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Absfmcf - Models of distributed systems with servers subject 
to break-down and repair are investigated for optimization of per- 
formance measures. The optimization problems are the cost 
minimization, response time minimiition, and throughput max- 
imization. The system is modeled by a preemptive-resume priori- 
ty queueing network. The mean-value analysis algorithm is applied 
to derive a relationship between the multiprogramming level and 
performance measure formulas. Based on this relationship the 
Lagrange multiplier technique is applied to carry out the optimiza- 
tion of performance measures. Optimal service raw are obtained 
that reach a target throughput while minimizine the total cost. 
Servers are also treated individually in order to minimize the mean 
response time of a particular server in the system in order to fmd 
the optimal service rates which minimize the response time of a 
particular server while reaching a target throughput. Formulas are 
derived for determining the maximum throughput of the system; 
unfortunately it has no closed-form solution. However, it can be 
solved using the binary search and insert value method. Numerical 
examples illustrate the solutions. 

1. INTRODUCTION 

Advances in communication technology and the reduction 
in computer hardware costs have made distributed systems feasi- 
ble. Distributed systems are configured to achieve a higher pro- 
cessing capacity than centralized systems. Cost-evaluation and 
performance-prediction are an important step in the planning 
and design of computer systems, distributed systems, computer 
networks, and flexible manufacturing systems. Queueing net- 
work models have received special interest for performance 
analysis and performance prediction in the past two decades. 
They can also be used for optimization of performance 
measures. In the optimization procedure, an objective function 
(eg, costs, throughput, usage, or response time) is obtained by 
appropriate selection of system input parameters, eg, service 

rates, multiprogramming level, called decision variables. 
Queueing network models represent the relationship between 
the objective function and the system input parameters. Using 
these models it is possible to have an optimal design of the 
systems mentioned above. 

System reliability is an important issue in evaluating the 
performance of systems [ 131. Queuing network models can be 
applied to capture the breakdown, repair, and recovery of com- 
puter systems. Vinod & Altiok [15] analyze queueing network 
models with server breakdowns. They capture the failure and 
repair times by constructing Cox 2-phase (service and 
breakhepair) for each server. From the Cox 2-phase they ob- 
tain an average service time for each server which is prolong- 
ed by the breakdown and repair. They assume that the derived 
queueing network model has a product-form solution. The disad- 
vantage of their approach is that each job in a server always 
encounters only one breakdown during its service. However, 
in practice, several jobs could get serviced without the server 
breaking down, or occasionally, a server breaksdown several 
times on one job. Another disadvantage of the solution is the 
approximation itself. Although two examples are given with 
good accuracy, our tests verified that large deviations can oc- 
cur. Recently, Ramanjaneyulu & Sarma [9] modeled servers 
by constructing a queueing network model with preemptive- 
resume servers and multiple job classes. Their model simulates 
the essential behavior of unreliable systems. This approach is 
described in detail in section 3. 

The modeling of unreliable servers by a multi-class-job 
queueing network with preemptive-resume scheduling discipline 
brings the problem of solving these queueing networks. Since 
there is no product-form solution for this type of queueing net- 
work, several researchers tried to solve them approximately [3, 
51. Bryant et a1 [3] generalize the solution for an M/M/l with 
PR (preemptive resume) or HOL (head-of-line; nonpreemptive) 
to a priority server at the network. They embed the derived mean 
response-time to the classical mean-value analysis formula [ 101 
by assuming that the arrival-instant theorem holds [lo, 131. 
Doremalen et al[5] introduce the SchweitzedBard [2, 111 ap- 
proximation factor into the heuristic mean-value analysis for- 
mula [3], thus reducing the recursive computation. They con- 
sider the fact that the arrival-instant theorem is not valid in 
queueing-network models with priorities and adjust the approx- 
imation such that it will not overestimate the effect of the lower 
priority-job class on the higher priority-job class. When it is 
applied to our model, we use the job-flow pattern and the fact 
that there is a limited number of jobs in certain classes to 
simplify it greatly, as described in section 3. 

