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Two models of closed queueing networks with blocking-after-service and multiple job
classes are analyzed. The first model is a network with N stations and each station has either
_ typeIlor type Il The second model is a star-like queneing network, also called a central server
model, in which the stations may have either type I or type IV, with the condition that the nei gh-
bors of these stations must be of type II or type III such that blocking will be caused only by
this set of station types. Exact product form solutions are obtained for the equilibrium state
probabilities in both models. Formulae for performance measures such as throughput and the
meannumber of jobs are also derived. -
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1.Introduction

. - Inrecent years there has been an increased interest in the analysis of queueing
networks with blocking. This is due to the realization that these queueing networks
- are useful in modelling computer systems, communication networks, and flexible
manufacturing systems. The set of rules that dictate when a station becomes
blocked and when it becomes unblocked is commonly referred to as the blocking
- mechanism. There are basically only a few blocking mechanisms that have been
extensively studied in the literature, Akyildiz and Perros [3] and Onvural [13]. We
consider the so-called blocking-after-service [3,13] (in short form, BAS) mechan-
ism, i.e., when a job finishes service at a station and wants to enter a station which is
full, it stays in the server of the source station, waiting for a space to be available
in the destination station. This blocking policy is also known as type 1 blocking,
transfer blocking, manufacturing blocking, production blocking and non-immedi-
ate blocking in the literature [13]. Several papers consider this blocking policy,
©.g., Akyildiz [1,2], Akyildiz and von Brand [4], Balsamo et al. [6], Balsamo and
Donatiello [7], Bocharov [9] and Onvural [12]. Akyildiz and von Brand [4] consider
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queueing networks with BAS mechanism. In the first model they analyze a two-sta-
tion model with different types of stations and a single class of jobs. They derive
an exact product form solution for the equilibrium state probabilities. Akyildiz and
von Brand [4] also analyze a second model with N stations, multiple classes of
jobs and a limited number of jobs K = min;ex{B;} + 1, where B; is the buffer capa-
city of station 7. They obtain an exact product form solution for the models where
the stations that will cause blocking are type I stations. Akyildiz and Liebeherr [5]
determine necessary and sufficient conditions for deadlock-freedom in multi-job
class queueing networks with BAS-mechanism.

In this paper we consider two models of closed queueing networks with BAS
mechanism. In both models we assume that there are NV stations and R classes of
jobs. The first model is a general topology network with N stations where each sta-
tion #s either of type II or type I1I, Baskett et al. [8], Kelly [10,11]. The second model
is a star-like queueing network (also known as a central server model) where the
central server must be of type I or type IV and the neighbors of the central server
must be either of type Il or of type III. In the second model we assume that the
blocking will be caused only by the central server. For both models we obtain exact
product form solutions for equilibrium state probabilities. We also derive formu-
lae for performance measures such as throughput and the mean number of jobs.

The paper is organized as follows: In section 2 we introduce common notations
and definitions for both models. In section 3 we analyze the first model. In section 4
we investigate the central server model. In section 5 we conclude the paper.

2.Basic model description

Both models contain N stations, R job classes and K total number of jobs. The
types of stations we consider in this paper are from the BCMP, Baskett et al. [8]:

e Type I: The service discipline is first-come-first-served (FCFS); all job classes
have the same service time distribution and the service rate can be state-depen-
dent where u(k) will denote the service rate with x jobs.

e Type II: There is a single server and the service discipline is processor sharing
(PS). Each job class may have a distinct service time distribution.

e Type III: The number of servers is greater than or equal to the maximum num-
ber of jobs which can be queued at the station; infinite servers (IS). Each job
class may have a distinct service time distribution.

e Type IV: There is a single server and the queueing discipline is last-come-first-
served preemptive-resume (LCFS-PR). Each job may have a distinct service
time distribution.

Here we assume that all service times follow exponential distributions which
depend on the station and on the class. Note that our results can easily be extended
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to general service time distributions for types II, III and IV. For the sake of simpli-
6ity here we give results only for exponential cases.

