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Abstract— We consider wireless systems where the nodes oper-
ate on batteries so that energy consumption must be minimized
while satisfying given throughput and delay requirements. In this
context, we analyze the best modulation strategy to minimize the
total energy consumption required to send a given number of
bits. The total energy consumption includes both the transmis-
sion energy and the circuit energy consumption. For uncoded
systems, by optimizing the transmission time and the modulation
parameters we show that up to80% energy savings is achievable
over non-optimized systems. For coded systems, we show that
the benefit of coding varies with the transmission distance and
the underlying modulation schemes.

Index Terms— Energy efficiency, modulation optimization,
MQAM, MFSK.

I. I NTRODUCTION

Recent hardware advances allow more signal processing
functionality to be integrated into a single chip. It is believed
that soon it will be possible to integrate an RF transceiver,
A/D and D/A converters, baseband processors, and other
application interfaces into one device that is as small as a
coin and can be used as a fully-functional wireless node. Such
wireless nodes typically operate with small batteries for which
replacement, when possible, is very difficult and expensive.
Thus, in many scenarios, the wireless nodes must operate
without battery replacement for many years. Consequently,
minimizing the energy consumption is a very important design
consideration. In [1], the authors show that the hardware, the
link layer, the MAC layer, and all other higher layers should
be jointly designed to minimize the total energy consumption.
The µAMPs project [2] at MIT and the PicoRadio project [3]
at Berkeley are investigating energy-constrained radios and
their impact on overall network design.

Achieving an optimal joint design across all layers of the
network protocol stack is quite challenging. We therefore
consider pair-wise optimization of the hardware and link layer
designs. We investigate the energy consumption associated
with both the transmitting path and the receiving path: namely
the total energy required to convey a given number of bits to
the receiver for reliable detection. Assuming all nodes transmit
and receive about the same amount of data, minimizing the
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energy consumption along both the transmitting path and the
receiving path at the same time is more appropriate than
minimizing them separately.

The issue of energy saving is significant since in a wireless
node, the battery energy is finite and hence a node can only
transmit a finite number of bits. The maximum number of bits
that can be sent is defined by the total battery energy divided
by the required energy per bit. Most of the pioneering research
in the area of energy-constrained communication has focused
on transmission schemes to minimize the transmission energy
per bit. In [4] the authors discuss some optimal strategies
that minimize the energy per bit required for reliable trans-
mission in the wide-band regime. In [5] the authors propose
an optimal scheduling algorithm to minimize transmission
energy by maximizing the transmission time for buffered
packets. In [6] and [7], some other scheduling methods are
proposed to minimize the transmission energy. The emphasis
on minimizing transmission energy is reasonable in the tradi-
tional wireless link where the transmission distance is large
(≥ 100 m), so that the transmission energy is dominant in
the total energy consumption. However, in many recently-
proposed wireless ad-hoc networks (e.g., sensor networks)
the nodes are densely distributed, and the average distance
between nodes is usually below10 m. In this scenario, the
circuit energy consumption along the signal path becomes
comparable to or even dominates the transmission energy
in the total energy consumption. Thus, in order to find the
optimal transmission scheme, the overall energy consumption
including both transmission and circuit energy consumption
needs to be considered. In [8], some insightful observations
are drawn for choosing energy-efficient modulation schemes
and multi-access protocols when both transmission energy and
circuit energy consumption are considered. It is shown that
M-ary modulation may enable energy savings over binary
modulation for some short-range applications by decreasing
the transmission time. In [10], uncoded MQAM modulation
is analyzed in detail, and optimal strategies to minimize the
total energy consumption are proposed for AWGN channels. In
this work, we extend these ideas to a detailed tradeoff analysis
of the transmission energy, the circuit energy consumption,
the transmission time, and the constellation size for both
uncoded and coded MQAM and MFSK in AWGN channels.
This analysis also takes peak-power and delay constraints into
account.

For both MQAM and MFSK we minimize the total energy
consumption required to meet a given BER requirement by
optimizing the transmission time. The transmission time is
bounded above by the delay requirement and bounded below
by the peak-power constraint. The transmission energy is
analyzed via probability of error bound approximations and
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the circuit energy consumption is approximated as a linear
function of the transmission time. From this optimization,we
also find the optimal constellation size for MQAM and for
MFSK. The effects of coding is modeled by the coding gain
and the corresponding bandwidth expansion wherever applica-
ble. For MQAM, trellis-coded modulation is studied for the
energy minimization problem. For MFSK, a convolutionally
coded system is discussed, where we show that the benefits
of coding varies with the transmission distance.

The remainder of this paper is organized as follows. Section
II describes the system model. Section III solves the energy-
constrained modulation problem for uncoded MQAM and
MFSK, respectively. In Section IV, the energy-minimization
problem for coded MQAM and MFSK is discussed. Section V
discusses the optimization algorithms. Section VI makes some
comments on the possible extension to the multiple access
scenario. Section VII summarizes our conclusions. Power
estimation models for various circuit blocks are discussedin
the appendix.

II. SYSTEM MODEL

We consider a communication link connecting two wireless
nodes. In order to minimize the total energy consumption,
all signal processing blocks at the transmitter and the receiver
need to be considered in the optimization model. However, for
typical energy-constrained wireless networks such as sensor
networks, the throughput requirement is usually low such
that the baseband symbol rate is low. We also assume that
no complicated signal processing techniques such as multi-
user detection or iterative decoding are used. Thus, the power
consumption in the baseband is mainly defined by the symbol
rate and the complexity of the digital logic. This power
consumption is quite small [9] compared with the power
consumption in the RF circuitry, which is closely related
to the carrier frequency. Thus, at this stage we neglect the
energy consumption of baseband signal processing blocks
(e.g., source coding, pulse-shaping, and digital modulation) to
simplify the model. The resulting signal paths on the transmit-
ter and receiver sides are shown in Fig. 1, where we see that on
the transmitter side the baseband signal is first converted to an
analog signal by the Digital-to-Analog Converter (DAC), then
filtered by the low-pass filter and modulated by the mixer, then
filtered again, and finally amplified by the Power Amplifier
(PA) and transmitted to the wireless channel. On the receiver
side the RF signal is first filtered and amplified by the Low
Noise Amplifier (LNA), then cleaned by the anti-aliasing filter
and down-converted by the mixer, then filtered again before
going through the Intermediate Frequency Amplifier (IFA)
whose gain is adjustable, and finally converted back to a digital
signal via the Analog-to-Digital Converter (ADC). The last-
stage demodulation is done digitally. Although this model is
based on a generic low-IF transceiver structure, our framework
can be easily modified to analyze other architectures as well.

