
Localization for Mobile Sensor Networks

Lingxuan Hu David Evans
Department of Computer Science

University of Virginia
Charlottesville, VA

{lingxuan, evans}@cs.virginia.edu

ABSTRACT

Many sensor network applications require location
awareness, but it is often too expensive to include a GPS
receiver in a sensor network node. Hence, localization
schemes for sensor networks typically use a small number
of seed nodes that know their location and protocols
whereby other nodes estimate their location from the
messages they receive. Several such localization tech-
niques have been proposed, but none of them consider
mobile nodes and seeds. Although mobility would appear
to make localization more difficult, in this paper we
introduce the sequential Monte Carlo Localization method
and argue that it can exploit mobility to improve the
accuracy and precision of localization. Our approach does
not require additional hardware on the nodes and works
even when the movement of seeds and nodes is
uncontrollable. We analyze the properties of our technique
and report experimental results from simulations. Our
scheme outperforms the best known static localization
schemes under a wide range of conditions.

Categories and Subject Descriptors

C.2.1 [Computer Systems Organization]: Network
Architecture and Design – Distributed networks, Wireless

communication; G.3 [Mathematics of Computing]:
Probability and Statistics – Probabilistic algorithms

(including Monte Carlo).

General Terms

Algorithms, Design, Experimentation.

Keywords

Localization, sensor networks, mobility, Monte Carlo
Localization.

1. INTRODUCTION
Location awareness is important for wireless sensor
networks since many applications such as environment
monitoring, vehicle tracking and mapping depend on
knowing the locations of sensor nodes. In addition,
location-based routing protocols can save significant energy
by eliminating the need for route discovery [25, 26, 32] and
improve caching behavior for applications where requests
may be location dependent [28]. Security can also been
enhanced by location awareness (for example, preventing
wormhole attacks [22, 24]). However, putting GPS
receivers in every node or manually configuring locations is
not cost effective for most sensor network applications.

Recently some localization techniques have been proposed
to allow nodes to estimate their locations using information
transmitted by a set of seed nodes that know their own
locations (for example, because they have GPS receivers).
These techniques are described in Section 2. They all suffer
from one or both of these problems:

1. Dependence on special hardware. Techniques that
depend on measuring ranging information from signal
strength [2], time of arrival [43], time difference of
arrival [40] or angle of arrival [36] require hardware
that is typically not available on sensor nodes. Adding
the required hardware increases the cost and size of the
nodes.

2. Requirement for particular network topologies. Most
techniques require seed nodes to be numerous and
evenly distributed so they can cover the whole network.
But prior deployment of seeds is not possible in many
sensor network applications (for example, sensor nodes
dropped from plane over a hostile territory). Hop count
based techniques [35, 34] avoid the need for a large
number of seeds, but instead require dense and uniform
node distribution.

We are interested in performing localization in a more
general network environment where no special hardware for
ranging is available, the prior deployment of seed nodes is
unknown, the seed density is low, the node distribution is
irregular, and where nodes and seeds can move
uncontrollably. Although mobility makes other localization
techniques increasingly less accurate, our technique takes

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
MobiCom�04, Sept. 26.–Oct. 1, 2004, Philadelphia, Pennsylvania, USA.
Copyright 2004 ACM 1-58113-868-7/04/0009...$5.00.

advantage of mobility to improve accuracy and reduce the
number of seeds required.

We consider a network composed of nodes with unknown
locations and seeds that know their locations. We are
interested in three kinds of scenarios:

1. Nodes are static, seeds are moving. For example, a
military application where nodes are dropped from a
plane onto land, and transmitters attached to soldiers or
animals in the area are used as moving seeds. Each
node�s location estimate should become more accurate
as time passes and it receives information from more
seeds.

2. Nodes are moving, seeds are static. One example
would be nodes floating in currents along a river and
seeds at fixed locations on the river banks. A more
concrete, but less worldly, example is NASA�s Mars
Tumbleweed project [1]. It proposes a low cost way to
explore large areas on Mars by having rovers with
sensors that are blown over the surface by the wind,
with minimal or no control over their movement. Of
course, GPS does not work on Mars, but it may be
possible to establish fixed landmark seeds or
positioning from orbiters [31]. For these scenarios,
each node�s location estimate will fluctuate around its
current actual location: as time passes, old location
information becomes inaccurate since the node has
moved, but as new seed information is received the
location estimate is revised.

3. Both nodes and seeds are moving. This is the most
general situation. It applies to any application where
the nodes and seeds are both deployed in an ad hoc
way, and move either because of the environment they
are in (wind, currents, etc.) or because they have
actuators for motion.

Next we provide background on previous localization work.
In Section 3, we introduce our localization algorithm. The
algorithm is analyzed in Section 4. Section 5 reports on
simulated experiments and compares our results with other
localization techniques.

2. BACKGROUND
Extensive research has been done on localization for
wireless networks. A general survey is found in [20].
Here, we provide only a brief survey focusing only on
localization techniques suitable for ad hoc sensor networks.
The approaches taken to achieve localization in sensor
networks differ in their assumptions about the network
deployment and the hardware�s capabilities.

Centralized localization techniques depend on sensor nodes
transmitting data to a central location, where computation is
performed to determine the location of each node. Doherty,
Pister and Ghaoui developed a centralized technique using

convex optimization to estimate positions based only on
connectivity constraints given some nodes with known
positions [11]. MDS-MAP [41] improves on these results
by using a multidimensional scaling approach, but still
requires centralized computation. Requiring central
computation would be infeasible for mobile applications
because of the high communication costs and inherent
delay, hence we focus on distributed localization
techniques.

Distributed localization methods do not require centralized
computation, and rely on each node determining its location
with only limited communication with nearby nodes. These
methods can be classified as range-based and range-free.
Range-based techniques use distance estimates or angle
estimates in location calculations, while a range-free
solution depends only on the contents of received messages.

Range-based approaches have exploited time of arrival
[43], received signal strength [2, 37] time difference of
arrival of two different signals (TDOA) [40], and angle of
arrival (AOA) [36]. Though they can reach fine resolution,
either the required hardware is expensive (ultrasound
device for TDOA, antenna arrays for AOA) or the results
depend on other unrealistic assumptions about signal
propagation (for example, the actual received signal
strengths of radio signals can vary when the surrounding
environment changes).

