Queveing Systemns, 4 (1989) 47-56 e 47

.

BEADLOCK FREE BUFFER ALLOCATION
N CLOSED QUEUEING NETWORKS

. KUNDU ! and LF. AKYILDIZ 2

Department of Computer Science, Louisiana State University, Baton Rouge, Louisiana 70803, U.S.A.
School of Information and Computer Science, Georgia Institute of Technology, Atlanta,
gia 30332, U.S.A.

ived 30 October 1987
ised 20 July 1988

Abstract

Blocking queueing networks are of much interest in performance analysis due to their
realistic modeling capability. One important feature of such networks is that they may have
deadlocks which can occur if the node capacities are not sufficiently large. A ‘necessary and
sufficient condition for the node capacities is presented such that the network is deadlock
free. An algorithm is given for buffer allocation in blocking queueing networks such that no
deadlocks will occur;assuming that the network has the special structure calied cacti-graph.
Additional algonthm which takes linear time in the number of nodes is presented to find
cycles in cacti networks.

Keywords: Performance evaluation, queueing networks, finite buffers, blocl‘(ing; deadlock

11. Introduction

" Since in actual systems the resources have a finite capacity, queucing networks
iwith blocking must be used for performance analysis. In queueing networks with
blocking, a node can be thought of as a device with a finite length queue. The
petwork is simply a set of arbitrarily linked nodes. Blocking arises due to the
limitations imposed by the capacity of these nodes. In particular, blocking occurs
when the flow of jobs through one node is momentarily suspended due o th fam
that another node has reached its capacity limitation, it I
Several papers have been published dealing with various tynec ot blockmg
Previous work regarding the blocking networks falls into three clasces
and Perros [10} S g B e

% Akyildiz’s work was supported in part by School of Information and Computer Sr.'iém:c ICS, of
Georgia Tech and by the Air Force Office of the Scientific Research (AFOSR) under (rant
AFOSR-88-0028.

".r.\

©J.C. Baltzer A.G. Scientific Publishing Company

48

i Ti*’c’:n&‘fér blocking. Upon completion of the service at a node i, a job attempts’
to enter the destmdtlon Stdthn J- lf node j is full at that moment, the jobis’
Lforccd to wmt m node i’ s server unul it can enter desunatmn node j. The

! t;nw in the queue This type of blockmg hds been uscd to model systems
such as productlon systems and disk 1/0 subsystems, Akyildiz [1,2], Perros
. and Altiok [12].

(i) Serwcefblockmg A job at node i declares its destination node J beforeit
»starts its service. If node j is full, the i-th server is blocked before service
begm ‘When a departure occurs from destination node J. the i-th server
bcwme@ unblocked and the job begins receiving service. This blocking type
has been 1 edl to model systems such as production ﬁ\ stemb and telecom-
mumcauon }networks Boxma and Konheim [5], Gordon and Newell [6]
Konhenn and Reiser [9]. '

(111) Re]eczzon bz’ockmg Upon service completion at node i, a job attempts to jom

dcstmauon node J- If node j is full at that moment, the job receives a new

T ie "ﬁThxs is repeated until the job completes service at a time

oceed to station j, Balsamo and lazeolla [3], Hordijk- and van

il

" An" 1mpormnt cons;dcratmn in blocking queueing networks of any type is that
flmte node capacities and blocking can introduce the deadlock situation. In a
dcadlock may occur if a job which has finished its service at
node i’s server wants to join node j, whose capacity is full. That job is blockedin
node i. Another job which has finished its service at j-th node now wants to
proceed to the i-th node, whose capacity is also full. It blocks the j-th node. Both
jobs are waiting for each other. As a result, a deadlock situation arises. Further--
more, the possibility of deadlock in a network increases with the ratio of the
number of jobs in the network to the total capacity of the network. As the total
number of jobs approaches the total capacity of the network, the probability of
deadlock increases.