The transition probabilities are denoted by Pirjs; 1<i,j<N and 1<r,s<R,
where a class 7 job departs from station i and visits station j and becomes a class s
job. Wealso assume that the routing matrix P = [p;, 5], is irreducible. We define

N R
0= CuPirjs (1)
o =1 r=1
Letthe vectorm = (xi, .. ., xx) denote the number of jobs in N stations and their
positions in each station, i.e., x; = (x;, .. ., Xin,), Where x;; denotes the class of the
job in station 7 at the position /. Let »; be the number of jobs in station i, and
m=ny + ...+ ng, Where n;, (forr = 1,..., R) is the number of class 7 jobs in sta-
fion i. We note that if station i is of type II or III, then there is no requirement for
the order of the jobs; thus, we denote x; asmy, n; = (nyy, . . ., nR).
»~ A product form solution for equilibrium state probabilities exists when there is
‘noblocking in the network, Baskett et al. [8], Kelly[10,11]:

N
p(n) = CJ ] fitx), ed2)
=1
where C'is the normalization constant such that the sum of equilibrium state prob-
abilities will be equal to one and f;(x;) is defined by the type of station i,

( (ﬁ) T if station i is type I,

nr - - .o
! TI%, ol (ﬁf;) " if station i is type II,

flay=g ()
Vs (ﬁ) if station 7 is type III,
| I (i‘—:‘;) if station i is type IV.

' We define T as the set of type I or IV stations, and T as the set of type II or III
istations. Since we are considering the models with blocking, we need to define B, as
 ¢he.capacity of station i (i.e., buffer and server capacity). In addition, to avoid the
+&elf-loops that cause deadlock, we assume that

pi=0 fori=1,...,N.

' For convenience we define the following quantities for each station type. For
ype II and III stations, the service rate is dependent on the number of jobs in the
station and on their classes but is independent of their order. Thus, we let
= (nit,. .., mg) for ie Ty, where n;, denotes the number of class r active jobs in
station i. A job is said to be activeif it is not blocked. Alsoweletn; = njy+ ... + R
bethe total number of active jobs in station i for i e T5.

Let b denote the number of blocked jobs. Thus, with the active jobs we have
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N
K=>"n+b, @)
i=1 A
with
0<b<K — lg}lan{Bi} : )

We assume that a job will choose its destination station and the class when it
finishes its service. Considering the b blocked jobs we need to know their locations
and their classes. We also assume that the blocked jobs will join that station which
caused blocking according to first-come-first-in (FCFI) scheduling discipline.
Thus, we let y = (y;) and y; = (yu,...,yw,) if b;>1, otherwise y, = @, where b,
denotes the number of jobs blocked by station i, and yy, 1 <y <N denotes the loca-
<tion of the /th job blocked by station i. Similarly, z = (z;) and z; = (s 5520
‘where z;, 1 <z; <R, denotes the class of the /th blocked job. To have the complete
information about the system we define the state space S = {(n,x,y,z)}, where
x = (x;,ie T1) and n = (n;,ie T3). For a given state (n, x, , z) the service rate of
station i for ie 75 is pi(m) = pi(na) + .. . + pr(ni), where tir(Miy) = Nty if sta-
tion i is of type III; if station i is of type I1, then tir(ni) = (ny/ni) . Forie T then
the service rate is: if station i is of type I, then p;(x;) = p; for n; >0, otherwise it is
equal to 0. If station 7is of type IV, then p1;(x;) = g, for n; < B,
Let ¢;, denote an N x R matrix with all elements zero except the element at the
position of ith row and rth column with value 1. :

3. General topology network with type Il and Il stations

In this section we consider a general topology network with only type II and III

stations. We assume the following constraint in the model:

= 1<i,i?1{fr;lpq>0{Bi +5} (6)
This constraint says that only one of the N stations may cause blocking at any
time. The reason for making this assumption is to avoid more than two jobs moving
at one event. Thus, the state space is reduced to S = (n,y, z), where y and z are b
by 1 vectors, because if there are any blocked jobs, then they are all blocked by the
same station.

