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ABSTRACT 

Many sensor network applications require location 
awareness, but it is often too expensive to include a GPS 
receiver in a sensor network node.  Hence, localization 
schemes for sensor networks typically use a small number 
of seed nodes that know their location and protocols 
whereby other nodes estimate their location from the 
messages they receive.  Several such localization tech-
niques have been proposed, but none of them consider 
mobile nodes and seeds.  Although mobility would appear 
to make localization more difficult, in this paper we 
introduce the sequential Monte Carlo Localization method 
and argue that it can exploit mobility to improve the 
accuracy and precision of localization.  Our approach does 
not require additional hardware on the nodes and works 
even when the movement of seeds and nodes is 
uncontrollable.  We analyze the properties of our technique 
and report experimental results from simulations. Our 
scheme outperforms the best known static localization 
schemes under a wide range of conditions. 

Categories and Subject Descriptors 

C.2.1 [Computer Systems Organization]: Network 
Architecture and Design – Distributed networks, Wireless 

communication; G.3 [Mathematics of Computing]: 
Probability and Statistics – Probabilistic algorithms 

(including Monte Carlo). 

General Terms 

Algorithms, Design, Experimentation. 

Keywords 

Localization, sensor networks, mobility, Monte Carlo 
Localization. 

1. INTRODUCTION 
Location awareness is important for wireless sensor 
networks since many applications such as environment 
monitoring, vehicle tracking and mapping depend on 
knowing the locations of sensor nodes.  In addition, 
location-based routing protocols can save significant energy 
by eliminating the need for route discovery [25, 26, 32] and 
improve caching behavior for applications where requests 
may be location dependent [28].  Security can also been 
enhanced by location awareness (for example, preventing 
wormhole attacks [22, 24]). However, putting GPS 
receivers in every node or manually configuring locations is 
not cost effective for most sensor network applications.  

Recently some localization techniques have been proposed 
to allow nodes to estimate their locations using information 
transmitted by a set of seed nodes that know their own 
locations (for example, because they have GPS receivers). 
These techniques are described in Section 2. They all suffer 
from one or both of these problems: 

1. Dependence on special hardware.  Techniques that 
depend on measuring ranging information from signal 
strength [2], time of arrival [43], time difference of 
arrival [40] or angle of arrival [36] require hardware 
that is typically not available on sensor nodes. Adding 
the required hardware increases the cost and size of the 
nodes.  

2. Requirement for particular network topologies.  Most 
techniques require seed nodes to be numerous and 
evenly distributed so they can cover the whole network. 
But prior deployment of seeds is not possible in many 
sensor network applications (for example, sensor nodes 
dropped from plane over a hostile territory). Hop count 
based techniques [35, 34] avoid the need for a large 
number of seeds, but instead require dense and uniform 
node distribution. 

We are interested in performing localization in a more 
general network environment where no special hardware for 
ranging is available, the prior deployment of seed nodes is 
unknown, the seed density is low, the node distribution is 
irregular, and where nodes and seeds can move 
uncontrollably.  Although mobility makes other localization 
techniques increasingly less accurate, our technique takes 
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advantage of mobility to improve accuracy and reduce the 
number of seeds required. 

We consider a network composed of nodes with unknown 
locations and seeds that know their locations. We are 
interested in three kinds of scenarios:  

1. Nodes are static, seeds are moving.  For example, a 
military application where nodes are dropped from a 
plane onto land, and transmitters attached to soldiers or 
animals in the area are used as moving seeds. Each 
node�s location estimate should become more accurate 
as time passes and it receives information from more 
seeds.   

2. Nodes are moving, seeds are static.  One example 
would be nodes floating in currents along a river and 
seeds at fixed locations on the river banks.  A more 
concrete, but less worldly, example is NASA�s Mars 
Tumbleweed project [1].  It proposes a low cost way to 
explore large areas on Mars by having rovers with 
sensors that are blown over the surface by the wind, 
with minimal or no control over their movement.  Of 
course, GPS does not work on Mars, but it may be 
possible to establish fixed landmark seeds or 
positioning from orbiters [31].  For these scenarios, 
each node�s location estimate will fluctuate around its 
current actual location: as time passes, old location 
information becomes inaccurate since the node has 
moved, but as new seed information is received the 
location estimate is revised.   

3. Both nodes and seeds are moving. This is the most 
general situation.  It applies to any application where 
the nodes and seeds are both deployed in an ad hoc 
way, and move either because of the environment they 
are in (wind, currents, etc.) or because they have 
actuators for motion.   

Next we provide background on previous localization work.  
In Section 3, we introduce our localization algorithm.  The 
algorithm is analyzed in Section 4.  Section 5 reports on 
simulated experiments and compares our results with other 
localization techniques.  

2. BACKGROUND 
Extensive research has been done on localization for 
wireless networks.  A general survey is found in [20].  
Here, we provide only a brief survey focusing only on 
localization techniques suitable for ad hoc sensor networks.  
The approaches taken to achieve localization in sensor 
networks differ in their assumptions about the network 
deployment and the hardware�s capabilities.    