The most important issue is the allocation of node capacities in a queueing
network such that deadlocks cannot occur. In this work we give a necessary and
sufficient condition for a queueing network to be deadlock free, and present an
algorithm for computing the capacities for the nodes such that no deadlock wil
oceur in the network.

2. Deadlock freedom in blocking networks

~ Let I be a closed queueing network of type 1 with N nodes and K jobs where
all jobs are of the same class. Each node contains m, > 1 servers with a single

5

S. Kundu, J.F. Akyildiz / Deadlock free buffer allocation ™" 49

qeve. There are no restrictions regarding the service time distribution and
gheduling disciplines of the nodes. Let B; be the buffer size, or capacity, of the
Hhnode where B, = Queue Capacity _i +m, (for i=1,.... N). There can be at
|mst B, jobs at node 7 at any time, including the jobs which are currently being
igrviced. A job which is serviced by the i-th node proceeds to the j-th node with
obability p,; for (i, j=1,2,..., N), if the number of jobs at the j-th node has
mlexceeded that capacity B;. Othermse the job is blocked at the /-th node until

3job at node ; has Lompleted service and a place becomes available. This model
Bclassified as type 1 blocking above. It is understood that once a job selects a
“stination (probabilistically or deterministically) it cannot change the destina-
ton. This is implication in type 1 blocking network definition.- We assume. that
uch job has a fixed class assigned to it and this cannot change ‘)ewme it ls
iblocked at some point in time.

The following theorem describes a necessary and sufficient condltlon for a
dosed queueing network to be deadlock free. A ¢ycle C is a s;quenw of nodeg
(1, x..., x;) such that each pair of consecutive nodes is joined bv dn arc
{ x;41), including the arc (x;, x;)-

THEOREM 1 ;
Aclosed queueing network of type 1 with finite node capdcmes fiarel SrL < N]
B deadlock free if and only if for each cycle C in the network the following
wndition (1) holds. Simply stated, the total number of jobs in the network x‘u<t
besmaller than the sum of node capacities in each cycle. ¢
k<Y B, D)

jec

Proof

{i) Necessity. Suppose that there is a-cycle C=(1,2,..., M), (M N\ v.hmh
violates the condition (1) Consider a state of the nuwork in which-e u,h node
iin C is saturated, i.c., the current number of jobs at node i, 1 <ig M,
equals its buffer capacny B,. There is a positive probability for suchi‘a sute of
the network since X > Z),:(B;. Now, assume that for each node 7. i1 Cithe
job which is currently being serviced at 7 finishes and it wants to move o the
next node i + 1 in the cycle (M + 1 = 1). There is also a positive prebability
for this to happen. This, however, results in a deadlock within the cycle C.
Since there is also a positive probability that a job in another node may want
to move to a node in C, eventually all nodes will be deadlocked mth
probability 1. S

{#) Sufficiency. Suppose that there is a blocking. For example, the node l is
blocked. Then there is another node 2 such that the job at node 1 which has
completed service wants to move to node 2 cannot do so. This means that
node 2 is saturated and must itself be blocked. Otherwise, at some point in

50 =pony S Kuna’u J.F. Akyildiz / Deadlock free buffer a[locatzon

hc, future« the current job at node 2 would move out, dnd the job from nods |
v rcould then ‘move to node 2. By repeating the above argument for node 2
‘ i‘and SO on-,.'.We get a sequence of nodes (1, 2 - -) with the following proper-

ties: »

a) ‘Each node i is blocked and is saturated. 5
7 mb) (i5d 1) 18 an arc of the network I i
Since. I is finite, the nodes {7:i> 1} must include a cycle, C={1,2,..., M},

thhout loss of generality. Since each i, 1 <i< < M, is saturated, we havc

K>,Z ij (2)

Jsc "

This violates the inequality (1) for the cycle C, a contradiction. This completes
tht, proof

If 1 is a tandem network, consisting of a single cycle, then the inequality (1)
corresponds to the total buffer size B=Y' B, of the network being at least
(K+ 1y Tlns can be achieved by taking B, = B, = =By_y=1,and By=K-N+
2 (Indeed a better throughput may be achleved by a]locdtmg buffer sizes at the
nodes, in- mver roportion to their service rates. This has been verified in some
experlmental cases, but has not been established formally. The issue of buffer
aﬂocano 1 p em"_ for improving throughput is not conmdered here.)

