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Abstract— The behavior of n interacting processors (each
process executes on a distinct processor; hence the words
“process” and “processor” are used interchangeably) synchro-
nized by the “Time Warp” protocol is analyzed using a discrete
state, continuous time, Markov chain model. The performance
and dynamics of the processes are analyzed under the following
assumptions: exponential task times and timestamp increments
on messages, each event message generates one new message that
is sent to a randomly selected process, negligible rollback, state
saving, and communication delay, unbounded message buffers,
and homogeneous processors. Several performance measures
such as the fraction of processed events that commit, speedup,
rollback probability, expected length of rollback, the probability
mass function for the number of uncommitted processed events,
the probability distribution function for the virtual time of a
process, and the fraction of time the processors remain idle are
determined. The analysis is approximate, so the results have
been validated through performance measurements of a Time
Warp testbed (using the PHOLD workload model) executing on
a shared memory multiprocessor.

Index Terms— Time warp, parallel simulation, performance
evaluation, Markov chain model, performance measures, syn-
thetic workloads, validation.

1. INTRODUCTION

VER the last several years, research in synchroniza-

tion mechanisms for parallel discrete event simulation
programs has progressed along two fronts—the conservative
[19] and optimistic [10] approaches. Conservative schemes
do not allow an event with timestamp ¢ to be processed if
there is a chance that an event with timestamp s, where
s < t, may arrive. In such a scheme, computation of an
event with timestamp ¢ can proceed only after it is determined
that no event with a lower timestamp can later arrive. These
schemes usually utilize data-dependency information about
the simulation model in order to make this decision. On the
other hand, Time Warp [10], an optimistic scheme, allows
computation of an event with timestamp ¢ to proceed without
regard to the possibility of the arrival of another event with
a lower timestamp. If an event with a lower timestamp does
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arrive, the Time Warp scheme “rolls back” to the most recently
saved state with virtual time earlier than the timestamp of the
arriving event. This approach assumes that state information
is periodically saved in order to make rollback possible. The
relative advantages and disadvantages of these schemes have
been extensively debated [7].

The Time Warp scheme provides a means of synchronizing
the execution of tasks on different processors that is superior
to synchronous lock-step execution when simulating asyn-
chronous systems. In the synchronous lock-step approach only
those events containing the same timestamp may be processed
in parallel. This approach is inefficient for simulating asyn-
chronous systems, because there are usually few simulator
events containing the same timestamp. Also, administering
lock-step execution can lead to significant synchronization
overheads for large systems.

The Time Warp scheme allows the processes to have differ-
ent virtual times in their local clocks. It attempts to enforce a
partial ordering of events [13]. Processes communicate only by
exchanging messages. Each message is stamped with a virtual
send time, and a virtual receive time. Virtual send time is the
local time of the sender when the message is sent. Likewise,
virtual receive time is the virtual time at which the message is
to be processed by the receiving processor, and is also referred
to as its timestamp. The receiver compares the timestamp of
the message with its virtual time. If the message is “in the
future,” it is queued for later processing; if the message is “in
the past,” the computation must be rolled back to the most
recently saved state with virtual time less than the timestamp
of the received message.

The primary question that arises concerns the speedup
which can be obtained when using n processors. A related
issue is determining the fraction of processed events that are
eventually committed, or equivalently, the fraction of “wasted”
events that are eventually rolled back. In addition, there are
several other performance measures (e.g., rollback probability,
and probability mass function of the number of uncommitted
processed events at a process) which characterize the dynamics
of the Time Warp program. We obtain analytical solutions for
these performance measures.

The analytical results are validated against performance
measurements of an implementation of Time Warp executing
on a shared memory multiprocessor [6]. A synthetic workload
model called the parallel hold (PHOLD) model is used in
these experiments. The PHOLD model was parameterized
to be consistent with the assumptions used in the analytic
model. Workloads of varying parallelism were executed and
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the observed performance measures were used to validate the
analytically obtained values. All simulations in the PHOLD
model are run with adequate buffer capacity so that the
unbounded buffer assumption is not violated. The relationship
between speedup and the number of processors is especially
crucial to the design of system prototypes. The analysis pro-
vides a theoretical basis for some of the empirical performance
measurements in [6].

