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~ Summary. Open, closed and mixed queuveing networks with reversible rout-
ing, multiple job classes and rejection blocking are investigated. In rejection
blocking networks blocking event occurs when upon completion of its service
of a particular station’s server, a job attempts to proceed to its next station.
If, at that moment, its destination station is full, the job is rejected. The
job goes back to the server of the source station and immediately receives
a new service. This i1s repeated until the next station releases a job and
a place becomes available. In the model jobs may change their class member-
ship and general service time distributions depending on the job class are
allowed. Two station types are considered: Either the scheduling discipline
is symmetric, in which case the service time distributions are allowed to
be general and dependent on the job class or the service time distributions
at a station are all identical exponential distributions, in which case more
general scheduling disciplines are allowed. An exact product form solution

_ for equilibrium state probabilities is presented. Using the exact product form
solution of the equilibrium state distribution, algorithms for computation
of performance measures, such as mean number of jobs and throughputs,

_ are derived. The complexity of the algorithms is discussed.

1. Introduction

Product form queueing networks (also referred to as BCMP [6] or Kelly [17,
18] or separable networks [247]) to which we will refer as classical networks
in what follows, have proved invaluable in modeling a variety of computer
yistems, communication networks as well as manufacturing systems. They are
lexible enough to represent adequately many of the features arising in such

1 reguests to: LF. Akyildiz
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applications. They have not, however, been able to provide much insight into
the phenomenon of blocking. because all algorithms for product form networks
are based on the assumption that the stations have infinite buffer space.

In recent years there has been a growing interest in the analysis queueing
networks with blocking. These are networks where the stations have finite capa-
cities, hence blocking can occur if a station is full to its capacity. A job which
wants to come to the full station must reside in its source station and block
it until a place is available in the destination station. The interest in networks
with blocking comes primarily from the realization that these models are useful
in the study of the behavior of subsystems of computers and communication
networks, in addition to detailed descriptions of several computer-related appli-
cations such as manufacturing systems. In recent years several mnvestigators
have published results on networks with different blocking policies [20]. In
so-called “rejection blocking™ networks the blocking event occurs when a job
wm;:;hmw service at station ['s server wants to join station j, whose czapacrix
is full. The job is rejected by station j. That job goes back to station i's server
and receives another round of service. This activity is repeated until station
J releases a job, and a place becomes available. The “rejection blocking” type
has been used to model systems such as communication networks, computer
systems with limited multiprogramming, production lines and flexible manufac-
turing systems. Two variants of this blocking policy can be considered:

i} The destination of the job once it finishes service is fixed.
i1} The job selects a destination independently &fit,i aash round of sermgf
according to the routing probabilities.

The definition of the second variant of rejection bimkingx makes deadlocks
impossible if the network is irreducible (i.c., cach station is reachable from every
other station). As long as there is at least one free space in some station a
job will eventually move into it, even if this takes a long sequence of triaks,
This makes a general analysis much simpler. No restrictions that make deadlocks
impossible are needed and no special method to handle deadlocks has to be
included in the model.

Note that for tandem and cyclic networks there is no difference between
the variants of rejection blocking, since there is only one possible destination
for each job. Same thing happens in a merge configuration where several stations
feed a single station downstream. For networks with arbitrary topology the
two variants of rejection blocking are different. v

In this paper we investigate queueing networks with rejection blocking of
variant ii). Once a job in class « finishes service in station { it determines. accord-
ing to the routing probabilities p;, ;;, to which station j and class f it goss
next. With a certain probability (that depends on the state of the destination
station) the job will be rejected there. The rejected job returns to station i
(in class ) to get another round of service, independent from the one it received
before. When this new round of service is finished, the job again selects a destina-
tion station and class (independent from the ones selected before) and so on.