Now we consider the transitions of the jobs for a nonblocking state (n, y, z),
where y and z are empty vectors (. In this case the system will reach the state
(n — e + ¢, 0, 0) with rate piy (4 psr, s, if n; # B;. Otherwise, a class r job from sta-
tion 7 will be blocked by station j and the transition will occur from the state
(n,0,0) to the state (n — e;,, ', , Z), where y = (y;) and y; = i. The same occurs for
Z = (z1) and z; =s. The rate to reach this state is the same as before, i.e.,
i (Pir)Dir, js.
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Now we consider the transitions from a blocking state. Suppose station k is
full, i.e., ny = By, and the current state is (n, y, z), for 5>0. Then a class r job leaves
station 7 and moves to station j, for i # k, j # k, and becomes a class s job and the
system reaches the state (n — ey + ¢, 9, z) with rate p;(m.)pir, 5. If a class 7 job
moves from station i to station k and becomes a class s job, then the state
(n—ew,¥ + Yo+1,2+ 2p41) and ypo1 = i, 25,1 = 5 will be reached. Note that in this"
case the transition rate is p; (1) pir, js.

Lety = (31, .., »), then the operator y + ys41 will be (y1, ..., s11). Similar is
also valid for the operator z 4 z,1. When considering a class 7 job which moves
from station & to station j and becomes a class s Jjob with the transition rate
pikr (e )Pkr, js» then one of the first blocked jobs will move to station k at the same
time. Thus, the new state is (n— ex + € + €12, Y, 2), With y' = (4,...,¥,_,),
yi=yunandz = (z},...2_,),2} =z, for 1<Igbh — 1.

From these state transitions we obtain the global balance equation for a state
(n,y,z)eSifn;<B;for 1<i<N,thusy = and z = 0:

N R
p(n: @1 ﬁ) Z Z I‘ir(nir)

=1 r=1
R N R

N
Z Z Z Zp(n + & — - €js) 0 w)ulr(nlr + I)Pzr Jss (7)

i=1l r=1 j=1 s=1

and the global balance equation for a blockmg state (supposeny, = Bk):

’ N R
p(n, Ys Z) Z Z P’ir(nir)

=1 r=1

N R N -

R
= Z Z z Zp(n+ €ir — €js, Y, Z)[qu(nzr e I)P;r Jjs
s=1

i=1itk r=1 j=1, j#k

R R N R
L3 Z Zp(n + €kr — €5 — €kz, ¥ + Yo, 2+ Zo)ﬂkr(nkr)]’kr,jx
J#k s=1 r=l yp=1 z5=1
R
o ZP(" t s,y — Vb T — Zb)p’}'b-"(n}’b-" 2 l)p,Vb-?,kZb' (8)

s=1

The first term on the right-hand side of (8) is the total flow-in rate to the state
(m, y,z) from the state (n + e; — ¢, ¥, z). We note that the moving job is from sta-
tion i to station j, i # k, j # k. The second term on the right-hand side of (8) is the
flow-in rate to the state (n,y, z) by a class r job moving out from station &, and in
the mean time another blocked job, which is of class zg, will move into station k
from station yo. As a consequence a transition occurs from the state (n+ exr —ej5
—€kz, Y + Yo, Z + 2o) to the state (n, y, z).

For notational convenience we let y,, zo denote the location and the class of the
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blocked job that will move into station k while a job leaves station k and j Joms sta-
tion 7. The third term in (8) is the flow-in rate to the state (n, y, z) by a joining job at
station k.

THEOREM 1
The model has the following product form solution for equilibrium state prob-
abilities:

Z i Tny=s;}
p(n:y’ Z) = Cnf(nt) (H__t_—l—_)’ltPZI_t_lﬂ) 3 (9)

= 1] =1 1 Hit (nzt)
"where f;(n;) is defined as

Nip )
w2, L (ga) if station 7 is type II,
Py . o
FiS (91) if station i is type III,

r=1ny! \

Si(m) = (10)

and Cis a normalization constant,

Tin =3,
- 3 Hfz(nz)(H Ez—mymz,)( ). a

(n,y,z) eSi=1 1 Mit (nlt)

Proof

We omit the proof of the nonblocking states since it is exactly the same as in the
BCMP or Kelly model, Baskett et al. [8] and Kelly [10,11]. For the global balance
equation of blocking states we assume that the state & has n; = B;, and the number
of blocked jobs is b, then for (9) and (10) we have

