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Abstract

Molecular Communication (MC) is a promising bio-inspireat@digm, in which molecules are used
to encode, transmit and receive information at the nanesa@ry limited research has addressed the
problem of modeling and analyzing the MC in nanonetworkse ©hthe main challenges in MC is the
proper study and characterization of the noise sourcesobfextive of this paper is the analysis of the
noise sources in diffusion-based MC using tools from sigrakessing, statistics and communication
engineering. The reference diffusion-based MC systemhfisranalysis is the physical end-to-end model
introduced in a previous work by the same authors. The partEmpling noise and the particle counting
noise are analyzed as the most relevant diffusion-bases# soiurces. The analysis of each noise source
results in two types of models, namely, the physical moddltae stochastic model. The physical model
mathematically expresses the processes underlying th&gshgf the noise source. The stochastic model
captures the noise source behavior through statisticanpeters. The physical model results in block
schemes, while the stochastic model results in the chaizatien of the noises using random processes.
Simulations are conducted to evaluate the capability ostbehastic model to express the diffusion-based

noise sources represented by the physical model.

Index Terms

Molecular Communication, Molecule Counting Noise, Nartarmeks, Nanotechnology, Particle Dif-

fusion, Poisson Noise
I. INTRODUCTION

Nanotechnology is nowadays one of the most promising emgrggsearch fields, enabling devices
manufactured in a scale ranging from one to a hundred namoséeit this scale, a nanomachine is
considered to be the most basic structural and functionatégconsisting of nanoscale components,
and able to perform tasks at the nano-level, such as congputiata storing, sensing or actuation.

Nanomachines can be interconnected as a network, or navankdtl], to execute more complex tasks
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and to expand their range of operation. The characterizatfocommunication mechanisms between
nanomachines, the definition of channel models and the djewednt of architectures and protocols for
nanonetworks are new challenges that need to be addresseel i@esearch world.

Molecular Communication (MC) is a promising paradigm fornreounication in nanonetworks. Unlike
classical communication techniques, we believe that tlegration process of molecular transceivers in
nanomachines is more feasible due to their size and natanahith. MC follows a bio-inspired approach,
in which molecules are used to encode, transmit and recefeemation at the nanoscale. Several
technigues to propagate information molecules have begmoped so far [2], ranging from molecular
motors [3], to bacteria [4] or free diffusion [5]. We focus dhe diffusion-based architecture, as it
represents the most general and widespread MC architdotund in nature. Pheromonal communication,
when pheromones are released into a fluidic medium [6], ss@irar water, is an example of diffusion-
based architecture. Another example is calcium signalingray cells [7]. Different mathematical models
have been formulated for the diffusion of molecules in a fllid an example, the theory of turbulent
diffusion [8] can be applied to the diffusion of pheromonesbijle the theory of electro-diffusion [9] is
applicable to the diffusion of calcium ions in calcium siing. The most general model of molecular
diffusion in fluids, which underlies all the other modelsp&sed on the Fick’s diffusion theory [10,11].
In this paper, we consider only Fick’s diffusion in order t@imtain the maximum possible generality
for our diffusion-based molecular communication systemrtter specifications of the system for the
pheromonal communication case or the calcium signaling stem from the general case treated in this
work.

Up to date, very limited research has addressed the probiahe @nalytical modeling of diffusion-
based MC from an information theoretical point of view. Véhih [12] some open questions about
nanoscale information theory are outlined, concrete nmasttieal solutions for specific diffusion-based
MC architectures are not provided. Two main different diftn-based MC architectures have been
studied by the research community under an informationrétmal point of view, on the basis on how
information is encoded in the diffusing molecules. In [1Bgtinformation is encoded in the time of
release of each molecule in the diffusion channel, whilelid]f[17], the information is encoded into
variations in the concentration of molecules in the spade first type of architecture is theoretically
analyzed in [13], where the authors focused on the matheatatiodeling of the diffusion channel as
a probabilistic contribution in the time of arrival of moldes at the receiver. The model of this system
is focused on the diffusion channel, while the transmitteam ideal emitter of one or more molecules
at precise time instants, and the receiver ideally compihtesmolecule time of arrival at its location.
Moreover, a drift velocity is added on top of the diffusioropess. The results of simulations from [13]

in terms of achievable information rate show that, due tohigd uncertainty in the propagation time,
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this architecture is characterized by very low capacitye Work in [14,15] is focused on developing an
MC receiver model based on molecule concentration encoaihge the transmitter and the diffusion-

based propagation theory are not taken into account. In §léimplified receiver model that receives
one molecule at a time is coupled with a diffusion-based nbbmodel, while the transmitter is an ideal

molecule rate emitter. In [17], a physical model of the difin-based MC is developed in terms of
end-to-end information delivery at the nanoscale and nsoaie provided for the transmitter, the channel
and the receiver. A third possible diffusion-based MC degtiure is proposed and analyzed in [18],
where information is encoded in each single molecule ang t@ diffusion channel part is modeled,

together with other types of channels. As a consequencentbenation carried by a certain molecule

is received only if that molecule reaches the receiver lonat

The proper study and characterization of the noise is onéefnain challenges in the information
theoretical analysis of diffusion-based MC. Most of the kgofrom the literature do not provide stochastic
models for the noise sources in terms of random processesteBults of these works are expressed in
terms of system capacity computed on numerical results femge sets of simulations. A non-Gaussian
noise is observed through numerical results from simulatiof the system proposed in [16], even if
it is not analytically modeled with a closed-form expressif a random process. Also in [18], the
noise effects on the diffusion-based MC are resulting ontynf simulations and there is no analytical
model of diffusion-based noise and no stochastic studysofiitderlying physical phenomena. In [19],
the noise analysis stems from a formulation of the ligarmbpeor reaction kinetics at the receiver side,
without accounting for diffusion. A numerical evaluatiohtbe system capacity is here provided in terms
of probability of having erroneous digital reception, buyounder the assumption of a binary squared
pulse code modulation signal. In [13], a mathematical @qodor finding the system capacity is provided
and it is evaluated with numerical methods.

In this paper, we aim at the analysis of the most relevanusiifin-based noise sources affecting MC.
We use tools from signhal processing, statistics and comeation engineering, with the aim to obtain
stochastic models of the sources in terms of random prose$ke reference diffusion-based MC system
for this analysis is the physical end-to-end model intraaum [17].

Contributions from the biochemistry literature providesdeptions of some physical processes under-
lying the noise sources in diffusion-based MC systems. Bahworks in biochemistry, such as [20],
analyzed how free space diffusion of molecules impairs ttopgr measurement of the molecule con-
centration. A more recent contribution to the physical gsial of molecule diffusion and reception in
biochemical signaling can be found in [21]. However, thesgtigbutions tend to focus on the explanation
of natural phenomena and do not provide suitable models fGrevigineering. The work in [22] stems,

on the contrary, from the simulation of a biological signanisduction mechanism and its associated
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noise using tools from communication engineering. Howetlex analysis of the system is limited to
a numerical evaluation of the simulation results using comication engineering parameters (e.g., the
Signal to Noise Ratio). No stochastic models are providd@2h for the noise sources, but the results are
coming from numerical simulations. In [23], the authorselep only a preliminary information theoretic
model applied to the study of intracellular communicatioithvthe diffusion of calcium ions.