Centralized localization techniques depend on sensor nodes 
transmitting data to a central location, where computation is 
performed to determine the location of each node.  Doherty, 
Pister and Ghaoui developed a centralized technique using 

convex optimization to estimate positions based only on 
connectivity constraints given some nodes with known 
positions [11].  MDS-MAP [41] improves on these results 
by using a multidimensional scaling approach, but still 
requires centralized computation.  Requiring central 
computation would be infeasible for mobile applications 
because of the high communication costs and inherent 
delay, hence we focus on distributed localization 
techniques. 

Distributed localization methods do not require centralized 
computation, and rely on each node determining its location 
with only limited communication with nearby nodes.  These 
methods can be classified as range-based and range-free.  
Range-based techniques use distance estimates or angle 
estimates in location calculations, while a range-free 
solution depends only on the contents of received messages.  

Range-based approaches have exploited time of arrival 
[43], received signal strength [2, 37] time difference of 
arrival of two different signals (TDOA) [40], and angle of 
arrival (AOA) [36]. Though they can reach fine resolution, 
either the required hardware is expensive (ultrasound 
device for TDOA, antenna arrays for AOA) or the results 
depend on other unrealistic assumptions about signal 
propagation (for example, the actual received signal 
strengths of radio signals can vary when the surrounding 
environment changes).  

Because of the hardware limitations of sensor devices, 
range-free localization algorithms are a cost effective 
alternative to more expensive range-based approaches [19].  
There are two main types of range-free localization 
algorithms that have been proposed for sensor networks: 
local techniques that rely on a high density of seeds so that 
every node can hear several seeds, and hop counting 
techniques that rely on flooding a network. 

Local Techniques.  In the Centroid method [6], each node 
estimates its location by calculating the center of the 
locations of all seeds it hears.  If seeds are well positioned, 
location error can be reduced [7], but this is not possible in 
ad hoc deployments.  The APIT method [19] isolates the 
environment into triangular regions between beaconing 
nodes, and uses a grid algorithm to calculate the maximum 
area in which a node will likely reside. Since APIT 
typically assumes a larger radio range for seed nodes and 
hence has high seed density, it is not reasonable to compare 
it to our technique directly. 

Hop-Counting Techniques.  To provide localization in 
networks where seed density is low, hop-counting 
techniques propagate location announcements throughout 
the network.  DV-HOP [35] uses a technique based on 
distance vector routing.  Each node maintains a counter 
denoting the minimum number of hops to each seed, and 



                                    

updates that counter based on messages received.  Seed 
location announcements propagate through the network.  
When a node receives a new seed announcement, if its hop 
count is lower than the stored hop count for that seed, the 
recipient updates it hop count to the new value and 
retransmits the announcement with an incremented hop 
count value.  The Amorphous localization algorithm [34] 
uses a similar approach.  The coordinates of seeds are 
flooded throughout the network so each node can maintain 
a hop-count to that seed. Nodes calculate their position 
based on the received seed locations and corresponding hop 
count.    

None of these schemes target the case where nodes or seeds 
can move.  They can be adapted for mobile networks by 
refreshing location estimates frequently, but are not 
designed with any consideration for how mobility can be 
exploited to achieve localization.  The only work we are 
aware of that considers localization with mobile nodes is 
Bergamo and Mazzini�s [3].  They considered mobility of 
nodes only and assumed a network with two seeds at fixed 
locations that can transmit across the entire network, and 
nodes that are able to measure signal strength accurately.  
Instead of using mobility to improve localization, they 
studied how mobility makes localization more difficult and 
found that errors increased with increasing node speed. 

On the other hand, the mobile localization problem has 
been extensively studied in robotics. Robotics localization 
work usually assumes a prior or previously learned map, 
and tries to determine the robot�s position based on its 
motion and sensor data. If both the motion and the 
measurement model can be described using a Gaussian 
density, and the initial state is also a Gaussian, then a 
classical Kalman filter [33] can be used. Grid based 
Markov localization [4, 5] has been proposed to deal with 
multimodal and non-Gaussian densities. However, the grid 
representation can impose a significant memory and 
computational burden, especially if one is interested in high 
resolution. 

Ladd et al. used a robotics localization approach to achieve 
accurate localization for wireless networks by using learned 
variation in RF signal strengths received using standard 
Ethernet cards [29, 30].  Their approach performs well for 
indoor localization in fixed environments, but assumes 
fixed seed locations and requires a learning phase, so is not 
well suited to mobile sensor network applications.    

Our work adapts the Monte Carlo localization (MCL) 
method [10, 42] developed for use in robotics localization 
for use in mobile sensor network applications.  MCL is a 
particle filter combined with probabilistic models of robot 
perception and motion. It outperforms other proposed 
localization algorithms in both accuracy and computational 
efficiency. The key idea of MCL is to represent the 

posterior distribution of possible locations using a set of 
weighted samples. Each step is divided into a prediction 
phase and an update phase. In the prediction phase, the 
robot makes a movement and the uncertainty of its position 
increases. In the update phase, new measurements (such as 
observations of new landmarks) are incorporated to filter 
and update data. The process repeats and the robot 
continually updates its predicted location. 