Oy Hjs (njs) ( 1 2)

n+eir-e’1 yZ) =p\my,Z
»( i Y2 2) = p(n,y )mr(nirH) e

ifi # kandj # k.
Next we consider the departure event of a job leaving station j # k and visiting
stationk
P(n + ek — €js — ekzo.,y +yo,z+ ZO)

R
Qker Hjs (n]S) Fkzo (nkzu) Et:l a)’olP Yotkzo (13)
Hier (nkr s 1) Qs (875 ZIR;I [l:kg(nkt)

=p(my,z)

and for the departure event of a jobleaving station k and visiting station i

Qyps Zﬁ——l et (Pger) e (18]

n+ey,y— s,z —2) =p(n,y,z)
P( VoS3 ) ( s Vs ﬂyb-\‘(nyb"' + 1) Ef:l aybtPJ’bl,kZb
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By substituting (12)—(14) on the right-hand side of (8) separately and using (1), we
obtain

N R N R
Z E Z Zp (n+ ey — €js, ¥, 2) phir (ir + Dps, Jjs
=17 j=1, otk s=1 :
N

R R
= p(n,y,z) Z Z”jizjs) [ E Zairpir,js:i : {15)

j=1,j#k s=1 i=1,i#k r=1

R N R
¥ Z Z > p(n+ exr — s — exzy, ¥ + Y0, 2+ 20) ke (M) Pir js -
J#k s=1 yo=1zo=1
R N

R R n R
=p(n,y,7) Z E Z ZMJ (njs) Olkr Ptezo (Mkzp) 5 Dhr js LZ Z QyotDyot cho:l

JFk s=1 r=1 z=1 s Oz SR kel o=1 1=1

S ETINI DY [“k””‘”’ 2 (‘f%%%‘))]

Jitk s=1 s zo=1

T p(”a s Z) Z Z ﬂjs(n]s) [Z OkrDkr, js:' (16)

e =1 s

Bycombining (15) and (16) we have

N R R '
(15) + (16) = p(m, y,z>zz“f;§jﬂ) [ > 3wt + zak,pk,,,-,}
S o

J#Fk s=1 =1,i#k r=1 r=1

R
=p(n,y,z) Z Z s (mys) [Z Z; QirPir, js]

J#k s=1 s =1 r=

=p(my,2)) Z s (njs)- (17)

7k s=1
In(14) we substitute the third term of (8) and obtain

R
EP(” + €5y Y — Vb, 2 zb)“J?b-\‘(nyb-\' < I)P,Vb-":kzb

s=1

Zt-—l Laer(73)
=p(n,y,z) -k . - Z QyssPyss ez
Et—l QytPyytkzy s=1

=P("7ya Z)Z/J'kt(n]ct)- ‘ (18)
1=1

Thus, with (17) and (18) we have p(n,y) 3% | 3% | u;(n;s) which is equal to the
right-hand side of (8).
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Remark :

The result (9) follows from the following argument: we consider the buffers occu-
pied by the blocked jobs which are stored in type II or III stations only, as the
extended buffers of the stations causing blocking. The existence of blocked jobs in
type II or type III stations will not effect the service of the non-blocking jobs in
these stations. That is the throughput rate of these two types of stations will be
dependent on the number of nonblocked jobs in this station only. Thus, we can
ignore the locations of the blocked jobs and the result (9) will follow. O

Now we derive the throughput of the system X\ = Z Ai, where A; is the
“throughput of station 7, and the mean number of jobs k; in statlon i

THEOREM 2 .
The throughput of station i is computed from

R N R
= Y p(nyz) [E par(nir) (_1 -> ZPichsI{nFBk})
r=1 -

(ny.z)eS k=1 s=1

N R '
+ Z L=} (y, =i} (Z Hker (nkr)) :l . : (19)
k=1 S \r=1 )

The mean number of jobs at station iis

ki e E P(" s Z) (Z n; + ZI{y,..l}> (20)
- (myz)eS r=1

Proof

For any given state (n, y,z) we consider the throughput of station i. Suppose
the number of class r active jobs is n;, thus, the service rate is y;(n;-). However, a
job which completed its service in station i can leave station i only by choosing a
nonfull station j, i.e., nj<B; with probability Es_l Pirjs. When cons1dermg the
blocked jobs, if the ﬁrst blocked job in station i is blocked by station k, i.e., y; =,
then this job has the same rate with which it will leave station i and join the station
k as the service rate of station k, i.e. Z,_l Wir(ner). Thus, (19) follows.