After modeling the unreliable system and solving the 
model, we derive the relationship among the performance 
measures and the breakdown time and repair rate. This enables 
us to consider the optimal decision on the systems. Several 
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authors have discussed the issue of optimization in recent years. 
Trivedi & Wagner [14] consider a computer configuration 
design problem where the computer system is modeled by a clos- 
ed central-server model. The system throughput is the objec- 
tive function to be maximized by proper choice of device speeds 
subject to a cost constraint. A nonlinear cost function is con- 
sidered in the analysis. Chandy, Hogarth, Sauer [4] use a branch 
and bound algorithm to minimize the mean response-time sub- 
ject to cost limitations. Von Mayrhauser & Trivedi [8] consider 
a configuration design problem where the computer system is 
modeled as a closed queueing-network. The mean response-time 
to an interactive user request is minimized and the speeds of 
the devices are the decision variables. Kenevan & von 
Mayrhauser [6] show that: 1) throughput is a log convex func- 
tion of the number of items in a closed, single class, network, 
2) reciprocal throughput is a convex function of the relative 
usage of the servers. Kobayashi & Gerla [7] determine the op- 
timal routing in closed queueing network models with multiple 
classes of jobs. Stecke [2] investigates product-form networks 
in which she imposes a constraint on the total workload in the 
system. She shows that throughput is a function of the ratio of 
the service rate at a server to the sum of the workloads, not 
purely concave but rather quasi-concave. Akyildiz & Bolch [ 13 
applied mean-value analysis as the optimization basis and deriv- 
ed closed-form solutions for optimal performance measures such 
as response time, throughput, and cost. The studies all assume 
that the servers are reliable. However, in practice the resources 
are prone to failures. 

In this paper we study models with unreliable servers. In 
section 2 the model with unreliable servers is substituted by a 
model with reliable servers such that the resultant reliable queue- 
ing model is a multi-class job-queueing model with the 
preemptive-resume priority scheduling discipline. We develop 
a mean-value analysis algorithm for this model and derive the 
constraint for application of Lagrange multiplier technique in 
optimization of performance measures in section 4. In section 
4.1 we obtain a formula for optimal service rates which pro- 
vides the minimum cost. Response time minimization of a par- 
ticular server is given in section 4.2. Section 4.3 contains the 
throughput maximization. Numerical examples illustrate the 
solutions. 

Notation 

MVA mean-value analysis 
FCFS first-come first-served 
N 
K total number of jobs 
K ( K -  1)/K 
pi,€+,*; service, failure, repair rate of server i 
pii 
pi ,  
PR preemptive resume 
<,,&,e;,,,pi,, mean response-time, mean number, visit ratio, 

A, 
K, 

number of servers in the network 

probability that a job transfers from server i to serverj 
service rate for job class r at server i 

usage of job-class r at server i 
total network throughput for job-class r 
the total number of class r jobs 

C total budget 
Ci 

Other, standard notation is given in “Information & Authors” 
at the rear of each issue. 

cost unit for server i 

2. DISTRIBUTED SYSTEM MODEL 

The distributed system in figure 1 consists of several 
workstations where each workstation consists of a number of 
resources (eg, CPUs, disks) which are used by processes that 
execute in that workstation. Consider, for example, a set of iden- 
tical workstations that share a set of common resources, such 
as a file-server and printer, and let the behavior of any of these 
embedded workstations be the object of the performance 
analysis. The workstations exchange messages for storing and 
retrieving data files from the common file-servers. The perfor- 
mance of distributed system can effectively be modeled and 
predicted by queueing networks. However, performance 
measures of a distributed system tend to be distorted by ir- 
regularities caused by server breakdowns which affect the per- 
formance of the system. The presence of unreliable servers 
prompts the need for performance models that consider the 
reliability of the system. 

Workslallon Workslalion 
I 

Figure 1 .  A Distributed System 

This distributed system could be represented by a closed 
queueing-network model employing one server and one job class 
associated with each workstation. The model consists of N 
servers of a distributed system running on a communication net- 
work. The servers are prone to timedependent failures followed 
by repair times. The failure, repair, and service times are ex- 
ponentially distributed. The scheduling discipline in each server 
is FCFS. The application programs are modeled by a closed 
chain for the entire queueing network. The number of circulating 
programs (henceforth, jobs) in the network is fixed. 
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Assumptions [9] 
1 .  The service times of the jobs are exponentially 

distributed. 
2 .  The mean service times are: 

I 'I 
Communication Network +=+i 

Figure 2. Queueing Network Model of a Distributed System 

3 .  MEAN VALUE ANALYSIS FOR 
UNRELIABLE SERVERS 

The unreliable server can be modeled by constructing a 
virtual server which is connected to and from the server [9] as 
shown in figure 3 .  

w Server i 

Figure 3. A Virtual Server 

For server i ,  construct a new virtual server labeled (N+ i) . 
A virtual job (designated by class i )  is introduced to circulate 
only between server i and server ( N +  i )  . This virtual job is 
known as the local job of server i. When the virtual job is in 
server (N+ i )  , the original jobs are receiving normal service 
in server i .  As the virtual job jumps to server i ,  the server i 
breaks down and the original jobs are preempted from the ser- 
vice by the virtual job, which models the repair phase of the 
server. The virtual job in server i and server ( N +  i )  has class 
i where the original jobs have class (N+ 1 ) .  Then the model 
becomes a multi-class-job queueing-network with preemptive- 
resume priority servers. 

for all i .  