Like our work, MCL applies the Sequential Monte Carlo 
method [18] to achieve localization. However, there are 
substantial differences between robot localization and node 
localization for sensor networks. While robot localization 
locates a robot in a predefined map, localization in sensor 
networks works in a free space or unmapped terrain. 
Second, a robot has relatively good control and 
probabilistic knowledge of its movement in a predefined 
map.  A sensor node typically has little or no control of its 
mobility, and is unaware of its speed and direction.  Third, 
a robot can obtain precise ranging information from 
landmarks, but a sensor node can only learn that it is within 
radio range. Finally, in robot localization, the individual 
measurements are integrated multiplicatively, assuming 
conditional independence between them, and the weights of 
samples need to be normalized after updating. In our 
algorithm, due to the constraints in computing and memory 
power, we adopt a filtering approach in which each 
measurement can be considered independently, and the 
weight of each sample is either 0 or 1. 

3. LOCALIZATION PROTOCOL 
The constraints in sensor nodes and ranging precision make 
localization for mobile sensor nodes a more difficult 
problem than robot localization.  On the other hand, scale 
can be used to our advantage.  The many nodes in a sensor 
network  can cooperate to share location information. 

We assume time is divided into discrete time units. Since a 
node may move away from its previous location, it needs to 
re-localize in each time unit. We are interested in obtaining 
the probabilistic distribution of a node�s possible locations. 
As a node moves in the network, prior location information 
will become increasingly inaccurate. On the other hand, 
there are new observations from seed nodes that are able to 
filter impossible locations. The posterior distribution of a 
node�s possible locations after movement and observation 
is not easy to determine. Except for a few special cases 
including linear Gaussian state space models (Kalman filter 
[33]), it is impossible to evaluate the distribution 
analytically [12]. 

The Sequential Monte Carlo (SMC) method [18] provides 
simulation-based solutions to estimate the posterior 
distribution of nonlinear discrete time dynamic models. The 
key idea of SMC is to represent the posterior distribution by 



                                    

a set of m weighted samples, and to update them recursively 
in time using the importance sampling method [16]. Since 
the unconditional variance of the importance weights will 
increase [27], re-sampling techniques [39] are used to 
eliminate trajectories with small normalized importance 
weights.  SMC has been successfully applied in target 
tracking [17], robot localization [10] and computer vision 
[23]. We provide a brief introduction below. A more 
detailed introduction can be found in [13], and an overview 
and discussion of SMC�s properties can be found in [12]. 

3.1 Location Estimation Algorithm 
The mobile localization problem can be stated in a state 
space form as follows. Let t be the discrete time, lt denote 
the position distribution of the node at time t, and ot denote 
the observations from seed nodes received between time t-1 
and time t.  A transition equation p(lt | lt-1) describes the 
prediction of node�s current position based on previous 
position, and an observation equation p(lt | ot) describes the 
likelihood of the node being at the location lt given the 
observations. We are interested in estimating recursively in 
time the filtering distribution p(lt | o0, o1, …, ot). A set of N 
samples Lt is used to represent the distribution lt, and our 
algorithm recursively computes the set of samples at each 
time step. Since Lt-1 reflects all previous observations, we 
can compute lt using only Lt-1 and ot. 

Figure 1 shows an overview of the algorithm.  Initially, we 
assume the node has no knowledge about its position, so the 
initial samples are selected randomly from all possible 
locations.  At each time step, the location set is updated 
based on possible movements and new observations.  We 
estimate the location of the node by computing the average 
location of all possible locations in Lt.  For our experiments, 
we assume locations are (x, y) positions in two dimensional 
Cartesian space, but the technique could be used 
equivalently for three dimensions or other location 
representations.  

The steps are described in more detail in the following 
subsections.  In the prediction step (Section 3.2), the node 
uses the transition distribution p(lt | lt-1) to predict its 
possible locations based on previous samples and its 
movement.  In the filtering step (Section 3.3), the node uses 
new information received to eliminate predicted locations 
that are inconsistent with observations.  Re-sampling is 
used to maintain the number of location samples. 

3.2 Prediction 
In the prediction step, a node starts from the set of possible 
locations computed in the previous step, Lt-1, and applies 
the mobility model to each sample to get a set of new 
samples, Lt.  We assume a node is unaware of its moving 
speed and direction, other than knowing its speed is less 

than vmax. So, if in previous step i

tl 1−
 is one possible position 

of a node, the possible current positions are contained in the 

circular region with origin i

tl 1−
and radius vmax.  We use d(l1, 

l2) to denote the Euclidean distance between two points l1 
and l2.  If speeds are distributed uniformly in the interval [0, 
vmax), the probability of current location based on previous 
location estimate is given by a uniform distribution: 

 p(lt | lt-1)  = 
2

1

maxvπ
 if d(lt, lt-1) < vmax 

       0 if d(lt, lt-1) j vmax. 

Hence, the set R computed in the prediction phase contains 
one location selected randomly from the circle of radius 
vmax around every point in L t-1.  This reflects the increased 
uncertainty about the node�s location because of unknown 
motion.  In cases where something is known about the 
node�s motion (for example, that it is moving at a particular 
speed, or that it is more likely to be moving in a certain 
direction), the probability distribution can be adjusted 
accordingly to make better predictions. 

