour of a network.
Wireless sensor networks (WSNs) pose unique challenges
for network management that make traditional network
management techniques impractical. In traditional net-
works the primary goals are minimizing response time
and providing comprehensive information, but in sensor
networks the primary goal is minimizing energy use [1]
and the main means for doing this is by reducing the
amount of communication between nodes. Optimizing
the operational and functional properties of WSNs may
require a unique solution for each application problem [2].
WSNs are highly dynamic and prone to faults, mainly
because of energy shortages, connectivity interruptions,
and environmental obstacles. Network failures are com-
mon events rather than exceptional ones [3]. Thus, in
WSNs, we are mainly concerned with monitoring and
controlling node communication in order to optimize the
efficiency of the network, ensure the network operates
properly, maintain the performance of the network, and
control large numbers of nodes without human interven-
tion.

A network management system designed for WSNs
should provide a set of management functions that inte-
grate configuration, operation, administration, security,
and maintenance of all elements and services of a sensor
network. We focus on applications that provide man-
agement schemes in terms of monitoring and controlling
WSNs. Security management is beyond the scope of this
chapter.

The main task of WSN monitoring is to collect in-
formation about the following parameters: node states
(e.g., battery level and communication power), network
topology, wireless bandwidth, link state, and the cover-
age and exposure bounds of WSNs. A sensor network
management system can perform a variety of manage-
ment control tasks based on the collected network states
such as controlling sampling frequency, switching node
on/off (power management), controlling wireless band-
width usage (traffic management), and performing net-
work reconfiguration in order to recover from node and
communication faults (fault management).

Monitoring individual nodes in a large sensor network
may be impractical. It is sufficient to control the network
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by ensuring specific network coverage. Furthermore, sen-
sor nodes are typically deployed in remote or harsh condi-
tions and the configuration of nodes in WSNs changes dy-
namically. Thus, a sensor network management system
should allow the network to self-forming, self-organise,
and ideally to self-configure in the event of failures with-
out prior knowledge of the network topology. Despite the
importance of sensor network management, there is no
existing generalized solution for WSN management [4].
However, most sensor network applications are designed
with network management in mind and thus no extra
network management layer is required. Readers famil-
iar with wireless sensor networks may proceed to Section
I B.

A. Wireless Sensor Networks

Wireless sensor networks are emerging applications
of pervasive computing, consisting of many small, low-
power, and intelligent sensor nodes (or motes) and one
or more base stations. Sensor nodes gather information
in diverse settings including natural ecosystems, battle-
fields, and man made environments [5–8] and send the
information to one or more base stations. Sensor nodes
work under severe resource constraints such as limited
battery power, computing power, memory, wireless band-
width, and communication capability, while the base sta-
tion has more computational, energy and communication
resources. The base station acts as a gateway between
sensor nodes and the end user.

Sensor network applications use a data-centric ap-
proach that views a network as a distributed system
consisting of many autonomously cooperating sensor
nodes [9], any of which may have a role in routing, data
gathering, or data processing. Every node will commu-
nicate through other nodes in a sensor network to pro-
duce information-rich results (e.g., temperature and soil-
moisture in a certain region of the network). Further-
more, intermediate nodes can perform data aggregation
and caching that is useful to reduce communication over-
heads [10, 11]. Sensor network applications can be cate-
gorized according to its operational paradigm: data gath-
ering and event-driven. The data gathering application
requires sensor nodes to periodically report their data to
the base station. In the event-driven application, nodes
only send data when an event of interest occurs.

B. Management Functionality

The function of network management systems is to
monitor and control a network. These activities are wide
ranging, and in this section we classify existing sensor
network management systems in terms of the functional-
ity they provide.

Systems for sensor networks that are based on tra-
ditional network management systems include

BOSS [12] and MANNA [4]. BOSS serves as a mediator
between UpnP networks and sensor nodes. MANNA pro-
vides a general framework for policy-based management
of sensor networks. sNMP [13] provides network topol-
ogy extraction algorithms for retrieving network state.

Other researchers have designed novel routing Proto-
cols for network management. For example, TopDisc [3]
and STREAM [14] are used in sNMP for extracting net-
work topology, RRP [15] uses a zone-flooding protocol,
SNMS [16] introduces the Drip protocol, and WinMS [17]
is based on the FlexiMAC protocol.

Fault detection is an important focus of the systems
TP [18], Sympathy [19], MANNA [20], and WinMS [17].
In TP, each node monitors its own health and its neigh-
bours’ health, so providing local fault detection. Sym-
pathy goes one step further by providing a debugging
technique to detect and localize faults that may occur
from interactions between multiple nodes. MANNA per-
forms centralised fault detection based on analysis of
gathered WSN data. In WinMS, there is a scheduled
period where nodes listen to their environment activities
and can self-configure themselves in the event of failure
without prior knowledge of the full network topology. In
addition, WinMS provides a centralised fault manage-
ment scheme that analyses network states to detect and
to predict potential failures and takes corrective and pre-
ventive actions accordingly. TP, Sympathy, and MANNA
focus solely on fault detection and debugging, they pro-
vide no automatic network reconfiguration to allow the
network to recover from faults and failures. WinMS dif-
fers from the rest as it adaptively adjusts the network by
providing local and central recovery mechanisms.

TinyDB [21] and MOTE-VIEW [22] are visualisation
tools that provide graphical representations of network
states to the end user. TinyDB is a query-based inter-
face that allows the end user to retrieve information from
sensor nodes in a network. MOTE-VIEW also allows the
end user to control sensor node settings such as trans-
mission power, radio frequency, and sampling frequency.
In these systems the central server analyses data col-
lected from the network. The main disadvantage of such
passive monitoring schemes is that they are not adap-
tive to current network conditions, and provides no self-
configuration in the event of faults.The end user must
manually manage the network and interpret the graphi-
cal representation of collected data.

Several network management systems focus on man-
aging power resources in the network: Agent-Based
Power Management [23], SenOS [9], AppSleep [24],
and Node-Energy Level Management [25]. Agent-Based
Power Management utilizes intelligent mobile agents to
manage sub-networks and perform local power manage-
ment processing. It can reduce the sampling rate of
nodes with critical battery and reduce node transmis-
sion power. Other systems such as SenOS, AppSleep,
and Node-Energy Level Management [25] use common
sensor nodes to perform power management. SenOS and
AppSleep put nodes to sleep when they are not needed.
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Node-Energy Level Management [25] allows nodes to re-
ject a management task based on the importance of that
task.

Traffic management functions are provided in
Siphon [26], DSN RM [27] and WinMS [17] . Siphon [26]
uses multi-radio nodes to redirect traffic from common-
nodes in a network in order to prevent congestion at the
central server and in the primary radio network. In con-
trast, DSN RM [27] uses single-radio common-nodes to
evaluate each of their incoming and outgoing links and
apply delay schemes to these links when necessary in or-
der to reduce the amount of traffic in the network. Con-
gestion can also be avoided by modifying sensor nodes’
reporting rate based on the reliability level of sensor node
data [28]. By reducing a node’s reporting rate, the num-
ber of packets transmitted in the network is reduced, so
avoiding potential congestion. WinMS [17] can recon-
figure nodes to report their data more rapidly or slowly
depending on the significance and importance of their
data to the end-user. The WinMS scheme supports non-
uniform and reactive sensing in different parts of a net-
work.

Several network management protocols reviewed are
application specific rather than general purpose
schemes. RRP [15] is tailored for real-time data gath-
ering applications with bursty and bulky traffic. App-
Sleep is designed for latency-tolerant applications. TP is
a fault detection system best suited for monitoring and
surveillance applications. SenOS power management is
designed for SenOS operating system-based sensor net-
works. Network management systems such as RRP and
Siphon [26] require special hardware: RRP uses GPS
nodes for implementing the proposed zone flooding pro-
tocol, while Siphon requires multi-radio nodes to act as
virtual sinks.

C. Chapter Overview

The remainder of this chapter discusses different ap-
proaches to network management system organisation.
Section III identifies criteria that must be satisfied by
network management systems for sensor networks. Sec-
tion IV reviews state of the art network management
systems for sensor networks. Finally, Section V provides
open research issues on sensor network management de-
sign.

II. SYSTEM ORGANISATION

There are two main choices for the system organisa-
tion of sensor network management protocols: central vs
distributed control, and reactive vs proactive monitor-
ing. Table I summarizes state of the art sensor network
management systems according to these system choices.

A. Management Reactivity

Sensor network management systems can be classified
according to the approach taken to monitoring and con-
trol.:

• Passive monitoring. The system collects infor-
mation about network states. It may perform post-
mortem analysis of data.

• Fault detection monitoring. The system col-
lects information about network states in order to
identify whether faults have occurred.

• Reactive monitoring. The system collects in-
formation about network states to detect whether
events of interest have occurred and then adap-
tively reconfigure the network.

• Proactive monitoring. The system actively col-
lects and analyses network states to detect past
events and to predict future events in order to
maintain the performance of the network.

B. Management Architecture

Sensor network management systems can also be clas-
sified according to their network architecture [7]: cen-
tralised, distributed, or hierarchical.