The noise sources considered in this paper are modeled imfltvfashion: the physical model
provides a mathematical analysis of the physical procash&h generate the noise, while the stochastic
model aims at capturing those physical processes throwlstgtal parameters. The physical model
contains all the physical variables which contribute to gle@eration of the noise. The stochastic model
summarizes the noise generation using random processetheindassociated parameters. While the
physical model provides a means to simulate the generafiowiee in MC, the random nature of the
diffusion processes does not allow for a deterministic Kedge of the noise signal. Noise impairments
on MC can be studied only statistically through the parameté the stochastic model. Sets of noise
data realizations are generated through simulation of tysipal model. The sets of noise data are then
used to test the stochastic model ability to capture the\behaf the physical processes which generate
the noise.

The remainder of the paper is organized as follows. In Secsdine assumptions for the proposed
noise analysis are introduced, and the diffusion-basesersiurces are briefly defined with reference to
the end-to-end model from [17]. The first noise source, ngntied particle sampling noise, is analyzed in
Sec. lll, whereas the second noise source, namely, thelpactiunting noise, is treated in Sec. IV. The
physical models for the two noise sources are introduce@® H-A and Sec. IV-A, while the stochastic
models are outlined in Sec. llI-B and Sec. IV-B, respecjivBimulations are provided in Sec. V for each
noise source with the objective to test the stochastic mabliéity to capture the behavior of the physical
models. Finally, in Sec. VI, we conclude the paper and pteseme future open research problems.

Il. THE DIFFUSION-BASED NOISE IN THE END-TO-END MODEL

The end-to-end (including channel) model from [17] desesilthe diffusion-based MC in terms of
transmission, propagation and reception of particleskatbBed in Fig. 1. The three-dimensional space
S is here indexed through the Cartesian axes X, Y and Z. Therhidter is placed at the axes origin. The
emission process modulates the particle concentratienatahe transmitter according to an input signal.
The modulation is achieved through the release/captureadfcfes into/from the emission gaps. The
modulated particle concentration rate is the output of thedmitter and the input of the propagation.
The propagation relies on the diffusion process of the glagiin the space S to output the particle
concentration at the receiver. The receiver senses thatizaus in the particle concentration at its location

as input and it recovers the output signal. The receptionge® generates the output signal by means of
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Fig. 1. Graphical representation of the end-to-end model.

chemical receptors. A mathematical analysis of the comaoation channel of Fig. 1 is provided in [17]
by comparing the input and the output signals. The norméligain and delay between inputs and
outputs are computed as functions of the frequency and #msrirission range for the three underlying
physical processes, hamely, the particle emission, diffuand reception, as well as for the overall end-
to-end model. However, the analysis from [17] does not actar diffusion-based noise effects on the
information signal as it propagates through the end-to+vandel. In this paper, we complete the model
introduced in [17] by providing an analysis of the possibitudion-based noise sources.

The analysis of the diffusion-based noise sources stemstfie assumptions defined for the end-to-end
model in [17]:

« All the processes take place inside the sp&cevith reference to Fig. 1, which contains a fluidic

medium and it has infinite extent in all three dimensions.
« A particle is an indivisible object that can be released,iniocollected from, the spacg.
« When a particle is not being released or collected, it isetitip the diffusion process in the fluidic
medium contained in the space

« The shape, size and mass of a patrticle are considered tégligi

Two type of noises are identified and studied in this papemealy the particle sampling noise and
the particle counting noise. The particle sampling noise te particle counting noise are analyzed as
the most relevant diffusion-based noise sources affedtisgphysical end-to-end model in Sec. Il and
Sec. IV, respectively. In the following, we define each naeerce with reference to the block scheme
in Fig. 2.

The PARTICLE SAMPLING is related to thEmission Process at the transmitter. During the emission

process, particles are emitted from the particle tranemétccording to the input signél(¢), which
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Fig. 2. Block scheme of the end-to-end model and the diffusiased noise sources.
modulates the particle concentration ratgt) at the transmitter location:

T(t) — rr(t) 1
According to the transmitter model in [17], the modulatiohtlee particle concentration rate does not
follow any specific digital modulation scheme. The sighié) can be in general any continuous function
of the timet and the modulated particle concentration rgtét), output of the transmitter, is a function of
T(t). The particle sampling noise is expressechag). The effect ofng(¢) is an unwanted perturbation
on the output of the emission processt), which results infr(t):

ro(t) = Pr(t) (@)
The particle sampling noise is generated by the PARTICLE $AMIG, which occurs when the particle
concentration ratér(t¢) is being modulated through the emission of the particleg fAdise effects arise
from the discreteness of the particles that compose thécigadoncentration ratér(¢). The particle
concentration rate(¢) in output from the emission process is caused by a particle feiween the
transmitter and the external space. Given the discretasfabe particles, the particle concentration rate
rp(t) is sampled by the particles themselves, resulting in thégarconcentration ratér(¢). Further
details on the analysis for this type of noise are provide&eéa. III.

The PARTICLE COUNTING is related to the signal propagatiare do theDiffusion Process. The
signal contained in the particle concentration ratét) propagates due to the particle diffusion from
the transmitter location to the receiver location. Theiprtconcentration valueg(¢), a measure of the
particle concentration at the receiver location, is thgouof the diffusion process:

Fr(t) = cr(t) 3)
According to the signal propagation model in [17], the madiedi particle concentration rate(t) creates
differences in particle concentration across the spgcd@hese differences cause a non-homogeneous
particle concentration inside the spaSewhich, due to the particle diffusion, causes variationsha t
particle concentratiomp(t) at the receiver location. The particle counting noise isresped as.(t).
The effect ofn.(t) is an unwanted perturbation on the output of the diffusiatpssr(t), which results
in ér(t):

cr(t) — ¢r(t) (4)

The particle counting noise occurs when the particle cotmagon value is being measured at the
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receiver location (PARTICLE COUNTING) and it is due to thendamness in the movement and to
the discreteness of the particles. The particle concémrtral;(¢) at the receiver location is computed
by counting the number of particles present in the recepsipace. Fluctuations and imprecisions in
counting the particles impair the proper computation of ¢becentratiorc(¢). The actual computed
concentratiorty(t) differs from cr(t). The analysis for this type of noise is provided in Sec. IV.

During the Reception Process, the particle concentratiofiz(¢) at the receiver location is sensed by
means of chemical receptors and an output sigt(@) is generated accordingly:

Cr(t) = R(t) (5)
According to the analysis presented in this paper, the gharteception process at the receiver is not
associated to diffusion-based noise sources. Other typetysical phenomena, which stem from the
ligand-receptor kinetics of the chemical receptors, ébute as noise at the receiver. Due to the complexity
of these phenomena and to their heterogeneity with respetiet present work, a thorough analysis of
the noise sources in the reception process will be presémtadseparate future work.

The analysis of the noise sources results botlpliysical modelsand stochastic modelswith the
former we aim at the mathematical expression of the phygioatesses underlying the noise sources
(Sec. llI-A and Sec. IV-A), while with the latter we model theise source behaviors through the use
of statistical parameters (Sec. IlI-B and Sec. IV-B).

The physical models are expressed through the block schienfég. 4(a) and Fig. 7(a), which expand
in detail the blocks:,(¢) andn.(t) from Fig. 2, respectively. The particle sampling noise ptgisnodel
is further detailed through (9), (10), (12), (13), (15) adé) while the particle sampling noise physical
model is detailed in (34), (35), (37), (38), (39), (40), (4h)d (42).