We assume that the transceiver circuitry works on a multi-
mode basis: when there is a signal to transmit all circuits work
in active mode, when there is no signal to transmit they work
in sleep mode, and when switching from sleep mode to active
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Fig. 1. Transceiver Circuit Blocks (Analog)

mode there is a transient mode. The multi-mode operation
provides a significant savings of energy when the sleep mode
is deployed.

We assume that a node hasL bits to transmit with a deadline
T . This setup can be justified in a typical sensor network where
each sensor periodically takes measurements, encodes these
measurements into a certain number of bits, and transmits
them to a central processor. The measurements must arrive
at the processor in a timely manner for effective processing.
In this scenario, the transceiver spends timeTon ≤ T to
communicate these bits, whereTon is a parameter to optimize,
and then returns to the sleep mode where all the circuits in
the signal path are shut down for energy saving. Although the
transient duration from active mode to sleep mode is short
enough to be negligible, the start-up process from sleep mode
to active mode may be slow due to the finite Phase Lock
Loop (PLL) settling time in the frequency synthesizer. Thus,
the transmission periodT is given byT = Ttr + Ton + Tsp,
where Ttr is the transient mode duration which is equal to
the frequency synthesizer settling time (the start-up process of
the mixer and power amplifier is fast enough to be neglected)
andTsp is the sleep mode duration. Correspondingly, the total
energy consumptionE required to sendL bits also consists
of three components:

E = PonTon + PspTsp + PtrTtr

= (Pt + Pc0)Ton + PspTsp + PtrTtr, (1)

where Pon, Psp and Ptr are power consumption values for
the active mode, the sleep mode, and the transient mode,
respectively. The active mode powerPon comprises the trans-
mission signal powerPt and the circuit power consumption
Pc0 in the whole signal path. Specifically,Pc0 consists of
the mixer power consumptionPmix, the frequency synthesizer
power consumptionPsyn, the LNA power consumptionPLNA,
the active filter power consumptionPfilt at the transmitter,
the active filter power consumptionPfilr at the receiver, the
IFA power consumptionPIFA, the DAC power consumption
PDAC , the ADC power consumptionPADC , and the power
amplifier power consumptionPamp, wherePamp = αPt and
α = ξ

η
− 1 with η the drain efficiency [11] of the RF power

amplifier and ξ the Peak to Average Ratio (PAR), which
is dependent on the modulation scheme and the associated
constellation size. Although strictly speakingPt should be
part of the total amplifier power consumption, here we define
Pamp as the value excluding the transmission signal power for
convenience. The calculation ofPIFA, PADC and PDAC is
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based on the model introduced in the appendix.
Since batteries are not only energy-limited but also peak-

power-limited, the total power consumption of either the
transmitter or the receiver can never exceed the maximum
available battery power. The maximum power available for
the transmitter signal path is denoted asPmaxt, which is
equal to the maximum battery output power at the transmitting
node minus the total power consumption in all other circuits
inside the same node. The maximum power available for the
receiver signal pathPmaxr is defined in the same manner.
SincePon = max {Pon, Ptr, Psp}, the peak-power constraints
are given by

Pont = Pt + Pamp + Pct = (1 + α)Pt + Pct ≤ Pmaxt

Ponr = Pcr ≤ Pmaxr (2)

wherePont is the value ofPon at the transmitter andPonr is
the value ofPon at the receiver. Meanwhile,Pct = Pmix +
Psyn + Pfilt + PDAC and Pcr = Pmix + Psyn + PLNA +
Pfilr + PIFA + PADC denote the circuit power consumption
(excluding the power amplifier power consumption) in the
active mode at the transmitter and the receiver, respectively. In
the following sectionsPcTon = (Pct + Pcr)Ton will be used
to denote the total circuit energy consumption.

The start-up time for other circuit blocks is negligible
compared to that of the frequency synthesizers. Hence, the
optimal strategy for the start-up process is to turn on the
frequency synthesizers first and once they settle down, to turn
on the rest of the circuits. As a result, there is no energy wasted
while the transceiver waits for the frequency synthesizersto
settle down. Hence,Ptr merely needs to include the power
consumption of the frequency synthesizers.

In the sleep mode, the power consumption is dominated
by the leaking currentIl of the switching transistors if the
circuitry is properly designed. Since the leaking power con-
sumption is usually much smaller than the power consumption
in the active mode (which may not be true for deep sub-micron
CMOS technology [11]), it is neglected in our model. Thus, we
setPsp = 0. Our analysis can be easily modified to incorporate
Psp 6= 0.

Given Eq. (1) and Eq. (2), and the fact thatPsp = 0 and
Ptr ≈ 2Psyn, the energy consumption per information bit
Ea = E/L is given by

Ea = (((1 + α)Pt + Pc)Ton + PtrTtr)/L

≈ ((1 + α)Et + PcTon + 2PsynTtr)/L, (3)

where Et = PtTon, and Pc, Psyn and Ttr can be treated
as constants defined by the particular transceiver structure in
use. It can be shown [12] that the transmission energyEt is a
monotonically increasing function of the bandwidth efficiency
defined asBe = L/(BTon) (in bits/s/Hz). In other words,Et

is a monotonically decreasing function ofTon for any fixed
packet sizeL and bandwidthB.