Because of the hardware limitations of sensor devices,
range-free localization algorithms are a cost effective
alternative to more expensive range-based approaches [19].
There are two main types of range-free localization
algorithms that have been proposed for sensor networks:
local techniques that rely on a high density of seeds so that
every node can hear several seeds, and hop counting
techniques that rely on flooding a network.

Local Techniques. In the Centroid method [6], each node
estimates its location by calculating the center of the
locations of all seeds it hears. If seeds are well positioned,
location error can be reduced [7], but this is not possible in
ad hoc deployments. The APIT method [19] isolates the
environment into triangular regions between beaconing
nodes, and uses a grid algorithm to calculate the maximum
area in which a node will likely reside. Since APIT
typically assumes a larger radio range for seed nodes and
hence has high seed density, it is not reasonable to compare
it to our technique directly.

Hop-Counting Techniques. To provide localization in
networks where seed density is low, hop-counting
techniques propagate location announcements throughout
the network. DV-HOP [35] uses a technique based on
distance vector routing. Each node maintains a counter
denoting the minimum number of hops to each seed, and

updates that counter based on messages received. Seed
location announcements propagate through the network.
When a node receives a new seed announcement, if its hop
count is lower than the stored hop count for that seed, the
recipient updates it hop count to the new value and
retransmits the announcement with an incremented hop
count value. The Amorphous localization algorithm [34]
uses a similar approach. The coordinates of seeds are
flooded throughout the network so each node can maintain
a hop-count to that seed. Nodes calculate their position
based on the received seed locations and corresponding hop
count.

None of these schemes target the case where nodes or seeds
can move. They can be adapted for mobile networks by
refreshing location estimates frequently, but are not
designed with any consideration for how mobility can be
exploited to achieve localization. The only work we are
aware of that considers localization with mobile nodes is
Bergamo and Mazzini�s [3]. They considered mobility of
nodes only and assumed a network with two seeds at fixed
locations that can transmit across the entire network, and
nodes that are able to measure signal strength accurately.
Instead of using mobility to improve localization, they
studied how mobility makes localization more difficult and
found that errors increased with increasing node speed.

On the other hand, the mobile localization problem has
been extensively studied in robotics. Robotics localization
work usually assumes a prior or previously learned map,
and tries to determine the robot�s position based on its
motion and sensor data. If both the motion and the
measurement model can be described using a Gaussian
density, and the initial state is also a Gaussian, then a
classical Kalman filter [33] can be used. Grid based
Markov localization [4, 5] has been proposed to deal with
multimodal and non-Gaussian densities. However, the grid
representation can impose a significant memory and
computational burden, especially if one is interested in high
resolution.

Ladd et al. used a robotics localization approach to achieve
accurate localization for wireless networks by using learned
variation in RF signal strengths received using standard
Ethernet cards [29, 30]. Their approach performs well for
indoor localization in fixed environments, but assumes
fixed seed locations and requires a learning phase, so is not
well suited to mobile sensor network applications.

Our work adapts the Monte Carlo localization (MCL)
method [10, 42] developed for use in robotics localization
for use in mobile sensor network applications. MCL is a
particle filter combined with probabilistic models of robot
perception and motion. It outperforms other proposed
localization algorithms in both accuracy and computational
efficiency. The key idea of MCL is to represent the

posterior distribution of possible locations using a set of
weighted samples. Each step is divided into a prediction
phase and an update phase. In the prediction phase, the
robot makes a movement and the uncertainty of its position
increases. In the update phase, new measurements (such as
observations of new landmarks) are incorporated to filter
and update data. The process repeats and the robot
continually updates its predicted location.

Like our work, MCL applies the Sequential Monte Carlo
method [18] to achieve localization. However, there are
substantial differences between robot localization and node
localization for sensor networks. While robot localization
locates a robot in a predefined map, localization in sensor
networks works in a free space or unmapped terrain.
Second, a robot has relatively good control and
probabilistic knowledge of its movement in a predefined
map. A sensor node typically has little or no control of its
mobility, and is unaware of its speed and direction. Third,
a robot can obtain precise ranging information from
landmarks, but a sensor node can only learn that it is within
radio range. Finally, in robot localization, the individual
measurements are integrated multiplicatively, assuming
conditional independence between them, and the weights of
samples need to be normalized after updating. In our
algorithm, due to the constraints in computing and memory
power, we adopt a filtering approach in which each
measurement can be considered independently, and the
weight of each sample is either 0 or 1.

3. LOCALIZATION PROTOCOL
The constraints in sensor nodes and ranging precision make
localization for mobile sensor nodes a more difficult
problem than robot localization. On the other hand, scale
can be used to our advantage. The many nodes in a sensor
network can cooperate to share location information.

We assume time is divided into discrete time units. Since a
node may move away from its previous location, it needs to
re-localize in each time unit. We are interested in obtaining
the probabilistic distribution of a node�s possible locations.
As a node moves in the network, prior location information
will become increasingly inaccurate. On the other hand,
there are new observations from seed nodes that are able to
filter impossible locations. The posterior distribution of a
node�s possible locations after movement and observation
is not easy to determine. Except for a few special cases
including linear Gaussian state space models (Kalman filter
[33]), it is impossible to evaluate the distribution
analytically [12].

The Sequential Monte Carlo (SMC) method [18] provides
simulation-based solutions to estimate the posterior
distribution of nonlinear discrete time dynamic models. The
key idea of SMC is to represent the posterior distribution by

a set of m weighted samples, and to update them recursively
in time using the importance sampling method [16]. Since
the unconditional variance of the importance weights will
increase [27], re-sampling techniques [39] are used to
eliminate trajectories with small normalized importance
weights. SMC has been successfully applied in target
tracking [17], robot localization [10] and computer vision
[23]. We provide a brief introduction below. A more
detailed introduction can be found in [13], and an overview
and discussion of SMC�s properties can be found in [12].

3.1 Location Estimation Algorithm
The mobile localization problem can be stated in a state
space form as follows. Let t be the discrete time, lt denote
the position distribution of the node at time t, and ot denote
the observations from seed nodes received between time t-1
and time t. A transition equation p(lt | lt-1) describes the
prediction of node�s current position based on previous
position, and an observation equation p(lt | ot) describes the
likelihood of the node being at the location lt given the
observations. We are interested in estimating recursively in
time the filtering distribution p(lt | o0, o1, …, ot). A set of N
samples Lt is used to represent the distribution lt, and our
algorithm recursively computes the set of samples at each
time step. Since Lt-1 reflects all previous observations, we
can compute lt using only Lt-1 and ot.