The stochastic models are analyzed in terms of random wesgsuch as in (22) and (49), and their
effects on the end-to-end model are expressed in terms df Rean Square (RMS) perturbationy (¢)
of the noise on the signal, as in (31) and (65). The RMS of thtuggationRMS(nx (¢)) on the signal
s(t) (which isrp(t) or cr(t), respectively) corresponds to the square root of the avevéthe squared
noise proces& (¢):

RMS(7ix (1)) = 1/ (% (1)) ®)

where X corresponds te or ¢, respectively, and.) denotes the ensemble average operator. The stochastic
noise modeling for the aforementioned noise sources iefiier focused on the proper determination
of the statistical parameters of their perturbations iatreh to the processes expressed by the physical

models.
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[1l. THE PARTICLE SAMPLING NOISE
A. The Physical Model

The particle sampling noise affects the physical end-t+odel from [17] at the transmitter. When
a signalT'(t) has to be delivered through the physical end-to-end moldeltransmitter modulates the
particle concentration rater(¢) at the transmitter location according to the valueTgf) itself. The
modulation of the particle concentration rate is achievgdnteans of the particle emission process,

sketched in Fig. 3(a), which is based on the following asdiong:

« The transmitter has spherical boundaryhat divides the space in proximity of the transmitter into
two areas: the inner area and the outer area.

« The inner concentratiot(¢) is the concentration of particles lying in the inner areagwas the
outer concentrationr(t) is the concentration of particles lying in the outer area.

« The inner area and the outer area are spatially connectedelapsrofemission gapsAn emission
gap is an opening in the spherical boundary which allowsiglestto move through due to their
diffusion. The size of an emission gap allows only one pkrtio pass through at each time instant.
Whenever a particle is traversing the emission gap, its meve has only components along the
radius of the spherical boundary. As a consequence, themeweof a particle through the emission
gap can only be outward (from the inner area to the outer areaward (from the outer area to
the inner area). The emission gaps are many and homogepeatbsisibuted on the surface of the
spherical boundary. The present noise analysis does nehdem their precise number. We believe
it will be important to discuss the impact of the humber of gsion gaps on the end-to-end model
in our future work.

« Whenever there is a difference between the inner concentrelf'(t) and the outer concentration
cr(t), a movement of particles is stimulated between the innex arel the outer area through the

emission gaps.
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« The movement of particles between the inner area and the arga causes a variation in the outer
concentration, whose first time derivative is the partidaaentration rate at the transmitter location
rr(t).

« Particles can be created/destroyed in the inner area inr aedeeach a desired inner concen-
tration ¢ (t), with reference to the model of the particle emission predesm [17]. The cre-
ation/destruction of particles in the inner area is supgdsebe ideally perfect and instantaneous.
As a consequence, we do not account for the randomness thdedge from the creation/destruction
of particles. We believe that this is a reasonable approiimathat allows us to analyze the
noise contributions coming only from the emission procdasther analysis can be conducted
by specifying the processes involved in the creation/destm of particles. As an example, the
creation/destruction of particles could be realized thioa cascade of chemical reactions or by the
emptying/filling of particle reservoirs located in the imrerea.

« The transmitter is supposed to be able to adjust the innerectrationcy(¢) in order to obtain a
particle concentration rater(t) proportional to the signal’(t) (modulation ofrp(t) according to
T(t))-

Those assumptions are inspired by biochemistry principddated to the living cells and to the
mechanisms in cell biosignaling [24]. According to thise §pherical boundary is a simplification of the
cell plasma membrane, which separates the interior of droell the outside environment. The emission
gaps are inspired by the channels that permit the selectgsgge of molecules through the plasma
membrane of a cell. As an example, the gated ion channelsipldsma membrane are openings that
allow the passage of specific ion molecules between theiontef a cell and the outside environment
and, amongst others, they serve for cell-to-cell commuigicapurposes. As stated in [24], those ion
molecules, while traversing the gated ion channels, akedry a force that is a sum of two terms. The
first term of the force is a function of the difference betwdka inside and the outside concentration
of the same molecules and it depends on the diffusion. Thenseterm of the force is a function of
an electrical potential and it is related to the electrastebharge carried by the ion molecules. Since,
according to our assumption, the particles in our systemal@arry any electrostatic charge, when they
traverse an emission gap they are driven only by the first @frtine force. For this, the difference in
the concentration of particles between the inner area amaudter area stimulates the driving force that
permits their movement through the emission gaps eithewvardt or inward, as explained above.

The model of the emission process provided in [17] does r@ Bato account the discrete nature of
the particles when there is a flux between the inner area anaduter area of the spherical boundary.

As a consequence, the relation between the input sififigland the resulting particle concentration rate

February 4, 2011 DRAFT

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissions@ieee.o



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. X, NO. XX, 2011 10

rp(t) is a continuous function:
rr(t) = fe (T'(t)) (7

where f. expresses the Emission Process block shown in Fig. 2. We th@vedditional following

assumption for the particle emission process:

« The particle flux between the inner area and the outer areeo$pherical boundary is composed

of discrete particles.

As a result, the relation between the input sigfiéd) and the resulting particle concentration rate, denoted
by 77 (t), is no longer a continuous function. The overall processttiges the input signdl’(¢) as input
and returns’r(¢) as output is called PARTICLE SAMPLING and it is graphicalkesched in Fig. 3(b).
The PARTICLE SAMPLING is composed of the Emission Processlland the particle sampling noise
blockns(t), as shown in Fig. 2. During the PARTICLE SAMPLING, single tigles flowing between the
inner area and the outer area contribute to the concentredie 7 (¢) with a valuek,, at discrete time
instantst,, = t1,t9,.... These discrete time instants are not equally spaced, dtleetoandom nature
of the particle movements between the inner area and the atga. As a consequence, the resulting
particle concentration rater(¢) is non-uniformly sampled at randomly spaced time instaptsvhere it

assumes values equal kg, and it is zero for any other time instant:

pr(t) = 3 (e~ ) ®)
neN " n-

whered(.) is a Dirac delta function. According to the Nyquist theore?8][ since the time instants,

are randomly spaced, the continuous particle concentraaie:r(¢) can be reconstructed from the non-
uniform sampled particle concentration ratg(t) if the bandwidth ofry(¢) is limited up to frequency
1/(2(t, —t,—1)), Where(t, —t,_1) is the average interval between two consecutive samples(of. As

a consequence, given a fixed bandwidth for the system, thed@ipn caused by the particle sampling
noise on the particle concentration rate in output at thestrdtter depends on the average rate of the
events of single particles flowing between the inner areathaduter area. This event rate corresponds
to the particle concentration rate-(¢) and the system bandwidth depends on the parameters defined
in [17]. This result is confirmed through the stochastic madehe particle sampling noise, outlined in
Sec. IlI-B.

The PARTICLE SAMPLING physical model is represented thotighblock scheme shown in Fig. 4(a).
The signall’(¢) is the input of the Emission Process block, whose outputagtrticle concentration rate
rp(t). The physical model of the particle sampling nois€t) takes as input the particle concentration
rate rp(t) that the emission process would produce in output in the redesef noise. The particle
sampling noisex,(t) is composed of a decision block and a non-uniform sampleiciwhave as input

the transmitter kinetic statér(¢), and a divisor. The output of the particle sampling noisét) is the
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Fig. 4.

particle concentration rate affected by noise, namelyt).
Thetransmitter kinetic state Sr(t), as shown in Fig. 4(b), is a set composed by the locatjgh) and
the net velocitys,(t) of each particlep at time¢ present in the surrounding of the transmitter spherical

boundary:

St(t) = {Zp(1), ip()] p=1,.... P(1)} (9)

whereP(t) is the number of particles in the system and varies as a famofithe timet. The net velocity
Up(t) is here defined as the non-isotropic component of a partieed; in contrast to the Brownian motion
in free space which has isotropic components. In order tbstieally simulate the transmitter kinetic
state Sz (t), we consider two different contributions to the particlspglacement, namely, the Brownian
motion and the time integral of the particle net velocitynfrdime instant, to time instant. The time
instantty corresponds to the beginning of the emission process. Theession of the particle location