3. Deadlock free buffer allocation in blocking networks

A set of 'buffer sizes {B;:i=1,2,..., N} for which inequality (1) holds for
every cycle C is called a deadlock free buffer allocation, or dfpa. We denote byﬁ'}
the minimum value of B=YY 1B taken over all dfba s for the network. The"
minimum buffenng requirement of the network for avoiding deadlocks is 8. It is
clear t__“ £ \for a buffer allocation {B;:1<i< N} to be deadlock free, it needs to*:
satlsfy only those 1nequaht1es in (1) which correspond to the elementary cycles,
L.e., the cycles which do not pass through the same node more than once. We
assume here that each node and each arc of the network belongs to at least one:
cycle; a node, however can belong to several cycles. We give below an algorithm -
for computing 8 and a corresponding buffer allocation { B;:1<i< N} for the
case where the network I' has the form of a tree of elementary cycles. Figure 1 -

S. Kundu, J.F. Akyildiz / Deadlock free buffer allocation T 51

Fig. 1. A network and a deadlock free buffer allocation for K =6 jobs:fné’xt‘ to eacl’ ﬁok;le is the
value B,.

shows such a network, where the direction of each arc is clockwise around the

crele. Such a network is called a cactus network, Behzad et al. [4]. A cactus has

the property that no two cycles have more than one node in. common. We define
the following terms to describe the algorithm:

{i) A contact node is-a node at which two or more cycles meet. S»mce we assume
that every node belongs o a cycle, this is the same as eayma that there are 2
or more arcs leaving the node.

{ii) A terminal cycle is a cycle which contains at most one Lontact node. Unless
the cactus is a cycle, a terminal cycle has exactly one contact node, and there
are at least two terminal cycles in a cactus. In fig. 1, the cycles'(1, 2, 3, 4) and
(7,8) are two of the four terminal cycles, with the contact nodes 4 and 8,
respectively.

The algorithm BUFFER given below assigns values to B, in an “outside-in”
fashion. The correctness of the algorithm is based on lemma 1 which shows that
given any terminal cycle 'C there is a deadlock free buffer allocation, where all
nodes other than its contact node (if any) has buffer size 1. The step (d) of the
“algorithm makes use of this principle. The other steps of the a lgorithm extends
the current buffer allocauon gradually until the condition (1) 15 sat;sncd for all
cycles.

Algorithm BUFFER(N):

(a) Assign B, =1 initially for each node of the network. : !

{b) Choose a terminal cycle C of the network. it R H G L BT

(¢} If C is equal to the entire network, and C does not satisfy (l), then increase
the buffer size at one of its nodes to make XV | B, = (K + l) and ctop :

@) ,7B fori=1,2,..., N.

5280 il 8 Kahzzujj.ﬁ. Akyildiz / Deadlock free buffer allocation

(d) Let i be the contact node of C. If C does not satisfy (1), then increase B; sucl
thdt Ryl o b :

(e) Dcletc all nodex in C from the network, except the node 1.
(f) Repeat steps (b) (e) until “stop” is encountered.

If we are given an eXisting buffer allocation in which the condition (1) does not
hold, then the alconthm BUFFER can start with the given allocation instead of
using the m1txdhzanon B;=1, for 1 <i< N in step (a) above. In that case, the
new. buffer, alloc,auon { B/:1<i< N} obtained by the algorithm satisfies the
follomng condmons and gives a minimal increament in B/’s so that the
oondltlon (1) is satisfied.