This transformation simulates the condition of exponen- 
tial failures and repairs from the perspective of the original 
system jobs. The transformed model with all reliable servers 
is then solved for the performance measures of the original 
system jobs (of class (N+ 1 ) )  by applying approximation 
techniques for priority queueing models [3 ,5 ] .  

Our solution of the model is based on the algorithm in [5] 
which is a mean-value analysis algorithm for multi-class 
preemptive-resume priority queueing network models. To our 
knowledge, the algorithm in [5] provides the most accurate 
results within the existing techniques for the preemptive-resume 
priority queueing networks. 

The mean response-time is: 

1 r -  1 

+ -, 
Kr +i,r pi,,  +i,r pi,, 

for all i and r. (3-4) 

k- 1 

+i,k = 1 - Pi,s 

s= 1 

The r.h.s. of (3-4) has the following interpretation. Part 
1 is the service time for the jobs with higher priority than the 
tagged arriving job with class r. Part 2 is the service time for 
the earlier arrived jobs of the same class, adjusted by the 
SchweitzerlBard [2,11] factor ( K r  - 1 ) / K r .  Part 3 is the ser- 
vice time for the tagged job itself. The increases the ef- 
fective service rate and thus slows down the service times of 
the servers because of the preemption. 

The throughput of the network and the mean number at 
server i ,  all for job class r is obtained by Little's law: 

(3-5) 

N R  

ei,r = ej,s + Pj,s;i,r 
j=1 s=l 

for all i and r. 
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Since the jobs with class r= i is only local to server i and 
(N+ i) , and the original job with class (N+  1 ) is circulating 
only among servers ( 1, 2, . . . , N) , the routing matrix and cor- 
responding job visiting ratio to each server are: 

[ l ,  if i = r = s & j = i + N  

1,  if i = j + N &  r = j = s  

p i j ,  if r = N + l & s = N + l  
(3-7) i p .  . = 

l * r J , S  

I O ,  otherwise 

1 ,  if i = r o r i = r + N  

ei, if i = N + 1  (3-8) 

otherwise 

ei.r = 

N 
ei = ej Pji 

j =  1 
(3-9) 

for all i and r. 
Eq (3-8) shows that certain jobs never go to certain servers. 

n u s ,  only the following response times are interesting: 
fN+i,i, <,N+ (for all i ) .  We derive formulas of these response 
times by analyzing the behavior of the virtual jobs. There is 
at most one virtual job in server i and (N+ i) , and that job 
always has higher priority to preempt other jobs from service, 
ie, the virtual job gets service immediately after it enters a 
server. Thus - 

t;.,i = l/!Pi, (3-1 1) 

for all i. 
The response time for the original job can be obtained by 

simplifying (4) and by considering that if ei,r = 0 then $,, = 0 
for all i and r,  except i=r:  

1 + Ei,i K N +  1 - k , N +  I 
t i , N + l  = 7 + ~ 

Pi.i k , i  KN+ 1 Pi,i I*i,N+ 1 pi,i &.N+ I 

(3-12) 

To further simplify (3-13), we observe the behavior of the 
arrival rate and usage of the virtual job in server i. The virtual 
job circulates between server i and (N+ i)  with the following 
idle and busy period in server i: 

I idle busy I a a o a a o o o  
idle 

1 /e; 1 /*; 1 /ei 

Figure 4. Chart for Usage 

Thus - 

(3-14) 

By substituting (3-11), (3-15) into (3-13) we obtain 

~ ; . N + I  = Ai + K N + l - l  

KN+ 1 

k , N +  1 

Bi t ( i . N + l  
+ 1 

Bi pi,N+I 
(3-16) 

Only jobs of class (N+ 1 )  are in (3-16), thus we can omit the 
class subscript: 

(3-17) 

Ai = Cji/*'i2 (3- 18a) 

(3-18b) 

Finally we obtain the mean value analysis scheme shown 
in table 1 for unreliable queueing network models: 

TABLE 1 
Mean-Value Analysis for Unreliable Models 

1 
Mean Response Time 4 = - [I + K k;] 4- A, 

Pi 4 
N 

h = K /  e ; <  Throughput 
i= I 

Mean Number of Jobs 

INtial Value Ei = KIN 

Ei = 4 ei x 

4. PERFORMANCE OPTIMIZATION 

By substituting Ei = X ei < we solve (3-17) for 6: 