Zp(t) is written as follows:
t

Tp(t) = bu(t) i+ by(t) 7 + b (t) k + / o, () dt! (10)
where the Brownian motion components, namélyt), by(t)t:ﬁ“d b.(t), are random variables with
normal distribution, zero mean value and variance equal¥t, according to the expression of the
Wiener process [26]:

ba(t), by(t), b(t) ~ N(0,2Dét) (11)

along the versors of the cartesian axes, nanielﬁ'/,and k. D is the diffusion coefficient andt is the
simulation time step and it depends on how the transmitteetld state is sampled during the physical
model simulation. The smaller is the time stép the closer is the simulation to the real physical
phenomenon of particle diffusion. The value of the time steplefines the time resolution with which

we model events concerning particles changing their spaaze According to the Nyquist theorem [25],
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if the value of the time stept is smaller thanl/(2B,,), where B,... is the bandwidth of the particle
concentration rater(t), then we can have a perfect simulation of the sampling noéseeigtion as it
happens in reality. When the particle is located inside timeii area or the outer area, it is only subject
to the Brownian motion. In these cases, the particle speshly the isotropic components due to the
Brownian motion in free space, and its net veloaifyt) is equal to zero. When the particle is traversing
an emission gap, its movement can only be outward incasegifiy@rate ¢(¢) > 0) or inward in case
of negative rater((t) < 0) along the radius of the spherical boundary. In order to tifyathe particle
net velocityv,(t), we consider that the particle concentration ratét) is given only by the contribution
of the particles traversing the emission gaps. Given agdartioncentration rater(t¢), the number of
particles traversing the emission gaps in a unit time isrglvg the transmitter inner concentratioft (t)
in case of positive rater{-(¢t) > 0) and by the transmitter outer concentratigfn(t) in case of negative
rate ¢ (t) < 0), multiplied by their average velocity. When they travetise emission gap, the particle
average velocity corresponds to the net velogjft). As a consequence, the particle net velocjt) is
proportional to the particle concentration ratg(t), divided by the transmitter inner concentratigfi(t)
in case of positive rater{(t) > 0), or divided by the transmitter outer concentratigft) in case of
negative rater(r(t) < 0):

0 if pin inner or outer

By(t) = " (12)

— Y if pin emission ga
() Lrp (ty>o0+er () Lrp 1y <o v p sap

wherel .,,qirion) IS €qual tol whenconditionis true and) otherwise 4 is the versor along the radius

of the transmitter spherical boundary.

The decision block assigns the value df, according to the transmitter kinetic stae-(¢). k,, is
assigned a positivé value or a negative-k value according whether there is an event in the kinetic
state Sp(t) concerning a particle changing its space area, e.g., fr@mirther to the outer area, with
contributionk to the rate, or from the outer to the inner area, with contitlou—%:

k ifSr(t) C {zp(t), vp(t)|p from inner to outer}

kn = _ (13)
—k ifSr(t) C {zp(t), vp(t)|p from outer toinner}

The value of k equals a contribution of one particle to thecemrtration at the transmitter location or,
in other words, it is the constant difference in the partictexcentrationér(¢) from consecutive time
instantst,,, t,_1:

k=

Q>

7(tn) — er(th—1) (14)

The non-uniform sampler block samples at time instantg, which are functions of the transmitter
kinetic stateSy(t). If, at time instant,,, there is an event in the kinetic stafig (¢,,) concerning a particle

changing its space area, the non-uniform sampler blockyzmesia Dirac impulse at,, with amplitude
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equal to the current value @f,, output from the decision block:
knd(t — tn)if St (tn) C {Z,(tn), Up(tn)|p changes space area} (15)
Thedivisor block divides the output of the sampler by the time intenetieen the previous sample
att,_1 and the current sample, which istat As a consequence, the output of the divisor block for the
time intervalt,,_; < t < t,+1, Which corresponds to the particle concentration raté) affected by

noise, is:
 kno(t —tn)

rr(t
TT( ) tp —th_1

fort,_1 <t <tppi (16)

For a time interval spanning from= 0 to t — oo the result is the expression introduced in (8).

Since it is not possible to always have the knowledge of tinetid state of the systeisiy(¢) due to
the huge amount of information and to the randomness in thiécigamotion, we cannot analytically
compute the value ofr(t) as function ofrr(¢) from the physical model of the particle sampling noise.
Using the physical model provided here, we can only simutat@erically the behavior of the particle

sampling noiseu,(t).

B. The Stochastic Model

The particle sampling noise can also have another fornamathrough statistical parameters, which
is suitable when theoretical studies require an analygegkession of the noise. For this, the particle
sampling noisens(t) is generated by a random procesgt), whose contribution corresponds to the
difference between the particle concentration ratét) affected by noise and the expected particle
concentration ratg7r(¢)), where(.) denotes the ensemble average operator:

ns(t) = Pr(t) — (Pr(t)) (17)
The expected particle concentration réte(t)) corresponds to the time-continuous particle concentratio
rate that we would expect in the absence of the particle sagpbise:

(Fr(t)) = ro(t) (18)

In other words;n4(t) is an unwanted perturbation on the particle concentra® around its expected
valuerr(t) due to the particle sampling noise. In Fig. 5 we show the miinkischeme of PARTICLE
SAMPLING when the stochastic model is applied for the p&tgampling noise. The random process
ns(t), as it is proved in the following, depends on the value of thetiple concentration rater(t),
output from the Emission Process block which receives tgeadito be transmitted’(¢) as input. The
sum of the random process (¢) and the particle concentration rate(t) is the particle concentration
rate affected by the particle sampling noise, nameégyt).

In order to properly model the random proceésst) we consider the following assumptions:
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PARTICLE SAMPLING

—>71,(?)
T(®) _|Emission|r (1) n ()
process N\ -
n,(t)

Fig. 5. Block scheme of the particle sampling noise stoahasodel.

« The outer particle concentration at the transmitteft) increments/decrements its value whenever
a single event concerning a particle changing its spaceareas.

« The probability of having two simultaneous events conaggrparticles changing their space area
is zero. In other words, it is unlikely to have two particlapssing the spherical boundary of the
transmitter at the same exact time instant. With refereocéhé physical model of the particle
sampling noise from Sec. llI-A, this assumption transldtée the statement: the probability of
having two samples from the non-homogeneous sampler aathe 8me instant is zero. In equation
it becomes:

Prit, —t,—1=0=0 (29)

This assumption is justified by the independency of the Biawmromponents in the movement of
different particles in the space. This assumption direttiyslates into the property of orderliness
for the outer particle concentratian-(¢) increments/decrements. The property of orderlinesssstate
that the probability that the difference between outeriglarconcentrationg\ time apart from each
other is higher than the contributidhfrom a single particle, tends to zero Astends to zero:

Eino Priler(t+A) —cp(t)| > k] =0 (20)
wherek is defined through (14).

« An event concerning a particle changing its space areaifmpggough an emission gap) occurring
after timet is independent of any event of the same kind occurring before ¢. This assumption
is justified by the property of the Wiener process underlyheyparticle Brownian motion of having
independent increments. As stated in Sec. lll, particlessaibject only to the contribution of the
Brownian motion when they are located inside the inner ardaeouter area. An event concerning
a particle passing through an emission gap takes place wheneparticle, due to the Brownian
motion, reaches the location of an emission gap: if there n®mzero particle concentration rate
in the outer area, the particle traverses the emission gép et velocityv,(t), given by (12).