One thing we need to point out is that since the model shown
in Fig. 1 is a generic model, it may need some modifications
for specific systems. For example, the mixer and the DAC
at the transmitter side are not needed for MFSK systems
since frequency modulation is usually implemented digitally

inside the frequency synthesizer. As a result, for MFSK thePc

term in all the energy consumption formulas should exclude
the energy terms related to the mixer and the DAC on the
transmitter side.

Finally, the energy-constrained modulation problem can be
modeled as

minimize Ea

subject to 0 ≤ Ton ≤ T − Ttr

0 ≤ (1 + α)Pt + Pct ≤ Pmaxt

(4)

where we see that our task is to find the most efficient
way to choose the transmission time under the given system
constraints so that the total energy consumption is minimized.
For the two constraints, the first one corresponds to the delay
constraint and the second one corresponds to the peak-power
constraints. SincePcr is independent of the design variables,
the constraint0 ≤ Pcr ≤ Pmaxr is not included in the opti-
mization model and we assume that it is satisfied by default.
From the resulting optimalTon, the optimal constellation size
for a particular modulation scheme can be obtained.

III. U NCODED MQAM AND MFSK

A. Uncoded MQAM

We first take MQAM as a design example. Analysis is done
over an AWGN channel. For MQAM, the number of bits per
symbol is defined asb = log2 M . The number of MQAM
symbols needed to sendL bits is denoted asLs = L

b
. If the

symbol period is denoted asTs, we can also representLs as
Ls = Ton

Ts
. Thus, L

b
= Ton

Ts
, i.e.,

b =
LTs

Ton

. (5)

If square pulses are used andTs ≈ 1/B is assumed, we have

b ≈ L

BTon

. (6)

Since the bandwidth efficiency is defined asBe = L
BTon

, we
can see thatb ≈ Be for MQAM.

A bound on the probability of bit error for MQAM is given
by [13]

Pb ≤
4

b
(1 − 1√

2b
)Q

(

√

3

2b − 1
γ
)

≤ 4

b
(1 − 1√

2b
)e

− 3

2b
−1

γ
2 ,

whereQ(x) =
∫ ∞

x
1√
2π

e−
u2

2 du. The Signal to Noise Ratio

(SNR) γ is defined asγ = Pr

2Bσ2Nf
, wherePr is the received

signal power,σ2 is the power spectral density of the AWGN
and Nf is the receiver noise figure defined asNf = Ntotal

2Bσ2 ,
where Ntotal is the power of the noise introduced by the
receiver front-end.

Hence, by approximating the bound as an equality we obtain

Pr ≈ 4

3
NfBσ2(2b − 1) ln

4(1 − 1√
2b

)

bPb

. (7)

Assuming aκth-power path-loss model at distanced (me-
ters), the transmission power is equal to

Pt = PrGd, (8)
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whereGd , G1d
κMl is the power gain factor withMl the

link margin compensating the hardware process variations and
other additive background noise or interference andG1 the
gain factor atd = 1 m which is defined by the antenna gain,
carrier frequency and other system parameters. We will assume
κ = 3.5 and G1 = 30 dB for our model [18]. According to
Eqns. (6)−(8), we obtain the transmission energy as

Et = PtTon

≈ 4

3
Nfσ2(2

L
BTon − 1) ln

4(1 − 2−
L

2BTon )
L

BTon
Pb

GdBTon.

(9)

It is easily shown thatEt is a monotonically decreasing
function over the productBTon when MQAM is well defined,
i.e., whenb = L

BTon
≥ 2. Thus, when the packet sizeL and

bandwidthB are fixed, the maximum allowableTon minimizes
the transmission energy.

However, when we include the circuit energy consumption
in the model, the situation may change. According to Eq. (3),
the expression for the total energy consumption per informa-
tion bit in terms ofTon is given by

Ea =
(

(1 + α)
4

3
Nfσ2(2

L
BTon − 1) ln

4(1 − 2−
L

2BTon )
L

BTon
Pb

×GdBTon + PcTon + 2PsynTtr

)

/L, (10)

whereα = ξ
η
− 1 is also a function ofTon since for MQAM

ξ = 3
√

M−1√
M+1

and M = 2
L

BTon (a square constellation is
assumed [14]).

From the expression forEa we see that the maximum
Ton minimizes the transmission energy while the minimum
Ton minimizes the circuit energy consumption. Therefore, an
optimal tradeoff forTon needs to be found to minimize the
total energy consumption. In addition, the value forTon needs
to be optimized under the delay and peak-power constraints.
The peak-power constraint in Eq. (4) can be rewritten as

(1 + α)
4

3
Nfσ2(2

L
BTon − 1) ln

4(1 − 2−
L

2BTon )
L

BTon
Pb

GdB

≤ Pmaxt − Pct, (11)

which is equivalent to

Ton ≥ Tmin, (12)

whereTmin is the solution forTon for which the equality in
Eq. (11) holds. Thus, for MQAM the optimization model in
Eq. (4) can be rewritten as

minimize Ea

subject to Tmin ≤ Ton ≤ T − Ttr
. (13)

If we take into account the fact thatb = L
BTon

, an equivalent
representation for the optimization model can be written as
follows

minimize Ea

subject to bmin ≤ b ≤ bmax
, (14)

where the upper bound onb corresponds to the lower bound
on Ton given by bmax = ⌊ L

BTmin
⌋, the lower bound onb is

TABLE I

MQAM PARAMETERS

fc = 2.5 GHz η = 0.35

κ = 3.5 σ2 =
N0

2
= −174 dBm/Hz

B = 10 KHz L = 2 kb
Pmix = 30.3 mW Psyn = 50 mW
PLNA = 20 mW PIFA = 3 mW
Pmaxt = 250 mW Pfilt = Pfilr = 2.5 mW
Ttr = 5 µs Ml = 40 dB
T = 100 ms Pb = 10−3

Nf = 10 dB G1 = 30 dB

given bybmin = max{⌈ L
B(T−Ttr)⌉, 2}, andEa is represented

in terms ofb as

Ea = (1 + α)
4

3
Nfσ2 (2b − 1)

b
ln

4(1 − 2−
b
2 )

bPb

×Gd +
(

PcTon + 2PsynTtr

)

/L. (15)

The resulting optimization problem can be solved using the
optimization algorithms discussed in Section V.

