JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING 18, 411-422 (1993)

The Effect of Memory Capacity on Time Warp Performance*

IAN F. AkyiLD1Z,7 L1ANG CHEN,Z SAMIR RANJAN DAs,§ RicHArRD M. FuniMoT10,8 AND RICHARD F. SERFOZOT

tSchool of Electrical Engineering, $School of Industrial and Systems Engineering, and §College of Computing, Georgia Institute of
Technology, Atlanta, Georgia 30332

The behavior of n interacting processes synchronized by the
“Time Warp” rollback mechanism is analyzed under the con-
straint that the total amount of memory to execute the program is
limited. In Time Warp, a protocol called “cancelback” has been
proposed to reclaim storage when the system runs out of memory.
A discrete state, continuous time Markov chain model for Time
Warp augmented with the cancelback protocol is developed for a
shared memory system with n homogeneous processors and ho-
mogeneous workload with constant message population. The
model allows one to predict speedup as the amount of available
memory is varied. The performance predicted by the model is
validated through performance measurements on an operational
Time Warp system executing on a shared-memory multiprocessor
using a workload similar to that in the model. It is observed that if
the sequential simulation requires m message buffers, Time Warp
with a small fraction of message buffers beyond m performs al-
most as well as Time Warp with unlimited memory. © 1993 Academic

Press, Inc.

1. INTRODUCTION

The Time Warp mechanism has been proposed as a
general technique for synchronizing asynchronous paral-
lel computations [9]. Unlike conventional, so-called con-
servative approaches to synchronization that utilize
blocking to avoid the possibility of synchronization er-
rors, Time Warp uses a mechanism that detects errors at
runtime, and automatically recovers using rollback. Em-
pirical studies have reported some success in speeding up
the execution of discrete-event simulation applications
using Time Warp [5].

A Time Warp program consists of a collection of logi-
cal processes (LPs) that communicate by exchanging

* A preliminary version of this paper appeared in Proceedings, 1992
ACM Sigmetrics! Performance’92, Newport, R1, June 1992. The work
of Akyildiz, Das, and Fujimoto was supported by Innovative Science
and Technology Contract DASG60-90-C-0147 provided by the Strategic
Defense Initiative Office and managed through the Strategic Defense
Command Advanced Technology Directorate Processing Division, and
by NSF Grant CCR-8902362. The work of Chen and Serfozo was sup-
ported in part by AFOSR 89-0407 and NSF Grant DDM-9007532.

timestamped event messages.! We assume timestamps
are unique, real values that are totally ordered by the
relation **<.”” All computations are the result of process-
ing messages. i.e., processes do not ‘‘spontaneously’’
begin new computations. Each process maintains a local
clock variable that indicates the timestamp of the mes-
sage now being processed, or the last message it pro-
cessed if the LP is idle. Messages must be processed in
non-decreasing timestamp order. If a message with ti-
mestamp 7T is received “‘in the past,”” the computations
associated with messages with timestamps larger than T
must be rolled back. This may involve sending antimes-
sages to cancel previously sent messages, which in turn
may induce additional rollbacks. Details of the mecha-
nism are described in [9]. We assume that the reader is
familiar with the definitions and basic terminology de-
scribed in that work.

A substantial amount of effort has been devoted to
developing analytic models to characterize the behavior
of Time Warp. Several models have been developed to
model execution on two processors [3, 12, 21, 23]. Re-
cently some work has also attacked the n processor case
(8, 11, 20]. Bounds have been derived to compare Time
Warp’s performance with that of other approaches (2, 14,
17, 22], and conditions have been identified under which
an excessive number of rollbacks may occur [19].

All prior work in modeling Time Warp has assumed
that there are no constraints on the amount of memory
that is available to execute the program. In effect, these
models ignore the message sendback aspect of Time
Warp that was proposed by Jefferson to implement flow
control [9]. Several extensions of message sendback have
since been proposed in the literature. As discussed later,
message sendback based protocols are often used when
the simulation runs out of memory and the normal gar-
bage collection procedure (called fossil collection) fails to
recover additional storage. These protocols roll back
some processes that are ahead in virtual time relative to
others in order to reclaim memory and enable the simula-
tion to progress. While Time Warp models that ignore

! We use the terms cvent and message synonymously.

0743-7315/93 $5.00
Copyright © 1993 by Academic Press. Inc.
All rights of reproduction in any form reserved.

412

message sendback can still yield accurate predictions
when there is adequate memory, substantial deviations
could arise when memory is limited. Moreover, little is
known concerning the performance of Time Warp with
limited memory. This is the central issue that we address
here.

The performance of Time Warp with unlimited mem-
ory was discussed in a prior work [8]. Although many of
the assumptions used here are similar to those in that
work, substantial changes have been made to model the
limited memory situation. Furthermore, the solution to
the present model differs significantly from the earlier
one.

This paper is organized as follows: in Section 2, we
briefly overview different memory management schemes
for Time Warp and discuss the scheme that we are ana-
lyzing. In Section 3, we describe the model. The analysis
of this model is discussed in Section 4. In Section 5, we
compare predictions made by the model with experimen-
tal measurements. In Section 6, we conclude and discuss
directions for future research.

2. MEMORY MANAGEMENT IN TIME WARP

Time Warp consumes memory by storing three types
of objects, viz., state vectors in the state queue, positive
messages in the input queue, and negative (anti-) mes-
sages in the output queue. Several mechanisms can be
used in Time Warp to control the amount of memory.
Various approaches are enumerated below:

« Fossil collection: Storage used by objects that are
older than global virtual time (GVT)? can be reclaimed
and used for other purposes.

« Message sendback and its extensions: If fossil collec-
tion fails to recover any storage, but additional memory
is needed, some other mechanism is required. Jefferson’s
message sendback protocol is one such approach [9].
Several variations and/or extensions of message send-
back have also been proposed, as outlined below.