To our knowledge, this is the first analytic performance
model for Time Warp that has been compared with measure-
ments of an operational Time Warp system. Many analyses
have dealt with the two-processor case, and could not be
extended due to the complexity of the problem. Lavenberg,
et al. [14] have obtained an approximate solution for two
processors with very low interaction. Mitra and Mitrani [20]
have obtained exact solutions for the two-processor case under
more general conditions. Kleinrock [12] has considered a
discrete state continuous time model for the two-processor
case. Felderman and Kleinrock [4] have considered a discrete
time, discrete state Markov model, and by taking limits
have provided a unifying framework for previous work on
two processor Time Warp. Plateau and Tripathi [22] have
obtained numerical results for the rate of message exchange,
and blocking probabilities for two communicating processors.
They have employed tensor algebra to handle the three-
dimensional Markov chain model of the system. Jefferson and
Witkowski [11] have proposed a new stochastic process—the
linear Poisson process—to model timestamp driven schemes.
Performance analyses of the general n process case have ap-
peared recently. Madisetti ef al. [18] have derived an analytical
estimate for the progress of distributed computation for the two
processor case. They have also investigated different synchro-
nization schemes for the general n process case. Felderman
and Kleinrock [2] give an upper bound on the gain in speedup
that n asynchronous processes can achieve relative to n
synchronous lock-step processes for large n. Nicol [21] derives
an upper bound on Time Warp’s performance for the general n
processor case. Nicol considers a self-initiating model which
schedules its own state re-evaluation time, as opposed to our
model where a process’s state is affected when messages are
received from other processes. Further, his analysis of Time
Warp ignores effects due to rollback propagation. Greenberg
et al. [9] present methods for parallel discrete event simulation
when the number of processors is larger than the number of
simulated objects. Lin and Lazowska [15] show that Time
Warp always performs at least as well as any conservative
mechanism (and possibly better) under certain conditions; like
our analysis, they assume that the overheads for state saving
and rollback are negligible. Lipton and Mizell [16] demon-
strate that while Time Warp may outperform the Chandy/Misra
algorithms (well-known conservative algorithms) [1], [19] by
an arbitrarily large amount, the opposite is not true; i.e., the
Chandy/Misra algorithm can only outperform Time Warp by
a constant factor. Lubachevsky et al. [17] present a tunable
“filter” to bound the lag so that their algorithm is conservative
at one extreme, and is optimistic at the other extreme, and
identify conditions that lead to instability.

This paper is organized as follows. The model is described
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in Section II. The model is analyzed and related equations
are derived in Section III. The analytical results are compared
with performance measurements of the prototype Time Warp
system in Section IV. Finally, conclusions and suggestions for
future research are given in Section V.

II. THE MODEL

We assume the processors to be homogeneous with an un-
bounded buffer to store received messages. Each processor is
assumed to have its own local buffer space. These assumptions
are reasonable for current multiprocessors such as the Sequent,
Butterfly, and iPSC if the memory is large relative to the size
of the problem. If the buffers are bounded and the receiving
processor has a full buffer, then the processor sends hack the
message just received to the sender, usually causing the sender
to roll back. The “obvious” approach in which a sender process
blocks until the receiver relinquishes its buffer space is prone
to deadlock. Further, we assume that the processing time of
events is exponentially distributed, and each event produces
a single new event with a timestamp increment (i.e., receive
time minus send time) which is selected from an exponential
distribution. The new event message is equally likely to be
sent to any other process. Many real simulations stabilize at
a message population after the transient phase with minor
fluctuations. In real simulations, one new event is generated
on an average; in our model, exactly one event is generated
after processing an event. This is a simplifying assumption
to make the analysis tractable. This assumption does hold for
some systems; e.g., simulations of closed queueing networks.
In general, it may be true for systems in which a fixed number
of objects interact. The assumption that a message is equally
likely to be sent to another processor has been made to keep
the analysis simple; in real simulations, there is some amount
of locality and processors tend to communicate more often
with those in its immediate neighborhood. Similarly, the time-
stamp increments and processing times have been assumed to
be exponentially distributed to make the analysis tractable.
However, measurements with other timestamp distributions
and localities show that these have a secondary effect [6].