(i) {B } satisfies (1), and e
(i) XY 2B or equivalently, the total increase LN (B — B;).is minimum subject
. to (1 ;

LEMMA 1T 50

Let { B;} be any. buffer allocation scheme which satisfies mequahty (1). Let]
be the contact [node.of a terminal cycle C. Then there is another dfba { B/} wheré
each non-conta(,i node of C has unit buffer allocation, i.e., B/ =1 for i #; and
red *uf;h,, that 2B, =2 B/,

Let i be anv node n C and { # j. If the buffer size B, at /[is greater than one,
then decrease B, to B/ =1 and increase the buffcr size at j from B; to
B/ = B;+ B,— 1. Itis easy to see that { B/} is still a dfpa and LB, = EB Repeat
the above process for each i #j € C. This proves the lemma.

4. Exampl.e'- v
X iy i3 : 5
We illustrate the algorithm by computing a set of B,’s for the network in fig 1
using K =6 jobs.-Each row in table 1 below shows only the changes made to thg
buffer sizes in that step. In particular, step (e) is not shown. . ;

e A

5. The algorithm CYCLE for cacti networks

+ The step (b) of the algorithm for computing B requires that a terminal cycle of
the network be found. The algorithm CYCLE below finds all cycles in a cact
network. A terminal cycle can be then selected by first finding the number of

33"

2 % Kundu, J.F. Akyiidiz / Deadlock free buffer allaéatiﬁo;{i._‘

'g Jo senjea feurg

Lo 20 T I 9 T T 2 g 1 1
= g s,'g sy jo Kue w1 o8ueyd ow

" 8g 03 a8uwyo ou

... B : . N

(e L Tao8R g 1 1 I 1 I I 1 1 i

(G
@rg)=0@
(P
Cte=0(@ -
(-
(1It‘o1's'9)=o91(-
) »
BL=0(@
-
©O'sv=0(Q.
@
PeTD=00@
(e

doig -

n._m.., mﬂm. :Q Sm om . wm Jw umv .mm vm. mm «Q —m

LT = j .o.rus 9=y {uS1ST: @ } ugnesofe 1epynq sy ypofpesp oy Tunndwos 1oj unpuole o) jo uonensnyy]

-

191981

‘

54 " S. Kundu, J.F. Akyildiz / Deadlock free buffer allocation

£, G AR
;w-‘{ Al

contact nodes m the cycle.- A node is a contact node if and only if its outdegree
(= number of arcs leaving that node) is greater than one. Since I' is a cactus
network, and each arc of I' belongs to a cycle, the outdegree of a node equals its
indegree (= the number of arcs entering that node). When a cycle is deleted from
the network:in step (e) of the algorithm for B, the outdegree of each node in the
cycle is”decreased by one. This will allow the deletion of a terminal cycle
subsequently. The algorithm takes linear time in the number of nodes in the
network. The more general algorithm in Johnson [8] for finding all cycles, which-
works for all directed graphs and is also linear in the number of cycles and nodes,
is considerably more complex. This prompted us to design the simpler algorithm -
CYCLE given here. The algorithm CYCLE is presented in a differerit format

adi1] = (2)
adj[2] = (3)
adi[3] = (4)

adj[4] = (5.1)
adj[5] = (8.6)
adj[6] = (4)
adj[8] = (12.9.7)
adj[12] = (5:13)

(i) The adjaccncy"li;sts used in the computation shown in (ii)

Itustration of the procedure CYCLE

Node : : Stack § Startlist
visited - (top of S is on left)
4 @ @
5 X (5.4) empty
8 SR (8,5,4)
12 : (12,8,5.4)
s cycle = (12,8.5)
Lohl L e 5.4) (8.12)
6 - (6.5,4)
4 cycle = (6,5,4)
#
1 (1,4)
2« (2,1.4)
3 3.2,1,9)
4 cycle = (3,2,1,4)
empty

12 e B 12)

(ii) Part of the computaﬁon starting at node 4

Fig. 2. I‘llustration of the algorithm CYCLE.