Initialization: Initially the node has no knowledge of its location  N is a constant that denotes the number of samples to 
maintain 
 L0 = { set of N random locations in the deployment area } 

 

Step: Compute a new possible location set Lt based on Lt-1, the possible location set from the previous time step, and the 
new observations, ot. 
 
Lt = { } 

while (size (Lt) < N) do 

    R = {
i

tl | 
i

tl is selected from )|( 1

i

tt llp −
, 

11 −− ∈ t

i

t Ll for all 1 i i i N } Prediction (3.2) 

    Rfiltered = {
i

tl |
i

tl where
i

tl ∈ R and )|( i

tt lop > 0 }   Filtering (3.3) 

 L t = choose (L t ∪ Rfiltered, N)          
Figure 1. Location estimation algorithm. 



                                    

3.3 Filtering 
In this step, the node filters the impossible locations based 
on new observations.  For simplification of presentation and 
analysis, we assume that time is discrete and all messages 
are received instantly.  Hence, at time t, every node within 
radio range of a seed will hear a location announcement 
from that seed.  In a realistic deployment, it would be 
necessary to deal with network collisions and account for 
missed messages. 

Figure 2 shows an example situation.  There are four types 
of seeds to consider: 

outsiders – seeds that were not heard in either the current or 
the previous time quanta.  

arrivers – seeds that were heard in the current time 
quantum, but not in the previous one. 

leavers – seeds were heard in the previous time quantum, 
but not in this one. 

insiders – seeds that were heard in both time quanta. 

Arrivers and leavers provide the most useful information 
since the node will know it was within distance r of l0 at 
time t0, but not within distance r of l1 at time t1.  If we only 
rely on direct information from seeds, however, a node will 
not know the previous location of an arriver, or the current 
location of a leaver.  There are two possible ways to gather 
this information: 

1. A seed node (S) transmits both its current location and 
its location at the previous time step in each 
announcement:  

 S → Region HELLO | IDS | loct | loct-1  

2. Neighbor nodes can transmit information about seed 
locations (the set of all seeds and their locations heard 
in the previous time step):  

 S → Region HELLO | IDS | loct 
 N → Region HELLO | IDN | {( IDS, locS

t
) } 

The second approach is more expensive, but its cost may be 

combined with neighbor discovery in applications that 
require neighborhood information for other purposes.  The 
advantage of the second approach is it also allows nodes to 
discover information about outsider seeds without keeping 
track of arrivers and leavers.  The node knows it is not 
within distance r of any outsider seed, but must be within 
distance 2r of any seed heard by one of its neighbors.  

Figure 3 shows the filter condition for insider and outsider 
seeds. Let S denote the set of all seeds heard by N and T 
denote the set of all nodes heard by N�s neighbors but not 
by N.  Then the filter condition of location l is 

    filter(l) = ∀s ∈ S, d(l, s) ≤ r ∧ ∀s ∈ T, r < d(l, s) ≤ 2r.   

The probability distribution p(lt | ot) is zero if the filter 
condition is false, and evenly distributed otherwise.  Thus, 
we eliminate locations that are inconsistent with 
observations from the possible location set. After filtering, 
there may be fewer than N possible locations remaining. 
The prediction and filtering processes repeat, unioning the 
possible points found, until at least N possible locations 
have been acquired. (Section 5.6 considers how the choice 
of N affects accuracy.) 

4. ANALYSIS 
In this section we justify the importance sampling and re-
sampling approaches used in our algorithm, and analyze the 
accuracy of location estimates produced.  We conclude by 
discussing security issues when localization is used in 
hostile environments. 

4.1 Importance sampling 
We are interested in estimating the posterior distribution of 
the node�s location p(lt | o0, o1, …, ot). Since it is generally 
impossible to sample from the posterior distribution 
directly, our algorithm adopts an importance sampling 
approach.  Suppose samples are drawn independently from 
a normalized importance function �.  Then, we can measure 
the weight of each sample and use these weights to estimate 

 

r 

d 
I II 

III 

l0 l1 

 

Figure 2. Seed Movement. The seed moves from l0 at time 
0 to position l1 on time 1. The seed is an insider for nodes in 
region III, an arriver for nodes in region II, a leaver for 
nodes in region I, and an outsider for all other nodes. 

Direct Seed Indirect Seed

s s

 

Figure 3. Filter condition. A node is within distance r 
if a seed it hears directly, and within distance (r, 2r] of a 
seed it doesn�t hear itself but one of its neighbors hears. 



                                    

the posterior distribution.  

As introduced in Figure 1, we adopt the following recursive 
importance function from [13]: 

  �(lt | o0, o1, …, ot)  = p(l0)∏
=

−

t

k

kk llp
1

1)|(   (1) 

 )|(~~
1

i

tt

i

t

i

t lopww −=    (2) 
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=
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i

ti

t

w

w
w

1

~

~
    (3) 

Equation (1) is the prediction phase, in which a node 
predicts its current possible locations based on previous 
possible locations. Equation (2) is the update phase, in 
which a node updates the weights of the new samples based 
on the received observations. Then, we normalize the 

weights 
i

tw~  to
i

tw  in (3) and use the weighted set ( )i

t

i

t wl ,  to 

simulate the posterior distribution. 