For a specific numerical example, the circuit-related para-
meters need to be defined first. We take a2.5 GHz radio in the
Industrial-Scientific-Medical (ISM) band as an example. For
radios in other bands or with significantly different hardware
architectures we need to use different parameters. The circuitry
for such a radio is composed of several blocks described
in [11], [15], [16], and [17]. The corresponding parameters
are summarized in Table I, whereη = 0.35, which is a
practical value for class-A RF power amplifiers [11] (Due
to the linearity requirement for amplifying MQAM signals,
class-A power amplifiers are usually used.). The values for
B, L, and T are set up such thatbmin = L

BT
= 2. Thus,

the constellation size for MQAM is well defined inside the
feasible region.

The plot of Ea over Ton for bandwidthB = 10 KHz is
shown in Fig. 2. The vertical axis is the energy consumption
per information bit (in terms of dB relative to a millijoule:
log10

Ea

0.001 dBmJ). The horizontal axis is the normalized
transmission time. We see that the total energy consumption
is not a monotonically-decreasing function ofTon when the
transmission distanced is small. For example, whend = 1 m,
Ea at the optimalT ⋆

on ≈ 0.12T is about 8 dB lower than the
non-optimized case whereTon = T − Ttr ≈ T . Thus, Ton

optimization results in an84% energy saving. It can be shown
that whend = 100 m, the peak-power constraint is violated
even whenb = 2 (the minimum allowable value). In this case,
we can use coding or MFSK modulation to reduce the peak
power requirement, as we show later.

The transmission energy is dependent on the transmission
distanced while obviously the circuit energy consumption is
independent ofd. Thus, we can save energy by optimizing
Ton only when the circuit energy consumption is nontrivial
relative to the transmission energy. Since the transmission
energy increases withd, there exists a threshold for the value
of d above which there is no energy savings possible by
optimizingTon, which then should just be set to the maximum
value T . For the above example,d = 30 m is the threshold,
where the derivative ofEa relative toTon is approximately
zero at the pointTon/T ≈ 1. In general, to find the threshold
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Fig. 2. Total Energy Consumption, MQAM, (AWGN)

we just need to find the value ofd that makes the derivative
of Ea relative toTon at the maximum transmission time equal
to zero.

According to the relationship defined in Eq. (6), we can find
the optimal constellation size from the optimal value ofTon.
We redrawEa over b for the d = 5 m case in Fig. 3. We see
from the figure thatbopt ≈ 9 if the total energy consumption
is considered versusbopt = 2, its minimum value, when only
transmission energy is considered.
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Fig. 3. Total energy consumption versus constellation size,MQAM (AWGN)

B. Uncoded MFSK

For MFSK, the number of orthogonal carriers isM = 2b.
We assume that the carrier separation is equal to1

2Ts
, where

Ts is the symbol period. Thus, the data rateR = b
Ts

and the

total bandwidth can be approximated asB ≈ 2b

2Ts
(see [13]).

As a result, the bandwidth efficiency for MFSK is given by

Be , 2b/2b (b/s/Hz). (16)

Since in general the bandwidth efficiency can also be repre-
sented asBe = L

BTon
regardless of modulation schemes, the

relationship between the constellation size and the bandwidth-
time product for MFSK is given by

2b/2b = L/(BTon), (17)

which is different from the MQAM case whereb =
L/(BTon). However, there still exists a one-to-one relation-
ship betweenb and theBTon product for any fixed value of
L, except forb = 1 andb = 2, which correspond to the same
BTon product. For simplicity, all the following transmission
energy functions for MFSK will be represented in term ofb.

Since most practical MFSK receivers use non-coherent
detectors, the probability of error bound for non-coherent
MFSK detection is used in our derivation:

Pb ≤ 2b−2e−
γ
2 . (18)

Approximating the bound as an equality, we obtainγ =
bEb

N0Nf
≈ 2 ln 2b−2

Pb
, whereEb is the energy per information

bit at the receiver andN0 = 2σ2. Hence, Eb

2σ2Nf
= 2

b
ln 2b−2

Pb
.

Following a similar derivation as in the MQAM case, the
transmission power and the transmission energy are given by

Pt = 4Nfσ2 ln
2b−2

Pb

Gd

2B

2b
(19)

and

Et = PtTon = 4Nfσ2 ln
2b−2

Pb

Gd

L

b
(20)

respectively, where we usedTon = 2b

2b
L
B

derived from Eq. (17).
One necessary modification in the hardware configuration of

MFSK compared to the MQAM system is that the mixer and
the DAC at the transmitter should be deleted, as we discussed
earlier. Correspondingly we redefinePc = 2Psyn + Pmix +
PLNA +Pfilt +Pfilr +PIFA +PADC . Thus, the total energy
consumption per information bit is given by

Ea =
(

(1 + α)4Nfσ2 ln
2b−2

Pb

Gd

L

b

+PcTon + 2PsynTtr

)