Similarly, for a given state (n, y, z) we have the number of jobs in station i which
w111 be equal to the active jobs 3% 7, plus the blocked jobs in this station, ie.,
E,_ Iy, so that (20) follows. D

4. Central server model with different types of stations
In this section we analyze central server models (star networks) with BAS

mechanism. We put the constraint that the central server must be a station of type
either I or IV and all other stations may be of type II or ITII. We further assume that
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only stations of type I or IV will cause blocking, and the neighbors of such stations
must be of type I or III. The total number of jobs must satisfy the constraint

211111{31} <K< ?;ujt':l{Bi}

andp,-,,j, = 0, ifi,je 7.
We note that p;, j; = 0if i, je T and for all r, s, then (1) will become

: R :
Qs = Z Z Qupir,js forjeT. (21)

iel; r=1 4

We denote T4 as the set of stations in T} if n; < B;, and T} as the set of stations
in Ty with n; = B;. Note that T, U T = T7. In the following we give the global bal-
ance equation for a given state (n, x, y, z).

R
P x,3,2) | D () + D> (i)

i ieTy ieT, r=1

R
= 33D pln+ i x = Xin it + Vpings,

jeT4ieT; r=1

R
& Z ZP (n + ey s %,y — Vipys 2 — Zjbf)“yily’(n}'jbj’ + l)l’yj',bjr,jzj»j
j eTp r=1

R R
+ Z Z ZP(" + ey — €js, X, Y5 Z)Flir(nir + l)pir,js

ieTy,jeT; s=1 r=1

R R
+ Y D0 p(n— e, x +xi0, 7, 2) (3 + Xi0)Pin s

ieTy,jeTr s=1 xp=1

R N R
+ Z ZZZP("—ejs,x+xm—xiBi,}’+yio,z+Zio)

i€Tp,jeTy s=1 yy=1 xp=1
X pi(X; + Xi0 — XiB, )Pixg js - (22)

We consider a given state (n, x, y, ), then the total flow-out rate from this state
is p(n, X, 9, 2) (e, 1i(%i) + e, Soret Hir(ny)). In order to check the flow-in
rates we consider the different events caused by these jobs: The first term on the
right-hand side of (22) denotes the departure event of a class 7 job from station
ie T tostation j € T4 to class x;,,. The second term denotes the events of a class 7 job
in station yj», € T, which completed its service and is joining station j e T5. How-
ever, since station j is full, n; = Bj, this job is blocked and becomes a class Zjp, job
and joins the list of blocked jobs waiting for station j. The third term denotes the
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event of moving of a class 7 job from station i € T3 to station j e T> and becoming a
class sjob. The last two terms describing the events of moving of a class x;g job from
station ie T4, ie Tp to station je T, and becoming a class s job. We note that x;
denotes the class in which the job leaves station i. i and zy denote the station and
the class of the blocked job at the first position of the list of blocked jobs which will
move to station i. Note that zig = x;g,.

THEOREM 3
. The mode] has the following product form solution for equilibrium state prob-
abilities: :

ipdoly pm,x,y,2) = C [ =iy ) [[ fitms), (23)

ieTy ieT;

where fi(x;, y;, z;) for i e T} is defined as

( (i)"‘ M i if 7is type I and ie Ty,
. R

J (i) mnﬁl oy [0 Z’ﬁ‘%&f—'ﬂ if i is type I and ie T, (

filxiynz) = . ' ' 24)
Yo ) ) if 7 is type IV and i€ T},
R
.21%"“[1?’:12‘5%21 if i is type IV and ie T3,
\ il iy
and f;(n;) forie T,,is defined as
m! T 24 (9")"6' if station i is type II
i L =1 71\ s ype i,
fmy =4 A - (25)
Tz ‘—‘jf;) if station i is type III,
where Cis a normalization constant
ct= Y TlAeuyez) [[fitm). (26)
(nxyz)eSiel ieTh
Proof
From (23)-(25) we have
A X ai’_
P(n"'einx—xf"jaywz) =P(n7x1y:z)“1( ]) (27