We choose this importance function because it yields the 
recursive calculation of p(lk | lk-1) and p(lt | ot) in equations 
(1) and (2), and the distributions of the two probabilities are 
not hard to calculate, as shown in Section 3.2 and 3.3, 
respectively.  

As shown in [16], under weak assumptions the importance 
sampling converges to the posterior distribution.  

4.2 Re-sampling 

The degeneracy of the importance sampling is unavoidable 
since the unconditional variance of the importance weights 
will increase [27]. The basic idea of re-sampling is to 
eliminate trajectories that have small normalized 
importance weights and to concentrate upon trajectories 
with large weights. A suitable measure of degeneracy of the 
algorithm is the effective sample size Neff [27]. An estimate 
of Neff is given by: 

 

� =

≈
N

i

i

t

eff

w
N

1

2)(

1    (4) 

When Neff is below a fixed threshold Nthreshold, the re-
sampling method needs to be used. 

In our algorithm, since p(ot | lt) is either 1 or 0, the weight is 
always 0 or 1. Assuming there are k 1s in the un-normalized 
N samples, then the normalized weights will consist of k 
values of 1/k and n-k values of 0. From equation (4), we can 
compute 

 k
w

N
N

i

i

t

eff ==
� =1

2)(

1     

So in our algorithm, Neff is exactly the number of valid 
samples. We only need to keep enough valid samples 
(samples with weight 1) to make Neff equal to or above 
Nthreshold. In our algorithm, we set Nthreshold = N, and we 
repeatedly draw samples until we get exactly N valid ones..  
In our simulation experiments described in Section �5.6, we 
find that N=50 is sufficient.  

4.3 Resolution limit  
Suppose nodes are randomly distributed in the network. As 
analyzed in [34], there is a theoretical limit on resolution in 
any range-free algorithm that is based only on connectivity.  

The probability that a node can move a distance d without 
changing connectivity is exactly the probability there are 
seeds that are arrivers or leavers because of this move.  In 
Figure 4, it is exactly the probability that there are no nodes 
in regions I and II. The area of region I and II is 
approximately 4rd.  

If the area of the region that can affect connectivity is krd, 
then and the maximum distance a sensor can move without 

changing connectivity is πr/kn where n is the network 
density [34]. 

In our algorithm we consider both one hop and two hop 
seeds so a position difference would be noticeable if it 
affects either the one-hop or two-hop connectivity.  If we 
assume the node density is high but the seed density is low, 
then a position change of distance d is noticeable if there 
are any seeds within the two-hop area reachable from this 
position, but not from the other position.  The area of that 
region is approximately 4rsd+4(2r)sd = 12rsd.  This assumes 
there is a high density of nodes, so the node has a high 
likelihood of having a neighbor that can hear the new seed.  
So, the resolution limit (maximum distance a sensor can 

move without changing connectivity) is πr/12sd, where sd is 
the seed density. For sd =1, the resolution limit is 0.26r. 

� ��
d

r

 

Figure 4. Resolution Limit. Regions I and II 
are regions that can affect node�s connectivity 
when it moves d distance. 



                                    

4.4 Security 
Although extending our technique to handle hostile 
environments is beyond the scope of this paper, MCL has 
several properties which make it well suited for adaptation 
into a secure localization protocol.  Secure localization is a 
challenging problem that has not yet been studied. 

Previous localization techniques are vulnerable to several 
kinds of attacks, and an attacker may be able to disrupt the 
integrity or availability of all known localization 
techniques.  Without authentication, an attacker may inject 
bogus seeds into the network and announce false locations.  
Techniques like Centroid which estimate the location by 
averaging the locations of all seeds heard are susceptible to 
this attack.   

Digital signatures can prevent bogus seeds from injecting 
bogus location messages by authenticating seeds� 
transmissions to nodes.  This could be done by distributing 
public keys corresponding to the seeds� private keys to each 
node before deployment.  Public key encryption operations 
are often too computationally expensive for sensor nodes, 
however, and the long messages required drain power 

resources.  Another approach would be to use the µTesla 
protocol [38], by preloading each node with the initial hash 
chain value and each seed with the initial secret.  This 
would save the expense of public key operations, but would 
delay localization (or at least verification of locations) until 
the next key in the hash chain is released.  It would also 
require loose synchronization among the seeds. 

Alternative key establishment mechanisms such as random 
key predistribution [14, 9] can establish keys using 
symmetric cryptography.  These techniques require 
bidirectional messages, however, and are not suitable for 
localization techniques where seeds transmit further than 
nodes.  Further, they would require the seed to transmit its 
location directly to each neighbor node, instead of just 
using a single transmission that can be heard and decoded 
by all nodes. 