- Ai Bi pi + 1 t .  = 
Bi pi  - K X ei 

(4- 1) 
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Since - 

- X e i (Ai  Bi pi  +1) 
B; pi - K X ei 

E. = e .  t. = 
1 1  

and in a closed queueing network - 

N 

p ; = K  
i = l  

it follows - 

X ei(Ai  Bi pi + 1) = K  
i =  1 

(4-2) 

Minimize the total cost C ( p )  for a given throughput. 
(4-3) 

The optimal service rates and total optimal cost are: 

(4-4) 

Eq (4-4) is the constraint used in application of Lagrange 
multiplier technique for optimization of performance measures. 
If the throughput is the optimization subject, then (4-4) would 
be the appropriate constraint. However, if the throughput is 
given, (4-4) can be simplified to (4-5): 

N 
K =  K - x ~ ~ A ~  

i =  1 

Di 3 X e i (Ai  A ei K + 1 )  

4.1 Cost Minimization 

This section uses the queueing network model from sec- 
tion 3.  The objective is to choose N servers having service rates 
p: for minimum costs while the given throughput of the system 
is maintained. We formulate the optimization problem as: 

(4-5) 

In the optimization procedure of performance measures 
such as response time, throughput, and usage, the objective is 
to determine the optimal service rates as decision variables sub- 
ject to certain constraints. The cost constraint is the most com- 
mon and has the following linear form: 

ci pi = c. 
i =  1 

(4-6) 

The following sub-sections summarize the optimization 
problem solutions: 

1. Cost Optimization for Fixed Zkroughput: The total 
throughput of the queueing network is assumed to be known. 
The optimal service rates pt must be determined such that the 
given total throughput is reached at minimum cost. 

2. Response Time Minimization for  Each Server: The 
response time of each server for a given queueing network is 
minimized where a given fixed throughput value is controlled. 
The service rates are also under cost constraints. 

3.  Z’hroughput Maximization under Fixed Costs: The total 
cost for the queueing network model is known, viz, the budget 
available for purchasing a given number of servers with specific 
service rates. The total throughput is maximized by determin- 
ing optimal service rates under cost constraints. 

N 

Pf ci 
i = l  

The derivation is in the appendix. 

(4-8) 

Example 1 : Queueing Network Model of an Unreliable System. 

There are N = 5  servers and K =  10 jobs. Additionally, 5 
virtual servers and 5 virtual jobs are introduced to model the 
unreliability aspects. The mean time-to-failure of each server 
is ei = 8 units. The mean repair time is \ki = 10 units. Figure 
5 is the queueing network model with virtual servers; it cap- 
tures the unreliability aspects of the system. 

Figure 5 .  The Queueing Network Model of an Unreliable System 

The transition probabilities are: 
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The required throughput is X=O.5. 
The optimal service rates are: 

p* = [5.997, 1.207, 2.780, 3.657, 2.2121 

The minimum cost of the system which achieves the throughput 
requirement is: 

C* = 177.204. 

Table 2 and figure 6 show the dependence of the minimum cost 
on throughput. 

TABLE 2 
Relation between Throughput and Minimum Cost 

Throughput 0.1 0.2 0.3 0.4 0.5 0.6 0.62 0.625 
cost 8.43 20.9 40.9 78.8 177 1062 5487 03 

i 
6000.0 
5000.0 
4000.0 
3000.0 
2000.0 

1000.0 0.0 1, I .-... ** 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 
Figure 6. Cost Dependence on Throughput 

4.2 Response- Time Minimization 

The optimization problem is to minimize the response time 
6 for a particular server i subject to fixed given cost and fixed 
given throughput constraints. The service rates have a linear 
cost constraint and the total cost Cis known. The mean response 
time is given by (4-1). 

If we minimze (4-1), as an objective function with condi- 
tions, (4-5) and (4-6), the following optimal service rates are 
obtained: 

j t i  j t i  

(4-9a) 

The optimal service rates p; for all j ,  j # i ,  are: 

K -  
Bi pf - K X ei 

The minimum response time for server i is: 

- A; Bi pf + 1 for i=1, ..., N 
ti* = 

B, pf - K X e; 

The derivation is in the appendix. 

(4-9b) 

(4-10) 

Example 2 :  Same Model as in Figure 1. 

The throughput is X=0.5 and the available budget is 
C=200. We obtain the minimum response time for server 5 
from (4-10): 

$ = 6.858 

To achieve this minimum response time for server 5 ,  the 
service rates for each server are computed from (4-9): 

p* = [5.184, 1.044, 2.408, 3.147, 7.5621. 