O, Hir(mir + 1)
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p(n + eJ{]bjr)x - xjn,-:y —yjbpz - zjbj)

wi(x7) Lypyr

=p(n,x,y,z)
ir

Q
p(n+er — e, x,y,2) = p(n, x,y,z) ———

ixyn

R ?
Et:l ayjbj'pyjbjrljzﬁj lLyjij(nyjbfr + 1)

/‘j.\'(nj,)
Fir(n+1) Qs ’

His(n:)

p(n — €5, X + X0, ¥, Z) =P(n1 x,¥, Z)

P(n— e, X + X0 — X8, Y + Vi, 2 + Zip)

Hjs(rse) Qixp

wi(xi + x0)  oys

b

R
sl OyntPytixs, - i(%:)

=pn,x,y,z
p( 1 X5 Y ) Qs p,i(xi-l-xm ""xiBi) ai).‘m‘

iz + zi)

437

(28)

29) _

(30)

(31)

Note that the last term on the right-hand side of (31) is p;(x:)/pi(zi + z0) = 1,
because if the station 7 is of type I, then the service rate is independent of the class.
However, if the station is of type IV then () = Mix,s,- Since we assume the
blocked jobs are FCFI, then y;(z; + zi) = Hizy and x;p = z;0. Now we substitute
(27)<(31) on theright-hand side of (22) separately, and use (1) to obtain

R i
Z Z ZP(" I Eiry X — xjnp Y z)l-"ir(nir + l)pir,jxj,,j

JeT ieTs r=1

. R . .
=p(mx,3,2) Y > Z%@wfpwﬁ,

jETA ieTy r=1 Jx/'lj

=P("$ x, ¥, Z) Z /-ly(xj),

jeTy

R
E Zp(n + ey_ibjr7 X,y — Yibj & — Zjbj)”yﬂ,jr(n}{/bj’ + l)p}'j,bjr,jzjlt,.

jeTs r=1

R
()
=p(n,x,y,2) Y S T Py,

R y
jeTg r=1 bt o, tPypo,t, 2,

=p(n7 XY, Z) Z uj(xj)r

JjeTp

(32)

(33)
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R R
30 XS pin+er — e x, y, D)l + pirs

tejeTy s=1 r=l1

=plmx3.2) Y Z = ¥ Z QP jor (39)

jeh s=1 s ieTs r=1

R

R
3T D0 pn - e x4 xi0, ¥, DX+ X0 )Pixgis

ieT4Je T2 s=1 xp=1

pln,x,,2) Z Z'u‘”(n” ) Z Z CtixaDixg. jor (35)

jeTh s=1 % ieTy xg=1

R N R
Do D203 pln—e,x + X — Xipo Y+ Yo, 2+ 20) il + X0 — XimPisags
I'E_ Tg,f& Tz = yn:‘ x,n:l

=pmxy2z) Y, Z Z s Z anpmm,,,

ieTpjeTh s=1 xp=1 Os a‘*‘h yo=1 t=1

j€T s=1 %.i‘ {eTg xn=1

R
n x,¥,2 Z Z#p(ﬂﬂ) (Z z aianian.r) : (36)

By combining (34)-(36) we have

N R
(34) + (35) + (36) = p(n.x,3,2) 3 Z“ i (Zza,-,p,-, ,,-,)

jeT; s=1 i=]l r=1

R
= p(": x, ¥ Z) Z Z#jx(n],)' (37)
JET #=1
The result follows by checking the flow-in rate equal to the flow-out rate. 0

Remark

The result (23) is obtained by similar arguments as in {9). The blocked jobs ate
keptin an extended buffer at a station of type II or type II1. The blocked jobs beha-
vior is captured through the state description in our model.
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THEOREM 4
The throughput of the ith station is computed from
(i) forieT ,
A= Z p(n,x,y,z) Ef:l pir(mir) (1 — zje Tp Zilpir,js) (38) .
(nxyz)es + 3 ety () =iy forieT;.