The rejection blocking policy was introduced by Caseau and Pujolle [§]
who considered tandem networks only. They investigate various blocking pol-
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cies and general service requirement distributions, with the aim of obtaining
bounds on throughput. Pittel [21] shows that rejection blocking policies with
multiple job classes and reversible routing have product form solutions if the
rejection probabilities are of a particular class-dependent form. His work is
restricted to exponential service requirement distributions and jobs are not al-
lowed to change their class membership. Cohen [10] finds a product form solu-
tion for a cyclic rejection blocking network with two stations, multiple job
classes and class-dependent service requirement distributions (not necessarily
exponential) when the scheduling disciplines are processor sharing with load
dependent service efforts. Hordijk and von Dijk [14] show that in special cases
of queueing networks with rejection blocking there are product form solutions.
They consider models with a single job class in which routing is reversible
and models in which blocking is dominant. ic. there are so many jobs in the
system that no station can ever be empty. Balsamo and lazeolla [4] find classical
networks that share part of the state space with rejection blocking networks
and show that their equilibrium state probabilities agree (up to a normalization
constant) with those of the blocking network on the intersection of the state
spaces. Akyildiz [1] gives computational algorithms for performance measures
of the type of networks studied by [4, 14].

Akyildiz and von Brand [2] prove a duality among open and closed rejection
blocking networks with one job class and exponential service time distributions.
There is no restriction on the structure of the network. Using this result, they
prove a product form solution for the case in which at most one station can
be empty at a time. Van Dijk and Tijms [11] give a proof of insensitivity of
the distribution of jobs (i.e. dependence only on the mean of the service require-
ment distribution) in a cyclic network with two stations, multiple job classes
and symmetric scheduling disciplines. Tijms [27] presents this result in more
accessible terms. Van Dijk and Akyildiz [12] study networks with mixed expo-
nential and non-exponential parallel queues with interdependent service capaci-
ties and common pools. Under the invariance condition a product form solution
s found for the steady state probabilities. It is also shown that the distribution
has the insensitivity property.

The organization of this paper is as follows: In Sect. 2 we describe the model
under investigation. Section 3 contains the exact product form solution for
sieady state probabilities. In Sect. 4 we give a general formula for throughput.
Section 5 contains algorithms for the computation of throughput and mean
queue lengths in open, closed and mixed queueing networks. In Sect. 6 we discuss

s

2 Model Description

We consider queueing networks with N stations and C job classes. The descrip-
ion of the model is rather complex. We break it down into a description of
the service time distributions, a definition of the scheduling disciplines and the
probability that an arriving job is accepted, which we call the blocking function
o the station.
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2.1. Service Time Distributions

A job of class « requests service at station i distributed as F,, with mean 1/,
We will represent the service time distributions as mixtures of Erlang distribu-
tions of the following form [5]:

anﬁzgia:z Etvm (I;

b3

where E;,  is the Erlang distribution with r stages each with rate v;,. This
means that with probability ¢;.., a job of class « arriving at station i will have
to traverse ¢ exponential stages, cach of which has rate v;,. This clearly requires:

Z gia: S 1 {2}
¢
It also implies:
1 ‘ t -
,,,,,,,,,,,,,,,,, o Z g;_;;’ _jm {j}
Hig i iz

By renewal theory the probability that at an arbitrary instant a job with
service requirement distribution F, still has to traverse s stages is given by:

‘{ Sali
m(5)_ """""""" Z, Eiave {"ﬁ
ia =3
Note that:
via

-

2.2. Scheduling Disciplines

A scheduling discipline (£, ¢, ) is defined by [11, 18, 27]: .f{f'é;'
fk): Total service effort when there are k jobs in the station. ,
¢( k):  Fraction of the service effort destined to the job in position | Whﬁn

there are k jobs in the station (zero for I outside of 1<I<k) ’E’hm
requires: |

S k=1 Yk (0

Y(l, k): Probability that an arriving job is placed in position [ when therf:
are k jobs in the station (zero for [ outside of 1<I<k+1) This
requires: '

S k=1 Yk

15Isk+1

The networks with general service time distributions considered in this p:
are shown to have product form solutions under symmetric [18] (also called
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sation balancing [97) scheduling disciplines. Formally, we call a scheduling dis-
apline in the class defined above symmetric if

il k)= (L k+1). (8)

This framework clearly does not describe all possible scheduling disciplines,
for example there is no way to give one job class priority over another. Schedul-
ing disciplines that depend on the service requirement, like Shortest Job First
annot be described either. The class of scheduling disciplines that can be
;é»‘zé':i”ibffd is rich. Some examples are:

FCFS:  First come, first served is described by ¢(1, k)=1 and ¢(k+1, k)= 1
ICFS:  Last come, first served preemptive is described by ¢(k, k}=1 and
Plk+1, k)=1.

by Processor sharing is described by ¢(L k)= 1/k and ¥ (k + 1. k)=
RAND: ‘*sn,,mu, in random order (Spirn [26]) is described by ¢(1, k}=1 and
‘; }mir;& !Cﬂ"g%».
Diher 5@%1&%&:%;1@ disciplines like LBPS (lLast batch ;T?T{}C*Z*is”m‘ sharing [19]) can
ko be described, but the functions ¢ and ¢ become complex [9].