In other words, given a particle concentration rate in théeoarea, which controls the average
rate of occurrence of an event of this kind, the statisticshef event is solely dependent on the

Brownian motion of the particles. As a consequence, theilligion of the time interval between
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an event at time — At and another event at timeis independent from the distribution of the time
interval between an event at timend an event at time+ At¢. The two distributions have the same
expression from (11):

Pr(by(t) —by(t — At) =2) = ﬁe—zél - o

= Pr(by(t + At) — by (t) = x)
where b, (t) is the motion component along theversor at timet, D is the diffusion coefficient

and At is positive. Equation (21) is valid also for the motion compotsb,(t) andb.(t) along
the versorsj and k, respectively. This implies that a particle motion from dimis independent
from any motion of the particle occurred before timeBeing all the particle independent among
each other, events concerning a change in the particle spaeeshow the same independence.
As a consequence, the events concerning particles chattygitgspace area have the property of
memorylessness.

« The occurrence rate of events concerning particles chgrbiir space area is proportional to the
flux of the particles between the inner area and the outer areaflux of the particles is proportional
to the expected particle concentration rate at the tratesmdacationry(¢).

Under these assumptions [26], the resulting outer partiolecentration at the transmittéy-(¢) is a
double non-homogeneous Poisson counting process, whesef i@ccurrence corresponds to the expected
particle concentration rater(¢). The distribution of the outer particle concentratigr(t) corresponds to
a Poisson counting process with rate of occurrengg) whenever the particle concentration rate(t)
is positive. Whenever the particle concentration ratét) is negative¢r(t) is the negative of a poisson
counting process with rate of occurreneer(t):

or(t) ~ Poiss(rp(t)) rr(t) >0 22)

—Poiss(—rp(t)) rr(t) <0

When the emission process is subject to the particle sagpliise, the particle concentration rate at
the transmitter locatiori(t,,) corresponds to the first finite time difference of the pagticbncentration
¢r(t), which is step-wise and, therefore, not derivable:

() = L) = Crltm) 23

tn — th—1
Since the particle concentratién(¢) is a double non-homogeneous Poisson counting processattielg

concentration rate at the transmitter locatidn(t) is the first finite time difference of a double non-
homogeneous Poisson counting process, whose average (vali#¢), where (.) denotes the ensemble
average operator, has the same value as the rate of ocaioktie originating double Poisson counting
process:

(Pr(t)) = rr(t) (24)

and whose autocorrelation is the expected squared pacticleentration rateZ(¢) added to the expected
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particle concentration rater(¢) itself only for correlation lag equal to0:

(Fr(t) - Pr(t +1)) = r3(t) + rr()5(1) (25)
whered(l) is a Dirac delta. Given (17) and (18), the random procegs) has zero average value and
its autocorrelationR,(¢,1) is equal to the expected particle concentration ratg) for correlation lagl
equal to0:

Ry(t,1) = (ns(t) - ns(t +1)) = rp(t)o(1) (26)

Therefore the random process(t) is white [26] and its mean squared value is the expectedcpearti

concentration rater(t):
(1)) = (Rs(t) - s (t + 1)) 1=0 = 77 (2) 27)

Taking into account (6), then the RMS of the perturbatifa¥viS(725(¢)) on the expected particle concen-
tration raterp(t) is equal to the square root of the expected particle coreiomrratery(t):
RMS (72()) = v/rr(t) (28)
According to [17], the relation between the input sigfidt) and the particle concentration ratge(t)
is expressed in the frequency)(domain as:
ir(f) = A())T(f) (29)
whereT(f) and#r(f) are the Fourier transforms [27] of the system input sighél) and the particle
concentration rater(t) at the transmitter location, respectively(f) is the Transfer Function Fourier
Transform [27] (TFFT) of the transmitter module. The samatien in the time {) domain becomes:
rr(t) = alt) « T(t) (30)
where x denotes the convolution operator [2¢)it) is the impulse response of the transmitter module
andT'(t) is the input signal. The formula for the RMS of the perturbatRMS(75(t)) on the signal
77 (t) becomes:
RMS(7s(t)) = Val(t) = T(t) (31)

IV. THE PARTICLE COUNTING NOISE

A. The Physical Model

The particle counting noise affects the physical end-w+@model from [17] at the signal propagation.
When the particle concentration rate(t) is being modulated at the transmitter locatign= 0; y =
0; z = 0), the signal propagates until reaching the receiver lonatiez; yr; zr), where the particle
concentration value:(zgr,yr, zr,t) iS measured through the quantity;(¢). The propagation of the
signal is achieved by means of the particle diffusion preceketched in Fig. 6(a), which is based on

the following assumptions:
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« The linear size of the transmitter (radius of the spheri@alnulary) is considered negligible with
respect to the distance between the transmitter and thé/eec&herefore, thdransmitteris ap-
proximated as goint-wiseconcentration rate source at the locatian= 0; y = 0; z = 0).

« Particles are propagating from the transmitter locatior- 0; y = 0; z = 0) to the receiver location
(zr; yr; zr) Solely by means of the laws of free diffusion in a fluidic mediu

« The measure of the particle concentration takes placeartbielreceptor spaceThe receptor space
has aspherical shape of radius.

« The particleconcentratione(x, y, z,t) is considered homogeneous inside the receptor space and
equal to the particle concentration value at the receiveation, namely¢(x g, yr, zr, t).

The model of the particle diffusion process provided in [i6es not take into account the discrete

nature of the particles and the randomness of their movesnenén the concentratiof(z g, yr, 2r, t)
inside the receptor space is measured. Therefore, the neelgsarticle concentratiori(¢) is considered

equal to the true particle concentration at the receiveatlon c(z g, yr, 2r, t):
CR(t) = C(£R> YR, 2R, t) (32)
In the present analysis, we introduce the following assionpt

« The receptor space containgl&crete number of particles
« Particles may enter/leave the receptor space due to thesidiff process, even when the concentration
c(xr, YR, 2R, t) at the receiver location is maintained at a constant value.
As a result, the measured particle concentratig(t) suffers from two effects. The first effect is given
by the quantization of the concentration measure due tocadésnumber of particles inside the receptor
space. The second effect is given by fluctuations in the curefgon measure due to single events of

particles entering/leaving the receptor space. The dvpratess that takes the particle concentration
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rate 77 (¢) as input and returnér(t) as output is called PARTICLE COUNTING and it is graphically
sketched in Fig. 6(b). The PARTICLE COUNTING is composedhs Diffusion Process block and the
particle counting noise block.(t), as shown in Fig. 2. During the PARTICLE COUNTING, particles
present inside the receptor space at time instamme counted, and their numbéfrp(t) is divided by the
size of the receptor space/3)rp:

A er(t) = % Np(t)eN (33)
where N, (t) is a discrete integer number.

The PARTICLE COUNTING physical model is represented thotghblock scheme shown in Fig. 7(a).
The particle concentration rafe:(¢) is the input of the Diffusion Process block, whose outpuhistrue
particle concentratiomr(t). The physical model of the particle counting noisgt) takes as input the
true particle concentrationg(t) that the diffusion process would produce in output in theeabs of
noise. The particle counting noise(¢) is composed of two branches, as shown in Fig. 7(a). The upper
branch has a decision block and a non-uniform sampler, whaste as input the receiver kinetic state
Sgr(t), while the lower branch has a multiplier and rounder blocll #rtakes as input the true particle
concentratiorcg(t). The two branches are then added and the result is followetddiyisor. The output
of the particle counting noise.(t) is the particle concentration affected by noise, nam&lyt).