/L, (21)

where α = ξ
η
− 1 and ξ = 1 for MFSK. From Eq. (17)

we see that the product ofB and Ton defines the value of
b when the packet sizeL is fixed. Hence, the value ofEt

is dependent on theBTon product. It can be proved thatEt

is a monotonically decreasing function overb (when b ≥ 1)
unlessPe is unreasonably large (on the order of0.1). Due to
the relationship betweenb andBTon as described in Eq. (17),
Et is also a monotonically decreasing function over theBTon

product which is similar to the MQAM case. Hence, increasing
Ton always decreases the transmission energy, but the optimal
Ton which minimizes the total energy consumption may not be
the maximum allowable transmission time. The optimization
model is easily described in term ofb such that Eq. (4) can
be rewritten as

minimize Ea

subject to bmin ≤ b ≤ bmax
, (22)

wherebmax is defined by the delay requirement in such a way
that 2bmax

2bmax
= L

BT
and bmin is calculated based on the peak-

power constraint, specifically,(1+α)Pt(bmin) = Pmaxt − Pct

wherePct = Psyn + Pfilt.
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To give a numerical example, we first assume that the power
consumption of the corresponding circuit blocks is roughlythe
same as in the MQAM case. Since there is no longer a strict
linearity requirement on the RF power amplifier, the value of
η in Table I is changed to 0.75, which corresponds to a class-B
or a higher-class (C,D or E) power amplifier. The bandwidth
B and the packet sizeL are kept as10 KHz and 2 Kb,
respectively. The maximum delayT is changed to1.07 s, such
that bmax = 6. Compared with the MQAM case, the increase
of T is due to the fact that MFSK is less bandwidth-efficient
than MQAM. Thus, MFSK needs a longer transmission time
to transmit the same number of bits as MQAM when they
have the same bandwidth.

We draw Et and Ea directly over b as shown in Fig. 4.
Not surprisingly, the transmission energyEt goes down when
b increases, since it is well known that the largerM is, the
more energy-efficient MFSK is, in an AWGN channel. In other
words, M = ∞ is optimal in the sense of minimizing the
energy consumption per information bit [13] based only on
transmission energy. When the circuit energy consumption is
considered, as shown in Fig. 4,b = 2 turns out to be the best
choice for bothd = 1 m andd = 30 m. For theb = 1 m case,
by usingbopt = 2 we can achieve about80% energy savings
when compared with the case whereb = 6 (Ton = T ) is used.
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Fig. 4. Total energy consumption versusb, MFSK (AWGN)

IV. CODED MQAM AND MFSK

It is well known [13] that forward Error Correction Codes
(ECCs) can reduce the required value ofEb/N0 to meet a
given target probability of bit errorPb, whereEb refers to the
received energy per information bit, which is proportionalto
the transmission energy per information bit. However, whether
the total energy consumption per information bit can be
reduced is not clear due to the possible bandwidth expansion
caused by the ECC redundancy and the extra baseband energy
consumption of the ECC codec.

The error-correction capability of ECCs is enabled by intro-
ducing controlled redundancy, which usually causes bandwidth
expansion in order to communicate the extra redundant bits.
If the bandwidth expansion in the frequency domain is not

limited, the system throughput can be maintained by increasing
the symbol rate. However, most practical systems are assigned
a fixed frequency band so that the bandwidth expansion can
only be implemented in the time domain. In other words, a
longer transmission time is needed in order to communicate
both the information bits and the error-correction bits. Whether
the expansion happens in the time domain or in the frequency
domain has no impact on the ECC performance as the cod-
ing gain remains the same. Nevertheless, the time domain
approach results in more circuit energy consumption which
is linearly proportional to the increase of transmission time
Ton. Fortunately, bandwidth expansion may be circumvented
when the channel coding and modulation processes are jointly
designed, for example in trellis-coded MQAM [13].

In the following sections we consider two coded systems:
trellis-coded MQAM and convolutionally-encoded MFSK. For
trellis-coded MQAM, even though there is no bandwidth ex-
pansion, there is still an energy penalty caused by the baseband
ECC processing. We first neglect this energy penalty due to its
small magnitude compared with the energy consumption of the
RF circuitry and then show its effect with an example where
the transmission distance is extremely small. Therefore, it will
be shown in the next section that trellis-coded MQAM always
has higher energy efficiency than uncoded MQAM for narrow-
band systems. For MFSK systems with fixed bandwidth, we
cannot implement coding by increasing the constellation size
while keeping the transmission time constant, as we do in
trellis-coded MQAM. In other words, bandwidth expansion is
inevitable for coded MFSK. We will therefore investigate the
tradeoff between energy savings and bandwidth expansion for
MFSK systems with convolutional codes.

A. Coded MQAM

In a trellis-coded MQAM system, each block (of sizeb)
of information bits is divided into two groups of sizeb1 and
b2, respectively. The first group ofb1 bits is convolutionally
encoded intobk bits, which map to2bk constellation subsets.
The second group ofb2 bits are used to choose the2b2 th
constellation point within each subset (see [13] for a detailed
description of trellis-coded modulation). The code rate is
therefore defined asγc = b1/bk and the constellation size
is increased from2b to 2bk+b2 . A rate γc = b1/(b1 + 1)
code is usually used for subset selection. According to [13],
b1 = 2 is a good choice since it provides the major part of the
achievable coding gain. In our model, a rate2/3 code with32
states is chosen and the coding gainGc ≈ 3 (4.7 dB) [13].
As the result, the final constellation size becomes2bc , where
bc = 1 + L

BTon
.

Due to the embedded ECC, the required SNR thresholdγ0

to achieve a givenPb is reduced by the coding gainGc, i.e.,
for any b = L

BTon
, γ0 = Ebb

GcN0
. Therefore, for trellis-coded

MQAM the required transmission energy to achieve a givenPb

is changed toEtc = Et/Gc and the total energy consumption
Eac is given as

Eac = (1 + α)
4

3Gc

Nfσ2 (2b − 1)

b
ln

4(1 − 2−
b
2 )

bPb

×Gd +
(

PcTon + 2PsynTtr

)

/L. (23)
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For a specific numerical example, the circuit-related para-
meters are the same as in the uncoded case (see Table I).
The values forB, L, and T are set up in such a way that
bmin = L

BT
= 2 for an uncoded system. Thus, for the trellis-

coded system in our model, the minimum value forbc will
be equal to3. For comparison, an optimized uncoded system
is also considered. We also evaluate one reference uncoded
system with constellation sizeb = 2 and one reference coded
system with constellation sizebc = 3: these reference systems
are designed to minimize the transmission energy.