It should be noted that the description of a particular scheduling discipline
s not unigue. For :‘:mmp%& the a’iz;:%rip:’m‘t for PS given above is ner symmetric,
but if we set (], k)= 1/k -+ 1} the discipline becomes symmetric. The only differ-
e between the two is that this alternative dww not keep the jobs in their
derof arrival, ("Zfi the remaining disciplines, FCFS and RAND are not symmet-
e, while &&iﬁ%

We assume ‘é%mt all stations in the network satisfy one of the following:

i) Have symmetric scheduling disciplines with general service time distribu-

ions that may depend on the job class. For scheduling disciplines in the class
weconsider the symmetry wr}mi on to be necessary and sufficient if the service
me distributions are different for different job classes or are non-exponential.

i) Have exponential service time distributions that do not depend on the
b class. Here the scheduling discipline is arbitrary (non-symmetric) in the
dass of disciplines we consider.,

We assume that a job selects a service requirement before starting to get
rvice, ie. when a job enters station { in class z it is assigned a number of
stages of %;‘&f%ca according to the ... .2 j{}i"i in class z is in position [ of
“‘%ﬁﬁi}ﬁ i am‘? zi'zf: zmm%ms" of obz m xmmm iis &5, E‘m rate at wh%f:h thzzt j(}b

;ﬁ of serv ;»::c,} is vy, fi i‘\ ) (L. ;xg i

13 Blocking Functions

%m;& ete the description of a single station, we need to define when an
imving job is rejected. Define a partition of the job classes, and denote the
% of job classes that contains class « by [«]. We write the probability that
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a job of class z arriving at station i is accepted when there are a total of
k; jobs in it, of which k,, are of class « and ki are of classes in the set tha
contains class o, as:

big R = hi (K ) By (Kigy) 1K), {9

Here by, hy,, and h; are arbitrary functions.

24. Job Routing

The state of the network will be described by (ordered) N-tuples of station
states. The state of station i is denoted by:

((Kiy.000) (Kiz, 000), oo, (5, Gix ) (10}

Here k; is the number of jobs in station i, ,, is the class of the job in position

I of station | and ¢, is the number of remaining stages of service for that

Job. We will denote the number of jobs of class « in station i by k.. We will

use x and y to denote arbitrary states of the network. We define the oceupancy

of the network as an N-tuple of strings of job classes, where the i-th string

represents the classes of the jobs in station 7 in order. The population of the

network gives the numbers of jobs of each class in each station. These are

defined in the obvious ways for single stations. The occupancy of the network

will be denoted by n, and the population by k. For single stations we will

use n; and k,.

The above description of a single station does not say what happens to

a class « job that tries to leave station i to go to station j in class § but

is rejected there. We specify that in that case the rejected job returns to station

i in class « and is treated exactly like an arriving job, only that it cannot

be rejected.

The structure of the network itself is fixed by:

Routing probabilitics. Probability that a job of class « that leaves

station i tries to enter station J in class f.

Po.jp- Probability that an exogenous job tries to enter station j in class
B. We assume that new jobs arrive at a (fixed} rate 7 to the network
The process that generates exogenous arrivals is assumed to be Pois.
son.

Pia o Probability that a job which finished service in station i in class 1
leaves the network.

Pia jpt

One can define an equivalence relation on pairs (station, job class) by defining
(i, z}=(j, ) iff a job that starts in station i and class % can wind up in station
Jand class f§ after a series of transitions. We call each of the equivalence classes
of this relation a routing chain or chain for short. Without loss of generality.
we assume that the sets of job classes in different routing chains are disjoint
So we can identify a routing chain with a set of job classes.
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The network is closed for routing chain I if p, =0 for all (j, plel". The
metwork is open for routing chain I if p, ;, is nonzero for at least one (i, el
The network is closed if it is closed for all routing chains. The network is
mixed if it is closed for some routing chains and open for others. The network
is open if it is open for all routing chains.