We assume that the simulation is partitioned into n pro-
cesses, each of which is executed on a separate processor. We
also assume that there are initially m unprocessed event mes-
sages in the system, and that upon processing each message,
one new message is generated. The quantity m is referred
to as the message population. Hence the “logical” number of
messages remains the same (m) throughout. Note that there are
simulations which run with a constant message population, and
there are those which do not. The physical number of messages
changes, since antimessages received “in the past” take a
nonzero time to annihilate their counterparts. The nonzero time
is due to a non-pre-emption assumption to be discussed shortly.
Each processor is equipped with a virtual local clock which
indicates the virtual time of that processor. Virtual times are
real values totally ordered by the relation <. As the events
are processed, the virtual local clocks in different processors
move to higher virtual times, although they occasionally jump
backwards when a rollback occurs. It is assumed that the time
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to rollback is negligible. This assumption is realistic when the
computation granularity (processing time) of an event is large.
We also assume a non-pre-emptive rollback; i.e., if a message
in the past is received while an event is being processed, the
rollback does not take effect until we finish processing the
current event. If more than one message with a timestamp
“in the past” arrive during processing, the effect is the same
as if only the message with the least timestamp had arrived.
Also, we assume that that state is saved after processing every
event. This ensures that a process will rollback to the event
with timestamp immediately less than the timestamp of the
incoming late arrival, rather than to an ecarlier state, viz.,
the last saved state. The processing of an event involves the
following operations:
i) receive a message with timestamp ¢
ii) compare the timestamp t with the receiver’s virtual
clock times

iii) if t < s, roll back to time ¢

V) e set virtual clock to f
* read contents of message
* update state variables
* send a message with timestamp ¢ + & (where € is

an exponentially distributed random variable).

The message which is sent after processing an event is equally
likely to be sent to any of the processes (including itself).
Communication delay for the message is assumed to be
negligible. The local clock does not change during the time an
event is processed; it changes only between events, and then
only to the timestamp of the next message to be processed.

Jefferson [10] defines the notion of global virtual time
(GVT). GVT serves as a floor (lower limit) for the virtual
time to which a process will ever roll back. The state of
the system can then be defined as (k. k2. --.k,), where k;,
1 <4 < nis the number of events that have been processed at
process ¢ that have a timestamp greater than the GVT. Fig. 1
shows the case where there are three processors. However,
our analysis holds for the general n-processor case. An event
that contains a timestamp which is less than GVT is called
a committed event, and others are called uncommirted events.
Any event with timestamp less than the GVT cannot be rolled
back and can be committed safely. Fig. 1 shows processor
1 with one uncommitted (but processed) event, and another
event being processed. For the range of virtual times that are
shown next to the events, processor 1 has no committed events,
while processors 2 and 3 each have one. It may be noted that
process 3 has an unprocessed event with a timestamp less
than the timestamp on the one being processed. Due to the
non-pre-emptive nature of the model, the arrival of event with
timestamp 11.1 is not observed by the process. This is because
the event with timestamp 13.1 arrived earlier than the event
with timestamp 11.1, and the former was being processed
when the latter arrived.

The virtual time of a processor is the timestamp of the
event being processed. GVT is the minimum of all virtual
processor times (in this case, the virtual time of processor 2)
and the timestamps of all unprocessed messages. The latter is
necessary to account for received messages which have not
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Fig. 1. System in state (1,0,0); i.e., processor 1 has one processed uncom-

mitted event, and processors 2 and 3 have none.

yet caused a rollback due to the non-pre-emptive nature of the
model. In such a case, a message with a lower timestamp
will be waiting in the input queue, while a message with
higher timestamp is being processed. The integer values in the
state tuple are measures of the amount of work done (number
of processed uncommitted events) in the process which has
not yet been committed. This characterization of the state is
different from earlier studies which measure the progress of
a process with respect to another process. The GVT-based
characterization allows us to only consider the interaction of
a process with GVT rather than with all of the processes. The
rate of progress of GVT can be considered to be a measure
of system progress.