In centralised management systems, such as
BOSS [12], MOTE-VIEW [22], SNMS [16], and Sym-
pathy [19], the base station acts as the manager station
that collects information from all nodes and controls the
entire network. The central manager with unlimited re-
sources can perform complex management tasks, reduc-
ing the processing burden on resource-constrained nodes
in the sensor network. Since the central manager also
has the global knowledge of the network, it can provide
accurate management decisions. But, this approach has
some problems. First, it incurs a high message overhead
(bandwidth and energy) from data polling, and this lim-
its its scalability. Second, the central server is a single
point of data traffic concentration and potential failure.
Lastly, if a network is partitioned, then nodes that are
unable to reach the central server are left without any
management functionality.

Distributed management systems employ multi-
ple manager stations. Each manager controls a sub-
network and may communicate directly with other man-
ager stations in a cooperative fashion in order to per-
form management functions. Distributed management
has lower communication costs than centralised man-
agement, and so provides better reliability and energy-
efficiency. But it is complex and difficult to manage. Dis-
tributed management algorithms may be computation-
ally too expensive for resource-constrained sensor net-
work nodes. Distributed management systems include
DSN RM [27], Node-energy level management [25], App-
Sleep [24], and sensor management optimization [28].
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TABLE I: Network management system organisation.

Network Management System Reactivity Architecture
WinMS Proactive Hierarchical
DSN RM Proactive Hierarchical
Mobile agent-based policy management Proactive Hierarchical
Intelligent agent-based power management Proactive Distributed
Siphon Proactive Distributed
BOSS Proactive Centralised
Sympathy Proactive Centralised
SenOS Reactive Hierarchical
Agilla Reactive Distributed
Node-energy level management Reactive Distributed
Two-phase monitoring system Fault-detection Distributed
TopDisc Passive Hierarchical
AppSleep Passive Hierarchical
RRP Passive Hierarchical
STREAM Passive Hierarchical
Sectoral Sweeper Passive Distributed
TinyDB Passive Centralised
MOTE-VIEW Passive Centralised
SNMS Passive Centralised
MANNA N/A N/A

Another disadvantage of distributed systems is memory
costs. For example, neighborhood state transition dia-
gram maintenance in TP [18], task usage profile mainte-
nance in Node-Energy Level Management [25], and tuple
space maintenance in Agilla [29] all require significant
memory resources.

A mobile agent-based framework is an example of dis-
tributed management system implementation. Network
management systems that use this approach are Agilla,
Sectoral Sweeper [30], Mobile Agent-Based Policy Man-
agement [31], Agent-Based Power Management [23], and
MANNA [4]. The main advantages of these approaches
are that local processing reduces network bandwidth re-
quirements and prevents network bottlenecks by reducing
processing at the central server [31]. Furthermore, agents
can be designed to distribute tasks in the network. For
example, agents can relay some tasks from overloaded
nodes to other nodes with lower workloads. In addition,
agents can be moved flexibly to cover an area of inter-
est [4] and agents can shift debugging and transmission
operation from low-power sensor nodes to extend network
lifetime.

There are several drawbacks of agent-based ap-
proaches. First, there is a need for special nodes to
perform management tasks. Second, the human man-
ager needs to locate these agents ‘intelligently’ in order
to cover all nodes in the network. Thus, this approach
requires a network to be configured manually and the
human manager needs to have expertise about the op-
timal number of agents as well as agent location for a
particular sensor network application. Third, the agent-
based approach introduces delays when a manager wants
to retrieve network states of a node because the man-
ager needs to wait for an agent to visit the node [14].

Fourth, the agent-based approach does not scale for large
WSNs because as the number of sensor nodes increases,
the number of agents deployed must be increased. Al-
ternatively, reducing the number of agents increases the
time required for an agent to visit nodes in a network.
Finally, since the agent typically sends aggregated man-
agement information from a set of managed nodes in a
network, fine-grained information from individual nodes
is compromised.

Hierarchical network management is a hybrid be-
tween the centralised and distributed approach. Inter-
mediate managers are used to distribute management
functions, but do not communicate with each other di-
rectly. Each manager is responsible for managing the
nodes in its sub-network. It passes information from
its sub-network to its higher-level manager, and also
disseminates management functions received from the
higher-level manager to its sub-network. For exam-
ple, in AppSleep [24], TopDisc [3], STREAM [14], and
SenOS [9], some common-nodes are selectively elected as
cluster heads to act as distributed managers. There is
a non-trivial energy overhead for selecting cluster heads.
Agent-based policy management [31] uses mobile agents
as distributed managers. In RRP [15], individual nodes
have distinct roles: either acquiring raw sensor data,
transporting data, or filtering data. Unlike other sys-
tems, DSN RM [27] and WinMS [17] allow individual
nodes to act as agents and perform management func-
tions autonomously based on their neighborhood states.
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III. NETWORK MANAGEMENT SYSTEM
DESIGN CRITERIA

A network management system designed for WSNs
must take into account the unique properties of WSNs.
The following criteria are used to evaluate the sensor net-
work management systems reviewed in this chapter:

1. Lightweight operation. A system should be
able to run on sensor nodes without consuming too
much energy or interfering with the operation of
the sensor nodes. Lightweight operation prolongs
network lifetime.

2. Robustness and fault tolerance. WSNs are
prone to network dynamics such as dropped pack-
ets, nodes dying, becoming disconnected, powering
on or off, and new nodes joining the network. A
management system should be resilient to network
dynamics by reconfiguring the network as required.

3. Adaptability and responsiveness. A system
should be able to retrieve and adapt to the cur-
rent network states or changing network conditions
including changes in network topology, node en-
ergy level, and the coverage and exposure bounds
of WSNs.

4. Minimal data storage. A data model used to
represent management data must be extensible and
able to accommodate information needed to per-
form the management functions, but must also re-
spect the memory constraints of WSNs.

5. Scalability. A system should operate efficiently in
any network size.

Table II compares sensor network management sys-
tems according to these network management criteria.

IV. NETWORK MANAGEMENT SYSTEMS

Having identified different functionalities supported in
existing network management systems, choices for sys-
tem operation, and criteria for effective operation in a
sensor network, we now examine individual state of the
art sensor network management systems in more detail.

A. Sensor Network Management Framework

1. BOSS

Song et al. [12] propose a service discovery manage-
ment architecture for WSNs. The architecture is based
on UPnP, the standard service discovery protocol for net-
work management. However, UPnP only runs on devices
with high computation power and large memory. Thus,
resource-constrained sensor nodes are unable to process

FIG. 1: BOSS Architecture. Reprinted with permission
from [12].

the UPnP protocol. Song et al. address this issue by
implementing an UPnP agent in the base station, called
Bridge Of the SensorS (BOSS), which provides a bridge
between a managed sensor network and a UPnP network.
The proposed system consists of three main components:
UPnP control point, BOSS, and non-UPnP sensor nodes.
The control point is a powerful logical device with suffi-
cient resources to run the UPnP protocol and manage a
sensor network using the services provided by BOSS, e.g.
PCs, PDAs, and notebooks. BOSS is a base node that
acts as the mediator between non-UPnP sensor nodes
and UPnP control point and is implemented in the base
station. Each node in a sensor network is a non-UPnP
device with limited resources and sensing capability.

FIG. 1 is an abstraction of the BOSS architecture de-
tailed in [12]. The control point and BOSS use UPnP pro-
tocol to communicate with each other, while non-UPnP
sensor nodes and BOSS use a sensor network proprietary
protocol for communication. Thus, the human manager
can implement any sensor network protocol to transport
data from non-UPnP sensor nodes to the base node.
BOSS has three functions. First, it is used to trans-
fer UPnP messages between the sensor network and the
control point. Second, since UPnP protocol uses XML
message format that is different from a sensor network
specific network message format, BOSS is responsible for
interpreting transferred UPnP messages. Lastly, BOSS
gathers network management information from sensor
nodes to provide network management services from each
sensor node to the control point. The base node stores
network management services and performs all network
management processing. Thus, the base node carries the
network management computation burden, rather than
the resource-constrained sensor nodes. In the BOSS ar-
chitecture, the control point can specify which events of
non-UPnP sensors it is interested in. BOSS then pro-
cesses events reported by non-UPnP sensors to the con-
trol point.

The network management services provided by the
BOSS include basic network information, localization,
synchronization, and power management. BOSS can re-
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TABLE II: Network management system evaluated against design criteria.