Let us now define ¢,, as:

€T Poia {Merx;}rx.i;ﬂ {ii}

PK

There will be one such system of equations for each routing chain. Note that
for closed chains this linear system is homogeneous. In that case, we take any
particular non-trivial solution of the system as the e,,. In classical networks
the ¢;, are the throughputs of station i for jobs of class # if the network is
open for the routing chain that contains job class «. If the network is closed
or the routing chain that contains class =, they can be interpreted as relative
iiroughputs. In the present case these quantities have no physical significance,
since the routing of the jobs depends not only on the routing probabilities
out also on blocking. We define them because they appear in the expression
for the cquilibrium state probabilities given below.
We furthermore assume that routing is reversible [18], i.c.

i £ 5 £
CiaPia jp=CipPipia Yhi% P

(12)
YPo.jp=¢CisPig.o Vi B
In a classical network reversible routing means that the flow of jobs from
sation § and class o to station j and class f is the same as the flow of jobs
fom station j and class f to station i and class = Again, this interpretation
s not applicable-to blocking networks.

J. The Equilibrium State Distribution

For queneing networks as described above. Akyildiz and von Brand [3] prove
that the equilibrium probability distribution of state x has the following exact
product form:

" i
Bl—1 e B
H{ “:"ig”’””””mj ?‘f%(ii{}'gf}:{l M[r 52;:“{!’” !}ﬂ ﬂ gw‘){ ‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ 3]
i R Jily Foigisky % 1SI%k, Hiy

73

fiere § ranges over all stations, I ranges over all routing chains and « ranges
wer all job classes. G(K) is the normalization constant, selected such that the
wuilibrium state probabilities add up to one.

(13)
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The solution (13) can be verified by substituting it into the following global
balance equations:

yeS§ ye&

To simplify the task, it is convenient to use simpler (and more detailed) balance
equations that add up to the global balance equations. In this way, if the pro-
posed solution satisfies these simpler balance equations, it automatically satisfies
the global balance equations. Such sets are called local balance equations [6],
or also job local balance equations [14-16]. Details of the proof for the solution
(13) can be found in [3].

We will frequently write Eq. (13) as

1
T{X) == o Pk, Vi L0 14]
T(X) G(K)UL ( }1-1;:& o] (14)
where P, is defined as:
h{l—1) , L . Bt ‘
Rk = H {_, ””'"H ﬂ h,-p(i——],)“ ﬂ ’""""’I"”""“( “““““““““ 2 {153
Lsigk LD i 1SiSkip s 1isr, Hig

The reason for using k; in the above formula is that the factors P(k,) do not
depend on the order of the jobs in the station. :
The distribution of populations (numbers of each class of job in each station)
is obtained from the above after summing out over all possible ¢;, and disregard-
ing the order of the jobs in the station. This gives rise to a multinomial coefficient

- that we absorb:

I i & L -
0= (. c) ) 4
s d H Ak (n
Here we defined:
k. :
k=1 ! P(k.). )
A ‘(kl} (kz 1 kr’Z Sy f‘“z(‘) . (k;) Hg}

For convenience in what follows, we define the function 1(P) by:

._j,f. if P istrue

e 10 otherwise. (191

Furthermore, we define the value of a sum over an empty range as zero.
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4. General Formula for Throughput

Using the equilibrium state distribution (13) general formulas for the through-
puts can be derived from the following theorem.

Theorem 1. In an open, mixed or closed queueing network with blocking as
described above, the throughput of class o jobs at station i when the total population
of the network is K, is:

Ao (K) =

Ojltz O(K +Zf)m j[j‘Htac j{?(K u[a])_{ (20)

B

G(h)

where the functions H are defined by:

Hy, oK)= Y by,(k)]]A4.k (21)
keS{K) s
za iB h)m Z bza(k) b;ﬁ(k )H 4 (k ) (22)
keS(K)

By our convention about sums over empty ranges we have Hi, ;55@)=H;, ,(0)
=(0. In Eq. (20) G(K) is the normalization constant for the network and the
4; are the functions defined by Eq. (18).