The mean number of jobs in the ith station is
{ . forieT,

(39)
Zr—l n; + ZJETB 21_1 Ity forieTl;.

ki= > p(nxy2)

(nxyz)eS

Proof

Consider a state (n, x,y,z). Since the jobs from stations of 77 ¢an never be
blocked, thus the throughput of such station ie T1 is p;(x;). For stations in T, we
have the throughput rate as the service rate Y~ | u;r(n;). However, the job may
choose the next station in Tz and a blocking may occur. If station i e T, has blocked
jobs which have the first priority to get into the destination station that caused
their blocking, then the throughput rate of those jobs from station i is equal to the
service rate of the station which caused blocking. Thus (38) follows.

The mean number of jobs is also obtained from given a state (n, x, y, z). The num-
ber of jobs in station i for ie T is n;. If i€ T3, then the number of jobs in station i
will include the active jobs of all classes 7;1 + . .. + n;z and the blocked jobs in that
station. Thus, we take sum over the stations that cause blocking, j € T’s, and check
the vectors y; if ys = i, then the /th job is located in station i, so that the result (38)
follows. ; O

5. Conclusions

We derived exact product form solutions for the equilibrium state probabilities
and computed throughput and the mean number of jobs in two different models.
We used a property of type II and III stations that the location of the blocked jobs
has no effect on the service rates in those stations. Thus, we used these types of sta-
tions as kind of optional storage spaces for the blocking station. In other words,
the system is treated as a virtual nonblocking system. By the well-defined state
space, particularly the vector of the locations for the blocked jobs, we obtain the
exact product form solutions. Another observation is that by the construction of
the models we always have the constraint that no more than two jobs willmove on a
single departure event. The first model has a stronger constraint, that is only one
of the stations will cause blocking at a time. However, for the second model we
allow more than one station to be of type I or IV which may cause blocking at the
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same time. This is due to the constraint of the neighbors which will not cause block-
ing. ‘

References

(1] LF. Akyildiz, Exact produet form solution for queueing networks with blocking, IEEE Trans.
Comput. C-36 (1987) 122-125.

[2] LF. Akyildiz, On the exact and approximate throughput analysis of closed queucing networks
with blocking, IEEE Trans. Software Eng. SE-14 (1988) 62=71.

3131 LF. Akyildiz and H.G. Perros, Special issue on queuemg networks with finite capacity queues:
introduction, Performance Evaluation 10(3) (1989).

[4] LF. Akyildiz and H. von Brand, Exact sclutions for networks of quenes with blocking-after-
seryice, to appear in Theor. Comput. Sci. J. (1993).

[5] LF: Akyildiz and J. Licbeherr, Optical deadlock free buffer allocation in multiple chain
blocking networks of queues, in: Proc. Int. Conf. on the Performance of Distributed Systemsand
Integrated Communication Networks, September 10-12, 1991,

{6] S. Balsamo, V. De Nitto Persone and G. Tazeoalla, Identity and reducxblhzy properties of some
blocking and non-blocking mechanisms in congested networks, in: Flow Control of Congested
Networks, NATO ASI Series (Springer Verlag, 1987) pp. 243-254.

[7] 8. Balsamo and L. Donatiello, On the cycle time distribution in a two-stage cydlic network with
blocking, TEEE Trans. Software Eng. SE-15(10) (1989).

[8] F. Baskett, K.M. Chandy, R.R. Muntz and F.G. Palacios, Open closed and mixed networks of
quenes with different classes of customers, J. ACM 22 (1975) 248-260.

[9] P.P. Bocharov, On the two-node gueuneing networks with finite capacity, in: Pree. Ist .
Workshop on Queueing Networks with Blocking (North-Holland, 1989) pp, 105-125,

[10] F.P. Kelly, Networks of queues with customers of different types, J. Appl. Prob. 12 (1975) 542—
554.

[L1] F.P. Kelly, Networks of queues, Adv. Appl. Prob. 8 (1976)416-432.

[12] R.O: Onvural, A note on the product form solutions of multictass closed queueing networks
with blocking, Performance Evaluation 10 (1989) 247-255.

[I3] R.O. Onvural, A survey of clased queueing networks with finite buffers, ACM Comp. Surveys
22(1990)83-121.