Network manage-
ment system

Main management functionalities Energy
efficiency

Robustness Adaptability Memory
efficiency

Scalability

WinMS Network state retrieval, synchro-
nization, local repair, and system-
atic resource transfer

Yes Yes Yes Yes Yes

BOSS Network state retrieval, localiza-
tion, synchronization, and power
management

Yes Yes Yes Yes No

Mobile Agent-
Based Policy
Management

Policy-based management
framework

Yes Yes Yes Yes No

AppSleep Power management (extended
sleeping schedules)

Yes Yes No Yes Yes

Intelligent Agent-
Based Power
Management

Local power management and sam-
pling frequency control

Yes No Yes Yes No

Sympathy Fault debugging Yes Yes Yes Yes No
Two-Phase Moni-
toring System

Local fault detection schemes Yes Yes Yes No Yes

SNMS Query-based network health data
collection and event logging

Yes Yes No Yes No

MOTE-VIEW Network state visualisation and
network state retrieval

Yes No No Yes Yes

Agilla Event detection Yes No Yes Yes No
STREAM Network topology extraction Yes No No Yes Yes
TopDisc Network state retrieval (e.g. net-

work topology and node energy
level)

Yes No No Yes Yes

RRP Data aggregation and zone flooding
scheme

Yes No No Yes No

Sectoral Sweeper Switching node on/off Yes No No Yes No
Node-Level
Management

Power management (task rejection) Yes No No Yes No

SenOS Switching node on/off Yes No No Yes No
DSN RM Priority-based traffic management

and congestion avoidance scheme
Yes No Yes No No

Siphon Multi-radio on-demand traffic
management

No No Yes Yes No

MANNA Policy-based management frame-
work, network state retrieval, sam-
pling frequency control, coverage
maintenance, and fault detection

NA NA NA NA NA

trieve basic network state information from the sensor
network, including sensor node device description, the
number of sensor nodes in the network, and the network
topology. The localization service gives location informa-
tion for each sensor in the network. The synchronization
service is responsible for performing clock synchroniza-
tion among nodes in the network. For example, when a
node is added in the network, the node sends a message to
BOSS and BOSS informs the control point. The central
point then synchronizes the new node with other nodes
in the network. The power management service allows
a human manager to manage the power of the sensor
nodes by checking remaining battery and changing the
operation mode of sensors.

The advantage of using BOSS is that different sensor

network applications (e.g. structural monitoring, fire de-
tection, and auto light control) can be managed by multi-
ple UPnP control points (e.g. PCs and PDAs). Further-
more, BOSS allows a sensor network to adapt to topology
changes and so supports proactive network management.
A drawback of BOSS is that it requires an end-user to
observe network states and take management actions ac-
cordingly.

2. MANNA

MANNA (a Management Architecture for Wireless
Sensor Networks [4]), is a policy-based management
system that collects dynamic management informa-
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tion,maps this into WSN models, and executes man-
agement functions and services based on WSN mod-
els. MANNA’s management policy specifies management
functions that should be executed if certain network con-
ditions are met. WSN models maintain the information
about the state of the network. MANNA defines the
relationship among WSN models in a Management In-
formation Base (MIB). Some examples of WSN models
include:

• Topology map depicting node connectivity and
reachability of the network.

• Residual energy map showing battery level of
nodes in the network.

• Sensing coverage area map describing the area
covered by sensor elements.

• Communication coverage area map presenting
communication range of nodes in a network.

• Audit map describing the security status of sen-
sor nodes in a network, whether nodes have been
attacked.

In MANNA, a management service consists of one
or more management functions. Some of the manage-
ment functions are coverage area supervision, network
operating parameter configuration, topology map discov-
ery, network connectivity discovery, aggregation discov-
ery, energy map generation, and node localization dis-
covery. The execution of management services depends
on the information obtained from the WSN models. For
example, the human manager can perform coverage area
management service based on the information obtained
from the energy map and the network topology map in
order to determine unmonitored areas in a network.

MANNA adapts to dynamic WSN behaviours by
analysing and updating the MIB. MIB update is a cen-
tralised operation and expensive in terms of energy con-
sumption. Moreover, WSN uncertainties and delay may
affect the accuracy of collected management information.
To keep the MIB up-to-date, it is critical to determine
the right time to query for management information and
the right frequency for obtaining management informa-
tion. In [4], Ruiz et al. focus solely on designing a net-
work management architecture. They propose no spe-
cific MAC or routing protocols. However, they suggest
the use of an agent-based framework to distribute man-
agement functions to managed systems in which agents
collect management information from sensor nodes and
transport these information back to the base station.

MANNA network management protocol (MNMP), is a
lightweight protocol for managing information exchange
among management entities (cluster heads, common-
nodes, and manager) [32]. Basically, sensor nodes
are organised in clusters (sub-network) and send their
states to the agent located in the cluster-head. MNMP
places management agents on the cluster-heads and each

cluster-head acts as a manager for a cluster (local man-
ager). Cluster-heads are responsible for executing local
management functions and they aggregate management
data received from sensor nodes. Cluster heads forward
management data directly to the base station. Further-
more, cluster-heads can work cooperatively with other
cluster-heads to achieve an overall management goal, for
example, forming groups of nodes (i.e., clusters). A man-
ager is a powerful management entity located outside
the WSN responsible for complex management tasks re-
quiring global knowledge of the network. This approach
achieves energy efficiency and increases the accuracy of
management decisions. Subramanian et al. [33] propose
a similar hierarchical architecture approach for monitor-
ing sensor networks, in which nodes report updates to
their cluster heads periodically. However, the efficiency
of this hierarchical monitoring approach depends on the
size of the cluster.

Fault management for event-driven applications of
WSNs can be performed using automatic management
services provided by MANNA [20]. Fault management
aims to detect failures in the network by analysing WSN
models. The system provides two main management
services: coverage area maintenance service and failure
detection service. The central manager uses the topol-
ogy map model and the energy model to build a cover-
age area model in order to monitor areas of sensing and
communication coverage. The central manager can com-
mand the agent to execute a failure detection manage-
ment service. For example, the manager sends MNMP
GET requests for node state retrieval and uses GET-
RESPONSEs to build the WSN audit map. If an agent
or a node does not answer a GET request, the manager
consults the energy map to verify whether the node has
residual energy. If the node is still alive, the manager
notifies a GET-RESPONSE failure to the end user. This
scheme has a drawback of possibly providing false de-
bugging diagnostics. For instance, common-nodes may
be disconnected from their cluster-head and so unable
to receive the GET operation from the manager. Or,
GET and GET-RESPONSES packets may be lost as a
result of noise in the environment. Random distribution
and limited transmission range capability of common-
nodes and cluster-heads provide no guarantee that ev-
ery common-node can be connected to a cluster head.
The proposed fault management strategy relies on the
manager to perform system debugging. The scheme in-
troduces no extra management processing overhead and
runs independently of network failures. There are, how-
ever, still transmission costs incurred for network state
polling. This management cost can be justified because
it allows the manager to be aware of changing network
conditions and to act upon them accordingly. The pro-
posed system is a fault-detection monitoring system only
and so the network is not reconfigured in the event of
failures. Staddon et al.[34] proposes a similar centralised
management approach, whereby the manager monitors
the health of individual sensor nodes to detect node fail-
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ures in a network. Unlike MANNA [20], it provides a
method for recovering corrupted routes.

In [35], Ruiz et al. analysed different network con-
figurations (homogenous or heterogenous and flat or hi-
erarchical) and evaluated their performance. In a ho-
mogenous network, all nodes have the same hardware
capabilities (battery, memory, processor, and communi-
cation device). In a heterogeneous network, these capa-
bilities differ between nodes. In a heterogeneous hier-
archical network, nodes with higher capabilities become
cluster heads throughout the network lifetime, while a
homogeneous network requires nodes to alternate the
role of cluster heads. In a sensor network that imple-
ments the MANNA management scheme, nodes report
their state (e.g. location and battery level) in addition
to their sensing data. The manager maps the received
data into topology, energy and coverage maps and per-
forms management services to maintain the performance
of the network. In homogenous flat WSNs, each node
individually sends its states using an MNMP SENSOR-
REPORT message to the base station. In homogenous or
heterogeneous hierarchical WSNs, cluster-heads receive
management data from their cluster nodes, perform nec-
essary data processing, and send the processed data to
the base station.

The MANNA framework can also be used for decen-
tralised management using policies that define the de-
sired self-service behavior of each sensor node according
to local information [36] so that networks can manage
themselves without direct human intervention. The de-
centralised management system offers 1) an agent-based
service negotiation to allow the network to be more re-
active to changing network conditions and 2) self config-
uration schemes to save energy, control network density,
and maintain network coverage. The system implements
service negotiation by pre-programming common nodes
to adjust their services (sensing, processing, and data
dissemination rate) based on their states and local en-
vironment conditions, and using cluster-heads to act as
agents that monitor, analyse node message priority, and
filter data sent by common nodes in a cluster. For exam-
ple, in a fire-tracking application, common nodes sense
temperature in their environment and determine the fire
risk based on temperature data values. These nodes then
assign a priority value to their packets (high or low de-
pending on the fire risk) and transmit the packets to
their respective cluster-head. Cluster heads evaluate the
priority status of all received packets. If cluster heads
receive a high-priority packet, they will discard low pri-
ority packets and start to aggregate high-priority packets
for a period of time, before sending the aggregated data
to the base station. Thus, local event detection approach
allows delivery of data with different priorities. Event-
detection results in an increase in network traffic, but it
allows the network to be highly reactive since the man-
ager is notified of an event earlier and with more accuracy
than without this scheme. The system also provides self-
management and self-configuration by allowing nodes to

change their parameter values dynamically in response to
changing network conditions. Cluster heads can change
their transmission power by reconfiguring their commu-
nication range according to their distance from the base
station and common nodes in their clusters. Moreover,
the system utilizes DPM [37] to perform coverage area
maintenance (network density control) by turning off re-
dundant nodes in a network, and hence reducing conges-
tion, collision, and energy waste.