Proof. The throughput of jobs of class o at station i is the rate at which jobs
in class o that finish service at station i are accepted at other stations in the
network or leave it. This can be written

’;sz(K}:Zn(X) Z I(K”ﬂa}l{ﬁd—l)vm Q—": ] ']”L)f(k)

x 1515k
[Pia, 0 +meﬁ bis(k;)]. (23)
iB

Exchanging the order of summation so that the inner sums (over j and f) become
outermost we get

e
/“zx{K) G(K) [pu (}Xxoc ()+§p12 J[)"Xm j{f] (24)
Here we defined:
X0 o=G(K)> n{x)[ Z k=) 1{a;=1) v, P:(L ky) filk)], (25)
x 1<Isk

*Xm jB—G K}ZTZ(X)[ Z I(l\tl—‘a)l zl—i}‘mﬁb (Z k) f<k)bz,8(kj)] (26)

The sum X;, , can be considered a special case of X, ;; in which b ipk)=1.
So we will concentrate on the other sum and recover X, , afterwards using
this fact.
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First we substitute the equilibrium state probabilities (13} into the sum (26)
and simplify. We can split the sum over the state of the network, X, into a

sum over the state of station i, x,, and a sum over the rest of the state of
the network. We use the functions P, defined by (15)

:{m};}’m}“}i’: IT{Z%{%’::; n ?%},,;fﬁﬂ}}{:!’iigﬁ ;[ "‘jxﬁiﬁji’}}
i

Xy XX s%d Tk, SEnky
i g}j;gik}") }; {:‘f&ﬁ E? ;‘ix;;,ggisz;:} {E‘;’:is: = «}:) 3{{?57& o “ Vig gi{;e{f "!“x;"{z“‘;}
Rl L Eask

=Y [vifitkd > [Bl) [] rifoulltlcg=arilay=a) ¢l k)]

Xy P mink 1Ensk
Y TIeky T raled(Bk) I 7o) byslk ) 2%
Xixy SH i p2igk, PEigky

5§

The states of station i and the rest of the network depend from each other,
if at all, only through the restrictions of constant populations of closed chains,
This means that we can split off the sum over the permutations of the jobs
in station i and the sums over the remaining phases of service of all jobs in
that station. Take a fixed population k; in station i. First consider the sum
S defined by:

S == Z z f;}{%(:; J I 3‘i}:§,,gﬂ;’s:} giiixi:;m&i.} ;{ﬁiﬁ i E} LT ‘;};}x{fs kz};;g‘:; §33}
sk 1 2I%R,; e nky
Note that only terms with x,,=2 and ¢;,=1 can survive in the inner sum

of (28). Furthermore. of the products of the ry (0;,) all those that are not
picked out by the 1 functions sum up to one.

Using all these facts to simplify Eq.(28) and using the function F defined
by (13). gives

f??ﬂf?{iix} Vig Fial g;";;,gg\:i} }w: > HE =0 {;)5{5{ k)

ok F3ink
=Bk, fitk) 3 @l k) 3 tlky=u) (29}
1BEsk wy kg

The innermost sum in expression (29) is a sum over all permutations of the
jobs in station i. There are
( e ) (30)
(30
kygooikig—1.. Kig

z

permutations that have a job of class z at any particular position I. By definition,
the ¢.(l, k) add up to one. As each permutation gives a sum with the same
value, by (6), expression (29) simplifies to

i

e
i Pik .. £tk 21
P LR (il

}.!a' ‘{'{w’»
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By the form of the functions A, defined by (18) we can then write

k,— §
( -k ‘ .k )%g;"ﬂ i k)=, Ak~ ) by (k;—u,). (32)
";2 b 7 e

Now we turn to the rest of the mprwsifm for X;, ;s in Eq. (27). We are
summing this over all f"»z:;w% sle states of Eiu rest of the network, given that
the population in station 7 is given by k,. This includes, in particular, a sum
aver all possible remaining phases of service mui over all possible permutations
i the jobs in the other stations. The summation over all remaining phases
of service makes the ry, (o, ) disappear, and the sum over the permutations
mansforms Pk} into A, (k,):