Figure 1 shows an overview of the algorithm. Initially, we
assume the node has no knowledge about its position, so the
initial samples are selected randomly from all possible
locations. At each time step, the location set is updated
based on possible movements and new observations. We
estimate the location of the node by computing the average
location of all possible locations in Lt. For our experiments,
we assume locations are (x, y) positions in two dimensional
Cartesian space, but the technique could be used
equivalently for three dimensions or other location
representations.

The steps are described in more detail in the following
subsections. In the prediction step (Section 3.2), the node
uses the transition distribution p(lt | lt-1) to predict its
possible locations based on previous samples and its
movement. In the filtering step (Section 3.3), the node uses
new information received to eliminate predicted locations
that are inconsistent with observations. Re-sampling is
used to maintain the number of location samples.

3.2 Prediction
In the prediction step, a node starts from the set of possible
locations computed in the previous step, Lt-1, and applies
the mobility model to each sample to get a set of new
samples, Lt. We assume a node is unaware of its moving
speed and direction, other than knowing its speed is less

than vmax. So, if in previous step i

tl 1−
 is one possible position

of a node, the possible current positions are contained in the

circular region with origin i

tl 1−
and radius vmax. We use d(l1,

l2) to denote the Euclidean distance between two points l1
and l2. If speeds are distributed uniformly in the interval [0,
vmax), the probability of current location based on previous
location estimate is given by a uniform distribution:

 p(lt | lt-1) =
2

1

maxvπ
 if d(lt, lt-1) < vmax

 0 if d(lt, lt-1) j vmax.

Hence, the set R computed in the prediction phase contains
one location selected randomly from the circle of radius
vmax around every point in L t-1. This reflects the increased
uncertainty about the node�s location because of unknown
motion. In cases where something is known about the
node�s motion (for example, that it is moving at a particular
speed, or that it is more likely to be moving in a certain
direction), the probability distribution can be adjusted
accordingly to make better predictions.

Initialization: Initially the node has no knowledge of its location N is a constant that denotes the number of samples to
maintain
 L0 = { set of N random locations in the deployment area }

Step: Compute a new possible location set Lt based on Lt-1, the possible location set from the previous time step, and the
new observations, ot.

Lt = { }

while (size (Lt) < N) do

 R = {
i

tl |
i

tl is selected from)|(1

i

tt llp −
,

11 −− ∈ t

i

t Ll for all 1 i i i N } Prediction (3.2)

 Rfiltered = {
i

tl |
i

tl where
i

tl ∈ R and)|(i

tt lop > 0 } Filtering (3.3)

 L t = choose (L t ∪ Rfiltered, N)
Figure 1. Location estimation algorithm.

3.3 Filtering
In this step, the node filters the impossible locations based
on new observations. For simplification of presentation and
analysis, we assume that time is discrete and all messages
are received instantly. Hence, at time t, every node within
radio range of a seed will hear a location announcement
from that seed. In a realistic deployment, it would be
necessary to deal with network collisions and account for
missed messages.

Figure 2 shows an example situation. There are four types
of seeds to consider:

outsiders – seeds that were not heard in either the current or
the previous time quanta.

arrivers – seeds that were heard in the current time
quantum, but not in the previous one.

leavers – seeds were heard in the previous time quantum,
but not in this one.

insiders – seeds that were heard in both time quanta.

Arrivers and leavers provide the most useful information
since the node will know it was within distance r of l0 at
time t0, but not within distance r of l1 at time t1. If we only
rely on direct information from seeds, however, a node will
not know the previous location of an arriver, or the current
location of a leaver. There are two possible ways to gather
this information:

1. A seed node (S) transmits both its current location and
its location at the previous time step in each
announcement:

 S → Region HELLO | IDS | loct | loct-1

2. Neighbor nodes can transmit information about seed
locations (the set of all seeds and their locations heard
in the previous time step):

 S → Region HELLO | IDS | loct
 N → Region HELLO | IDN | {(IDS, locS

t
) }

The second approach is more expensive, but its cost may be

combined with neighbor discovery in applications that
require neighborhood information for other purposes. The
advantage of the second approach is it also allows nodes to
discover information about outsider seeds without keeping
track of arrivers and leavers. The node knows it is not
within distance r of any outsider seed, but must be within
distance 2r of any seed heard by one of its neighbors.

Figure 3 shows the filter condition for insider and outsider
seeds. Let S denote the set of all seeds heard by N and T
denote the set of all nodes heard by N�s neighbors but not
by N. Then the filter condition of location l is

 filter(l) = ∀s ∈ S, d(l, s) ≤ r ∧ ∀s ∈ T, r < d(l, s) ≤ 2r.

The probability distribution p(lt | ot) is zero if the filter
condition is false, and evenly distributed otherwise. Thus,
we eliminate locations that are inconsistent with
observations from the possible location set. After filtering,
there may be fewer than N possible locations remaining.
The prediction and filtering processes repeat, unioning the
possible points found, until at least N possible locations
have been acquired. (Section 5.6 considers how the choice
of N affects accuracy.)

4. ANALYSIS
In this section we justify the importance sampling and re-
sampling approaches used in our algorithm, and analyze the
accuracy of location estimates produced. We conclude by
discussing security issues when localization is used in
hostile environments.

4.1 Importance sampling
We are interested in estimating the posterior distribution of
the node�s location p(lt | o0, o1, …, ot). Since it is generally
impossible to sample from the posterior distribution
directly, our algorithm adopts an importance sampling
approach. Suppose samples are drawn independently from
a normalized importance function �. Then, we can measure
the weight of each sample and use these weights to estimate

r

d
I II

III

l0 l1

Figure 2. Seed Movement. The seed moves from l0 at time
0 to position l1 on time 1. The seed is an insider for nodes in
region III, an arriver for nodes in region II, a leaver for
nodes in region I, and an outsider for all other nodes.

Direct Seed Indirect Seed

s s

Figure 3. Filter condition. A node is within distance r
if a seed it hears directly, and within distance (r, 2r] of a
seed it doesn�t hear itself but one of its neighbors hears.

the posterior distribution.