B. Sensor Network Management Protocols

1. RRP

Liu et al. [15] propose a hybrid data dissemination
framework, RRP, based on supply chain concept for man-
aging data gathering applications such as habitat mon-
itoring and battlefield surveillance. In business, supply
chain management is a coordinated system of entities and
activities for delivering a product or service from sup-
plier to customer. The primary objective of supply chain
management is to fulfill customer demands through the
most efficient use of resources by allowing entities such
as manufacturer, distributors, and retail outlets to have
their own inner activities and management strategies,
but to work cooperatively to achieve a common manage-
ment goal. Liu et al. [15] apply the supply chain concept
in the design of RRP by partitioning a sensor network
into several functional regions, applying different routing
schemes to different regions, and designing cooperation
among different regions to provide better network per-
formance in terms of reliability and energy usage. Liu et
al. [15] also propose a novel zone flooding scheme that
is a combination of flooding and geometric routing tech-
niques.

RRP is a hierarchical system consisting of three areas:
manufacturing area, transportation area, and warehouse
and service area. It manages the acquisition of raw data
from the manufacturing area to the delivery of processed
data to the warehouse and service area. In RRP, sensor
nodes are heterogenous in that they have different roles
and tasks. In the manufacture area, sensor nodes are ei-
ther source nodes that generate raw data or aggregation
nodes responsible for filtering raw data. The aggregation
node selects a transportation method and the flooding
zone for forwarding the filtered data before putting the
data into the transportation area. The transportation
method can be either single-zone flooding or multi-zone
flooding. The aggregation node uses a single flooding
zone when the network traffic is low. For large data
loads, the aggregation node fragments the data into sev-
eral packets and uses multiple flooding zones to deliver
the packets to multiple base stations in different flooding
zones.

In the transportation area, sensor nodes collabora-
tively relay received data from the manufacture area to
one or more base stations. RRP uses a zone-flooding
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scheme to reduce the cost of topology maintenance and
route discovery. The basic idea is to allow a node receiv-
ing a packet to determine a flooding-zone (bounded by
two ellipses), based on parameters specified in the packet.
The node then decides whether it is inside or outside the
flooding zone by evaluating its location against the re-
ceived zone parameters. Finally, the node rebroadcasts
the packet if it is located within the flooding zone. This
forwarding-decision scheme allows nodes in the manufac-
ture area to manage energy distribution among nodes
in the transportation area by selecting parameters. The
main advantage of this scheme is that forwarding deci-
sions are made locally in the network. However, the ag-
gregation node in the manufacture area has the compu-
tational burden of determining the right parameters for
bounding a flooding zone. It should ensure that a flood-
ing zone has sufficient nodes to forward packets while
maintaining high energy efficiency.

Sensor nodes in the warehouse and service areas are
responsible for managing or reducing information implo-
sion at base stations. In this area, RRP uses a modi-
fied SPIN [38] protocol instead of zone flooding as the
underlying routing protocol. SPIN allows nodes in a
neighborhood to communicate with each other and use
meta-data negotiation (ADV-REQ-DATA) to eliminate
the transmission of redundant data. RRP executes the
ADV-REQ-DATA exchange through unicasting between
a warehouse node and a base station that are maybe sev-
eral hops away from each other. For example, packets
that report the same event for base station B1 are re-
ceived by warehouse W1 and warehouse W2 located in
the same flooding zone. Warehouse W1 and W2 then
send ADV messages to B1 and B1 decides which ware-
house can send data to it based on pre-programmed cri-
teria such as hop distance or delay. If B1 chooses W1, it
sends a REQ to W1. Then, W1 unicasts the requested
data via a DATA message to B1. In this way, redundant
packets can be eliminated, so reducing energy consump-
tion.

The main advantages of RRP are that zone flooding
ensures low message overheads, and adjusting the size of
flooding zone ensures high reliability. RRP allows the
end user to predefine the size of warehouses and flood-
ing zones in order to achieve desired energy consump-
tion, end-to-end delay, and routing overhead, while main-
taining high packet delivery (reliability). Generally, the
larger a flooding-zone, the more transportation nodes are
involved in the packet forwarding, giving higher reliabil-
ity but higher delay [15]. The drawbacks of RRP are
that it requires GPS-attached nodes in order to imple-
ment the zone-flooding protocol and it requires a human
manager to place sensor nodes in the field strategically at
the initial network setup in order to support RRP hierar-
chical network management. The human manager has to
decide which and where nodes should be located for the
manufacture, transportation, and warehouse and service
areas.

2. SNMS

Tolle and Culler [16] propose SNMS, a Sensor Network
Management System. SNMS is an interactive system for
monitoring the health of sensor networks. SNMS pro-
vides two main management functions: query-based net-
work health data collection and event logging. The query
system allows the user to collect and monitor physical
parameters of the node environment. For example, the
value of a node’s remaining battery power can be used
to predict node failures. Furthermore, temperature and
humidity surrounding the sensor node can be indicators
of upcoming failure. The event-driven logging system al-
lows the user to set event parameters and nodes in the
network will report their data if they meet the specified
event thresholds.

SNMS supports two traffic patterns: Collection and
Dissemination. Collection is used to obtain health data
from the network and dissemination is used to distribute
management messages, commands, and queries. SNMS
uses a data gathering tree to collect network health in-
formation from sensor nodes in the network. The SNMS
collection tree construction protocol uses flooding with
random staggering of retransmission times for each node.
In SNMS, every node in the network only maintains the
single best parent based on the strongest received sig-
nal strength. The advantage of this approach is that it
minimizes memory usage by not requiring sensor nodes
to maintain a neighborhood table. Furthermore, SNMS
minimizes traffic by only constructing a tree in response
to messages sent from the base station [16]. The SNMS
tree construction protocol is also adaptive to changing
network condition since nodes will select a new parent
if their existing parent dies. In SNMS, network states
such as a node’s current parent and link quality are only
updated based on user queries.

SNMS proposes the Drip protocol to reliably dissem-
inate messages, command, and queries to a set of man-
aged nodes in the network. When a component (a user
or sensor nodes) wants to make a query, it selects a spe-
cific identifier that represents a reliable delivery channel.
The Drip protocol then transports messages or replies
received on that channel to the component by requiring
every sensor node to regularly check the channel it sub-
scribes to, cache and extract data from the latest message
received on that channel, and return a reply. The advan-
tage of this dissemination approach is that it is applica-
tion independent and thus it is able to provide manage-
ment functions even when the application fails. However,
when a component queries several independent variables,
the Drip protocol needs to make a trade off between chan-
nel usage and node caching. Tolle and Culler [16] propose
two methods to address this issue. The first method is
to force components to collect the current value of each
variable into a single message. This approach can en-
sure independent reliability of every variable only if each
node records the same value for each variable. The sec-
ond method is to attach a unique key for each variable
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instead of reserving a channel for each message. How-
ever, this approach requires a large key space, and so
high memory usage.

The main advantage of SNMS is that it introduces
overhead only for human queries and so has minimal im-
pact on memory and network traffic. SNMS further mini-
mizes energy consumption by bundling the results of mul-
tiple queries into a single message instead of returning re-
sults individually. The main drawbacks of SNMS are that
the network management function is limited to passive
monitoring only, requiring human managers to submit
queries and perform post-mortem analysis of manage-
ment data. Furthermore, SNMP’s centralised-processing
approach requires continuous polling of network health
data from managed nodes to the base station, and this
can burden sensor nodes that should minimize transmis-
sions in order to extend network lifetime.

3. sNMP

Deb et al. [13] propose a management framework
called Sensor Network Management Protocol (sNMP).
The sNMP framework has two functions. First, it de-
fines sensor models that represent the current state of
the network and defines various network management
functions. Second, it provides algorithms and tools for
retrieving network state through the execution of the net-
work management functions. Models for sensors include
network topology (node connectivity), energy map (node
battery power), and usage patterns [3]. The correlation
between the energy map and network topology can be
used to identify weak areas in the network. Usage pat-
terns describe network activity such as node duty cycles
and bandwidth utilization in terms of amount of data
transmitted per unit of time. Deb et al. [3] suggest that
sensor models could be used for different network man-
agement functions. The human manager could use the
current knowledge of network topology for future node
deployment. By measuring network states periodically,
the human manager can monitor and maintain the net-
work by identifying which parts of the network have a low
performance, and taking corrective actions as necessary.
From periodic monitoring of network states, the human
manager could also analyse network dynamics to predict
network failures and then take preventive actions.

In the sNMP framework, sensor models form the
Management Information Base (MIB) for sensor net-
works [13]. Network topology depicts states of the net-
work that are useful for determining the number of active
nodes and the connectivity of nodes in the network [3],
[14]. Deb et al. propose a topology discovery algorithm,
TopDisc [3] and Sensor Topology Retrieval at Multiple
Resolutions, STREAM, [14] for retrieving network topol-
ogy.

The TopDisc algorithm provides a clustering mecha-
nism that allows a minimal set of nodes to be active in
maintaining network connectivity. The algorithm selects

a set of distinguished nodes and forms a network topology
based on the nodes’ neighborhood information. Nodes
listen to other nodes within their communication range
to collect local neighborhood information. Management
is done by exchanging local neighborhood information
between adjacent clusters.