« Infrequent state saving: State vectors can be saved at
a less frequent rate to reduce storage consumed by the
state queue 15, 24].

o Limiting optimism: Variations on Time Warp that
limit the degree to which processes can advance ahead of
others implicitly reduce the amount of memory that is
required (18, 20, 25, 26].

Several policies utilizing message sendback have been
proposed. Jefferson’s original proposal invokes message
sendback when a process P receives a message, but finds

* GVT is defined as a lower bound on the timestamps of all future
rollbacks. For operational definitions of GVT, see [9, 13].

AKYILDIZ ET AL.

that there is no memory available to store it [9]. Then the
message with the largest send timestamp in P’s input
queue is returned to its sender. The sender rolls back on
receipt of this message if its local virtual time is more
than the send timestamp of the returned message, and
possibly resends it in a later forward execution phase.
Gafni’s protocol [7] generalizes message sendback by re-
moving any stored object (input message, state vector or
output message) from the process P that runs out of
memory. If the discarded object is an input message, it is
returned to the sender, as in message sendback. If it is an
output message, it is transmitted to its receiver where it
will cancel the corresponding positive message, and P
rolls back to the state before it sent the original positive
message, If the stored object is a state, it is discarded.
Typically, the object with the highest sendtime is se-
lected for removal.

Jefferson proposed an alternative approach called can-
celback [10] specifically targeted for shared memory sys-
tems, where there is a single shared pool of memory. In
this protocol, if a process P needs storage for any object
u, it is assumed that # is always allocated, but after allo-
cation there may not be any free memory to continue the
simulation. The protocol then discards a stored object
from some process (not necessarily the same process that
stores u) exactly as in Gafni’s protocol to free memory.
The discarded object must have its sendtime greater than
GVT.

Lin observed that all these protocols rely on some pro-
cess rolling back to free memory [13, 16]; so the ability to
artificially roll back any process to an earlier virtual time
will be a simple, but efficient, memory management
scheme. He described the artificial rollback protocol in
connection with a shared memory architecture utilizing a
global memory pool. If any process runs out of memory,
and fossil collection fails to reclaim enough storage, the
process farthest ahead in virtual time is rolled back. How
far to roll back is a parameter of the scheme. For effi-
ciency reasons, Lin recommends roliing back the process
with the latest local clock to the second latest local clock
[13]. This continues until enough storage has been re-
claimed.

Artificial rollback is semantically similar to can-
celback. The syntactic difference, however, makes it
somewhat easier to implement in most systems (there is
no need to distinguish between messages in forward and
reverse transit).

Here, we are concerned with the performance of Time
Warp with cancelback. Cancelback is believed to be a
complete solution for the Time Warp memory manage-
ment problem, as it enables Time Warp to complete the
simulation with the same amount of memory as the corre-
sponding sequential execution [10].

EFFECT OF MEMORY CAPACITY ON TIME WARP PERFORMANCE

3. MODEL DESCRIPTION

We assume that the Time Warp program is partitioned
into n processes, each of which executes on a separate
processor. All processors and processes are identical.
Since each process executes on a distinct processor we
use the words ‘‘process’ and ‘‘processor’’ interchange-
ably. We also assume that there are initially m unpro-
cessed messages in the system, and that upon processing
each message, exactly one new message is generated.
The quantity m is referred to as the message population.
This fixed message population assumption holds exactly
for simulations such as closed queueing networks, and
approximately for many other simulations where the size
of the event list (in sequential execution) does not vary
substantially throughout the simulation. The computa-
tion time associated with each message is assumed to be
exponentially distributed with rate A.

We assume rollback is nonpreemptive; if a message in
the past is received while an event is being processed,
the rollback does not take effect until the processing
of the current event is finished. We assume that the
time for rollback is negligible, and a message is received
immediately after it is sent. We also assume that the
process’s state is saved prior to processing each event,
and the time to save state is negligible. These latter as-
sumptions are mild for medium to large grain simulations
(e.g., many combat models), where the associated over-
heads are small relative to the computation time per
event.

An event whose timestamp is less than GVT is called a
committed message. Committed messages cannot be
rolled back. Others are referred to as uncommitted mes-
sages. These may or may not have been processed previ-
ously and, with the exception of the message with time-
stamp equal to GVT, could later be rolled back.

We use a shared-memory model for memory alloca-
tion, i.e., we assume unallocated memory is stored in a
global, shared, pool of buffers. Each message includes
the associated state vector (state is saved before each
message is processed) and is assumed to require one
memory buffer. M denotes the total number of memory
buffers available in the system. We assume no additional
buffers to hold messages in transit. When a message is
sent, the sender requests and obtains a memory buffer (if
one is available), fills it in, and puts the buffer directly in
the receiving process’s input queue. Any buffer freed by
a process (e.g., via fossil collection) is returned to the
shared pool. We assume cancellation is done by a pointer
traversal as in direct cancellation [4] rather than through
antimessages. As demonstrated in (4], each pointer con-
sumes a constant amount of space for each positive mes-
sage in the system, so they are included as part of the

413

memory buffer. Thus, no additional buffers are required
to hold antimessages.

The total number of messages in the system cannot
exceed the memory capacity M. We assume that fossil
collection is instantaneous and runs continuously in the
background so that any fossil is immediately reclaimed.
Thus, all messages in the system correspond to uncom-
mitted events. When there are no free message buffers in
the system and process P, attempts to send a message to
process P,, the Time Warp system returns the message u
with the largest send timestamp back to the process P,
that originally sent it. This causes P, to roll back to the
last state prior to sending «, and the memory buffer hold-
ing u is freed. The only exception occurs when the local
time of P, is greater than the sendtime of «. In this case,
P, aborts the send, and rolls back the current event.

The processing of a message with timestamp 7 involves
the following operations:

(i) Read the contents of the message.

(ii)) Compute the update state variables.

(iii)) Send a new message to one of the n processors
(including possibly itself) chosen from a uniform distribu-
tion. The timestamp of the new message is 7 + {, where {
is an exponentially distributed random variable with
rate p.