Note that hop count based algorithms [35, 34] require that 
the hop count is maintained accurately throughout the 
network and empower a single rogue node to disrupt many 
node locations by advertising a false hop count.  If 
authentication is used to mitigate this threat, it requires link 
keys to be established between all communicating nodes.  If 
a single node is compromised, locations throughout the 
network will be disrupted. 

Localization protocols are particularly susceptible to replay 
attacks.  In a wormhole attack, an attacker obtains two 
transceivers in the network connected by a high quality out-
of-band link and replays messages heard at one location at 
the other location [22, 24].  A wormhole attack can easily 
disrupt existing localization techniques (including MCL), 

even if all location announcements were successfully 
encrypted.  Known defenses for wormhole attacks rely on 
either nodes already knowing their locations [22], or require 
specialized hardware such as tightly synchronized clocks 
[22] or directional antennas [21]. 

MCL offers several desirable properties for security 
adaptation.  Since it does not depend on seeds with 
powerful transmitters, bidirectional verification and key 
establishment is possible.  When nodes and seeds move, an 
attacker will only be able to do limited damage.  The MCL 
filtering approach is less susceptible to rogue seeds than 
other approaches.  As long as there is valid information 
received from some legitimate seeds, the estimated 
locations will be bounded by the filtering of all valid 
information. The adversary can at worst prevent the node 
from acquiring any valid samples, and hence determining 
anything about its location.  This is an effective service 
denial attack, but does not compromise the integrity of 
location results.   In addition, since MCL continually 
updates location estimates, an attack will only be successful 
as long as it continues to transmit bogus messages.  

5. EVALUATION 
The key metric for evaluating a localization technique is the 
accuracy of the location estimates versus the communi-
cation and deployment costs.  Increasing the density of 
seeds or the frequency of location announcements should 
improve accuracy, but the tradeoffs need to be understood 
to determine appropriate deployment parameters.  In this 
section, we evaluate the MCL technique by measuring how 
its estimated location errors vary with various network and 
algorithm parameters described in Section �5.1.   
 
In addition, we compare our results to those for other range-
free localization techniques, namely the Amorphous [34] 
and Centroid [6] techniques described in Section �2. 

Our simulation experiments were conducted using a 
purpose-built simulator which is available from 
http://www.cs.virginia.edu/mcl. Experimental results are the 
average of 10 executions with different pseudorandom 
number generator seeds. 

5.1 Simulation Parameters 
In our experiments, we vary parameters of both the sensor 
network and sensor nodes, and of the MCL algorithm. 

For all of our experiments, sensor nodes are randomly 
distributed in a 500m x 500m rectangular region.  We 
assume a fixed transmission range, r, of 50m for both nodes 
and seeds.  The network and node parameters we vary are: 

• Speed of the nodes and seeds (vmax, vmin, smax, smin).  
We represent the speed as the moving distance per 



                                    

time unit. A node�s speed is randomly chosen from 
[vmin, vmax]; a seed�s speed is randomly chosen from 
[smin, smax]. We consider the impact of speeds on both 
accuracy and convergence time. 

• Node density (nd), the average number of nodes in one 
hop transmission range.  We study the effects of 
varying nd in Section �5.5, and use a fixed nd = 10 for 
other experiments. 

• Seed density (sd), the average number of seeds in one 
hop transmission range (considered in Section �5.4). 

 
We adopt the random waypoint mobility model [8] for both 
nodes and seeds. It is one of the most commonly used 
mobility models for mobile ad hoc networks. In the random 
waypoint model, a node randomly chooses its destination, 
its speed of movement, and its pause time after arriving at 
the destination. We assume nodes are unaware of their 
velocity and direction, but have a known maximum velocity 
vmax. As pointed out in [44], the random waypoint model 
suffers from the decay of average speed, and this will 
provide an unsound basis for simulation. We used a 
modified random waypoint model to maintain the average 
speed. Instead of choosing a certain speed for each 
destination, nodes randomly vary their speed during each 
movement. The pause time is set to 0, so the average speed 
is exactly vmax/2 when speed is chosen randomly between 0 
and vmax. In Section �5.8, we consider how different mobility 
models affect the localization accuracy. 

We assume a node can judge if it is within radio range r of 
another node or not, but it can not get more precise distance 
information (for example, measuring distance through 
received radio signal strength).  For most of the 
experiments we model radio range as a perfect circle.  This 
model is not realistic, however, and in Section �5.7 we 
consider the impact of irregularity on location estimates. 

The MCL algorithm parameters we vary are: 

• Time between location announcements (tu).  In most of 
our experiments we assume a fixed tu and measure 
speeds in terms of r distance units per tu.  In Section 
5.3, we consider the effect of varying node speed. 

• Number of samples maintained (N).  Keeping more 
samples improves accuracy but requires more memory 
and computation.  In Section 5.6, we consider how 
location accuracy varies with the number of samples.  
Our results show that a few samples are sufficient for 
high accuracy.  For all the other experiments, we use 
N = 50. 

5.2 Accuracy 
The accuracy of MCL depends on the speeds of the seeds 
and nodes.  As time passes, nodes will receive more seed 
location announcements and improve their location 
estimates. 