As introduced in Figure 1, we adopt the following recursive
importance function from [13]:

 �(lt | o0, o1, …, ot) = p(l0)∏
=

−

t

k

kk llp
1

1)|((1)

)|(~~
1

i

tt

i

t

i

t lopww −= (2)

�
=

=
N

k

k

t

i

ti

t

w

w
w

1

~

~
 (3)

Equation (1) is the prediction phase, in which a node
predicts its current possible locations based on previous
possible locations. Equation (2) is the update phase, in
which a node updates the weights of the new samples based
on the received observations. Then, we normalize the

weights
i

tw~ to
i

tw in (3) and use the weighted set ()i

t

i

t wl , to

simulate the posterior distribution.

We choose this importance function because it yields the
recursive calculation of p(lk | lk-1) and p(lt | ot) in equations
(1) and (2), and the distributions of the two probabilities are
not hard to calculate, as shown in Section 3.2 and 3.3,
respectively.

As shown in [16], under weak assumptions the importance
sampling converges to the posterior distribution.

4.2 Re-sampling

The degeneracy of the importance sampling is unavoidable
since the unconditional variance of the importance weights
will increase [27]. The basic idea of re-sampling is to
eliminate trajectories that have small normalized
importance weights and to concentrate upon trajectories
with large weights. A suitable measure of degeneracy of the
algorithm is the effective sample size Neff [27]. An estimate
of Neff is given by:

� =

≈
N

i

i

t

eff

w
N

1

2)(

1 (4)

When Neff is below a fixed threshold Nthreshold, the re-
sampling method needs to be used.

In our algorithm, since p(ot | lt) is either 1 or 0, the weight is
always 0 or 1. Assuming there are k 1s in the un-normalized
N samples, then the normalized weights will consist of k
values of 1/k and n-k values of 0. From equation (4), we can
compute

 k
w

N
N

i

i

t

eff ==
� =1

2)(

1

So in our algorithm, Neff is exactly the number of valid
samples. We only need to keep enough valid samples
(samples with weight 1) to make Neff equal to or above
Nthreshold. In our algorithm, we set Nthreshold = N, and we
repeatedly draw samples until we get exactly N valid ones..
In our simulation experiments described in Section �5.6, we
find that N=50 is sufficient.

4.3 Resolution limit
Suppose nodes are randomly distributed in the network. As
analyzed in [34], there is a theoretical limit on resolution in
any range-free algorithm that is based only on connectivity.

The probability that a node can move a distance d without
changing connectivity is exactly the probability there are
seeds that are arrivers or leavers because of this move. In
Figure 4, it is exactly the probability that there are no nodes
in regions I and II. The area of region I and II is
approximately 4rd.

If the area of the region that can affect connectivity is krd,
then and the maximum distance a sensor can move without

changing connectivity is πr/kn where n is the network
density [34].

In our algorithm we consider both one hop and two hop
seeds so a position difference would be noticeable if it
affects either the one-hop or two-hop connectivity. If we
assume the node density is high but the seed density is low,
then a position change of distance d is noticeable if there
are any seeds within the two-hop area reachable from this
position, but not from the other position. The area of that
region is approximately 4rsd+4(2r)sd = 12rsd. This assumes
there is a high density of nodes, so the node has a high
likelihood of having a neighbor that can hear the new seed.
So, the resolution limit (maximum distance a sensor can

move without changing connectivity) is πr/12sd, where sd is
the seed density. For sd =1, the resolution limit is 0.26r.

� ��
d

r

Figure 4. Resolution Limit. Regions I and II
are regions that can affect node�s connectivity
when it moves d distance.

4.4 Security
Although extending our technique to handle hostile
environments is beyond the scope of this paper, MCL has
several properties which make it well suited for adaptation
into a secure localization protocol. Secure localization is a
challenging problem that has not yet been studied.

Previous localization techniques are vulnerable to several
kinds of attacks, and an attacker may be able to disrupt the
integrity or availability of all known localization
techniques. Without authentication, an attacker may inject
bogus seeds into the network and announce false locations.
Techniques like Centroid which estimate the location by
averaging the locations of all seeds heard are susceptible to
this attack.

Digital signatures can prevent bogus seeds from injecting
bogus location messages by authenticating seeds�
transmissions to nodes. This could be done by distributing
public keys corresponding to the seeds� private keys to each
node before deployment. Public key encryption operations
are often too computationally expensive for sensor nodes,
however, and the long messages required drain power

resources. Another approach would be to use the µTesla
protocol [38], by preloading each node with the initial hash
chain value and each seed with the initial secret. This
would save the expense of public key operations, but would
delay localization (or at least verification of locations) until
the next key in the hash chain is released. It would also
require loose synchronization among the seeds.

Alternative key establishment mechanisms such as random
key predistribution [14, 9] can establish keys using
symmetric cryptography. These techniques require
bidirectional messages, however, and are not suitable for
localization techniques where seeds transmit further than
nodes. Further, they would require the seed to transmit its
location directly to each neighbor node, instead of just
using a single transmission that can be heard and decoded
by all nodes.

Note that hop count based algorithms [35, 34] require that
the hop count is maintained accurately throughout the
network and empower a single rogue node to disrupt many
node locations by advertising a false hop count. If
authentication is used to mitigate this threat, it requires link
keys to be established between all communicating nodes. If
a single node is compromised, locations throughout the
network will be disrupted.

Localization protocols are particularly susceptible to replay
attacks. In a wormhole attack, an attacker obtains two
transceivers in the network connected by a high quality out-
of-band link and replays messages heard at one location at
the other location [22, 24]. A wormhole attack can easily
disrupt existing localization techniques (including MCL),

even if all location announcements were successfully
encrypted. Known defenses for wormhole attacks rely on
either nodes already knowing their locations [22], or require
specialized hardware such as tightly synchronized clocks
[22] or directional antennas [21].