TopDisc has three management functions: network
state retrieval, data dissemination and aggregation, and
duty cycle assignment. The cluster heads are used to re-
trieve network states such as network topology map, en-
ergy map, and usage pattern. A Tree of clusters (TreC)
consists of a number of sensor nodes that are optimal
in the number of hops from the cluster head monitoring
node. This approach allows efficient data dissemination
and data aggregation. Management information rout-
ing is performed by inter-cluster communication. This
routing approach allows the human manager to specify
rules for forwarding in such a way that loads can be dis-
tributed among nodes and fair duty cycle assignment is
ensured. For example, a node may refuse to be a for-
warding node if it has insufficient energy. An advantage
of the TopDisc approach is that it provides a framework
to perform network management functions based on local
information that is highly scalable. However, clustering
introduces overheads of cluster-head election and cluster
maintenance that are expensive in terms of latency and
energy.

Retrieving a complete network topology of large sen-
sor networks is an expensive operation for resource-
constrained sensor nodes. Two common methods for re-
trieving network states, direct response and aggregated
response, incur a large communication overhead [14].
The overhead is proportional to the number of hops a
node’s reply has to travel to reach the base station. To
address this issue, Deb et al. [14] propose a distributed,
parameterized algorithm, STREAM, which is designed to
return network topology at a required Resolution, at pro-
portionate costs. STREAM makes a trade-off between
topology details and resources usage [14].

STREAM proposes a Minimal Virtual Independent
Dominating Set (MVDIS) mechanism in which a mini-
mal set of nodes are selected to extract network topol-
ogy at a desired resolution. Thus, only a subset of net-
work nodes reply to topology discovery queries with their
neighborhood information. STREAM uses a coloring al-
gorithm to create a MVIDS(r) based on the virtual range
r. STREAM selects the nodes in MIVDS(r) to reply to
topology discovery queries. Distance r is the topology
resolution control parameter. The creation of a MVIDS
only incurs message complexity of N (number of nodes
in the network) and hence STREAM is highly energy ef-
ficient, in comparison with a centralised scheme. The
selection of a representative set of nodes in a sensor net-
work is important to give an accurate picture of network
states. Since the problem of finding a minimum dominat-
ing set is NP-complete, STREAM uses a heuristic greedy
approach for determining the set of dominating nodes
[14]. The main advantage of STREAM is that the hu-
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man manager can flexibly control the topology resolution
and the resource expended. A drawback of STREAM
is the significant computation overhead of finding and
maintaining an optimum set of dominating nodes.

4. WinMS

Louis Lee et al. [17] propose an adaptive policy-based
management system for WSNs, called Wireless Sensor
Network Management System (WinMS). The end user
predefines management parameter thresholds on sensor
nodes that are used as event triggers, and specifies man-
agement tasks to be executed when the events occur.
WinMS adapts to changing network conditions by allow-
ing the network to reconfigure itself according to cur-
rent events as well as predicting future events, in order
to maintain the performance of the network and achieve
effective networked node operations. FIG. 2 shows the
WinMS architecture [17]. FlexiMAC [39] is the underly-
ing MAC and routing protocol that schedules node com-
munication and continuously and efficiently collects and
disseminates data, to and from sensor nodes in a data
gathering tree. A local network management scheme pro-
vides autonomy to individual sensor nodes to perform
management functions according to their neighborhood
network state, such as topology changes and event detec-
tions. The central network management scheme uses the
central manager with a global knowledge of the network
to execute corrective and preventive management main-
tenance. The central manager maintains an MIB that
stores WSN models that represent network states. The
central manager analyses the correlation among WSN
models to detect interesting events such as areas of weak
network health, possible network partition, noisy areas,
and areas of rapid data changes.

FlexiMAC is a TDMA-based protocol that provides
synchronized communication using a loose slot structure.
Initially, all nodes in a network build their data gath-
ering schedules. After this initial one-off, global setup
phase, all repair operations are local. Nodes can claim
or remove a time slot based on current information in
their lookup table without exchanging information with
any other nodes in the network prior to modifying their
schedules. Thus, it is not necessary to specify the num-
ber of slots required for the network in advance. In Flex-
iMAC, networked nodes sleep when they are not sched-
uled to transmit, receive, or listen. FlexiMAC also has
a scheduled short CSMA period in every data gather-
ing cycle, where all nodes in the network listen for dis-
tress signals sent by ‘faulty’ nodes in the environment.
For example, when a new node is added to the network
or an existing node in the network wants to find a new
parent, FlexiMAC allows nodes in the network to adopt
these nodes as their children, assign schedules for them,
and rebuild their own schedules. FlexiMAC’s flexible slot
structure makes it strongly fault-tolerant and also highly
energy-efficient. WinMS utilizes FlexiMAC’s scheduling

FIG. 2: WinMS architecture. Reprinted with permission
from [17].

approach to piggyback management data on data packets
and hence eliminating energy and bandwidth overheads
of regular network state update.

In WSNs, a small part of a network may need to in-
crease the rate of data gathering significantly in order
to report important data in real-time. For example, it
is critical that sensor nodes report their data more of-
ten when they detect event triggers such as sensor read-
ings changing rapidly or exceeding user-specified thresh-
olds. WinMS addresses this issue by a systematic re-
source transfer function that allows resources (time slots)
from one part of the network to be transferred to an-
other part of the network. WinMS uses FlexiMAC to
support resource transfer among nodes in the network
and to ensure slots are systematically transferred among
nodes, maintaining low energy overhead and fast conver-
gence. Using FlexiMAC, the network can be reconfigured
and stabilized within a single data gathering cycle. The
systematic resource transfer function can be executed lo-
cally or centrally. In the decentralised scheme, a sensor
node becomes a self-reporting node upon the occurrence
of externally triggered events. It then initiates informa-
tion exchange to try to get extra slots from nodes in
its neighborhood. In the centralised scheme, the central
manager executes the function to distribute load among
sensor nodes to prolong the lifetime of the network. In
WinMS, a self-reporting node borrows extra slots from
other nodes only for a period of time that is application
specific. Nodes that lend their slots simply revert to their
previous schedule once the loan time expires.

An advantage of WinMS is that its lightweight TDMA
protocol provides energy-efficient management, data
transport and local repair. Its systematic resource trans-
fer function allows non-uniform and reactive sensing in
different parts of a network, and it provides automatic
self-configuration and self-stabilization both locally and
globally by allowing the network to adapt to current net-
work conditions without human intervention. A disad-
vantage of WinMS is that the initial setup cost for build-
ing a data gathering tree and node schedule is propor-
tional to network density. However, this one-off cost can
be tolerated because nodes maintain the gathered infor-
mation throughout their lifetime in the network.
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C. Management By Delegation

Management by delegation (MbD) allows management
roles to be distributed across nodes in the network to ease
the burden on a central manager. Delegation is achieved
by intelligent agents or mobile agents. A mobile agent is
a section of code that can distribute management tasks
to be executed on nodes locally and returns the resulting
data to the central manager [4]. Several protocols use del-
egation schemes to providing network management func-
tions including Agilla [29], sectoral sweepers (SS) [30],
mobile agent-based policy management [31], and intelli-
gent agent-based power management [23].

1. Agilla

Agilla [29] is middleware that allows users to de-
ploy mobile agents in a network to perform application-
specific tasks. For example, in a fire tracking applica-
tion,when a fire occurs in some region of a sensor network,
agents will track the fire as it spreads, and will form a
perimeter for the fire area. In Agilla, each sensor node
can be monitored by multiple agents. Agilla provides a
scheme that enables mobile agents to move themselves
to desired locations as network conditions change. Each
sensor node in the network maintains a tuple space that
contains a set of predefined descriptors about that node.
A node’s tuple space can be shared by local agents and
agents can register their interest in particular events by
inserting a template tuple into the tuple space. When a
node detects matching events, it updates its tuple space
accordingly and reports the events to the agent. Thus,
agents do not need to continually poll network states
from sensor nodes.

2. Mobile Agent-Based Policy Management

A hierarchical mobile agent-based policy management
for managing sensor networks is proposed in [31]. It
allows the end user to pre-specify management policies,
rules for the use of energy and computing power, that are
enforced by mobile agents. Each rule consists of condi-
tions and management operations to be carried out when
the conditions are satisfied.

FIG. 3 shows the hierarchical architecture of the pro-
posed system [31]. The system consists of three levels:
Policy Manager (PM) at the highest level, Cluster Pol-
icy Agent (CPA), and Local Policy Agent (LPA). A PM
manages multiple CPAs and adaptively reconfigures the
network (locally or globally) when network conditions
change. A CPA is the node with the best resources in
a cluster and it manages multiple LPAs. An LPA man-
ages a sensor node and also enforces local policies by
analysing network dynamics (e.g., topology change), per-
forming configuration, monitoring, filtering, and report-
ing. Policies are propagated from the PM to CPAs to

FIG. 3: Hierarchical architecture of mobile agent-based policy
management. Reprinted with permission from [31].

LPAs, or from CPAs to LPAs. For example, when users
want to execute a management function, the policy man-
ager first transmits the policy for relevant management
function to the access point. The access point transmits
the policy to the cluster-head which transmits the policy
to sensor nodes. The sensor node with data informs the
agent and the agent returns the resulting sensor data to
the cluster head. The agent returns to the access point
if received data is not from the target node.