The receiver kinetic state Sg(t), as shown in Fig. 7(b), is a set composed by the locatigt) of

each particlep at timet present in the surrounding of the receptor space:

Sr(t) ={zp(t)] p=1,..., P(t)} (34)
where P(t) is the number of particles in the system and varies as a fumdt the timet. In order to

realistically simulate the receiver kinetic staig(¢), we consider the Brownian motion contribution at
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every time instant. The expression of the particle locatiap(t) is written as follows:

Zp(t) = by ()i + by (1) j + b (t) k (35)
where the Brownian motion velocity components, nameglyt), b,(t) andb.(t), are random variables
with normal distribution, zero mean value and variance etu&Ddt, according to the expression of
the Wiener process [26]:

by (), by(t), bx(t) ~ N(0,2Dét) (36)

along the versors of the cartesian axes, namely,and k. D is the diffusion coefficient andt is the
simulation time step and it depends on how the receiverikisédte is sampled during the physical model
simulation. The smaller is the time stéf the closer is the simulation to the real physical phenomexrio
particle diffusion. The particle numbé?(¢) is proportional to the particle concentratiog(t) multiplied
by the sizesize(S;) of the simulation spac8;, shown in Fig. 7(b), which includes the receptor space:
P(t) = cr(t) size(Ss) (37)

The decision block assigns the value &f according to the receiver kinetic stagg:(t). /,, can assume
either valuel or —1 depending whether the kinetic state(¢) has an event concerning a particle that
is entering or leaving the receptor space, respectively:

1 ifSg(t) C {Z,(t)|penters the receptor space}

I, = _ (38)
—1 ifSgr(t) C {Z,(t)|pleaves thereceptor space }

The non-uniform sampler block samples at time instantg, which are functions of the receiver
kinetic stateSg(t). If, at time instantt,, there is an event in the kinetic staf(t,) concerning a
particle entering/leaving the receptor space, the nofetmisampler block produces a Dirac impulse at

t,, with amplitude equal to the current value [gf in the outpute(¢) from the decision block:
e(t) = 1,0(t — tn)if Sr(tn) C {Zp(tn)|pent./leav. rec. space} (39)
Theintegration block integrates the output from the nonuniform samplerafdime interval equal to

7 in the past up to time, namely,[t — 7, ¢t]:

AN,(t) = / t e(t')dt’ (40)
T corresponds to the time interval in which we t(;;pect a quasstzmt particle concentration and its
effect on the particle counting noise is further discusse8iec. IV-B. The result of the integration block
is the perturbatiomA N,,(¢) at timet in the number of particles inside the receptor space.

The multiplier and rounder block rounds the particle concentratiop(¢) multiplied by the size of
the receptor spacgt/3)mp>. The output of this block corresponds to the expected nurabearticles

N,(t) contained in the receptor space at time instant

N,(t) = round [cR(t) <§7Tp3>} (41)
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The divisor block divides the sum of the output coming from the two bras;thamelyAN,(t) and
N,(t), by the size of the receptor spate/3)rp®. As a consequence, the output of the divisor block

corresponds to the particle concentratigy(t) at the receiver affected by noise:
) N,(t) + AN,(t)  Ny(t
énft) = N EON(E) _ Nyl 42)
37P 37P _
Since it is not possible to always have knowledge of the kingtiate of the systen$z(¢) due to

the huge amount of information and to the randomness in théiclgamotion, we cannot analytically
compute the value afz(¢) as function ofcr(t) from the physical model of the particle counting noise.
Using the physical model provided here, we can only simutat@erically the behavior of the particle

counting noisen.(t).

B. The Stochastic Model

The particle counting noise, similarly to the particle séingpnoise, can also have another formulation,
through statistical parameters, which is suitable wheorttical studies require an analytical expression
of the noise. Statistical parameters for the particle dogmoise, such as the RMS value, are provided
in [21] without the definition of a complete stochastic moidelerms of random processes. The derivation
of these statistical parameters in [21] stems from a fortmanaof the particle counting noise in terms
of macroscopic thermodynamic fluctuations in the systenthawit accounting for a particle-by-particle
analysis. In this paper, we detail the knowledge of the garitounting noise by providing a stochastic
model of the noise source. This model is obtained by stemriiimm the physical model outlined in
Sec. IV-A, where the system is modeled in a particle-byiplartfashion. As will be proved in the
following, the statistical parameters computed throughstiochastic model provided here are in agreement
with those from [21].

The particle counting noise.(t) is generated by a random processt), whose contribution cor-
responds to the difference between the measured partioleentrationc(t) and the expected particle
concentration¢r(t)), where(.) denotes the ensemble average operator:

ne(t) = er(t) — (¢r(t)) (43)
The expected particle concentrati¢ir(¢)) corresponds to the true particle concentraiiit) that we

would measure at the receiver in the absence of the partitleting noise:

(Cr(t)) = cr(t) (44)
In other wordss.(t) is an unwanted perturbation on the particle concentratieasured at the receiver
location around its expected valug(¢) due to the particle counting noise. In Fig. 8 we show the
main block scheme of the PARTICLE COUNTING when the stodbasbdel is applied for the particle

counting noise. The random procesg(t), as it is proved in the following, depends on the value of
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Fig. 8. Block scheme of the particle counting noise stodbasbdel.

the particle concentration at the receivegy(t), output from the diffusion process, which receives the
transmitted particle concentration ratg(¢) as input. The sum of the random proceés$t) and the true
particle concentration at the receivegf(t) is the particle concentration affected by the particle timgn
noise, namely¢g(¢). In order to properly model the random process$t) we consider the following

assumptions:

o The actual number of particle’é’p(t) inside the receptor space at timé a random process whose
average value is the true particle concentration at thewecmultiplied by the size of the receptor
space:

- 4

(Ny(0)) = en(t)5 7" (45)

« It is unlikely to have two particles occupying the same larain space at the same time instant
In other words, the probability of having a distance equatdoo between two particles at the time

instantt is zero:
Pr(||z,(t) = z4(t)| =0 =0p # ¢, p,g € [1,..., P(t)] (46)

where P(t) is given by (37),||.|| is the Euclidian distance operator apcand ¢ are two particles
present in the simulation spa& defined in Sec. IV-A. This assumption is justified by the in-
dependence of the Brownian components in the movement fefrelift particles in the space. This
assumption directly translates into the property of ordess for the counting process of the number
of particlesn, (¢, z(t)) at a locationz(t) in the space:

éiino = Pr[|ay(t, 2(t) + A) — fp(t, ()| > 1] =0 (47)
where A is a movement in the three directions of the space fidm to z(¢) + A.

« An event concerning a particle which occupies a locationp@cez(t) is independent of any event
of the same kind occurring at another space locatiot) + A. This assumption is justified by
the property of the Wiener process underlying the partigieaBian motion of having independent
realizations. In other words, the distribution of the dista between the location of a particle in
z(t) and another particle i (t) + A; is independent from the distribution of the distance betwee

the same particle at(¢) and another particle present at locatioft) + A, where Ay # A,y. The
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two distributions have the same expression from (36):

2

Pr(ldill=2) = msge s 48)

This implies that the location of a patrticle is independentf the location of any other particle.
As a consequence, the events concerning the location a€lparin the space have the property of
memorylessness

« The occurrence rate of particle location in the space is gna@mal to the particle concentration at

the receiver locatior(z g, yr, 2r,t), equal to the expected true particle concentratig(t).