S. Kundu, J.F. Akyildiz / Deadlock free buffer allocation 55

) :
than the algorithm BUFFER in section 4.1 as it uses a more complex control
;ﬂnw and data structure to achieve its efficiency. The stack § stores the nodes that
lave been visited but not yet outputted as part of a cycle; initially S is empty.
iThe array visit]] is used for identifying the nodes which have been already

procedure CYCLE(N);
begin
if (there is no node of d[i] > 1) then
N is a cycle
else begin
choose a node isuch that d{i] > 1;
initialize startliss to i;
visit{i] « 1;
while (startlist is not empty) do
begin A
choose 1 from startlist and remove it from startlist;
add i to S; :
while (S is not empty) do

Y

begin
el tp(S);
if (adj[i] is non-empty) then
begin

choose the first node j in adj[il;
remove j from adjfi];
dfi] < 4dli - 1; g
If (visit[j] == 1) then {a cycle is found at j}
begin
repeat {output the cycle}
k « top(S);
output k;
if (d(k) > 1) then N
add k to the beginning of startlist;
pop(S); Sl VL
until {top(8) = j);
output j;
end
else begin
visit{j] - 1;
push(j, S);
end;
endif;
else
pop(S); {S is empty now}
endwhile;
endwhile;
endelse;
end.

@

“Kundu, J.F. Akyildiz / Deadlock free buffer allocation

visited, indicated by visit[i] = 1; initially, visit[i] =0 for each i. The array d[i]
denotes-the .outdegree of the node i. The “startlist” is a list of visited contact
nodes for which' all cycles containing them have not' been outputted and needs
further processing. We assume that the network is represented as a list of
ddjacency lists; adj[], one list per node. The lists adj[¢] are gradually reduced to
empty Jlists as items are deleted from them.

The algorlthm CYCLE is illustrated in fig. 2 using the network in fig. 1. We

_ shpw, the-values of the stack S and the startlist as they change in the first few

iteration-of the inner while-loop, assuming that the algorithm is started at the
cqntjeﬁq‘ﬁ node 4. The nodes of the cycles are outputted in the reverse order”

References

" [1] L.F. Akyildiz, O the exact an approximate throughput analysis of closed queueing networks

i with blocking, IEEE Transactions on Software Engineering (1988) 62-71.
{2] 1.F.bAkyildiz, Product form approximations for queucing networks with multiple servers and

{71 blecking, IEEE Transactions on Computers (1989) to appear..

(3] S.:Balsamoiiand: G. Fazeolla, Some equivalence properties for queueing networks with and
withoat' blocking, Proc. Performance 83 Conference, eds. A.K. Agrawala and S. Tripathi
(North-Holland Publ. Co., 1983) 351--360.

[4] M. Behzad, G. Chartrand and L. Lesniak-Foster; Graphs and Diagraphs (Wadsworth Interna-
tional Group, California, 1979). ’

[5] O.I Boxma and A.G. Konheim, Approximate analysis exponential queueing systems with
blocking, ‘Acta Informatica 15 (1981) 19-66.

[6] W.J. Gordon and ‘G.F. Newell, Cyclic queueing systems with restricted queues, Operations
Research 15, Nr. 2 (April 1967) 266-277.

[7] A. Hordijk- and N. van Dijk, Networks of queues with blocking, Proc. Sth Int. Symp. on-
Computer Performance Modelling, Measurement, and Evaluation, Amsterdam, November 4-6,"
1981.

[8] D.B. Johnson, Finding all the elementary circuits of a directed graph, SIAM Journal on
Computing 4 (1975) 77-84.

[9] A.G. Konheim and M. Reiser, Finite capacity queueing systems with applications in computer
modeling, SIAM Journal Computing 7, No. 2 (1978) 210-229. _

[10] R.O. Onvural and H.G. Perros, On equivalences of blocking meachanisms in queueing_
networks with blocking, Operations Research Letters 5 (1986) 293-297.

{11] H.G. Perros, Queneing networks with blocking: a bibliography, ACM Sigmetrics Performance
Evaluation Review, (1984).'

[12] H.G. Perros and T. Altiok, Approximate analysis of open networks of queues with blocking: 3
tandem configurations, IEEE Transactions on Software Engineering, Vol. SE-12, No. 3 (1986) *(
450-462. i