The main advantage of this system is the adaptabil-
ity and reconfigurability of network management since
agents are active all the time. Furthermore, policy agents
organised in a hierarchy can be used to perform network
management functions either locally or globally. Users
can flexibly inject new management functions into the
system. The system ensures survivability by allowing an
agent to replace another agent’s management role in the
event of failure. However, this method does not provide
details for implementation of the proposed mobile agent-
based management framework.

3. Sectoral Sweeper

Erdogan et al. [30] propose sectoral sweepers (SS) for
managing a wireless sensor network. A sectoral sweeper
is placed in the network to manage a region of the net-
work. A sweeper acts as a distributed manager that di-
rectly disseminates tasks to sensor nodes within its region
of responsibility by broadcasting. This approach reduces
network energy consumption by eliminating the need for
multi-hop transmissions to deliver a task to target nodes.
Sensor nodes that are not involved in disseminating a
task, may sleep to conserve their energy.

In the sectoral sweepers system (SS), the end user con-
trols the network by determining the size of task region,
resizing a task region, and terminating a task. A sweeper
specifies the size of a task region Each task contains de-
scriptions associated with a region and this allows sen-
sor nodes to be assigned multiple tasks. For example,
the end user can activate or deactivate nodes within a
certain region in the network at any time. Sensor nodes
use task descriptors and received signal strength to check
if they are within a sweeper task region. Initially, sen-
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sor nodes are in SLEEPING mode until they receive a
ROUTE or ENGAGE task. They wake up regularly to
check for tasks from a sleeper. When they receive a task,
they switch to ENGAGE state if they have to perform
the task specified by the sweeper, or switch to ROUTE
state if they need to forward messages for other nodes to
the sink. Nodes outside the task region can continue to
sleep to conserve energy.

An advantage of the sectoral sweeper system is that
it allows users to manage different parts of the network
with independent or overlapping management functions.
The distributed management approach reduces message
implosion problems at the sink, reduces redundant data
traffic by limiting the number of nodes involved in per-
forming a task, and reduces latency between the sensor
data polling and response arrival by eliminating the need
for multiple hops to deliver tasks and task results from
and to the sink. In addition, sleepers can be implemented
above any MAC, network and transport layer protocol.
The main drawback of SS is that it requires a manual
configuration of sweeper placement. Since SS manages
the network in a sectoral manner, users need to strategi-
cally place sweepers in the field.

4. Intelligent Agent-Based Power Management

Tynan et al. [23] have designed an intelligent agent-
based power management system (IABP) using the Be-
lief, Desire and Intention paradigm [40]. In IABP, beliefs
represent states of sensor nodes that an agent holds to
be true. Commitment rules (or desires) are pre-defined
conditions to evaluate beliefs. If beliefs match commit-
ment rules, the corresponding commitment management
function (intention) will be executed. This agent-based
approach is designed for applications where only a par-
tial view of the state of the network as a whole can be
known at any one location or time [23].

IABP agents make power management decisions lo-
cally based on requirements of an application [23]. By
using agents, information exchange between nodes in a
neighborhood in order to make a local decision can be
eliminated since agents collect node data and process it
to meet a specified goal. For example, the base station
could inject a mobile agent into a sensor network to eval-
uate battery level of sensors in the network. This agent
could also command nodes to reduce the sampling rate of
sensors if their battery level is low. This scheme allows
the base station to assess network states locally rather
than gathering sensor node states to the base station.

Power management is also strongly related to other
network attributes such as coverage, accuracy, battery
longevity, and latency. The proposed agent-based ap-
proach [23] can perform complex decision making for var-
ious energy saving strategies. Users can specify desired
sampling frequency, transmission range, and node mo-
bility. Agents can be used to redirect traffic or change a
link between nodes in the network to ensure a balance be-

tween energy conservation and network coverage. When
a node’s battery level is critical, the agent finds another
nearby node that can forward data. End users can also
control sampling frequency by commanding sensor nodes
to transmit only when there is something worth report-
ing. The energy preserved by reducing transmissions al-
lows a greater sampling rate of sensor nodes, which usu-
ally increases the accuracy of sensor data. However, when
data polling rates are reduced, there is a risk of missing
a crucial event. End users can command that nodes re-
duce their transmission power in order to conserve power.
However, since reducing transmission power reduces com-
munication range, this scheme may compromise network
connectivity. The degree of agent mobility freedom al-
lowed in the network can influence the latency of data
collected from sensor nodes to the user.

D. Debugging Tools

1. Sympathy

Sympathy, is a debugging system developed to identify
and localize the cause of failures in sensor network appli-
cations by collecting network performance metrics with
minimal memory overhead, analysing the metrics to de-
tect events, and identifying spatiotemporal context of the
events [19]. Failures in sensor networks may be due to in-
teractions among several nodes. Sympathy provides a de-
bugging scheme to detect this type of failure by analysing
the correlation between events. Sympathy collects met-
rics that represent states of the network and are gathered
directly from the application. Sympathy defines metrics
for inferring network health, fault detection (e.g. route
flapping, next-hop selection, and packet loss), and other
events specific to sensor networks. Sympathy updates
metrics as they change and significant changes in metrics
trigger events. For example, after the network is config-
ured, nodes’ initial neighborhood list, routes, and connec-
tivity are known. Sympathy then tracks any occurrence
of following events: missing node, isolated node, route
change, neighbor list change, and link quality change.

Sympathy has two types of nodes: a Sympathy-sink
and a Sympathy-node. The Sympathy-sink is a node that
requests data from the Sympathy-node. The Sympathy-
node is a sensor node in the network that collects and
monitors network metrics, detects environmental events,
and provides requested data to the sink. To minimize en-
ergy consumption, a Sympathy node may decide to trans-
mit detected events selectively to the Sympathy sink.
The Sympathy-sink uses a flooding approach to request
sensor nodes to send their event data and current metric
states. After receiving the metrics, the Sympathy-sink
analyses them to process the event context. When the
Sympathy-sink detects an event, it provides a temporal
context by retrieving historical metrics associated with
the node causing the trigger and also neighbors of the
node. The Sympathy sink can probe the root cause of
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the problem (event) by injecting a request to the network
to collect the neighborhood information of that node.
Once the Sympathy sink verifies the hypothesis of the
root cause, it informs clients interested in that event. For
example, if the next-hop-metric changes frequently, this
event may indicate bad route configurations or network
instability. In Sympathy, most event detection schemes
require nodes only to send their metrics to their local
one-hop neighbors. The sink, with global knowledge of
the network, is only used to identify the missing-node
event.

A strength of Sympathy is its ability to highlight
failures and localize their cause by correlating detected
events with metrics to determine their spatio-temporal
context. Traditional debugging and fault detection tech-
niques often assume that wireless nodes have unlimited
resources and nodes fail as a result of local causes. Sym-
pathy takes into account interactions among multiple
nodes, provides a mechanism to analyse the context of an
event, maintains network states, and identifies events of
interest proactively. In these ways, Sympathy is superior
to traditional debugging techniques. However, Sympathy
does not provide automatic bug detection, it relies on his-
torical data and post-mortem analysis of metrics in order
to isolate the cause of failure. Furthermore, in detecting a
fault, Sympathy may require nodes to exchange neighbor-
hood lists. This approach is expensive in terms of energy
consumption and delay associated with node communi-
cation. Moreover, Sympathy’s flooding approach means
that the Sympathy sink may have imprecise knowledge of
global network states and so may make inaccurate anal-
yses.

2. Two-Phase Self-Monitoring System

Hsin and Liu [18] propose an efficient distributed self-
monitoring mechanism, called a two-phase self monitor-
ing system (TP). TP is designed for monitoring and
surveillance applications of sensor networks. In these ap-
plications, health monitoring of individual nodes is im-
portant for detecting malfunctioning nodes and intru-
sions that can result in the destruction of nodes. The
TP system utilizes a two-phase timer scheme for local
coordination and active probing. In the first phase, a
node waits for updates from a neighbor. In the second
phase, a node collaborates with its neighbors to clarify a
condition in order to make a more accurate management
decision.

In TP, fault detection is either explicit or implicit. Ex-
plicit fault detection is performed by nodes analysing
sensor data and triggering an alarm if an event of in-
terest occurs. For example, a node triggers an alarm
if it records a temperature exceeding a pre-programmed
threshold. This scheme offers low energy overhead as
the base station expects nothing unless the nodes report
event triggers. Implicit fault detection refers to the de-
tection of node communication failures that may be due

to energy depletion, intrusion, or environmental factors
such as physical damage to nodes. To detect implicit
faults, continuous monitoring of sensor nodes is required.
TP uses a distributed scheme for monitoring node activ-
ity in which nodes perform both implicit (active moni-
toring) and explicit (passive monitoring) fault detection
based on neighborhood information.

In TP, implicit fault detection is performed between
neighbors and fault alarms are sent to the base station.
Each node sends ‘alive’ update messages to its neighbors
and also monitors its neighbors actively. A TP node uses
a timer, and a node assumes its neighbor is dead if it
has not heard from the neighbor for a predefined pe-
riod of time. Since neighbors monitor each other, health
monitoring information can be propagated throughout
the network. However, this scheme fails when there is a
network partition. Explicit fault detection is performed
through neighborhood coordination and an alarm is sent
to the base station only if nodes have high confidence that
a fault has occurred. When a node detects an event, the
node first exchanges information with its neighbors to
probe the events accuracy before triggering an alarm.