The assumptions regarding the choice of message re-
cipient and the timestamp increment may not be true for
many systems, but are necessary to make the analysis
tractable. Empirical evidence suggests that the message
routing function, computation time, the timestamp distri-
butions have a secondary effect on performance for
homogeneous applications {6].

A memory buffer needs to be allocated from the shared
pool to hold the message to be sent. If none is free, the
system already contains M uncommitted messages and
the memory management protocol described above is in-
voked to free a buffer. We assume that the time to send a
message, whether or not the protocol is invoked, is negli-
gible. As noted earlier, this is consistent with the situa-
tion where computation grain is significanily larger than
the associated overheads.

As a processor completes processing a message with
timestamp 7, it looks for the lowest timestamped unpro-
cessed message (or antimessage) in its input queue. Sup-
pose the resulting timestamp is 7'. If 7’ =< 7 (i.e., the
lowest timestamped unprocessed message is in the local
past), the process rolls back to the most recent state ear-
lier than 7'. The process then (whether or not it rolls
back) (i) sets its local clock to 7', (ii) copies the state
vector from the most recent message with timestamp less
than 7', and (iii) processes the message with timestamp 7’
as described before. If the message with timestamp 7’ is

414

an antimessage, however, it annihilates the correspond-
ing positive message (if it is already present in the queue),
or is processed as a no-op. The time taken to do these
operations in between processing of two messages is as-
sumed to be negligible. It is assumed that there is always
at least one unprocessed message in each processor’s
input queue, i.e., the message population is substantially
larger than the number of processors n. This implies that
all processors busy all the time. This is a reasonable as-
sumption for simulation models that are much larger than
the multiprocessor configuration.

Note that a change in the system occurs only when a
processor completes processing a message and the above
actions are taken. The number of processed uncommitted
messages in the system may increase or decrease de-
pending on whether or not there is a rollback, or whether
the GVT advances (thus committing some messages).
The number of unprocessed messages is always constant
and is equal to the message population . Thus the total
number of processed uncommitted messages cannot ex-
ceed (M — m). It follows that M must at least be m for the
simulation to complete. Our objective is to determine the
effect of memory capacity M on the speed of the system.

4. MODEL ANALYSIS

A complete Markov modeling of the system would en-
tail keeping track of all the messages in the system, i.e.,
recording their timestamps, locations and whether they
are processed or not. Since this is impractical we take
another approach. The key idea in our approach centers
on the assumptions that the processors are identical and
the workload is homogeneous. We use these assumptions
to extrapolate or generate information about the mes-
sages knowing only their quantities. For instance, each
processed message in the system has probability 1/n of
being located at a particular processor. This is valid in
equilibrium and hence is a reasonable assumption for
nonequilibrium states when one has little information
about the past.

Recall that in our model the timestamp increment (dif-
ference of the receive and send timestamps of a message
and its source message) is exponentially distributed with
rate m. This assumption implies that the interdistance in
virtual time of the processed uncommitted messages in
any process is also exponentially distributed with rate a
(say), where a may differ from w (See (8] for an explana-
tion). Similarly, we assume that the distribution of time-
stamp differences is also exponential for the unprocessed
messages with rate y, and for the antimessages with rate
B. We use these assumptions to model the distribution in
virtual time of the processed and unprocessed messages
at a processor in order to determine the number of pro-

AKYILDIZ ET AL.

cessed messages that must be undone in a rollback. Note
that in Time Warp actual values of the timestamps are not
important aside from their relative ordering.

4.1. Equilibrium State Probabilities

We will represent the system by the continuous-time
stochastic process {X(1): t+ = 0}, where X(1) denotes the
total number of processed but uncommitted events in the
system at real time ¢. Note that X(z) does not include
messages currenily being processed (which are partially
processed messages). Recall that X(r) can be at most
(M — m), where M is the memory capacity in number of
message buffers, and m is the message population. Infor-
mation concerning the locations and types (processed or
unprocessed) of messages will be generated from X(¢).

Under our assumptions, the process X is an irreducible
Markov chain with state space § = {0, 1, ..., (M — m)}.
The evolution of X is characterized by its transition rates

ik = l’ifl(} tVP{X() = kX)) =4}, jELKES, (D

The process X is irreducible and its equilibrium distribu-
tion 7 is the solution to the balance equations

T 2 ik = Z Tk JES. (2)
ke#j oty

Under our assumption that all processors are always
busy, the exponentially distributed time that the process
X remains in any state is nh, where A is the rate of the
exponential processing time of each processor. Then,
gix = nAPy, where Py is the probability that X moves
from state j to state k at a transition. Therefore the bal-
ance equations (2) simplify to

w = 2 mPy,

k

JES. 3)

The following subsections describe the transition prob-
abilities Py and a computational procedure for obtaining
the equilibrium probabilities ; from (3).

4.2, Expressions for Transition Probabilities

The transitions of the process X involve the following
events:

Normal Rollback: R, = {X moves to state k due to a
rollback}

Cancelback Induced Rollback: R; = {X moves to state
k from state M — m after cancelback}

GVT Advance: @; = {X decreases to state k due to a
GVT advance}

Unit Increase: 3 = {X increases by one unit}

EFFECT OF MEMORY CAPACITY ON TIME WARP PERFORMANCE

415

The nonzero transition probabilities of the process X where

are therefore

j/+l - J{y}
Lj+1es. 4)
Py = PR} + P{%,
O0=k=jjES,j#M-m (5
Py = PARu} + PAD + PR,

O=sk=j=M-m (6)

Here P{-} is the conditional probability given X(0) = j.
We derive expressions for these probabilities in the fol-
lowing subsections. We make frequent reference to the
following random variables associated with processor i at
a transition:

X; is the number of processed uncommitted messages
(in processor i).

Y, is the number of unprocessed messages in the local
past.

Z, is the number of antimessages in the local past.

U; = Y; + Z; is the number of messages in the local
past. These are the messages that cause rollback in pro-
cessor i. We assume Y; and Z; are independent.