Figure 5 shows the error in the location estimate, measured 
as a multiple of the node transmission distance r, for three 
different scenarios: stationary seeds (smax = 0) with nodes 
moving with vmax = .2r and r, and both nodes and seeds 
moving with vmax = smax = r.  The localization process can 
be divided into the initialization phase and the stable phase. 
In the initialization phase, the estimate error decreases 
dramatically as new observations are incorporated. The 
localization is improved by both the current observation 
and previous observations. In the stable phase, the impact 
of observations (filter) and the node�s mobility (uncertainty) 
reach some balance, and the estimate error fluctuates 
around a minimum value. The faster the speed of the seeds 
and nodes, the quicker the stable phase is reached.  The 
post-convergence accuracy is also better for faster moving 
nodes, since by moving quickly they encounter more seeds 
and more rapidly filter our inaccurate samples.  

Unlike the MCL technique, the Centroid and Amorphous 
localization techniques do not exploit past information, so 
they do not improve over time.  Figure 6 compares the 
localization error of different localization techniques over 
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Figure 5. Location convergence. nd = 10, sd = 1. 
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Figure 6. Accuracy Comparison. nd = 10, sd = 1, vmax = 
smax= r. 



                                    

time.  The accuracy of MCL improves quickly.  After 5 
steps, it exceeds the accuracy of the Amorphous technique. 

5.3 Node Speed 
Varying node speed is similar to varying the time between 
location announcements.  If announcements are more 
frequent, localization is more accurate but communication 
overhead increases.  We measure maximum node speed as 
vmax and distribute actual node speeds between 0 and vmax 
using the modified random waypoint mobility model.  
Figure 7 shows the impact of node speed on the converged 
localization error as the distance traveled per announcement 
time unit increases from 0.1r to 2r for a few different seed 
densities and seed velocities.    Node speed impacts the 
localization process in two ways.  The increased speed 
makes the predicted locations less accurate since the next 
possible locations fall into a larger region.  On the other 
hand, faster movement leads to more new observations in 
each time step, and hence more impossible locations can be 
filtered.  The estimate errors drop fast as node speeds 
increase from 0.1r to 0.3r when the seeds are also moving 
at the same speed, and then the error gradually increases as 
the uncertainty resulting from faster movement increases.  
With fixed velocity seeds (smin = smax = r), the error is least 
when nodes are slowest, and increases gradually as node 
speed increases.   

Figure 7 illustrates that the length of time unit can be 
increased without increasing estimate error as long as the 
node�s new location is within r distance of its previous 
location.  MCL performs best when the maximum distance 
nodes and seeds travel from previous location per time unit 
is between 0.4r to r distance.  Hence, in a network with 
slow moving nodes, the time unit can be quite long and 
communication costs are low.   Communication costs are 
analyzed more thoroughly in Section 5.9. 

5.4 Seed Density 
Increasing the density of seeds makes localization easier, 
but increases network and deployment costs.  Figure 8 
shows the average estimate error of different localization 
algorithms when seed density varies. The accuracy of both 
MCL and Centroid improves as seed density increases since 
nodes will receive more location announcements.  For the 
Amorphous technique, since each node receives the 
propagated messages from all seeds in the network, the 
estimate error does not improve much after there are a 
sufficient number of seeds (32 in this experiment).  MCL 
performs adequately even for low seed densities and 
outperforms the other techniques when seed density is 1 or 
above. Since the possible location set accounts for previous 
information about the node�s location, MCL is much more 
accurate than Centroid when seed density is low. 

5.5 Node Density 
Figure 9 shows the impact of node density on estimate error 
in different localization algorithms. MCL and Centroid are 
little affected by node density.  MCL requires a threshold 
node density in order for nodes to receive two-hop 
information from enough neighbors, but a few neighbors is 
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Figure 7. Impact of node speed. 
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Figure 9. Impact of node density.  sd = 1, vmax = smax=.2r.  



                                    

sufficient.  The Amorphous technique depends on higher 
network density. It performs poorly when network density 
is below 6, but performs best when network density is 
larger than 15. This is because network density has great 
impact on the accuracy of hop count. [34] and [19] suggest 
approaches for improving hop counting based techniques 
when the node density is low by increasing the number of 
seed nodes.  

5.6 Number of Samples 
Maintaining more samples for the MCL algorithm can 
improve accuracy, but requires additional memory.  
Figure 10 shows the impact of sample size on location 
accuracy. The estimate error drops rapidly at the beginning, 
since a small number of samples cannot adequately reflect 
the probability distribution. The estimate error is fairly 
stable after sample size 50 and the accuracy improves only 
minimally by increasing the number of samples to 1000. 

Hence, MCL is efficient in both memory and computation.  
Good accuracy is achieved with only 50 samples.  The seed 
density also has an impact on the selection of sample size. 
The higher seed density, the more accurate the localization 
can be, so more samples are required to achieve minimal 
error.  For applications with low seed density and severe 
computation and memory limits, the sample size can be 
reduced to 10 with little accuracy loss. 

5.7 Irregularity 
Variability in actual radio transmission patterns can have a 
substantial impact on localization accuracy depending on 
the localization technique.  Unlike the prefect circles of 
radius r assumed in our previous experiments, the measured 
reception distance of radios can vary substantially with 
environmental conditions and antenna irregularities. 