The plots of minimized energy per information bit over
different transmission distances are shown in Fig. 5, where
we see that about90% energy savings is achieved over the
reference setup for the coded system whend = 1 m. The plots
also show that for both the coded and uncoded systems, the
optimized performance converges to be the same as the refer-
ence performance when the transmission distance is large. In
other words, optimizing over modulation parameters no longer
saves energy at large distances, since in this case transmission
energy is dominant and therefore using the minimum allowable
constellation size is always optimal. We also see that the coded
system outperforms the uncoded system over all the distances
(when ECC processing energy is not included).
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Fig. 5. Total Energy Consumption per Information Bit v.s. Distance, MQAM

The optimized parameters are listed in Table II, where
bopt is the optimal constellation size,E is the total energy
consumption per information bit,Eref is the corresponding
energy consumption for the reference systems, and each item
x/y inside the table hasx as the optimized value for the coded
system andy as the optimized value for the uncoded system.
In this example the peak-power constraint (Pont ≤ Pmaxt)
is violated whend ≥ 50 m for both the coded system and
the uncoded system. In order to achieve the givenPb at these
distances we would have to increase the power budget or use
other coding strategies.

If we include the ECC processing energy in the total energy
consumption, at very short transmission distances where the
transmission energy is low, the savings on transmission energy
enabled by the ECC may be less than the ECC processing
energy, which is mainly contributed by the Viterbi decoder.

TABLE II

OPTIMIZED PARAMETERS FORCODED/UNCODED MQAM
d (m) 0.5 1 5 30 50

B (KHz) 10/10 10/10 10/10 10/10 10/10

Ton (ms) 10/10.5 11.8/12.5 20/25 66.7/100 100/100

bopt 20/19 17/16 10/8 3/2 2/2

Pout (mW) 1.6/2.4 2.3/3.5 5.3/4.1 20.8/27.1 54/162

Pont (mW) 112/119 118/128 141/129 183/176 253/561

Ponr (mW) 113/121 113/121 113/121 113/121 113/121

E (µJ) 1.1/1.2 1.4/1.5 2.5/3.0 9.9/14.4 18.3/33.7
Eref (µJ) 10.5/10.5 10.5/10.5 10.5/10.5 11.8/14.4 18.3/33.7

In our example, since the symbol rate is as low as10 KHz,
the power consumption of the Viterbi decoder is only on the
level of microwatts. Therefore, it is safe to say that the coded
MQAM is always better than uncoded MQAM at practical
transmission distances. When the bandwidth gets larger, the
power consumption of the Viterbi decoder also becomes
higher. As a result, uncoded MQAM may beat coded MQAM
in terms of energy efficiency at short distances. For example,
whenB = 10 MHz andL = 2 Mb with all other parameters
kept the same, the power consumption of the Viterbi decoder
is around10 mW. Thus, the uncoded system may become
more energy-efficient than the coded one at short distances.
As shown in Fig. 6, the reference uncoded system becomes
more energy-efficient than the reference coded system when
d ≤ 1.5 m. For optimized systems, since higher constellation
sizes reduce the transmission time, the energy consumption
in the Viterbi decoder is compensated by the reduced energy
consumption in the analog circuits. Therefore, the effect of
the decoding process is not obvious. In other words, adaptive
modulation is able to keep the superiority of coded systems
down to a very short distance, as shown in the figure where
the crossover happens at0.1 m.
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Fig. 6. Total Energy Consumption per Information Bit v.s. Distance,
MQAM (ECC processing energy included)

For trellis-coded MQAM, the coding gain is more sensitive
to the constraint length of the convolutional encoder than to
the code rates. Codes with lower rates may not necessarily
generate higher coding gain. Since there is no bandwidth
expansion, any codes with higher coding gain are able to
reduce the total energy consumption unless the constraint
length is so large that the energy consumption in the decoding
logic can no longer be neglected. The tradeoff between energy
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consumption and code rates is complicated and definitely
worth further investigation. However, this extension is beyond
the scope of this paper.

B. Coded MFSK

For the coded MFSK system, we assume a rateγc = 2/3
convolutional code with32 states, which achieves a coding
gain Gc = 2.6 (4.2 dB) [13]. Since the available frequency
band is fixed, the error-control bits are accommodated by
bandwidth expansion in the time domain. Thus, the required
transmission energy per information bit for coded systems
is reduced byGc at a price of increased transmission time
Tonc = Ton/γc. The total energy consumption per information
bit for the coded system is therefore given by

Eac = (1 + α)4Nfσ2 ln
2b−2

Pb

Gd

1

bGc

+
(

PcTonc + 2PsynTtr

)

/L. (24)

To give a numerical example, we first assume that the
power consumption of the different circuit blocks for MFSK
is roughly the same as the corresponding blocks for MQAM.
Similar to the uncoded case, the drain efficiency is changed to
η = .75, which corresponds to a class-B or a higher-class (C,D
or E) power amplifier. The bandwidthB and the packet sizeL
are kept as10 KHz and2 kb, respectively. Due to the coding,
the delay constraint is increased to1.07/γc = 1.61 s for the
coded system. For the purpose of comparison, one uncoded
BFSK system and one coded BFSK system (with the same
convolutional code) are set up as reference systems.