4.2.1. Probability Distribution of Messages in the Lo-
cal Past. Our expressions for the transition probabili-
ties will involve the following conditional distribution for
the number of past messages U, at processor i. Condition-
ing on X;,

glu)
PU=uX=x}=<1r— u=0,..,x+m (1)
W= o= = e
where
gu) = P{U;, = u. X; = x}
- j e Bty [(B + .y)s]u ofas)” e~ ds
x'
_ (x + u) (rg + ry)"
u /(1 + g+ o)t

u=0,..,x+tm (8
Here rg = B/a and r, = y/a. The integral follows since
the differences between the timestamps of the X; = x
messages are exponential with rate « and the differences
between the timestamps of the U; = u past messages are
exponential with rate 8 + y (because of assumption that
Y; and Z; are independent).
Similarly, we can write

h(z)

Pz, = T
{ 1=0 A()

Xi=x}= z2=0,..,x, (9

h(z) = P{Z; = z, X; = x}

- f (BS) a(a'S)‘ o s
X.

- (x + z) (rg)*
2 T F e

We also have

(10)

z=0,...,x

Py,

l
=
s
I
~
i3
I

(11

I

wiP{W, = wlX;=x}, y=0, .., m,

where W, is the number of unprocessed messages in pro-

cessor {. The m unprocessed messages are equally likely
to be located at any processor, and so

Piw, = wix =51 = (1) () (1=)7
w=0,.. m

Consequently, W, is independent of X;. Then, similarly to
(7) and (9),

Ay)
PY{: Xi= *Wi= o= o s =0, .., w.
{ q g w} 2L A y=0 "
where
_ _- = — X+ y N v+x+1
) = P =y, o= = (Y7 2) s+ rpee

(12)

4.2.2. Unit Increase. Conusider the event $ that there
is a one-step increase in the state of the process X. Let [
denote the processor that initiates the transition. Note
that I is not the GVT regulator [8]. (GVT regulator is the
processor that has the GVT event in its input queue. The
GVT event is the uncommitted event with the minimum
timestamp among all such events.) This is because when-
ever the regulator advances it immediately commits the
event it has just processed. Since all processors are iden-
tical, we may assume the nth processor is the regulator at
a transition, and let P,{-} denote the conditional probabil-
ity under this additional condition. Then by standard con-
ditioning,

=1

=

J
I§PMI—AX—ﬂﬂM x}, jES.
(13)

P9} =

I

i

416

Whenever X = j, we assume that these j processed un-
committed events are independently located at proces-
sors 1, ..., n — 1 (no processed uncommitted event can be
in processor n, which is the regulator), and the probabil-
ity of one being at processor i # nis 1/(n — 1). Then

et~ ()) (-)

x=0,..,]J.

(14)

Also, the process X can increase by one unit at processor
I = iif and only if U; = 0 (there are no past messages or
antimessages at processor i). Then

Pj{g’, I= llX, = JC} = n_IP{U,' = 0|X, = X}, (15)
where n~! is the probability that processor i is the first of
the n processors to finish its processing The last probabil-
ity in (15) is given by expression (7). Thus, P;{$} can be
computed from (13)-(15) and (7).

4.2.3. Rollback. Consider the event &, that process X
moves to state k as a result of a rollback. As above,
assume that processor n is the regulator at the transition
and that P;{-} is conditioned on this event. Let I denote
the processor that finishes processing first and triggers
the transition. If I = n and a rollback occurs, then the
process X can move only from j back to j. Then condi-
tioning on X; and I, we have

Pj{ng} = E 2 P{X; = X}Pj{l = i‘Xi = x}

=l x=j—k

Pj{gik|X,' =X, I = i}

+ l(k=ﬁpj{%j, I = n, X,, = 0}, k= O, ...,j. (16)

Here, 14—, = 1 if K = j, and 0 otherwise, and
POy, I =n, X, = 0} = ;11-(1 — P{U, = 0|X, = O}).

In the summation of (16), the first probability is given by
(14) and the second probability is

a1 - P{U; = 0|X; = x}],

which is evaluated by (7). Here n™! is the probability that
processor i finishes processing the current event before
the other n — 1 processors and this processor can roll-
back if and only if U; # 0.

The third probability in the sum (16) (conditioned on
U,') 1S

AKYILDIZ ET AfL.

Pj{gf,lef =x,1= l}

x+m

= > PARICIPLU, = u|X, = x, 1 = i},

u=t

an

where C;, = {U; = u, X; = x, I = i}. The last probability in
(17) is

PlU=ulXi=x, |l =u=<x+m)

P{U; = u|X; = x}
= P{U, = 0X, = 5}’

where the probabilities on the right hand side are given
by (7).

To complete the evaluation of (16), it remains to obtain
an expression for the probability in (17). We can express
it as

PA{R|C} = J: PARIC:, T; = t} PAT; € dt|C}}, (18)

where T, is defined as the local virtual time of processor i
minus the GVT. To evaluate this integral, note that for
processor i to rollback to move process X to state k when
X=4Xi=x, U =u T =1t), exactly [x — (j — k)]
processed uncommitted messages must have timestamps
below the minimum of the timestamps of the « past mes-
sages and the rest of the processed uncommitted mes-
sages ((j — &) of them) must have timestamps above this
minimum. The minimum timestamp of the u past mes-
sages has the distribution

1—(—sl)", 0=ss=<1t. (19)
This is the probability that the minimum of ¥ samples
from a uniform distribution on [0, ¢] is 5. The probability
of this rolliback event is therefore

P{RJC\ T =t} = (x —;+ k)

. , , (20)
L 1041 = stopHuat = sty ds.