In contrast to earlier studies mentioned in the previous
section which have analyzed the system from the sender
process point of view, our analysis is focused on the receiver
process’s point of view. Cascaded rollbacks are difficult to
analyze from the sender process but are more easily accounted
for when analyzed at the receiver process, because, at any time,
we need to be concerned only with the rollback at the process
under consideration. Appealing to symmetry and homogeneity
arguments, we observe that it is sufficient to analyze one
process and its interaction with GVT. The dynamics at the
other processes are identical. (Timestamps of messages being
sent out are Poisson distributed in virtual time.) The committed
messages at all the receiving processors are also Poisson
distributed. This is the well-known Markov implies Markov
(M — M) property. We note that the uncommitted messages
will not be Poisson distributed. This is because these events
include events which will be later cancelled and exclude true
messages that have not yet arrived.

During the course of deriving expressions for speedup
and the fraction of processed events that will eventually be
committed, we will also derive expressions for the expected
number of processed uncommitted events at a process, the
expected length (in terms of number of events) of rollback,
the probability of rollback, rollback probability as a function
of number of processed uncommitted events in the buffer,
the probability mass function for the number of processed
uncommitted events at a process, the probability distribution
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Fig. 2. The Markov chain model.

function of the virtual time at a processor assuming origin at
GVT, and an estimate for the fraction of time the processors
remain idle.

ITI. ANALYSIS OF THE MODEL

In this section we present an approximate analysis of the
performance of multiprocessor Time Warp which we have
modeled as a Markov chain. We discuss the state space of
the Markov model, derive transition rates and solve the model,
determine performance measures, estimate the fraction of time
the processors remain idle, and finally present an algorithm for
numerical solution of the model.

A. State Description of the Markov Model

We analyze the behavior of n coupled processes, which we
have modeled as a one-dimensional discrete state, continuous
time Markov chain as shown in Fig. 2. Since we have assumed
an unbounded buffer at each process, we could theoretically
have an unbounded number of processed uncommitted events
at a process. This is because a process can be arbitrarily far
ahead of another. This implies that the associated Markov
chain has an infinite number of states. However, to solve the
system numerically we desire a finite number of states. We
observed from subsequent characterizations of the transition
rates that the greater the number of processed uncommitted
events at a process, the greater the probability of the process
being rolled back. Thus, if a process goes far ahead, there is a
tendency for it to be pulled back. This indicates the existence
of an equilibrium from which we assume that the states in
the Markov chain model are not transient. In such a case,
given a tolerance €, we can find a finite integer M (dependent
on ¢) such that the difference between performance measures
obtained by truncating the Markov chain at M and M + 1
states is less than e. Essentially, we are approximating an
infinite buffer space by a finite M such that the results obtained
are within a tolerance ¢ of the actual results.

To facilitate subsequent discussion we introduce the notion
of GVT-regulator. A process is a GVT-regulator if it has the
event with the minimum timestamp among all the uncom-
mitted events. Since communication delay is assumed to be
zero, an event is guaranteed to be associated with a unique
process—either the sender or the receiver. It may be noted
that owing to the non-pre-emptive assumption, it is possible for
the GVT-regulator to be processing an event with a timestamp
higher than the GVT event, because the latter may be waiting
to be processed in the GVT-regulator’s input queue.

From a state k a process can make the following transitions
(Fig. 2):

* rollback to state I, for 0 < I; < k (rollback)
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* come down by [, states, 0 < I; < k (GVT advancement)
* move to state £ + 1 after processing the current event
(forward movement).

A state change occurs either when the process under consid-
eration (receiver) completes processing of an event, or the
GVT-regulator completes its event. A rollback to state [;
occurs when the receiver process, upon completion of the
current event (k + 1th), observes an event in the past with
a timestamp between the timestamps of the [1th and [; + 1th
events. A process comes down by [ states (moves to state
k — l2) when the GVT-regulator completes its event and the
GVT of the system moves past I events while the current
event is being processed. This is because the process now has
[, fewer uncommitted processed events after its [, events were
committed by GVT advancement. A process moves to state
k + 1 if neither an arrival in the “past” nor GVT advance
occurs prior to completion of its current event.

To solve the model we need to derive the transition rates

(Fig. 2).