The total energy consumption per information bit over
different transmission distancesd is plotted in Fig. 7. This
figure shows that optimizing over modulation parameters saves
energy for both the coded and uncoded systems, and this
energy saving increases withd. In addition, the uncoded
system outperforms the coded system whend is small (< 48 m
for the optimized cases). This is due to the fact that the ECC-
enabled savings on transmission energy can no longer balance
the extra circuit energy consumption caused by the increase
in transmission time. The optimized parameters are listed in
Table III. By comparing the energy consumption values in
Table III and Table II, we see that although MFSK requires
less transmission energy (= PtTon) than MQAM at the same
distance, the total energy cost per information bit is higher
for MFSK when d is small due to its high circuit energy
consumption (Ton is larger for MFSK), as shown in Fig. 8.
Whend increases such that the transmission energy becomes
dominant, MFSK becomes more energy-efficient than MQAM
(at the price of using more transmission time) . However, by
comparing the energy consumption values for the coded and
uncoded cases, we see that coding can increase the distance
where MFSK beats MQAM in terms of energy efficiency.

V. OPTIMIZATION ALGORITHMS

Since the design variableb is defined over integer values, the
corresponding optimization problem is a non-convex integer
programming problem. Exhaustive search (which is used for
the numerical examples in this paper) is a feasible way to
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Fig. 7. Total Energy Consumption per Information Bit v.s. Distance, MFSK
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Fig. 8. Total Energy Consumption Comparison Between MQAM and MFSK

solve this problem for the simple point-to-point case, since
only one variable is involved and all the constraints are well-
bounded which makes the search algorithm relatively simple.
However, we also investigated efficient algorithms to solve
this type of integer programming problem. These algorithms
can be used for example to extend the energy minimization
results to multiple users [23]. Specifically, we found that if we
use a looser bound on the total energy consumption per bit
for MQAM, we are able to use an efficient convex relaxation
method to solve this problem. For MFSK, even without using
any looser bounds, the problem can be solved with efficient
convex relaxation methods.

TABLE III

OPTIMIZED PARAMETERS FORCODED/UNCODED MFSK

d (m) 0.5 1 5 30 70

B (KHz) 10/10 10/10 10/10 10/10 10/10

Ton (s) 0.3/0.2 0.3/0.2 0.3/0.2 0.3/0.2 0.3/0.27
bopt 2/2 2/2 2/2 2/2 2/3

Pout (µW) 0.002/0.008 0.02/0.09 6.5/25.6 3.5e3/1.4e4 6.7e4/1.4e5

Pont (mW) 52.5/52.5 52.5/52.5 52.5/52.5 57.1/70.5 142/238

Ponr (mW) 112/112 112/112 112/112 112/112 112/112

E (µJ) 24.7/16.5 24.7/16.5 24.8/16.5 25.4/18.3 38.2/36.7
Eref (µJ) 24.7/16.5 24.7/16.5 24.8/16.5 26/20 50/82.2
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For uncoded MQAM, if we apply the boundln 4(1−2−

b
2 )

bPb
≤

ln 2
Pb

for b ≥ 2, we can simplify the representation forEa as

Ea = x(1 + α)
2b − 1

b
L + y

L

b
+ z, (25)

with the coefficientsx, y andz defined as

x =
4

3
Nfσ2Gd ln

2

Pb

,

y =
Pc

B
, (26)

z = 2PsynTtr,

respectively. The relative looseness caused by the bound

ln 4(1−2−

b
2 )

bPb
≤ ln 2

Pb
is less than21% when b is within the

range[2, 20] (which is a reasonable range for practical MQAM
systems). If we relaxb to be defined over real numbers, it can
be proved thatEa is a convex function overb for b ≥ 2 by
showing that∂

2Ea

∂b2
≥ 0. The optimization problem in Eq. (14)

can then be rewritten as

minimize Ea

subject to b − bmin ≥ 0
bmax − b ≥ 0

. (27)

Since all the constraints are simple linear constraints, the
optimization problem is a convex problem, which can be
efficiently solved using the interior point method [24]. Specif-
ically, for a convex problem in the following format

minimize f0(b)
subject to fi(b) ≥ 0 i = 1, . . . ,m

, (28)

we can first convert this constrained problem into an uncon-
strained one by utilizing the log-barrier functions [24]. The
unconstrained problem is constructed as

minimize tf0(b) −
∑m

i=1 ln(fi(b)) , (29)

wheret > 0 is a weighting factor. It has been shown [24] that
for ∀ǫ > 0, as t > m/ǫ, the optimal solution for Eq. (29) is
only ǫ away from the actual optimal solution for Eq. (28). The
actual algorithm is given as follows:

Given a strictly feasibleb0, t := t0 > 0, step sizeµ > 1,
toleranceǫ > 0, we run
the Algorithm

1) Computeb⋆ by minimizing tf0(b) −
∑m

i=1 ln(fi(b)),
starting fromb0.

2) Update:b0 = b⋆.
3) Quit if m/t < ǫ.
4) Otherwise sett = µt and go back to step 1).

For the algorithm to work, we first need to find a feasible
point. Settingb0 = bmax is a natural choice. To make it
strictly feasible [24], we can setb0 = bmax − ν, whereν is a
small positive offset to driveb0 away from the boundary. The
unconstrained minimization problem in step 1) can be solved
using standard numerical methods such as the Gaussian-
Newton method [24].

After we find the optimal solutionb⋆ for this relaxed
optimization problem, we can find the optimal solution for

the original problem by evaluatingEa at the two neighboring
integer points ofb⋆ and choosing the one with smallerEa.
Note that for general integer programming problems defined
over multiple integer variables, the optimal solution may not be
one of the neighboring integer points surrounding the optimal
solution for the relaxed convex problem.

For the coded MQAM, sinceEa differs from that of the
uncoded MQAM only by a constantGc, the above algorithm
can be directly applied to find the optimal solution. For both
the uncoded and coded MFSK, we can show that a sufficient
condition for the total energy consumption per bit to be convex
over a relaxedb is given byPb ≤ e−

2
log2 e = 0.25, which can

be easily satisfied by practical systems. Therefore, the above
convex relaxation algorithm can also be applied directly to
MFSK systems.