The last term in the integral is the density of the distribu-
tion (19) that the minimum of the « timestamps for past
messages equals s. (We are simply conditioning on the
distribution (19)). The rest of the right side of (20) is the
binomial probability that exactly (x —j + k) out of the x
processed uncommitted messages have timestamps be-
low s. Substituting y = s/¢, the integral reduces to

1 N .
u J-O yx—rH((l . y)uﬂ—kfl dy

2D

=uB(x—j+k+1, u+j-k),

EFFECT OF MEMORY CAPACITY ON TIME WARP PERFORMANCE

where

Bla. b) = [yt =yt dy

is the beta function. Note that this integral is independent
of ¢. Then (20) is also independent of ¢ and hence it fac-
tors out of the integral (18). In other words, substituting
(20), 21D in (18), we obtain

PAU|C}} = ”(x —;%— k)
(22)
Bx—j+k+1,u+j—k

0==u=(x+m),

O=j=(M-m),

for O=x=j,

O0=k=j1=i=n.

This completes our evaluation of the rollback probability
PR} i

We now consider the event R, that process X moves to
state £ from state M — m after invocation of cancelback.
Let 7 denote the processor that finishes processing first
and triggers cancelback that causes a rollback at proces-
sor I. Suppose, / = i. Then due to the homogeneous
assumption, X; and X; have the same distribution. As an
approximation, we assume that X; = X, as cancelback is
invoked. Thus, we have

n—

-] J -
PM~m{*GRk} = z PM~m{Xj = x}PM—m{I = I‘Xl = X}
1 [~k

=1 x=J]) (23)
Pu-m{Ril Xy = x, I = i},

where
- 1
PM_,"{I = IIX, = X} = ; P{U, = OIX, = X}

and Py iR Xi=x, I =i} = Py o{RlX;=x, 1 =1i}is
given by (17) through (22).

4.2.4. GVT Advance. As above, we assume that, at a
transition of X, the processor n is the regulator and P{-}
is conditioned on this assumption. Let i be the new regu-
lator. As before T; denotes the virtual time of processor i
minus the GVT. Set T = min{7,, ..., T,-,}. Then the
probability of a decrease of the process from j to &k due to
a GVT advance is

Plad = 3 PiX = AT = TiX; = x)

(24)
Pj{g)k‘X; = X, T= T,}

417

The first probability in the sum is given by (14). The
second probability in the sum has a closed form expres-
sion, but it is not practical for computations. We there-
fore use the approximation: The quantities X, are the
same for all the processors / that are not the regulator
before or after the transition. Then, for such a processor,
X; = [{j — x)/{n — 2)] (the integer part of the number).
Note also that

plx,y) = PAT, = T)|X, = x, X, = y}

E

k=x+1

Then our approximation is

PAT = T|X; = x} = q(, x)

=, 25
S0 4. B 23)

where

aio b= [p (k. [LZAD]7) k=0,

To evaluate the last probability in (24), we will use the
following events:

o = {The GVT advances}
P = {The message at the new GVT was partially pro-
cessed before the transition}.

Since we consider the last probability in (23) for fixed i, j,
x, we write it as P{%,}, where P is the probability defined
for any event B by

P{B} = P{B|X;, = x, T = T}, (i,], x are fixed)
Conditioning on & and %, we have

P{a = P{st} (PAP}P{2i] oA, P} + PPYP(D] 4, P°Y).
(26)

Here %¢ is the complement of %. If T* is the minimum
timestamp of all unprocessed events, then 7* — GVT is
exponentially distributed with rate ny (it is the smallest
timestamp from the n merged streams whose rates are).
It follows that

Yatl

i) = (=(1+nr)>"", x=0,...5, Q27

a + n'y.f'

r, = y/a. This is the probability that x + 1 events from a
Poisson stream of rate « occurs before one event occurs

418

from a Poisson stream of rate ny. P{sd} is given by the
following:

P{sd} = % P{U, = 0| X, = 0}. (28)

We now consider P{%|s{, ?}. As the process X moves
fromj to k due to a GVT advance and the new GVT event
was partially processed in processor i with X; = x before
the advance, then (j — k£ — x) processed uncommitted
events will be committed from the other n — 2 processors
(excluding i and n). Thus

P{@ oA, P}
_ f: p-(n-2las [(n - Zijxs]f"k"* alas)t e;s ds (29)
:C(J';k)%;’:—‘gj;:;,k=o,...,j—k.

where

=% . j—k—xT7-1
_ j— k\(n — 2)) "]
¢= [,;)(x) (n — 1)—k+1} -
A similar argument yields

[(n ~ Das}*

D) = * —~(n-Das
P{@k'&d’@}#l[{]e() (_]'_k)'

nye ™ ds

n-—1

(30)
=C:[nryﬂ-(n—l) '

ik
] , k=0,..]J,

where

Here if processor i is the new regulator and the new GVT
event is unprocessed, than all j — & processed uncommit-
ted events will be committed from the n — | processors
(excluding processor n).

4.3. Estimation of Parameters

The transition probabilities we have derived above are
functions of the parameters rz = B/a, r, = y/a, where a,
B are unknown. We now present an iterative procedure
for computing rg, r, and the equilibrium distribution 7.
We first express rg, r, as a function of 7r. Whenever X; =
x in processor i, its virtual time (with respect to GVT) T;
is the location of the (x + 1)-th message in a Poisson
process with rate «. Therefore,

E(T|X; = x) = (x + D/a. (31)

AKYILDIZ ET AL.

To estimate rg, we note that

E(Z|X; = x)
B

E(Z,'X, = x) + 1

= E(T|X, =x) =< 3

We approximate E(T;|X; = x) by taking the weighted av-
erage of the left and right sides of the above inequalities,
using the probability of rollback (and not rollback) of
process i as the respective weights. Thus, we have

1
B
+ (E(Z,’X, = X) + l)P{U, = O'X, = X})

E(T{|X; = x) = HE(Z)|X; = x)(1 = P{U; = 0|X; = x})

";‘(E(Z,(X, = X) + P{U, = O'X, = X})

(32)
Let d(x) = P{U; = 0|X; = x} = (1 + rg + r,)"%*!. Then
from (31) and (32), it follows that

_E(ZJ]X;, = x) + d(x)
T8~ x+ 1)

Now viewing X; as a random variable whose distribution
is determined from the equilibrium distribution 7, a rea-
sonable estimate of rg is

o = Mjm E(Z|X; = x) + d(x)
g x=@ x+ 1

P{X, = x}’ (33)

where

P{X, = X} = Em Pj{X,‘ = x}ﬂ'j.

j=x

Here, E(Z;|X; = x) can be computed using (9).
Similarly, we observe that

E(y,])y(i =9 prix, = 0 = E(Y,«}X,-y: DESY

As Y is expected to be much larger than Z;, as an approx-
imation E(T;|X; = x) = E(Y;]X; = x)/y should be fine.
Thus, using (31) we have

r=vla = E(Y]|X; = x)[(x + 1),

and a reasonable estimator of r, is

Mm E(YiX; =
y = 2 |

X) _
2 T T D P{X; = x}. (34)

Here, E(Y;|X; = x) can be computed using (11).