Under these assumptions, the resulting actual number dif:lﬂaer(t) inside the receptor space is a
volume non-homogeneous Poisson counting process, whiesaf reccurrence corresponds to the expected
particle concentrationg(t):

N,y (t) ~ Poiss(cg(t)) (49)

According to the Poisson process [26] in (49), the expecteulrer of particles(Np(t)> contained
in the receptor space can be computed by multiplying thermeliPoisson process rate, which is the
concentratiore(t), by the size of the receptor spa@g'3)wp® and it is in agreement with the assumption

made in (45). The variance in the number of particles coethin the receptor space has the same value

as (N, (t)) [26]: )

(Np(t) = (Np(t))?) = cr(t)3mp’ (50)

The actual measured particle concentratigiit) corresponds to the actual number of partidﬁéﬁt)

divided by the size of the receptor space:
; Ny (t)
_ 51
Therefore, the averagé&r(t)) of the actual measured particle concentration is equal éoettpected

particle concentrationg(t):
(er(t)) = cr(t) (52)

The variance of the actual measured particle concentraiequal to the expected particle concentration

cr(t) divided by the size of the receptor space:

ey — (0 = (500 ealt)
((en(t) — {ent)?) = S BRI = O (53)

Given (43), (44) and (6), the random processt) has zero average value and the RMS of the

perturbationn.(t) on the actual measured particle concentratigft) is:

RMS(7e(1) = v/ (@0~ En0))) = | s

(54)
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It is possible to reduce the value BMMS(7.(¢)) by averaging in time a numbe¥/ of measures of

the particle concentratiofr(t):
M

er(t) = — > énl(t—tm) (55)

m=1
The best results in terms of noise are obtained whenm\thmeasures are statistically independent. For
this, we assume independent measures when they are takereahstants spaced by an intervagl as
defined in [20]. If we assume to have a quasi-constant exgectecentration in a time interval (which
means that the bandwidth of the sigral(t) is less thanl /7 [27]), the maximum value of\/ is equal
to the time intervalr divided by 7,:

-

M= — (56)
Tp

thus, reducing the RMS of the perturbatiBMS(7.(¢)) by a factorv/ M:

5 B cr(t)
The waiting timer, corresponds to the average time required for a particle dveléhe reception
spacer, is equal to the average distance to the spherical boundaiged by the velocity of a particle

vp. The average distance corresponds to the receptor spaas pad

=L (58)

Up
The velocityv, of a particle comes from the first Fick’s law of diffusion [1Q]. For this, the particle
concentration flux/(z,t) at time instant and locationz, is equal to the spatial gradient (operatdy

of the particle concentration(z, t) multiplied by the diffusion coefficienD:

J(Z,t) = —DVe(z,t) (59)
When we have homogeneous concentratidnside the receptor space and zero concentration outside
the receptor spacéd/c(z,t) is equal to the opposite-¢ of the concentration divided by the radipsof
the receptor space. Further, the particle concentration.f(i, ¢) is equal, by definition, to the particle

concentratiort multiplied by the particle velocity,. If we solve (59) for the particle velocity, we obtain:

D
Up = o (60)
The average time,, is therefore equal to the radiyssquared and divided by the diffusion coefficient
D: )
P
Tp = 5 (61)

which is in agreement with the results from [20,21]. The fieagbression for the RMS of the perturbation
RMS(n.(t)) becomes:

CR(t)

RMS(fic(t)) = (4/3)xDpr

(62)
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wherecpr(t) is the expected measured particle concentratioig the diffusion coefficienty is the radius
of the receptor space ands the time interval in which we expect a quasi-constantigarconcentration.
The validity of (62) is confirmed by the results from [21], whdehe authors reach the same expression
for the RMS of the particle counting noise by applying a di#f® approach, as explained above.
According to [17], the relation between the input particencentration rate'r(t) and the measured

particle concentrationy(t) at the receiver location is expressed in the frequerf¢ydpmain as:

er(f) = B(f)rr(f) (63)
where(f) andég(f) are the Fourier transforms [27] of the particle conceriratatesr(t) and the
particle concentrationy(t), respectivelyB(f) is the Transfer Function Fourier Transform [27] (TFFT)
of the propagation module. The same relation in the timadmain becomes:

cr(t) = b(t) = Pr(t) (64)
wherex denotes the convolution operator [27(¢) is the impulse response of the propagation module and
7 (t) is the input particle concentration rate. The formula fa@ RMS of the perturbatioRMS(7.(¢))

on the signakr(t) becomes:
b(t) * 7r(t)

RMS(fic(t)) = (4/3)xDpr

(65)

where D is the diffusion coefficientp is the radius of the spherical receptor space, anglthe time in
which we expect a quasi-constant particle concentration.

V. SIMULATIONS

In this section we present a numerical analysis of the ddfubased noise models. Sets of noise data
realizations are generated through numerical simulatfaoime physical model. These sets of noise data
are then used to test the stochastic model ability to caphierdehavior of the physical processes which

generate the noise.

A. The Particle Sampling

The simulations of thephysical model for the particle sampling noise are computed by applying to
the scheme in Fig. 4(a) a sinusoidal signal in the particleceatration rate(t):

rr(t) = Asin(27m f,t) (66)

where f, is the frequency of the sinusoid in HZ, is the value of the maximum particle concentration
rate in particlesum 3sec™!, andt is the simulation time index imnsec.

The input of the physical model simulation is a sinusoidattiple concentration rater(¢) with
frequencyf, equal to4Hz and maximum particle concentration rateof 10 particlesm3sec™!, as

shown in Fig. 9(a). The radius of the transmitter sphericairtuary isp = 1um. The simulation runs for
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Particle Sampling Noise - physical model simulation input Particle Sampling Noise - physical model simulation output
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1sec by steps ofét = 1msec. The output noisy particle concentration ratg(t) of the physical model
simulation is shown in Fig. 9(b).

During the simulation, particles are generated inside taesmitter spherical boundary at random lo-
cations whenever the particle concentration raté) is positive. Particle deletion is randomly performed
inside the transmitter spherical boundary whenevet) is negative. Through particle generation and
particle deletion we control the number of particles in tlystem P(¢), which is a parameter of the
transmitter kinetic stat&r(¢) shown in (9). The Brownian motion of the particles is modededording
to (10) and having the diffusion coefficied? ~ 10~5cm?sec™! of calcium molecules diffusing in a
biological environment (cellular cytoplasm, [28]). Saemptontributing to the value 6f-(¢) are generated
by applying (13) and (15) to the transmitter kinetic state(t). The final results in terms of particle
concentration ratér(¢) is achieved by applying (16).

The particle sampling noise has two different effects onsinesoidal signal, namely, signal sampling
and signal amplitude distortion. Signal sampling is givgntbe non-homogeneous sampling of the
particle concentration rater(¢) in time, as shown in Fig. 9(b). In non-homogeneous sampBagples
are separated by a non-constant time interval. Since inithela&ions we apply a constant time sté&p
for each time steps the contributions of samples which owdtinin §¢ are added. The signal amplitude
distortion is given by the constant contribution that eacntiple gives to the concentration at the
transmitter location, (14), whenever a sample is genetayetthe non-homogeneous sampling. Constant
contributions in non-homogeneous sampling cause suddergels in the particle concentration rate value,
which result in distortions of its amplitude.