VI. M ULTIPLE ACCESSSCENARIOS

Transmitting at higher rates as a result of adaptive modula-
tion would create more interference to other users. Therefore,
the results derived in this paper, which is based on pure
MQAM and MFSK modulation schemes, cannot be directly
extended to non-orthogonal multiple-access schemes. The pos-
sibility for combining the adaptive modulation with other mul-
tiple access coding schemes is currently under investigation.
However, the adaptive modulation scheme proposed in this
paper can be directly extended to orthogonal multiple access
schemes such as TDMA. We propose such a variable-length
energy-minimizing TDMA scheme in [23].

VII. C ONCLUSIONS

We have shown that for transmitting a given number of
bits in a point-to-point communication link, the traditional
belief that a longer transmission duration lowers energy con-
sumption may be misleading if the circuit energy consumption
is included, especially for short-range applications. Forboth
MQAM and MFSK, we show that the transmission energy
is completely dependent on the product ofB and Ton. To
minimize the transmission energy, maximum transmission
time is required. To minimize the total energy consumption,
the transmission time needs to be optimized, where we show
up to 80% energy savings is achievable via this optimization.

For trellis-coded narrow-band MQAM systems, we have
shown that coding always increases energy efficiency, and the
improvement increases with the transmission distanced. For
MFSK systems, coding can only reduce energy consumption
when the transmission distance is large such that the trans-
mission energy is dominant. For short-range applications,un-
coded MFSK outperforms coded MFSK due to the bandwidth
expansion caused by ECC.

We found that uncoded MQAM is not only more bandwidth-
efficient, but also more energy-efficient than uncoded MFSK
for short-range applications. The performance differenceis
even more pronounced with coding. However, coded MFSK
may be desirable in peak-power-limited applications since
it requires less transmit power, although its total energy
consumption may be higher.
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APPENDIX

In the appendix, we discuss how to estimate the power
consumption of various circuit blocks.

A. Power Consumption of DACs

We assume that a binary-weighted current-steering DAC is
used [19]. The simplified diagram of the DAC is shown in
Fig. 9.

bn1−1 bn1−2 b0

2n1−1I0 2n1−2I0 I0

RL CL

Vdd

Fig. 9. Current-steering DAC

The power consumption consists of two components: static
power consumptionPs and dynamic power consumptionPd.
From Fig. 9 we see that the static power consumption is
mainly contributed by the array of current sources and can
be calculated as

Ps = VddI0E[

n1−1
∑

i=0

2ibi] =
1

2
VddI0(2

n1 − 1), (30)

wherebi’s are independent binary random variables and each
has a probability of1/2 to take 1 or 0, Vdd is the power
supply andI0 is the unit current source corresponding to the
Least Significant Bit (LSB). The minimum possible value for
I0 is limited by the noise floor and device mismatch. Thus, for
any given hardware technology we cannot decreaseI0 without
bound to reduce the power consumption. The possible value
for I0 is also upper-bounded by the linearity requirement.
However, since power consumption is the main concern in
our design,I0 will be set close to the lower bound.

The dynamic power consumption occurs during the switch-
ing process between symbols,i.e., when the switch is being
connected if the corresponding bit changes from0 to 1 or
when the switch is being disconnected if the corresponding
bit changes from1 to 0. For a first-order approximation, the
average value forPd can be calculated asPd ≈ 1

2n1CpfsV
2
dd,

whereCp is the parasitic capacitance of each switch and the
factor 1

2 is the value of the switching factor (we assume that
each switch has a probability of12 to change status during
each symbol transition). For the low-IF structure assumed in
our model, the sampling frequency can be approximately taken
asfs = 2(2B + fcor), wherefcor is the corner frequency of
the 1/f noise [11] andfIF = B + fcor is the lowest possible
value for IF such that the signal is not severely affected by

the 1/f noise. Thus, the expression forPd can be rewritten
as

Pd ≈ n1Cp(2B + fcor)V
2
dd. (31)

As a result, the total power consumption of the DAC is given
by

PDAC ≈ β(Ps + Pd)

≈ β(
1

2
VddI0(2

n1 − 1) + n1Cp(2B + fcor)V
2
dd),

(32)

where β is a correcting factor to incorporate some second-
order effects (β = 1 is used in our model).

B. Power Consumption of ADCs

We use the estimation model proposed in [20] for evaluating
the power consumption of Nyquist-rate ADCs. As a result, the
value ofPADC can be calculated as follows

PADC ≈ 3V 2
ddLmin(2B + fcor)

10−0.1525n2+4.838
, (33)

where Lmin is the minimum channel length for the given
CMOS technology.

C. Power Consumption of Viterbi Decoders

While the power consumption of a convolutional encoder
is small enough to be neglected, the power consumption of
a Viterbi decoder may be non-negligible in comparison with
other receiver blocks. The model introduced in [21] is used to
estimate the power consumption of Viterbi decoders.

D. Power Consumption of Other Blocks

We assume that the receiver gain adjustment is performed
solely in the IFA. As a result, the power consumption values of
the mixers, the frequency synthesizers, the filters, and theLNA
can be approximated as constants and are quoted from several
publications as we discussed earlier. For the IFA, its power
consumption value is dependent on the receiver gain which
varies along with the channel conditions. However, sincePIFA

is usually much smaller thanPsyn or PLNA, we approximate
PIFA as a constant which is equal to3 mW [22] in our model.

E. Parameter Setup

For the related parameters in our numerical examples, we
take the following values:Vdd = 3 V, Lmin = 0.5 µm, n1 =
n2 = 10, fcor = 1 MHz, I0 = 10 µA, and Cp = 1 pF.
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