4.3 Zkroughput Maximization 

In the planning phase of distributed systems the budget is 
limited. The objective is to optimize the performance measures 
within the budget. Given fixed cost C, we find an optimum 
system that achieve the highest throughput. Rewrite (4-4) into: 

N ei(Ai Bi pi + 1) K - _  - 
Bi pi - K ei X 

i =  1 

Differentiate both sides of (4-1 1) by pi: 

(4-1 1) 

ah 

acli 

Bi(ei Ai Bi pi + e i )  - ei Ai Bi(Bi pi - K X e i )  
(B~ pi - K x e i l2  

_ -  - 

. r  (4-12) 

- “I-’ K e j ( A j  Bj pj + 1) [ 5 (B, pj - K e j ) 2  

N 

X2 
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into (4-17) and solve for the maximum throughput, A* = 0.5 
by the binary search and insert value method. 

The Lagrange function has the following form: 

(4-13) 9 ( "  i = l  
~ ( c ~ t  Y) = h ( f i )  + Y ci pi - 

Differentiate L by p i  and y, and set derivatives = 0: 

Substitute this throughput value into (4-16) and obtain the op- 
timal service rates for each server: 

f i *  = C5.997, 1.207, 2.780, 3.657, 2.2121 
(4-14a) 

These results match the results in example 1, as they should. 

(4-14b) APPENDIX 

Let C#I = -y/J?; from (4-12) and (4-13) it follows that: 

(4-15) 

A-1. Derivation of Cost Minimization: (4-7) & (4-8) 

We solve this optimization problem using the Lagrange 
multiplier technique. First we derive the Lagrange function: 1 ei ci 

c i p i  - h~ ~ . 
Bi 

ei Ai Bi pi + ei 
Bi p i  - K h ei 

Sum (4-15) over all i and solve for 4. 
From (4-15) and the equation for C#I - 

(A-1) 
hei 

p L f = K -  -k 
Bi By differentiating L (p,y) by p i  for i = 1,. . . ,N and y we 

obtain the necessary and sufficient conditions for optimal ser- 
vice rates pLf: 

(4-16) 
(A-2) 

Bj Di 
- = c i - y  = o  a L  

a pi (B i  p i  - K h ei)* 

By substituting (4-16) into'(4-14b) we derive: C = (A-3) 

N 

i = l  c p  From (A-2) we get: 

Di 
Bi pi - K A ei 

N 

N 

(Khe?Ai&+ei B ~ )  - 

ci( h 
- ej A j )  

j =  1 

(A-4) 1 

l ' l  

By substituting (A-4) into (A-3) we derive: 

(A-5) (4-17) 

By solving (4-17) we obtain the optimal throughput value 
that can be achieved; unfortunately, it has no closed form solu- 
tion. However, it can be solved by the binary search and insert 
value method. After solving (4-17) the service rates of each 
server can be derived from (4-16) by substituting the A. 

Eq (A-5) provides: 

= ( -\Iy)*/P. 
i = l  

From (A-2) and (A-6) we obtain the optimal service rates 
that minimizes the system cost while achieving the required 
throughput. 

Example 3: Same Model as in Figure 1. 

We need the optimal throughput, which is the reverse of 
example 1. All parameters are the same as in example 1 except 
that the throughput is unknown. The total cost (C= 177.046) 
is given as an input. We substitute the given parameter values 

A-2. Derivation of Response-Time Minimization: (4-9) & (4-10) 

The Lagrange function is derived as follows: 
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(A-7) 

Differentiate by p,, pi ( i # j ) ,  y ,  z;  set the results = 0. 

a L  Bj Dj 
= 0, - -  - z c j  - y a pj (B, p j  - K ej)* 

f o r j = l ,  ..., N & j  # i. 

K X  A; B; ei + y Bi Di 
( B i  pi - K X e i ) 2  

- zc i  - = 0, 
a L  - -  
a pi 

for j= l ,  ..., N & j # i  

From (A-8) we get: 

By substituting (A-12) into (A-9) we derive: 

Di K -  lz Bi pi - K h ei 

j#i 

(A-8) 

(A-9) 

(A-10) 

(A-1 1) 

(A-12) 

(A- 13) 
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From (A-13) we obtain (4-9b). By substituting (A-13) and (4-9b) 
into (A-11) we obtain: (.up! + @pi + y = 0. Finally by 
substituting (A-13) and (4-1) into (4-9b) we obtain the optimal 
service rates pLf. 
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