MCL offers several desirable properties for security
adaptation. Since it does not depend on seeds with
powerful transmitters, bidirectional verification and key
establishment is possible. When nodes and seeds move, an
attacker will only be able to do limited damage. The MCL
filtering approach is less susceptible to rogue seeds than
other approaches. As long as there is valid information
received from some legitimate seeds, the estimated
locations will be bounded by the filtering of all valid
information. The adversary can at worst prevent the node
from acquiring any valid samples, and hence determining
anything about its location. This is an effective service
denial attack, but does not compromise the integrity of
location results. In addition, since MCL continually
updates location estimates, an attack will only be successful
as long as it continues to transmit bogus messages.

5. EVALUATION
The key metric for evaluating a localization technique is the
accuracy of the location estimates versus the communi-
cation and deployment costs. Increasing the density of
seeds or the frequency of location announcements should
improve accuracy, but the tradeoffs need to be understood
to determine appropriate deployment parameters. In this
section, we evaluate the MCL technique by measuring how
its estimated location errors vary with various network and
algorithm parameters described in Section �5.1.

In addition, we compare our results to those for other range-
free localization techniques, namely the Amorphous [34]
and Centroid [6] techniques described in Section �2.

Our simulation experiments were conducted using a
purpose-built simulator which is available from
http://www.cs.virginia.edu/mcl. Experimental results are the
average of 10 executions with different pseudorandom
number generator seeds.

5.1 Simulation Parameters
In our experiments, we vary parameters of both the sensor
network and sensor nodes, and of the MCL algorithm.

For all of our experiments, sensor nodes are randomly
distributed in a 500m x 500m rectangular region. We
assume a fixed transmission range, r, of 50m for both nodes
and seeds. The network and node parameters we vary are:

• Speed of the nodes and seeds (vmax, vmin, smax, smin).
We represent the speed as the moving distance per

time unit. A node�s speed is randomly chosen from
[vmin, vmax]; a seed�s speed is randomly chosen from
[smin, smax]. We consider the impact of speeds on both
accuracy and convergence time.

• Node density (nd), the average number of nodes in one
hop transmission range. We study the effects of
varying nd in Section �5.5, and use a fixed nd = 10 for
other experiments.

• Seed density (sd), the average number of seeds in one
hop transmission range (considered in Section �5.4).

We adopt the random waypoint mobility model [8] for both
nodes and seeds. It is one of the most commonly used
mobility models for mobile ad hoc networks. In the random
waypoint model, a node randomly chooses its destination,
its speed of movement, and its pause time after arriving at
the destination. We assume nodes are unaware of their
velocity and direction, but have a known maximum velocity
vmax. As pointed out in [44], the random waypoint model
suffers from the decay of average speed, and this will
provide an unsound basis for simulation. We used a
modified random waypoint model to maintain the average
speed. Instead of choosing a certain speed for each
destination, nodes randomly vary their speed during each
movement. The pause time is set to 0, so the average speed
is exactly vmax/2 when speed is chosen randomly between 0
and vmax. In Section �5.8, we consider how different mobility
models affect the localization accuracy.

We assume a node can judge if it is within radio range r of
another node or not, but it can not get more precise distance
information (for example, measuring distance through
received radio signal strength). For most of the
experiments we model radio range as a perfect circle. This
model is not realistic, however, and in Section �5.7 we
consider the impact of irregularity on location estimates.

The MCL algorithm parameters we vary are:

• Time between location announcements (tu). In most of
our experiments we assume a fixed tu and measure
speeds in terms of r distance units per tu. In Section
5.3, we consider the effect of varying node speed.

• Number of samples maintained (N). Keeping more
samples improves accuracy but requires more memory
and computation. In Section 5.6, we consider how
location accuracy varies with the number of samples.
Our results show that a few samples are sufficient for
high accuracy. For all the other experiments, we use
N = 50.

5.2 Accuracy
The accuracy of MCL depends on the speeds of the seeds
and nodes. As time passes, nodes will receive more seed
location announcements and improve their location
estimates.

Figure 5 shows the error in the location estimate, measured
as a multiple of the node transmission distance r, for three
different scenarios: stationary seeds (smax = 0) with nodes
moving with vmax = .2r and r, and both nodes and seeds
moving with vmax = smax = r. The localization process can
be divided into the initialization phase and the stable phase.
In the initialization phase, the estimate error decreases
dramatically as new observations are incorporated. The
localization is improved by both the current observation
and previous observations. In the stable phase, the impact
of observations (filter) and the node�s mobility (uncertainty)
reach some balance, and the estimate error fluctuates
around a minimum value. The faster the speed of the seeds
and nodes, the quicker the stable phase is reached. The
post-convergence accuracy is also better for faster moving
nodes, since by moving quickly they encounter more seeds
and more rapidly filter our inaccurate samples.

Unlike the MCL technique, the Centroid and Amorphous
localization techniques do not exploit past information, so
they do not improve over time. Figure 6 compares the
localization error of different localization techniques over

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 5 10 15 20 25 30 35 40 45 50

E
s
ti
m

a
te

 E
rr

o
r

(r
)

Time

vmax=.2r, smax=0

vmax=r, smax=0

vmax=r, smax=r

Figure 5. Location convergence. nd = 10, sd = 1.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 5 10 15 20 25 30 35 40 45 50

E
s
ti
m

a
te

 E
rr

o
r

(r
)

Time

MCL

Centroid

Amorphous

Figure 6. Accuracy Comparison. nd = 10, sd = 1, vmax =
smax= r.

time. The accuracy of MCL improves quickly. After 5
steps, it exceeds the accuracy of the Amorphous technique.

5.3 Node Speed
Varying node speed is similar to varying the time between
location announcements. If announcements are more
frequent, localization is more accurate but communication
overhead increases. We measure maximum node speed as
vmax and distribute actual node speeds between 0 and vmax
using the modified random waypoint mobility model.
Figure 7 shows the impact of node speed on the converged
localization error as the distance traveled per announcement
time unit increases from 0.1r to 2r for a few different seed
densities and seed velocities. Node speed impacts the
localization process in two ways. The increased speed
makes the predicted locations less accurate since the next
possible locations fall into a larger region. On the other
hand, faster movement leads to more new observations in
each time step, and hence more impossible locations can be
filtered. The estimate errors drop fast as node speeds
increase from 0.1r to 0.3r when the seeds are also moving
at the same speed, and then the error gradually increases as
the uncertainty resulting from faster movement increases.
With fixed velocity seeds (smin = smax = r), the error is least
when nodes are slowest, and increases gradually as node
speed increases.