EFFECT OF MEMORY CAPACITY ON TIME WARP PERFORMANCE

Our iterative procedure for computing rg, r,, 7 is as
follows. For an initial setting of rg, r, we compute 7 from
the balance equations (3). Using this 7, we compute new
values of rg, r, from (33) and (34), and use these in the
balance equations (3) to compute a new 7. We repeat this
procedure until the new values of rg, r, are within a dis-
tance of 0.001 from their previous values. Performance
measures can then be computed as described in the fol-
lowing subsection.

Extensive computations with this procedure showed it
to be very efficient. Although we cannot prove that there
exist unique fixed points for rg, r,, the data suggests that
this might be true. In runs of the procedure for 100 initial
values of rg, r, ranging from 0.001 to 1,000, these parame-
ters always converged to the same values. The number of
iterations for the convergence depends strongly on their
initial values. This number is very low, approximately 2
to 4, when (M — m) is below 10. For larger values of
(M — m), we found that the number of iterations can be
decreased significantly by using the previously computed
values of rg and r, as initial values for the new value of
(M — m).

4.4. Performance Measures

The main performance measure of the system is the
number of messages committed per unit time. This is the
same as the rate of GVT advancement per unit time. This
quantity is given by

.

(35)

M-m
p = ny Z (_j'.‘l“k)Pj{gﬁk}?Tj
j50 k2o

i

This follows by a standard law of large numbers for a
Markov process. The sum represents the expected de-
crease in the state of X which is the expected number of
committed events per transition, and nA is the total rate
of the transitions per unit time.

One can compare this n-processor model to a single
one operating in series as follows. Consider a single pro-
cessor working in series that processes messages accord-
ing to a Poisson process with rate k. Then the speedup of
the n-processor system is expressed as

=P
S—)\ (36)

5. EXPERIMENTAL RESULTS AND VALIDATION OF THE
ANALYTIC MODEL

The analytic model makes a number of simplifying as-
sumptions (for instance, we assume that the timestamps
of the processed uncommitted events in each processor
follow a Poisson distribution) in order to make the analy-

419

sis tractable. Measurements on a Time Warp kernel run-
ning on a shared memory multiprocessor (specifically, a
32-processor KSR1? manufactured by the Kendall Square
Research Corporation) were made and compared with
the performance predicted by the analytic model in order
to test the validity of the approximations underlying the
analysis.

The assumptions used in the analytic model pertaining
to the workload (exponential execution time per event,
exponential timestamp increment, fixed message popula-
tion, etc.) correspond to a specific instance of the parallel
HOLD (PHOLD) workload model [6]. This model was
used in the experiments performed here, and a synthetic
application program was designed that corresponds to
the workload assumed in the model. Also the mean com-
putation time per event was assigned a value of 25 ms,
and the experiments here utilize a high message popula-
tion m (32 times the number of processors) to satisfy the
nonidle processor assumption.

The original Time Warp kernel we have used is de-
scribed in detail in [4). This kernel has been modified to
make the memory to store messages accessible as a glob-
ally shared pool and has been ported to the KSR architec-
ture. Several data structure and algorithmic improve-
ments have also been done to reduce different Time
Warp overheads. As described in [4] the antimessages in
the kernel are implemented as pointers to the corre-
sponding positive messages organized in a causality
record, and these pointers require a constant amount of
space per event. The state vector and the pointers imple-
menting the causality record are included in each mes-
sage (recall that the state vector is saved before pro-
cessing each message), and are not separately allocated/
deallocated. Memory buffers to store messages are dy-
namically allocated from the global pool when a process
wants to send a message to another process. The only
way storage can be freed is when a message is cancelled
or sent back, or when it is fossil collected. GVT computa-
tion and fossil collection are performed atomically and
on-demand. All processors are involved in fossil collec-
tion using a global synchronization. When memory is
needed and no free buffer is available in the shared pool,
fossil collection is invoked to reclaim memory used by
possible fossils. If no fossil exists, cancelback (as de-
scribed in Section 3) is invoked to free storage.

We have run the experiments with 4, 8, and 12 proces-
sors on the KSR1. The effect of memory capacity on
speedup is shown in Fig. 1. Both the experimental data
and the corresponding analytical estimate are shown. If
the total memory capacity M in the shared pool is larger
than some threshold value, fossil collection alone is suffi-

¥ KSR architecture and KSR1 are trademarks of the Kendall Square
Research Corporation.

420

AKYILDIZ ET AL.

o experimental, 12 proc

a analytical, 12 proc

o experimental, 8 proc

————— +
+ analytical, 8 proc
Speedup
» experimental, 4 proc
o= ===] :
¢ analytical, 4 proc
. m = 32 times number of processors
0|v|l1||17r|1¥r|||llv||vrr|1‘r1¥11vr||
0 50 100 150 200 250 300 350

No. of additional memory buffers (M ~ m)

FIG. 1.

cient to produce enough free memory for the simulation
to progress. However for smaller amounts of memory,
cancelback needs to be invoked occasionally to enable
progress. Frequency of cancelback invocations increases
as memory is reduced further, and speed of execution is
reduced as the progress of many processes in virtual time
is throttled by frequent cancelbacks. Memory capacity
M, however, cannot be reduced indefinitely. Recall that
M must at least be m as this is the number of message
buffers required in the corresponding sequential execu-
tion.