Hsin and Liu [18] propose two performance metrics
to evaluate TPs self-monitoring mechanism: false alarm
probability and response delay. The former is the proba-
bility that a sensor has been deemed dead while it is ac-
tually alive. Response delay is the time between a fault
incident and its detection. TP employs a timeout-based
detection scheme for monitoring a node by maintaining
two timers with values T1 and T2 respectively. For ex-
ample, if node X receives no packets from node Y during
the first timer T1, it activates the second timer T2 before
T1 expires. Node X then consults with other neighbors
regarding the status of node Y during T2. This local
coordination allows node X to justify whether receiving
no packets from node Y is because of noisy radio envi-
ronment or node Y is actually dead.

The performance of TP is strongly influenced by the
timer parameters T1 and T2. A longer timeout can pro-
vide more accurate fault detection (smaller false alarm
probability) but also leads to slower response (longer re-
sponse delay). TP aims to optimize this trade-off. For
a stable environment, TP uses analytical estimates as a
guideline in determining optimal values for T1 and T2.
For a noisy environment, TP allows nodes to dynami-
cally self-tune T1 and T2 values. Nodes use the average
packet reception rate to evaluate environment conditions
and then adjust T1 and T2 accordingly.

The main drawback of TP is that its responsiveness de-
pends on the effectiveness of the routing protocol in prop-
agating the alarm. In [18], a random access type MAC is
used for simulating TP node behaviors. This protocol is
prone to collisions and hence high energy consumption.
Furthermore, TP has no synchronization scheme. Timers
are only updated during packet receptions. Propagation
delay in wireless links causes neighbors to get different
packet reception times and this can result in timer drifts
between neighbors. Moreover, TP is not scalable to a
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very dense network, since each node’s memory may be
insufficient to record its neighborhood tables.

E. Visualisation Tool

1. MOTE-VIEW

MOTE-VIEW [22] is a visualisation tool designed for
monitoring and managing sensor networks. The goals of
MOTE-VIEW are to support users in analysing the large
amounts of data generated by sensor networks, to moni-
tor the health and status of individual sensor nodes and
the network as a whole, and to present meaningful infor-
mation to the end user. MOTE-VIEW uses a centralised-
management approach in which all data and management
processing is performed centrally by the server.

The MOTE-VIEW architecture consists of four lay-
ers. First, the Data Access Abstraction Layer is the
database server interface that is used to retrieve sensor
nodes data. Second, Node Abstraction Layer is an in-
terface that stores sensor nodes’ metadata (e.g. name,
configuration, and calibration coefficient). This layer en-
ables the end user to retrieve or change node parameter
settings, such as radio frequency, power selection, sam-
ple rate, and custom calibration. Third, Conversion Ab-
straction Layer is responsible to calibrate and covert raw
sensor data (digital readings) into engineering units that
are understandable to the end user. Lastly, Visualization
Abstraction Layer provides a textual and graphical dis-
play of sensory and link quality data in forms of spread-
sheets, charts, or a network topology. Furthermore, this
layer enables the end user to browse through historical
data in a temporal context. For example, MOTE-VIEW
creates animated movies of collected data.

In MOTE-VIEW, sensor nodes forward their data to
the base station where it is collected by the central server
that sits in the Data Access Abstraction Layer. The
end-user makes management queries in the Visualization
Abstraction Layer, such as querying the health or bat-
tery life expectation of a node, link quality, and network
throughput. MOTE-VIEW employs a color coding tech-
nique to visualize the health of a node or a network. For
example, if the base station receives no readings from
a particular node for a period of time, the visualizer
changes the color of the node from green to orange to
indicate that the sensor readings are outdated.

MOTE-VIEW provides a plug-in facility to support
modular extension for all of its four layers. It provides
a data aggregation technique for presenting multiple and
complex data sets in which it visualizes data from a spec-
ified set of nodes instead of individual node data. The
modular design and advanced visualisation techniques of
MOTE-VIEW allow it to scale as the network grows.
Since the central server performs all post-mortem analy-
sis of data collected by the sensor network, MOTE-VIEW
removes the computational burden for management pro-
cessing from resource-constrained sensor nodes. How-

ever, this passive monitoring approach does not allow
networks to self-configure themselves in the event of node
failures, which is desirable in most sensor network appli-
cations. Furthermore, the update interval of the network
is often set to be slow to conserve node energy consump-
tion, which compromises the accuracy of the reported
network state.

F. Power Management Systems

Energy is one of the most important resources to be
managed in a sensor network because sensor nodes are
mostly battery powered and in many cases it is imprac-
tical to recharge these batteries [41]. Several researchers
propose sensor management schemes that aim to provide
control power consumption in WSNs in order to achieve
energy-efficiency, including SenOS [9], AppSleep [24], and
node-energy level management [25]. There are also other
protocols that incorporate methods for reducing energy
consumption. SPAN [42] and STEM [43] allow nodes
to sleep if they are not involved in a forwarding task.
LEACH [44] uses an in-network data aggregation method
to filter redundant data in a dense sensor network and so
reduce the number of transmissions.

1. SenOS

SenOS is a finite state machine based operating sys-
tem that embeds a power management protocol into sen-
sor nodes [9]. SenOS assumes that redundant nodes are
placed in a cluster for alternating operation in order to
prolong the clusters lifetime. It only keeps one node alive
in a cluster for a period of time, while other nodes are
put to sleep to conserve power. To achieve this, SenOS
utilizes Dynamic power management (DPM) [37], a com-
prehensive algorithmic power management technique, to
shut down nodes when not needed and to wake up nodes
when necessary. DPM provides a policy for determin-
ing state transitions based on observed events in order to
maximize energy efficiency. SenOS expresses state tran-
sitions produced by DPM in a finite state machine model
and executes the power management of networked nodes
based on this model. The state-driven SenOS frame-
work is extensible to other sensor management proto-
cols. However, the proposed network management pro-
tocol is limited to SenOS operating system-based sensor
networks.

2. AppSleep

AppSleep is a stream-oriented power management pro-
tocol that extends the sleeping period of sensor nodes
based on knowledge of scheduled communications in a
network, while still providing low latency responses for
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unscheduled communication when necessary [24]. App-
Sleep is designed for low duty cycle sensor network appli-
cations with bursty, delay insensitive data transmission.
For example, a manufacturing monitoring application in
which sensor nodes monitor the vibration of industrial
equipment in order to predict future mechanical failures.
In this application, sensor nodes periodically transmit
data to the base station in a bursts. Users usually query
the network after analysing the collected periodic data.
AppSleep implements the power management function
on the application layer to enable it to manage sleep
schedules based on streams of packets instead of indi-
vidual packets. Basically, AppSleep keeps nodes that are
involved in multi-fragment data transfers awake, while
putting other nodes to sleep.

In [24], Ramanathan et al. uses a hierarchical archi-
tecture with each cluster head acts as a manager that
enforces AppSleep scheme. The cluster head periodically
propagates a SYNC message that specifies when nodes in
its cluster should wake up or sleep, the relative time for
the cluster to return to sleep, and the waiting period for
the next SYNC message. This scheme ensures that all
nodes in the cluster sleep and wake at the same time and
nodes stay awake during scheduled multi-hop transmis-
sions. Guaranteeing that nodes on a path to the base sta-
tion are awake eliminates the need for buffering because
each active node forwards messages immediately to the
next hop. AppSleep provides fault tolerance by allowing
a node to stay awake and to request a SYNC message
when it does not receive a scheduled SYNC packet or
has not received a SYNC packet to join the network, for
a new node. Increasing time synchronization frequency
reduces clock drift but reduces the energy efficiency of
AppSleep.

Ramanathan et al. [24] also propose Adaptive App-
Sleep allowing applications to adapt their behaviour ac-
cording to latency and energy trade-offs specified by the
user. To achieve this, AppSleep maintains a state ma-
chine and utilizes the periodic sending of SYNC messages
to allow the user to specify the number of states (wake or
sleep), the time spent in each state, and the initial sleep
period of nodes in the network. For example, the user can
command nodes in a cluster to be in an idle state after
periodic data collection in order to be ready for any user
query before sleeping again. Alternatively, the user can
schedule a short sleep period immediately after a periodic
data collection because during this period, unscheduled
requests (event triggers or user queries) are unlikely to
happen. The second scheme trades response latency for
increased energy savings.

AppSleep’s stream-based scheme is more energy effi-
cient than packet-based protocol such as BMAC [45]. In
BMAC, each node must listen to all control messages of
its neighboring nodes to determine whether it is the in-
tended receiver of the packet or not before going back
to sleep. AppSleep is robust to changes in neighborhood
density and it supports a scheme allowing applications
to configure themselves to meet various latency require-

ments while maximizing energy efficiency. A limitation
of AppSleep is that in order to take advantage of its en-
ergy saving scheme, applications must be able to tolerate
long communication delay. Since AppSleep’s operation
depends on the routing layer, the chosen routing proto-
col should accommodate AppSleep characteristics: when
active routes change, the routing protocol should be able
to re-establish new routes at the beginning of wake pe-
riod; and the routing protocol should ensure that selected
routes for data transfers are active during the entire wake
up period.