Figure 7 illustrates that the length of time unit can be
increased without increasing estimate error as long as the
node�s new location is within r distance of its previous
location. MCL performs best when the maximum distance
nodes and seeds travel from previous location per time unit
is between 0.4r to r distance. Hence, in a network with
slow moving nodes, the time unit can be quite long and
communication costs are low. Communication costs are
analyzed more thoroughly in Section 5.9.

5.4 Seed Density
Increasing the density of seeds makes localization easier,
but increases network and deployment costs. Figure 8
shows the average estimate error of different localization
algorithms when seed density varies. The accuracy of both
MCL and Centroid improves as seed density increases since
nodes will receive more location announcements. For the
Amorphous technique, since each node receives the
propagated messages from all seeds in the network, the
estimate error does not improve much after there are a
sufficient number of seeds (32 in this experiment). MCL
performs adequately even for low seed densities and
outperforms the other techniques when seed density is 1 or
above. Since the possible location set accounts for previous
information about the node�s location, MCL is much more
accurate than Centroid when seed density is low.

5.5 Node Density
Figure 9 shows the impact of node density on estimate error
in different localization algorithms. MCL and Centroid are
little affected by node density. MCL requires a threshold
node density in order for nodes to receive two-hop
information from enough neighbors, but a few neighbors is

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

E
s
ti
m

a
te

 E
rr

o
r

(
r
)

vmax (r distances per time unit)

sd=1, smax=vmax

sd=1, smax=smin=r

sd=2, smax=vmax

sd=2, smax=smin=r

Figure 7. Impact of node speed.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

0.1 0.5 1 1.5 2 2.5 3 3.5 4

E
s
ti
m

a
te

 E
rr

o
r

(r
)

Seed Density

MCL

Centroid

Amorphous

Figure 8. Impact of seed density. nd = 10, vmax = smax=.2r.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

2 4 6 8 10 12 14 16 18 20

E
s
tim

a
te

 E
rr

o
r

(r
)

Node Density

MCL

Centroid

Amorphous

Figure 9. Impact of node density. sd = 1, vmax = smax=.2r.

sufficient. The Amorphous technique depends on higher
network density. It performs poorly when network density
is below 6, but performs best when network density is
larger than 15. This is because network density has great
impact on the accuracy of hop count. [34] and [19] suggest
approaches for improving hop counting based techniques
when the node density is low by increasing the number of
seed nodes.

5.6 Number of Samples
Maintaining more samples for the MCL algorithm can
improve accuracy, but requires additional memory.
Figure 10 shows the impact of sample size on location
accuracy. The estimate error drops rapidly at the beginning,
since a small number of samples cannot adequately reflect
the probability distribution. The estimate error is fairly
stable after sample size 50 and the accuracy improves only
minimally by increasing the number of samples to 1000.

Hence, MCL is efficient in both memory and computation.
Good accuracy is achieved with only 50 samples. The seed
density also has an impact on the selection of sample size.
The higher seed density, the more accurate the localization
can be, so more samples are required to achieve minimal
error. For applications with low seed density and severe
computation and memory limits, the sample size can be
reduced to 10 with little accuracy loss.

5.7 Irregularity
Variability in actual radio transmission patterns can have a
substantial impact on localization accuracy depending on
the localization technique. Unlike the prefect circles of
radius r assumed in our previous experiments, the measured
reception distance of radios can vary substantially with
environmental conditions and antenna irregularities.

Figure 11 shows the impact of degree of irregularity on
estimate error. The MCL and Centroid techniques are not

substantially affected. We use degree of irregularity (DOI)
to denote the maximum radio range variation in the
direction of radio propagation. For example, if DOI = 0.1,
then the actual radio range in each direction is randomly
chosen from [0.9r, 1.1r]. The estimate error of the
Amorphous technique increases significantly as DOI
increases. This is because the ranging estimate is from the
propagation of hop count, and it always selects the minimal
hop count. Hence, irregular radio transmissions will have
an accumulating affect on the ranging error in multiple
hops.

5.8 Motion Model
So far, we have assumed that both nodes and seeds move
randomly and independently. In some applications, the
motion of nodes and seeds may be correlated and
demonstrate some group behavior, and this may affect the
performance of our algorithm.

We use the Reference Point Group Mobility model (RPGM)
[15] to investigate the effect of group behavior on our
algorithm. In RPGM, the motion of a node is the
combination of a group motion vector and a random motion
vector. The random motion is based on a reference point
that moves according to the group motion. This provides an
approximation for a group of nodes and seeds moving in a
current or being blown by the wind.

We put all nodes and seeds in the same group. The group
motion is defined as a random walk model [Camp02], in
which the direction is chosen randomly between 0 and 360
degrees and the speed is chosen randomly between 0 and
the maximum group motion speed. Each node�s individual
random movement relative to the group motion is selected
using the modified random waypoint model as in previous
experiments. To maintain the same group motion for all

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.2

1 2 5 10 20 50 100 200 500 1000

E
s
ti
m

a
te

 E
rr

o
r

(r
)

Sample Size (N)

sd=1, vmax=smax=.2r

sd=1, vmax=smax=r

sd=2, vmax=smax=.2r
sd=2, vmax=smax=r

1.1

Figure 10. Impact of Sample Size. nd = 10

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.1 0.2 0.3 0.4 0.5

E
s
ti
m

a
te

 E
rr

o
r

(r
)

Degree of Irregularity

MCL

Centroid

Amorphous

Figure 11. Impact of Irregularity.
 nd = 10, sd = 1, vmax = smax=.2r

nodes, we assume there are no boundaries in the network so
nodes can move freely. If a node cannot find enough valid
samples after filtering, it will reinitialize itself by
eliminating previous samples and drawing samples from
new observations directly. We also assume a node is aware
of the maximum distance it can move in one time unit,
which is the sum of the maximum individual random
movement and the maximum group motion.

Figure 12 shows the location accuracy when we keep the
maximum random motion speed at r per time unit and vary
the maximum group motion speed. The estimate error
increases as the maximum group motion speed increases.
Since all nodes are moving in the same way, the relative
positions change less, so the number of useful new
observations received does not increase with increasing
group speed. Because the uncertainty in the prediction
phase becomes larger as group motion speed increases,
accuracy is substantially reduced when the group motion
dominates the individual node movement.