1t is noted that with increases in memory capacity from
the value required by the sequential simulation, perfor-
mance increases very sharply, and then becomes almost
flat. Thus the speedup curve has a well-defined ‘‘knee.”
The location of this knee indicates the minimum number
of message buffers needed to complete the Time Warp
simulation almost as rapidly as in the unbounded memory
situation. It is interesting to note that the knee occurs at a
very low value of memory capacity. The additional mem-
ory (over that required for sequential simulation) needed
to achieve nearly the unbounded memory performance is
a small fraction of the message population.

The small discrepancy between the analytical predic-
tion and experimental results (the difference is mostly
within 5% and the maximum difference is about 10%)
shown in Fig. 1 can be attributed to the simplifying as-
sumptions used in developing the analytic model, which
are only approximately true. In particular, in our analysis
we have assumed that the distribution of timestamps for
unprocessed positive messages and antimessages in the

Effect of limited memory capacity on speedup.

local past are independent, which may not be true in
reality. Hence we may have overestimated the number of
messages in the local past thus counting more rollbacks
than there actually are. This explains why the model is
underestimating performance by a small amount. How-
ever, the knee for both the analytical and experimental
curves occur almost at the same value of memory.

It can be noted here that these results differ from those
which we previously reported in [1]. There we subtracted
certain Time Warp overheads from the total execution
time observed in the Time Warp system to compute
speedup. Here we report actual, observed speedup, in-
cluding ali overheads. The present implementation was
optimized to reduce these overheads, particularly those
associated with GVT computation and fossil collection.
In addition, several improvements were made in the
model, particularly the way (i) rollbacks due to can-
celback are modeled and (ii) the parameters rg and r, are
estimated.

6. CONCLUSIONS AND FUTURE RESEARCH

The principal contribution of this work is the develop-
ment of an analytic model of Time Warp augmented with
cancelback operating with limited memory. To our
knowledge this is the first attempt to model the limited
memory behavior of Time Warp. We developed a Mar-
kov chain model and derived expressions to predict the
performance of the Time Warp system in terms of
speedup.

EFFECT OF MEMORY CAPACITY ON TIME WARP PERFORMANCE

In addition, we validated our analytical model through
measurements on an operational Time Warp system and
observed a close match between the model predictions
and actual measurements. It was demonstrated that for
homogeneous workloads with constant message popula-
tion Time Warp performs reasonably well with a very
limited amount of memory.

Our future work includes the following topics:

« performance comparisons of different memory man-
agement schemes (for example, infrequent state saving
schemes versus flow control based schemes such as can-
celback);

* investigating the cases where Time Warp overheads
and heterogeneous processors and/or workloads are
taken into account in order to model computations with
small granularity; and

+ estimating the minimum amount of memory required
by Time Warp to achieve nearly the unlimited memory
performance for nonhomogeneous workload models.

ACKNOWLEDGMENT

We thank the referees whose insightful comments significantly im-
proved this paper.

REFERENCES

1. Akyildiz, I. F., Chen, L., Das, S. R., Fujimoto, R. M., and Ser-
fozo, R. F. Performance analysis of Time Warp with limited mem-
ory. In Proceedings of the 1992 ACM SIGMETRICS Conference on
Measurement and Modeling Computer Systems, May 1992, pp.
213-224.

2. Felderman, R. E., and Kleinrock, L. An upper bound on the im-
provement of asynchronous versus synchronous distributed pro-
cessing. In Proceedings of the SCS Multiconference on Distributed
Simulation, Vol. 22, No. 1, January 1990, pp. 131-136.

3. Felderman, R. E., and Kleinrock, L. Two processor Time Warp
analysis: Some results on a unifying approach. In Proceedings of
the Multiconference on Advances in Parallel and Distributed Simu-
lation, Vol. 23, No. | January 1991, pp. 3-10.

4. Fujimoto, R. M. Time Warp on a shared memory multiprocessor.
Trans. Soc. Comput. Simulation 6, 3 (July 1989), 211-239.

5. Fujimoto, R. M. Parallel discrete event simulation. Comm. ACM
33, 10 (Oct. 1990), 30-53.

6. Fujimoto, R. M. Performance of Time Warp under synthetic work-
loads. In Proceedings of the SCS Multiconference on Distributed
Simulation, Vol. 22, No. | January 1990, pp. 23-28.

7. Gafni, A. Rollback mechanisms for optimistic distributed simula-
tion systems. Proceedings of the SCS Multiconference on Distrib-
uted Simulation, Vol. 19, No. 3 July 1988, pp. 61-67.

8. Gupta, A., Akyildiz, I. F., and Fujimoto, R. M. Performance analy-
sis of Time Warp with multiple homogenous processors. [EEE
Trans. Software Eng. 17, 10 (Oct. 1991), 1013-1027.

9. Jefferson, D. R. Virtual time. ACM Trans. Programming Lan-
guages Systems 7, 3 (July 1985), 404-425.

10. Jefferson, D. R. Virtual time II: The Cancelback protocol for stor-

12.

[
<

23.

24,

25.

421

age management in distributed simulation. In Proc. 9th Annuat
ACM Symposium on Principles of Distributed Computating, Au-
gust 1990, pp. 75-90.

. Jefferson, D. R., and Witkowski, A. An approach to performance

analysis of timestamp driven synchronization mechanisms. In Pro-
ceedings of the 3rd Annual ACM Symposium on Principles of Dis-
tributed Computing, 1984, pp. 243-253.

Lavenberg, S., Muntz, R., and Samadi, B. Performance analysis of
a rollback method for distributed simulation. In Performance '83
Elsevier, 1983, pp. 117-132.

. Lin, Y-B. Memory management algorithms for optimistic parallel

simulation. In Proceedings of the SCS Multiconference on Parallel
and Distributed Simulation, Vol. 24, No. 3, January 1992, pp. 43—
52

. Lin, Y.-B., and Lazowska, E. D. Optimality considerations of

“Time Warp'’ parallel simulation. In Proceedings of the SCS Multi-
conference on Distributed Simulation, Vol. 22, No. 1, January
1990, pp. 29-34.