0

kaBiKy

*X%“;aj;}mgi;x ji &,3£gxwi;*;§ fég;’“{kimz} } i‘ } A €§* } z ’é&-{ks?* (33“}

‘s«w

The sum in ?*q {33) 1s simply a sum over the populations of the network with
one less job in routing chain [«]. To sce this, start with the population space
SIK—u,) If we add a job in chain [2] to station i, leaving all other jobs
w%(f %m%’mﬁ we get almost the population state S(K), only those states that
mave k=0 are missing because of the fixed job in chain [«] in station i,
B a@.?&m we go the other way, ie. from S(K) to S(K-uy,. the states with
a0 class « jobs in station i disappear. since for k,,= ~ 1 the functions B (and
A} vanish.
We define a new *»;s:f of functions:

Hi jp(K) = 1 é?ix&z‘}f{?;g{k;}H»‘%g{ks}e | (34)

& huSiK} 5

Hi oK)= 3 b, k)[]4,k,y. (35)
keB(K} ¥

fguation (35) results from Eq. (34) by taking the environment 0 as a pair (station,
tass) that never rejects a job. Also, if there is a term p;, o H,, . class o belongs
io an open chain. But in that case, to delete a job of class z from the total
sopulation K makes no difference.
Pulling all results together. we get:

‘;”:th} {} %‘s L}}zz £ ;‘gw Qfg“i%[_‘?w éﬁ}:{m 3§$Eh ﬁi:& }3 {36)
ip

Eguation (36) is the result claimed in the theorem, Eq. (20). [

Remark. 1t is interesting that for non-blocking networks the functions H reduce
1o the normalization constant G. For « in a closed routing chain the formula
ior throughputs then reduces to E%a:zwm formula [7] and for « in an open
chain to the identity 4,

“ix i’lfﬁ‘
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Some elementary properties of the functions H,, ;, are given by the following
lemma.

Lemma 1. The functions H,, ;, are symmetric in i and j i
Hi, jp(K)=H; . (K). (37
If station j does not block jobs of class B (ie. if by(k;)=1) then

Proof. Equation (37) is immediate from the definition of the H;, ;;. Equation
(38) follows by the observation made above about the relation between X,

and X0 [

5. Computation of Performance Measures

The above results are general, but of a theoretical nature. Practical algorithms
to compute performance measures are needed. This implies algorithms to com-
pute the normalization constant G(K), the mean populations and the through-
puts. From the mean populations and the throughputs one gets mean sojourn
times by Little’s law [25]. It is convenient to treat the cases of open, closed
and mixed networks separately since different methods are used for each type.

5.1. Open Networks

The result of Theorem | can be simplified for the particular case of open net-
works, as the following corollary shows.

Corollary 1. For open networks, the throughputs are given by:

i oy s L
fiz= € big[Pig o+ :‘,_, Pia jp 5;;}3« {39
i

Here we have used bars to indicate expected values.

Proof. In [3] we proved that the populations of the stations are independent
if the network is open. Moreover, the population distributions of the stations
are exactly the same as for solated stations of the same description and subject
to independent Poisson streams of rates ¢, of jobs in class 2. This is just what
happens in classical open networks. If the network is open, the populations
of all chains are infinite and so we can drop the parameter K of both G and
H We confront sums of the form:

k s
S F

s#T Ky k; LS
3% f

=G(K) b, bjp. (40

i JE
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The factoring of the sum into a product of sums is possible since the states
of the stations are independent. The sums in brackets are nothing but the defini-
tions of the mean values indicated in (40). The special terms for jobs that leave
the network are explained in exactly the same way. [

52 Closed Networks

There is no simplification like the above for open networks in the case of closed
and mixed networks. The functions H,, ;, are convolution sums that are closely
related to the function G that defines the normalization constant for the network.

Certain mixed networks can be handled like closed networks. as the following
discussion shows. The same idea can be applied to open networks, but for
the case of open networks the method outlined in Sect. 5.1 is much simpler.

[f all stations of a network have finite capacitics, we get exactly the same
balance cquations if we add a station with enough capacity to the network
and define the routing probabilities appropriately. For simplicity, call the new
station 0. We also neced a new job class that will be used only in station 0.
Call the new job class 0. Formally, we define station 0 as a symmetric station

type with:
{0 if ko=0 :
f;”}igm}"""’“ - 3 éi;}
1 otherwise,

Hoo =7 (42}
The routing probabilities are slightly redefined:

o Pojy Wi=0, «=0 and j=*0
o Pizo i %0,  j=0 and f=0

O ptherwise.