3. Node-Energy Level Management

Many different application tasks may be injected into
a sensor network. It is desirable for the network to be
able to accept or reject a task based on energy costs,
merits, and objectives of the task in meeting overall user
goals [25]. In a system-level approach, each application
needs to have complete knowledge of all other applica-
tions and this results in a large traffic overhead for node
communications. To address this issue, Boulis and Sri-
vastava [25] propose a mechanism that solves the energy
management problem at the node level instead of the sys-
tem level, whereby nodes can make local decisions about
accepting tasks. Applications do not need to directly
communicate with each other.

The proposed node-energy level management evaluates
three attributes in deciding whether to accept or reject
a task: energy attributes, reward attributes, and admis-
sion policy attributes. Energy attributes are a list of ser-
vice names, each containing parameters that define the
service usage, that is the energy cost, of a specific task.
These parameter values are pre-programmed when a task
is created. Reward attributes specify the users priority
and application reward: the level of information accuracy
provided by a node in meeting overall management goals.
For example, when a task is assigned to a node, the node
evaluates the task’s energy cost against its reward and
arrives at a composite measure that is used to determine
whether the task is beneficial to the user. Based on ad-
mission policies such as a node’s remaining energy, nodes
decides whether to accept or reject a task. Since nodes
may receive multiple tasks or already be running a set of
tasks, each node needs to keep a usage profile for each
received task in order to measure accurately the energy
saving gained by rejecting a certain task. A drawback of
this scheme is that it increases the data storage require-
ments and computational cost of task execution.

G. Traffic Management Systems

1. Siphon

Siphon is an on-demand overload traffic management
system [26]. It uses a small number of wireless multi-
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radio virtual sinks to prevent congestion at or near base
stations. Siphon proposes distributed algorithms that
provide virtual sink discovery and selection, congestion
detection, traffic redirection, and congestion avoidance
in the secondary radio network. Virtual sinks (VSs) are
intermediaries between sensor nodes and base stations in
the network and are responsible for redirecting data from
regions of the sensor network that have increasing traffic
loads.

Siphon uses an in-band signaling approach to allow
nodes with data overload to discover local VSs that could
be multiple hops away. Siphon does this by piggybacking
a signature byte into a control packet that is periodically
advertised by the base station. The signature byte con-
tains the scope (hop-count) of a VS and this information
is used to control the visibility of the VS to nodes in its
neighborhood. Siphon uses two techniques to detect con-
gestion: node-initiated congestion detection and physical
sink initiated post-facto congestion control. Siphon uses
a CSMA-based congestion detection technique [46] to de-
tect local congestion, whereby a VS redirects the traffic
of nodes within its visibility when their data generation
rates exceed a predefined threshold. Siphon also per-
forms post-mortem analysis of event data at the base
station. Siphon activates VS signaling originating at the
base station if the reliability of the network degrades be-
low a predefined threshold. This scheme is useful for
preventing congestion close to the base station. Siphon
uses a secondary radio network to propagate VS signaling
in a timely manner without interfering with the opera-
tion of the primary-radio network. In addition, a VS
constantly monitors its congestion level on both primary
and secondary radio channels to avoid congestion at any
channel. When a channel is overloaded, a VS may not
advertise its existence or may reduce its service scope. If
both channels are overloaded, Siphon uses a traditional
fallback mechanism such as controlling data rates at the
source node and at forwarding nodes to ease congestion.

Advantages of Siphon are that it prevents the funnel-
ing effect at a base station from the many-to-one traf-
fic pattern and it is able to accommodate various traffic
load demands in a network. Furthermore, the VS second-
radio infrastructure allows traffic redirection in a timely
manner without degrading the performance of forward-
ing operations in the primary-radio network. Lastly, VS
can detect congestion locally and globally. Global con-
gestion detection performed by the base station is ben-
eficial for avoiding premature funneling problems. Dis-
advantages of Siphon are that it requires pre-deployment
expertise in determining the optimal VS scope (value of
hop-count) under different conditions, distributing or se-
lectively placing virtual sinks across the sensor field, and
determining the minimum number of virtual sinks re-
quired to achieve optimum traffic management perfor-
mance. In addition, the monetary cost for deploying a
multi-radio sensor platform is much higher than a single-
radio platform. A VS with a large number of hop counts
may create a funneling problem at the VS. In contrast, a

VS with smaller hop counts provides shorter redirection
paths from congested nodes to it and hence improves
delivery latency and energy consumption. However, it
requires the application to deploy more VSs to cover the
network and this increases the cost of deploying the net-
work, defeating the benefit of using fewer VSs. Further-
more, some nodes may not be covered by any VS as a
result of random distribution or limited availability of
VSs in a sensor network.

2. DSN Resource Management

Zhang et al. [27] propose a resource management
technique for task oriented distributed sensor networks
(DSN) that avoids network congestion while meeting the
overall objectives of the network. They propose a ‘per-
flow’ method to analyse data streams among nodes at
different hierarchical levels of the DSN. In DSNs, the de-
cision stations act as managers for each hierarchical level.
Each manager gathers data from nodes in its level, pro-
cesses their data, and sends the resulting information to
the next level manager for further processing. Thus, the
information produced at lower levels affects the manage-
ment decision making process at higher levels, and low
level information can be used to meet global objectives
set by the highest level.

The per-flow method provides a set of measures for
evaluating the importance (degradation and relevance)
of incoming data associated with each link at a node. It
uses fuzzy logic techniques to determine suitable degrada-
tion and relevance values. Basically, each node in the net-
work assigns three weight measures to each of its network
links: 1) data quality measured at the node’s parent, 2)
data timeliness: latency incurred for data to arrive at
the node, and 3) data significance in achieving the over-
all DSN objectives, measured at the node’s child. These
measurements are used to allocate resources among nodes
in a network in which higher weight links get priority over
lower weight links. This scheme can reduce data flows in
the network and hence prevent network congestion.

An advantage of per-flow priority-based resource man-
agement is that it integrates and propagates relevant in-
formation from the network for achieving the overall ob-
jectives of a DSN, hence providing intelligent resource
management and congestion avoidance. A limitation of
the proposed technique is that its effectiveness depends
on finding reliable data weight values, which are prone
to WSN uncertainties.

H. Applications with Network Management
Functions

In addition to applications dedicated to network man-
agement, many WSN applications incorporate network
management functions. For example, TinyDB [21] is a
query-based processing system for extracting informa-
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tion from sensors in a network. It maintains meta-data
describing the types of sensor readings available in the
network. It also provides a network topology map to
manage the network by monitoring connectivity among
nodes, maintaining routing tables, and ensuring that ev-
ery sensor node in the network delivers its data to the
end user efficiently [21]. A limitation of TinyDB from
a management perspective, is that it requires the hu-
man manager to control network management operations
manually and to interpret the collected management in-
formation. Hence, it is necessarily a reactive system in
which nodes cannot manage their own behavior based on
their sensor readings and topology changes are difficult
to capture [1]. Zhao et al. [47] utilize in-network aggrega-
tion of network states to provide an abstraction of sensor
network health, such as a residual energy scan that rep-
resents the remaining energy level of sensor nodes [48].

In WSNs, sensor nodes may have overlapping coverage
areas and so these nodes produce redundant data. It is
beneficial for energy conservation to shut down redun-
dant nodes temporarily or reduce their reporting rates.
Tilak et al. [49] propose a congestion avoidance scheme
that modifies sensor node reporting rates when the data
collected has met a desired reliability. This scheme can
reduce the number of transmissions in the sensor network
and so prevent network congestion.

Perillo and Heinzelman [28] propose a sensor manage-
ment optimization method to maximize the lifetime of a
sensor network while meeting a desired level of reliabil-
ity. The balance is achieved by selecting and scheduling
a set of nodes to be active in monitoring the environ-
ment and determining how long and how the data from
these nodes should be routed in the network. Redundant
nodes are turned off during this time. The management
scheme is designed for event-driven applications in which
event triggers occur infrequently and only for a short pe-
riod of time. A set of active nodes is valid if the total
bandwidth requirement of the set is within the network’s
bandwidth capacity and the set meets the desired reliabil-
ity level. Furthermore, the management scheme models

the scheduling and routing requirement as a generalized
maximum flow graph problem in order to ensure that ac-
tive nodes are routed as often as possible. A drawback
of the proposed scheme is that the optimization algo-
rithm for solving the graph problem is computationally
too complex and expensive for resource-constrained sen-
sor nodes.

V. SUMMARY

The sensor network management systems reviewed in
this chapter have been designed from many different
management perspectives: network-health monitoring,
fault-detection, traffic management, congestion avoid-
ance, power management, and resource management.
The systems are characterized by their power consump-
tion, memory consumption, bandwidth consumption,
fault tolerance, adaptability, and scalability. None of
the reviewed systems provides a fully integrated view
of all sensor network management design factors. Fur-
thermore, most of these systems incorporate manage-
ment functions within application protocols. The devel-
opment of general purpose network management layer
protocols is a challenging problem and remains a largely
unexplored area for wireless sensor networks. Another
significant open problem is the development of manage-
ment policies and expressive languages or metadata for
representing management policies and for representing
the information exchanged between sensor nodes, man-
agers, and end users.
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