Figure 11 shows the impact of degree of irregularity on 
estimate error. The MCL and Centroid techniques are not 

substantially affected. We use degree of irregularity (DOI) 
to denote the maximum radio range variation in the 
direction of radio propagation. For example, if DOI = 0.1, 
then the actual radio range in each direction is randomly 
chosen from [0.9r, 1.1r].  The estimate error of the 
Amorphous technique increases significantly as DOI 
increases. This is because the ranging estimate is from the 
propagation of hop count, and it always selects the minimal 
hop count.  Hence, irregular radio transmissions will have 
an accumulating affect on the ranging error in multiple 
hops.  

5.8 Motion Model 
So far, we have assumed that both nodes and seeds move 
randomly and independently.  In some applications, the 
motion of nodes and seeds may be correlated and 
demonstrate some group behavior, and this may affect the 
performance of our algorithm.  

We use the Reference Point Group Mobility model (RPGM) 
[15] to investigate the effect of group behavior on our 
algorithm. In RPGM, the motion of a node is the 
combination of a group motion vector and a random motion 
vector. The random motion is based on a reference point 
that moves according to the group motion. This provides an 
approximation for a group of nodes and seeds moving in a 
current or being blown by the wind. 

We put all nodes and seeds in the same group. The group 
motion is defined as a random walk model [Camp02], in 
which the direction is chosen randomly between 0 and 360 
degrees and the speed is chosen randomly between 0 and 
the maximum group motion speed. Each node�s individual 
random movement relative to the group motion is selected 
using the modified random waypoint model as in previous 
experiments.  To maintain the same group motion for all 
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Figure 10. Impact of Sample Size. nd = 10 
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nodes, we assume there are no boundaries in the network so 
nodes can move freely. If a node cannot find enough valid 
samples after filtering, it will reinitialize itself by 
eliminating previous samples and drawing samples from 
new observations directly.  We also assume a node is aware 
of the maximum distance it can move in one time unit, 
which is the sum of the maximum individual random 
movement and the maximum group motion.  

Figure 12 shows the location accuracy when we keep the 
maximum random motion speed at r per time unit and vary 
the maximum group motion speed.  The estimate error 
increases as the maximum group motion speed increases. 
Since all nodes are moving in the same way, the relative 
positions change less, so the number of useful new 
observations received does not increase with increasing 
group speed. Because the uncertainty in the prediction 
phase becomes larger as group motion speed increases, 
accuracy is substantially reduced when the group motion 
dominates the individual node movement.  

On the other hand, in some applications it may be possible 
to control how seeds move.  A strategy that moves seeds in 
a way to cover the area thoroughly will improve the 
accuracy, and especially the convergence time, of MCL. 

Figure 13 shows how control over seed motion can improve 
the accuracy and convergence time of MCL localization.  
We consider both the static nodes and moving nodes 
scenarios here. When nodes are static, the prediction phase 
does not increase uncertainty so the estimate error 
decreases as more observations are collected. When nodes 
are mobile, the estimate error converges to balance the 
motion uncertainty and observations.  We use a low seed 
density (sd = 0.3) to make the localization process slow.  
We compare the random waypoint model with a scan 
model.  In the scan model, seed nodes are evenly 
distributed and separated by 2r.  They scan the network in a 

predefined path that maximizes coverage. Both the 
convergence time and estimate error are reduced.  

5.9 Communication Overhead 
We measure the communication overhead as the number of 
messages a node needs to send in each localization process.  
Although the size of messages may vary slightly across 
localization techniques, the actual message size is more a 
function of how locations and announcements are encoded 
than the localization technique.   

Since the Amorphous algorithm requires all seed 
information to be flooded to the network, each node needs 
to broadcast exactly the number of seeds in each 
localization process.  For reasonable location accuracy, 
there are 32 seeds and this means every node needs to 
retransmit 32 location announcements. For the Centroid 
algorithm, the nodes do not need to transmit any messages; 
all location transmission come directly from the seeds.  For 
the MCL algorithm, nodes must share their seed 
information with their one-hop neighbors, so in each time 
step all nodes transmit their seed information once.  The 
number of seeds each node hears is a function of the seed 
density.  In our experiments, a seed density of one (sd = 1) 
is adequate for precise localization, so the communication 
overhead of each node is exactly 1.   

6. CONCLUSION 
Many wireless sensor network applications depend on 
nodes being able to accurately determine their locations.  
This is the first work to study range-free localization in the 
presence of mobility.  Our main result is surprising and 
counterintuitive: mobility can improve the accuracy and 
reduce the costs of localization.  Our simulation 
experiments reveal that the MCL technique can provide 
accurate localization even when memory limits are severe, 
the seed density is low, and network transmissions are 
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Figure 12. Impact of group motion.  
nd = 10, vmax = smax =r, unbounded area. 
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highly irregular.  Many issues remain to be explored in 
future work including how well our assumptions hold in 
different mobile sensor network applications, how different 
types of motion affect localization, and how our technique 
can be extended to provide security.    
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