The above routing probabilities were selected so that only jobs of class 0 can
enter station O (all job classes go to class 0 when leaving the original network)
and so that the total rate at which jobs try to enter the original network is
siill 7. We still have to define the number of jobs in the new routing chain
0. T}L number of jobs has to be such that all stations in the original network
are full when the new station 0 is empty. If this is satisfied. the new network
s clearly equivalent to the original network, but it is a closed network.

We now turn to the practical aspects of computing the desired performance
measures. The computation of the mean populations of the stations is straightfor-
sard for a closed network, almost exactly the same methods that would be
med to compute them in a classical network with load-dependent service efforts
@n be used. The H;, ;, can be computed from scratch by a convolution algo-
sthm. We define the following arrays:

% Array with elements 4;(k,).
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k;,: Array with elements k;, 4,(k;).
b Array with elements b, (k;) 4;(k;).

We write * for the convolution operation. If we understand that the multiplica-
tion of arrays means their convolution, we can write for the (array of) normaliza-
tion constants of the network:
G=]]a,. (44)
; .

For the (array of) mean populations we have:

Kio=ki»[]a, (45)
teki
and for the (array of) H;, 4
Hi, jp=bi*bjpx ] a.. (46)
tEQ
(3}

When j=0, Eq. (46) simplifies to:
H;,. ombi‘”“ﬂﬁz» (47

tRd

Equations (44) to (47) provide a straightforward method to compute the
G(K) and H,, ;4(K), and so the throughputs in the network. The problem with
this approach is the large amount of computation required. Another, less oner-
ous, approach is to compute the array G and to compute the other needed
quantities from it by deconvolution and convolution operations.

We denote the inverse of the convolution operation by —+. From Egs. (44)

to (47) we can write: ‘
1 ki, =(G+a) Kk, (48)
H;, o=(G+ay)xb;,, 49

Using Eqgs. (44) and (48} to (50) provides a faster way to compute the needed
values and the throughputs in the network. A similar method has been used
to obtain performance measures in classical networks [25].

5.3. Mixed Nerworks

In the general case of mixed networks complications arise. At least some of
the sums in Egs. (21) and (22) are infinite, and they do not fall apart as is
the case for open networks in Corollary 1. To compute G(K) and H,, ;,(K)
an approach similar to the one described by Sauer and Chandy [25] can be
used.

We will need to distinguish the populations of open and closed chains for
the network and for individual stations. The populations in closed chains will
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be written k., and k;. for the network and station i, respecti ‘or open
chains we write k, and k;,. So we get
G{K?m“‘: ﬂ A,k
=22 [ T4k ko)
ko ko 1
=Zﬁ E/it{ktci"*z()¥ (51)
ke ¢t ko

Here we have used the fact that the open chain populations .. ... stations
are independent. This allows us to write the sum of products as a product

of sums, like it was done in Eq. (40). If we define

gi‘(i‘u} - Z« Ai{g”’ kw}

kig
we can write the normalization constant of the network as:

GK)=} [ Ak,

ko it
The functions H;, ;; can be handled in the same way:

7 )= b (k) Ak by (k) A (k) T A k)

(52)

h ek

tf
zz%b (i& i‘z(l)} A; (i‘smkz{)}‘é}ﬁ l"rml’u{}} E‘;mk;f}}lg/i {iﬁ‘rg gii)}
ke ko T

Pk g

Z{ é{? jf\;‘ }‘*1{}} A; gkw k’;f} ][‘g‘ g}jﬁ;\;‘* kmfé ﬁ‘gm L“j(});
ke kin Kig
I‘i {Z, A (krw k:()
t#i keg
e

Defining b, (k;.) by:

gmgkx A(kn} ”””” ?h {Lﬁ §(z€}} (i‘*:z kz(}}

§"§ L8]

we can write (54} as
h.( iﬁ(h} Tb {L‘rt 357 ﬁgkic}ﬂ 1‘/{ 68“}

o
For the case =0 we have

H,;, oK)= f’ {kw}ﬂ Ak

k¢~

(55)

(56)
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=5
ed
i

Equations {53}, (56} and {57) are convolution sums. Note the similarity of
Eqg. (56) and (57) to Egs. (46) and {47). We define the following arrays

a;: Array with elements 4,(k, ).