. Lin, Y-B., and Lazowska, E. D. Reducing the state saving over-

head for Time Warp parallel simulation. Technical Report 90-02-03,
Dept. of Computer Science, University of Washington, Seattle,
Washington, February 1990.

. Lin, Y-B., and Preiss, B. R. Optimal memory management for

Time Warp parallel simulation. ACM Trans. Modeling Comput.
Simulation 1, 4 (Oct. 1991), 283-307.

. Lipton, R. J., and Mizell. D. W. Time Warp vs. Chandy-Misra: A

worst-case comparison. In Proceedings of the SCS Multicon-
ference on Distributed Simulation, Vol. 22, No. 1, January 1990,
pp. 137-143.

. Lubachevsky, B. D., Shwartz, A., and Weiss, A. Rollback some-

times works ... if filtered. 1989 Winter Simulation Conference Pro-
ceedings, December 1989, pp. 630-639.

. Lubachevsky, B. D., Shwartz, A., and Weiss, A. An analysis of

rollback-based simulation. ACM Trans. Modeling Comput. Simula-
tion 1, 2 (Apr. 1991), 154-193.

. Madisetti, V., Walrand, J.. and Messerschmitt, D. Synchronization

in message-passing computers-models, algorithms, and analysis. In
Proceedings of the SCS Multiconference on Distributed Simula-
tion, Vol. 22, No. 1, January 1990, pp. 35-48.

. Mitra, D., and Mitrani, 1. Analysis and optimum performance of

two message passing parallel processors synchronized by rollback.
Performance Evaluation J. 7 (1987), 111-124.

. Nicol, D. M. Performance bounds on parallel self-initiating dis-

crete-event simulations. ACM Trans. Modeling Comput. Simula-
tion 1, 1 (Jan. 1991), 24-50.

Plateau, B. D., and Tripathi, S. K. Performance analysis of syn-
chronization for two communicating processes. Performance Eval-
uation J. 8 (1988}, 305-320.

Preiss, B. R., MacIntyre, . D., and Loucks, W. M. On the trade-
off between time and space in optimistic parallel discrete-event
simulation. In Proceedings of the SCS Multiconference on Parallel
and Distributed Simulation, Vol. 24, No. 3, January 1992, pp. 33-
42.

Sokol, L. M., Briscoe, D. P., and Wieland, A. P. MTW: a strategy
for scheduling discrete simulation events for concurrent execution.
In Proceedings of the SCS Multiconference on Distributed Simula-
tion, Vol. No. 19, 3, July 1988, pp. 34-42.

. Turner, S. J., and Xu, M. Q. Performance evaluation of the

bounded Time Warp algorithm. In Proceedings of the SCS Multi-
conference on Parallel and Distributed Simulation, Vol. 24, No. 3,
January 1992, pp. 117-126.

422

IAN F. AKYILDIZ received his B. S., M. §., and Doctor of Engi-
neering degrees in computer engineering from the University of
Erlangen~Nuernberg, Germany, in 1978, 1981, and 1984, respectively.
Currently, he is an associate professor with the School of Electrical
Engineering, Georgia Institute of Technology. He is an editor for Com-
puter Networks and ISDN Systems Journal and IEEE Transaction on
Computers. His research interests are computer networks, data com-
munications, performance evaluation, parallel simulation, distributed
systems, and computer security. Dr. Akyildiz is an ACM National Lec-
turer, a member of ACM (Sigcomm, Sigmetrics, and Sigops), and a
senior member of IEEE.

LIANG CHEN is a Ph.D. student of the School of Industrial and
Systems Engineering, Georgia Institute of Technology. He received
B.S. (1981) degree in applied mathematics from Beijing Institute of
Posts and Telecommunications, M.S. (1984) degree in systems analysis
and control from Beijing University, and Master's degree (1990) in
manufacturing systems engineering from the University of Wisconsin—
Madison. He was an assistant researcher in the institute of Automation,
Chinese Academy of Sciences, from 1984 to 1987. His current research
interests focus on performance analysis of telecommunication network
and parallel simulation of discrete-event system.

SAMIR RANJAN DAS is a Ph.D. student at the College of Comput-
ing at the Georgia Institute of Technology. He received his B.E. degree
in electronics and telecommunication engineering from Jadavpur Uni-

Received June 22, 1992; revised March 1, 1993; accepted April 22, 1993

AKYILDIZ ET AL.

versity, Calcutta, in 1986, and M.E. degree in computer science and
engineering from the Indian Institute of Science, Bangalore, in 1988.
During 19881989 he worked in the Indian Statistical Institute, Cal-
cutta, as computer engineer in a research project on knowledge based
computer systems. His research interests are in parallel and distributed
simulation and computer architecture. He is a student member of ACM
and IEEE.

RICHARD FUJIMOTO is an associate professor at the College of
Computing at the Georgia Institute of Technology. He received B.S.
degrees in computer science and computer engineering from the Uni-
versity of Illinois in Urbana in 1977 and 1978, and M.S. and Ph.D.
degrees from the University of California at Berkeley in 1980 and 1983,
respectively. His current research interests include parallel and distrib-
uted simulation, computer architecture, and parallel processing. He has
served as the program and general chairs for the annual Workshop on
Parallel and Distributed Simulation and currentiy chairs the steering
committee for that conference. He is also an area editor for ACM Trans-
actions on Modeling and Computer Simulation.

RICHARD SERFOZO has been professor of industrial and systems
engineering at Georgia Tech for 10 years. Prior to that he held positions
at Bell Laboratories, Syracuse University, and the Boeing Company.
His research area is stochastic processes, namely, modeling of queue-
ing systems, point processes, regenerative and semi-stationary pro-
cesses, Markov decision processes, and extreme values of processes.
His recent work is on queueing networks and paraliel simulation.