On the other hand, in some applications it may be possible
to control how seeds move. A strategy that moves seeds in
a way to cover the area thoroughly will improve the
accuracy, and especially the convergence time, of MCL.

Figure 13 shows how control over seed motion can improve
the accuracy and convergence time of MCL localization.
We consider both the static nodes and moving nodes
scenarios here. When nodes are static, the prediction phase
does not increase uncertainty so the estimate error
decreases as more observations are collected. When nodes
are mobile, the estimate error converges to balance the
motion uncertainty and observations. We use a low seed
density (sd = 0.3) to make the localization process slow.
We compare the random waypoint model with a scan
model. In the scan model, seed nodes are evenly
distributed and separated by 2r. They scan the network in a

predefined path that maximizes coverage. Both the
convergence time and estimate error are reduced.

5.9 Communication Overhead
We measure the communication overhead as the number of
messages a node needs to send in each localization process.
Although the size of messages may vary slightly across
localization techniques, the actual message size is more a
function of how locations and announcements are encoded
than the localization technique.

Since the Amorphous algorithm requires all seed
information to be flooded to the network, each node needs
to broadcast exactly the number of seeds in each
localization process. For reasonable location accuracy,
there are 32 seeds and this means every node needs to
retransmit 32 location announcements. For the Centroid
algorithm, the nodes do not need to transmit any messages;
all location transmission come directly from the seeds. For
the MCL algorithm, nodes must share their seed
information with their one-hop neighbors, so in each time
step all nodes transmit their seed information once. The
number of seeds each node hears is a function of the seed
density. In our experiments, a seed density of one (sd = 1)
is adequate for precise localization, so the communication
overhead of each node is exactly 1.

6. CONCLUSION
Many wireless sensor network applications depend on
nodes being able to accurately determine their locations.
This is the first work to study range-free localization in the
presence of mobility. Our main result is surprising and
counterintuitive: mobility can improve the accuracy and
reduce the costs of localization. Our simulation
experiments reveal that the MCL technique can provide
accurate localization even when memory limits are severe,
the seed density is low, and network transmissions are

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

0 0.5 1 2 4 6

E
s
ti
m

a
te

 E
rr

o
r

(r
)

Maximum Group Motion Speed (r distances per time unit)

sd=.3

sd=1

sd=2

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

0 0.5 1 2 4 6

E
s
ti
m

a
te

 E
rr

o
r

(r
)

Maximum Group Motion Speed (r distances per time unit)

sd=.3

sd=1

sd=2

Figure 12. Impact of group motion.
nd = 10, vmax = smax =r, unbounded area.

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

3
3.2
3.4
3.6
3.8

4

0 20 40 60 80 100 120 140 160 180 200

E
s
ti
m

a
te

 E
rr

o
r

(r
)

Time

Random Waypoint, vmax=smax=.2r

Scan, vmax=smax=.2r

Random Waypoint, vmax=0, smax=.2r

Scan, vmax=0, smax=.2r

Figure 13. Impact of motion control. nd = 10, sd = 0.3.

highly irregular. Many issues remain to be explored in
future work including how well our assumptions hold in
different mobile sensor network applications, how different
types of motion affect localization, and how our technique
can be extended to provide security.

ACKNOWLEDGEMENTS
This work was funded in part by the National Science
Foundation (through grants NSF CAREER CCR-0092945
and NSF ITR EIA-0205327) and DARPA (SRS FA8750-
04-2-0246). The authors thank Tarek Abdelzaher, Tian He,
Anita Jones, Kenneth Lodding, Nathaneal Paul, Jinlin
Yang, Joel Winstead, Chalermpong Worawannotai for
interesting discussions about this work. We thank the
anonymous MobiCom reviewers for their thoughtful
reviews and Brad Karp for shepherding our paper with
helpful comments and valued guidance.

REFERENCES
[1] Jeffrey Antol, Philip Calhoun, John Flick, Gregory A.

Hajos, Robert Kolacinski, David Minton, Rachel
Owens and Jennifer Parker. Low Cost Mars Surface

Exploration: The Mars Tumbleweed. NASA Langley
Research Center. NASA/TM-2003-212411.
August 2003.

[2] Paramvir Bahl and Venkata N. Padmanabhan.
RADAR: An In-Building RF-Based User Location
and Tracking System. IEEE InfoCom 2000, March
2000.

[3] P. Bergamo and G. Mazzini. Localization in Sensor
Networks with Fading and Mobility. IEEE PIMRC.
September 2002.

[4] Wolfram Burgard, Dieter Fox, Daniel Hennig and
Timo Schmidt. Estimating the Absolute Position of a
Mobile Robot Using Position Probability Grids. 14

th
National Conference on Artificial Intelligence (AAAI).
1996.

[5] Wolfram Burgard, Andreas Derr, Dieter Fox, and
Armin B. Cremers. Integrating Global Position
Estimation and Position Tracking for Mobile Robots:
The Dynamic Markov Localization Approach.
IEEE/RSI International Conference on Intelligence

Robots and Systems (IROS). 1998.
[6] Nirupama Bulusu, John Heidemann and Deborah

Estrin. GPS-less Low Cost Outdoor Localization for
Very Small Devices. IEEE Personal Communications

Magazine. October 2000.
[7] Nirupama Bulusu, John Heidemann and Deborah

Estrin. Density Adaptive Algorithms for Beacon
Placement in Wireless Sensor Networks. IEEE

ICDCS 2001. April 2001.
[8] Tracy Camp, Jeff Boleng and Vanessa Davies. A

Survey of Mobility Models for Ad Hoc Networks

Research. Wireless Communications and Mobile

Computing. Volume 2, Number 5. 2002.
[9] Haowen Chan, Adrian Perrig and Dawn Song.

Random Key Predistribution Schemes for Sensor
Networks. IEEE Symposium on Security and Privacy.
May 2003.

[10] Frank Dellaert, Dieter Fox, Wolfram Burgard and
Sebastian Thrun. Monte Carlo Localization for
Mobile Robots. IEEE International Conference on

Robotics and Automation (ICRA). May 1999.
[11] Lance Doherty, Kristofer Pister and Laurent El

Ghaoui. Convex Position Estimation in Wireless
Sensor Networks. IEEE InfoCom 2001. April 2001.