K. Array with elements
i ?:;:7 ”jié’{ké@”f kii!; {35}
Rin

Expression (58) %impiffi% to k;, A;(k,.) when 2 is in a closed chain.
Array with elements b, (k) A, /im;

o
Note the similarity of these definitions with the corresponding definitions
in Sect. (3.2). We can write

G=[14, (59)
i
k.=K.=[]4a, (60)
1
i;w i h:x*bvzg& i I {éfé
()
Hioo=bu=[]4,. (62)

Using the same idea as in Sect. (3.2), we get the following formulas

e

k., =(G-+3)+k,, (63

H;, o=(G~= &%}%b,” (64)

H;m};}%{%mz}’"ﬁ" ;’.}"‘g}jﬁ» (65)

Equations (52}, (35). (58), (39} and (63) to (65) describe the algorithm. The infinite

sums in Egs. (52}, (55) and (58) are needed for each possible population of
the closed chains in the station. Much work can be saved by using the product
form of A4; given by Eqs. (15) and (18). All the dependence on k;,, except for
the total number of jobs in the closed chains, can be factored mii of the sum,
It is then enough to compute an infinite sum for each rotal population of the
closed chains in the station. This observation also shows that the closed network
defined by the quantities with tildes is a closed network of the type investigated
here. '

6. Complexity of the Algorithms

As can be seen from Theorem 1, the complexity of the computation of the
throughputs depends on the topology of the network. This contrasts with the
case of classical networks, where the computation of the throughputs does not
depend on the number of connections between the stations. The case of an
open network reduces essentially to handle N isolated stations by Corollary L.
Each station gives rise to a (possibly infinite) sum. By the results of Sect. 5.3
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the case of a mixed network reduces to the case of a closed network after
evaluating the (possibly infinite) sums of Egs. (52), (55) and (58). No general
rles can be given for the sums that arise in these cases. In favorable cases
a single server station that does not block, for example), the sums can be
evaluated analytically. In unfavorable cases (general load-dependence of the ser-
vice effort and/or general blocking functions) the sums will have to be evaluated
numerically. Only in the case of closed networks we can give the complexities
of the algorithms with certainity.

A Hy, ;5 must be computed for cach pair (iz, jf) for which Pis. ipE0. By
Lemma | we need to compute only half of the above values by symmetry.
Call the number of H,, ;, that have to be computed £ Note that E could
be very large, up to 1 C-N-(N—1) if every station is connected to all the other
stations in each class and there are no class changes.
We do a total of (N — 1) convolutions to compute G. To compute the needed

¥

H, , we compute at most E deconvolutions and E convolutions. To get the
needed H;, ;; from the H,, , we compute E deconvolutions and E convolutions.

oy

Phis gives a total of O(N +4 E) convolutions and deconvolutions. Each convolu-
ton/deconvolution involves O(R K operations, if we assume that there are
R routing chains and that there are K jobs in each chain. The total number
of operations to compute the throughputs is then O(RK®(N +4 E)). This con-
trasts with the convolution algorithm for classical networks {22, 23] where the
wial number of operations to compute throughputs is O(N RKF). since only
G is needed. To compute the mean populations in a station one executes a
wnvolution and a deconvolution for each class. This totals O(C N RK*) opera-
The operation count for the mean populations is the same as in the
lassical case, since the algorithm is essentially the same.

A copy of the array G is needed all the time in the above. and a scratch
space of the same size is needed to hold the values of the H,, , when computing
the H;, ;5. The space complexity of the algorithm is then O(K5).

e
i
BERIRS
"

&

7, Conclusions

We have derived general formulas for throughput in some queueing networks
#ith blocking. The formulas, while significantly more complex than the classical
ormulas [7] arce still similar to them. In particular. general mixed networks
an be treated in the same way as in classical networks. From the general
frmulas we construct algorithms to compute performance measures. The algo-
ithms are more complex than their counterparts for classical networks, but
they should be useful in practice. As is the case with classical networks, the
dgorithms proposed will become infeasible for large networks with many classes
md/or large populations. So. an interesting arca for future research would be
@ find exact or approximate algorithms that take less time or space.
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