The statistical likelihood test is applied in order to assé® stochastic model ability to capture the
behavior of the physical processes which generate the .rfeisehis, we compute the likelihood, that is,
the probability of the noisy data coming from the physicaldslosimulationr(t) given the stochastic

model of the particle sampling noise, as defined in Sec. lllFBorder to evaluate the reliability of the
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Particle Sampling Noise - likelihood of the stochastic model Particle Sampling Noise - likelihood of a gaussian model
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particle sampling stochastic model parameters in (25) 219, the likelihood probability is evaluated
for a range of different values for the paramete(t) of the Poisson processes in (22):

likelihood particieSampling = Pr (77 (t)|Part.Sampl.stor(t)) (67)
whererr(t) ranges from0.1 to 10 particlesum 3sec™! for every time instant. The results are shown in
Fig. 10(a), where it is clearly visible that the highest likeod value corresponds, for every time instant
t, to the value ofrp(t) from (66), thus confirming that the best particle conceittratate, parameter
of the model, is actually the particle concentration rataniput to the physical model of the particle
sampling noise.

This statistical likelihood test results shown in Fig. )0fee compared to the results obtained through
the use of a Gaussian model in place of the particle samplomgenstochastic model. The Gaussian
model, denoted bW (r7(¢),rr(t)) has the same expected value and the same variance as tlueparti
sampling noise stochastic model. The likelihood formula is

likelihoodgaussian = Pr (P (&)|N (ro(t), rr(t))) (68)
wherery(t) ranges from0.1 to 10 particlesym 3sec™! for every time instant. The results in terms of
Gaussian model likelihood are shown in Fig. 10(b). When the&<3ian model is applied, the likelihood
shows higher values than when using the particle sampliochastic model, but only at specific time
instants. On average, the likelihood values shown in FigoJl&re much lower than the values in Fig. 10(a)
and this proves that the particle sampling stochastic mpeldbrms better than the Gaussian model. This

preliminary result confirms the validity of the particle gaing stochastic model presented in this paper.

B. The Particle Counting

The simulations of the physical model for the particle coumhoise are computed by applying to the
scheme in Fig. 7(a) a sinusoidal signal in the true particlecentration at the receivef(t):

cr(t) = Bsin(2w fyt) + B (69)
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Particle Counting Noise - physical model simulation input Particle Counting Noise - physical model simulation output
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where f, is the frequency of the sinusoid in H2B is the maximum value of the expected particle
concentration in particlegsm =3, andt is the simulation time index imsec.

The input of the physical model simulation is a sinusoidatipke concentratiory (¢) with frequencyf,
equal to4Hz and maximum particle concentratidi of 2000 particleszm =3, as shown in Fig. 11(a). The
radius of the spherical receptor space is 1um. The simulation runs fotsec by steps ofit = 1msec.
The output noisy particle concentratiép(t) of the physical model simulation is shown in Fig. 11(b).

A numberP(t) of particles are deployed according to (37) for each timaatlom locations inside the
simulation spac&;, shown in Fig. 7(b), which includes the receptor space. Hoeptor kinetic state is
maintained according to (34) and (35), where the Browniation®f the particles is modeled according
to (36). The diffusion coefficienD ~ 10°cm?2sec™! corresponds to thé of calcium molecules diffusing
in a biological environment (cellular cytoplasm, [28]). §lupper branch of Fig. 7(a), which generates
the contributionA N, to the final result, is computed by applying (38) and (39) ® tfansmitter kinetic
state St (t). Equation (40) is applied with a value = 1msec, equal to a simulation step. The lower
branch of Fig. 7(a) gives the second contribution to the fiesiilt and includes the computation /s (t)
through (41). The final results in terms of particle concatitn ¢x(t) is achieved by applying (42) to
the sum of the outputs from the upper branch and the lowerchran

The particle counting noise is visible through two effeas, shown in Fig. 11(b). The first effect
is given by the quantization of the concentration measura lyscrete number of particles inside the
receptor space. The second effect is given by fluctuationtténconcentration measure due to single
events of particles entering/leaving the receptor spabe. [@tter is more accentuated for high values
of the particle concentration. This behavior is a confirgratof the fact that the RMS value of the
particle counting noise is proportional to the square rdothe true particle concentrationr(t), as
shown in (54), (57) and (62).

The statistical likelihood test is applied in order to assthe stochastic model model ability to capture
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Particle Counting Noise - likelihood of the stochastic model Particle Counting Noise - likelihood of a gaussian model
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the behavior of the physical processes which generate tise.rféor this, we compute the likelihood, that
is, the probability of the noisy data coming from the phykinadel simulatior¢z(t) given the stochastic

model of the particle counting noise, as defined in Sec. IN\kBorder to evaluate the reliability of the
particle counting stochastic model parameters in (52) &89, the likelihood probability is evaluated for

a range of different values for the parametg(t) of the Poisson processes in (49):
likelihood particicCounting = Pr (¢r(t)|Part.Count.stocg (t)) (70)

where cg(t) ranges froml to 2000 particlesum =3 for every time instant. The results are shown in
Fig. 12(a), where it is clearly visible that the highest likeod value corresponds, for every time instant
t, to the value ofcr(t) from (69), thus confirming that the best particle conceitratnodel parameter
is actually the particle concentration in input to the phgbsimodel of the particle counting noise.

This statistical likelihood test results shown in Fig. D24ee compared to the results obtained through
the use of a Gaussian model in place of the particle countmigenstochastic model. The Gaussian
model, denotedV'(cg(t), cr(t)/(4/3mp%)) has the same expected value and the same variance as the

particle sampling noise stochastic model. The likelihoodrula is:

likelihoodaussian = Pr <éR(t)|N <CR(t), %)) (71)
wherecg(t) ranges from to 2000 particlesum 3 for every time instant andp = 1m. The comparison
between the Gaussian model likelihood and the particle tiogiistochastic model drives us to the same
conclusions we had for the particle sampling noise. At djetiine instants the Gaussian model likelihood
shows higher values than when using the particle countoahsistic model but, on average, the likelihood
values shown in Fig. 12(b) are much lower than the values ¢n E2(a). This proves that the particle
counting stochastic model performs better than the Gaussadel and it confirms the stochastic model

ability to express the behavior of the physical processeulying the particle counting noise.
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VI. CONCLUSIONS

In this paper we analyze the most relevant diffusion-bassidensources affecting Molecular Com-
munication (MC). To date, little effort has been made to nidbe diffusion-based noise sources from
the communication engineering perspective, while coutidims from the biochemistry literature provide
descriptions of some underlying physical processes. Hewehese contributions tend to focus on the
explanation of natural phenomena and do not provide seitadgldels for MC engineering. The objective
of this work is the analysis of the noise sources in diffudiased MC using tools from signal processing,
statistics and communication engineering, with referetacthe diffusion-based MC system introduced
in [17].

The particle sampling noise and the particle counting naigeidentified in this paper as the most
relevant diffusion-based noise sources affecting the Mgiglal end-to-end model from [17]. The analysis
of the noise sources results both in physical models andchastic models. With the former we aim at
the mathematical expression of the physical processeglyimdethe noise sources, while with the latter
we model the noise source behaviors through the use oftstatiparameters. For both the two noise
sources, the results of the physical models are summarredgh block schemes, which expand the
end-to-end physical model from [17]. The stochastic modélsoth the two noise sources result in their
characterization in terms of random processes and in thigtmah expression of the Root Mean Square
(RMS) perturbation of the noise on the information signal.

Simulations are shown to evaluate the capability of thelgtstic models to express the diffusion-based
noise sources represented by means of the physical models.

The results coming from this work will be used to have a batisight into the end-to-end diffusion-
based MC, especially in terms of capacity and throughputb@feve that this paper provides a prelim-
inary study on the noise affecting the end-to-end diffuddased MC, and that further investigation on

this topic is necessary. ACKNOWLEDGMENT
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