[12] Arnaud Doucet, Simon. Godsill and Christophe
Andrieu. On Sequential Monte Carlo Sampling
Methods for Bayesian Filtering. Statistics and

Computing. Volume 10, pp. 197-208. 2000.
[13] Arnaud Doucet, Nando de Freitas and Neil Gordon.

An Introduction to Sequential Monte Carlo Methods.
In Sequential Monte Carlo Methods in Practice, eds.
Arnaud Doucet, Nando de Freitas and Neil Gordon.
2001.

[14] Laurent Eschenauer and Virgil D. Gligor. A Key-
Management Scheme for Distributed Sensor
Networks. 9th

 ACM Conference on Computer and

Communication Security. November 2002.
[15] Xiaoyan Hong, Mario Gerla, Guangyu Pei and Ching-

Chuan Chiang. A Group Mobility Model for Ad Hoc
Wireless Networks. ACM International Workshop on

Modeling and Simulation of Wireless and Mobile

Systems (MSWiM). August 1999.
[16] John Geweke. Bayesian Inference in Econometric

Models Using Monte Carlo Integration. Econometrica.
Volume 57, Number 6. 1989.

[17] Neil J. Gordon, D. J. Salmond, and A. F. M. Smith.
Novel Approach to Nonlinear/Non-Gaussian Bayesian
State Estimate. IEE Proceedings. Volume 140, pp.
107-113. 1993.

[18] J. E. Handschin. Monte Carlo Techniques for
Prediction and Filtering of Non-Linear Stochastic
Processes. Automatica 6. pp. 555-563.1970.

[19] Tian He, Chengdu Huang, Brian M. Blum, John A.
Stankovic, Tarek Abdelzaher. Range-free Localization
Schemes for Large Scale Sensor Networks. MobiCom
2003.

[20] Jeffrey Hightower and Gaetano Borriello. Location
Systems for Ubiquitous Computing. IEEE Computer.
Vol 34, No. 8. August 2001.

[21] Lingxuan Hu and David Evans. Using Directional
Antennas to Prevent Wormhole Attacks. Network and

Distributed System Security Symposium (NDSS),
February 2004.

[22] Yih-Chun Hu, Adrian Perrig and David Johnson.
Packet Leashes: A Defense against Wormhole Attacks

in Wireless Ad Hoc Networks. IEEE InfoCom 2003.
April 2003.

[23] Michael Isard and Andrew Blake. Contour Tracking
by Stochastic Propagation of Conditional Density.

European Conference on Computer Vision, pp. 343-
356. 1996.

[24] Chris Karlof and David Wagner. Secure Routing in
Sensor Networks: Attacks and Countermeasures. First

IEEE International Workshop on Sensor Network

Protocols and Applications, May, 2003.
[25] Brad Karp and H. T. Kung. Greedy Perimeter

Stateless Routing. MobiCom 2000.
[26] Young-Bae Ko and Nitin H. Vaidya. Location-Aided

Routing (LAR) in Mobile Ad Hoc Networks.
MobiCom 1998.

[27] A. Kong, J. S. Liu and W. H. Wong. Sequential
Imputations and Bayesian Missing Data Problems.
Journal of the American Statistical Association.
Volume 89, pp. 278-288. 1994.

[28] Uwe Kubach and Kurt Rothermel. Exploiting
Location Information for Infostation-Based Hoarding.
MobiCom 2001.

[29] Andrew M. Ladd, Kostas E. Bekris, Guillaume
Marceau, Algis Rudys, Lydia E. Kavraki and Dan S.
Wallach, Robotics-Based Location Sensing using
Wireless Ethernet. MobiCom 2002.

[30] Andrew M. Ladd, Kostas E. Bekris, Algis P. Rudys,
Dan S. Wallach and Lydia E. Kavraki. On the
Feasibility of Using Wireless Ethernet for Indoor
Localization. IEEE Transactions on Robotics and

Automation. Volume 20, Number 3. June 2004.
[31] Kenneth Lodding. Personal communication.

March 2004.
[32] Martin Mauve, Jörg Widmer and Hannes Hartenstein.

A Survey on Position-Based Routing in Mobile Ad-
Hoc Networks. IEEE Network Magazine. 2001.

[33] Peter Maybeck. Stochastic Models. Estimation and

Control, Volume 1. Academic Press, New York, 1979.

[34] Radhika Nagpal, Howard Shrobe, and Jonathan
Bachrach. Organizing a Global Coordinate System
from Local Information on an Ad Hoc Sensor
Network. 2nd

 International Workshop on Information

Processing in Sensor Networks (IPSN). April 2003.
[35] Dragos Niculescu and Badri Nath. DV Based

Positioning in Ad hoc Networks. Kluwer Journal of

Telecommunication Systems. 2003.
[36] Dragos Niculescu and Badri Nath. Ad Hoc

Positioning System (APS) Using AoA. IEEE InfoCom

2003.
[37] Neal Patwari and Alfred O. Hero III. Using Proximity

and Quantized RSS for Sensor Localization in
Wireless Networks. Workshop on Wireless Sensor

Networks and Applications. September 2003.
[38] Adrian Perrig, Robert Szewczyk, Victor Wen, David

Culler, and Doug Tygar. SPINS: Security Protocols
for Sensor Networks. Wireless Networks Journal
(WINE). September 2002.

[39] D. B. Rubin. Using the SIR algorithm to simulate
posterior distributions. Bayesian Statistics 3. Oxford
University Press. 1988.

[40] Andreas Savvides, Chih-Chieh Han, Mani B.
Strivastava. Dynamic fine-grained localization in Ad-
Hoc networks of sensors. MobiCom 2001.

[41] Yi Shang, Wheeler Ruml, Ying Zhang, Markus
Fromherz. Localization from Mere Connectivity.
MobiHoc 2003. June 2003.

[42] Sebastian Thrun, Dieter Fox, Wolfram Burgard and
Frank Dellaert. Robust Monte Carlo Localization for
Mobile Robots. Artificial Intelligence Journal. 2001.

[43] B. H. Wellenhoff, H. Lichtenegger and J. Collins.
Global Positioning System: Theory and Practice,

Fourth Edition. Springer Verlag. 1997.
[44] Jungkeun Yoon, Mingyan Liu and Brian Noble. Sound

Mobility Models. MobiCom 2003.