B. Determining Transition Rates

To determine the transition rates, we will deal with sums
of independent and identically distributed (i.i.d.) exponential
random variables. For this purpose, in Appendix A we develop
L; ;—the probability that the sum of j independent random
variables is less than the sum of i independent random vari-
ables, all of which are exponentially distributed with the same
rate. In Appendix B we derive C;;—the probability that the
sum of j random variables with rate « and a random variable
with rate § is less than the sum of (7 + 1) random variables
with rate . All of the random variables are independent and
exponentially distributed.

We recall that the message population is m. This is the
number of “threads” in the parallel simulation. We define the
message density to be the ratio of message population m to
the number of processors n. If the timestamp increment is
exponentially distributed with rate A, one might expect the
messages at a processor to be Poisson distributed in virtual
time with rate mA/n (merge m Poisson streams and then
split them over n processes). While this is certainly true of
the events which have committed and no longer influence
computation, this is not true of uncommitted events. The
parameter for the Poisson process which consists of processed
uncommitted events is less than the above value (mA/n),
because lagging processors have not yet sent out their share
of messages. In reality, the nearer an event is to the GVT,
the smaller will be the distance between uncommitted events.
This is because events far ahead of GVT would not have
been generated yet (we call these yet-to-be-generated events,
“holes”)—there will be fewer such holes near the GVT.
In our analysis we make the following approximation: in
Computing C;; we have added j random variables, each
of which is identical and represents the average distance
between two uncommitted events. In reality, the distribution
for uncommitted events will only be “pseudo” Poisson, in that
although the interdistance between consecutive events will be
exponentially distributed, the rates for two consecutive pairs
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will differ slightly. We approximate this by a Poisson process
with rate pA = m'A/n, where p is the effective message
density and is yet to be determined. Thus although m’ does
take into account the number of holes, we do not consider the
fact that the virtual time between events is smaller for those
near GVT than for those that are far into the (virtual time)
future.

Let @« be the probability that the message processed after
completion of the current event is “in the past,” when there are
k processed uncommitted events at the processor (excluding
the event currently being processed). If the processor is
currently idle, @y is the probability that the next message
to arrive is “in the past,” given that the processor k processed
uncommitted events in its buffer. Let I (to be determined later)
be the probability that a processor is idle. We approximately
estimate the fraction of time a processor remains idle by using
an urn model. If the processor under consideration is currently
processing events (i.e., it is not idle) with a Poisson rate of w in
real time (processing times are exponentially distributed), the
events processed by the remaining processors form a Poisson
process with rate (n — 1)(1 — I)w. Hence the probability that
exactly N events are processed by the other processors during
the time the considered processor processes one event is:

(n—1)(1=1) )\ 1
I+(n-1DA-1)) 1+n-1)(1-I)

If N events are processed during the time, exactly N (positive)
messages are generated. The probability that exactly ¢; of
these N positive messages arrive at the considered processor is
(superscript “+” denotes that the expression relates to positive
messages):

- () ()

because messages are routed to a randomly selected process.
Let 1 (to be determined later) be the fraction of processed
events that are eventually committed. Then the fraction of pro-
cessed events that are rolled back is (1 — 7). Each processed
event that is rolled back generates an antimessage to annihilate
the message that has already been sent. Thus if N messages
are processed, then N positive messages will be sent out and,
on an average, N (1 — 1) antimessages will be generated. The
following expression for (i, however, makes the assumption
that exactly N(1 —n) antimessages are generated whenever
N events are processed by the other processors during the
time the considered processor processes its current event. The
probability of exactly 75 of the N(1 — n) antimessages arrive
at the considered process is (superscript “—” denotes that the
expression relates to antimessages):

e+ () (2 (5)

Let P; be the steady-state probability of the process being in
state j. We make the following observation in Fig. 3. When
a receiver in state k receives a message from a sender in
state j “in the past,” it implies that the sum of j random
variables with rate m/A/n and one random variable with rate

A(N) = (
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processor
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Fig. 3. A message in the past.

A is less than the sum of k£ + 1 random variables with rate
m'A/n. The j random variables correspond to the interdistance
between j events “in the past.” Each of these interdistances
is assumed to be exponentially distributed with rate pA. In
this context, « = pA and § = A (see Appendix B), because
the processed uncommitted events are distributed with rate
pA and the timestamp increment is distributed with rate .
Hence we set v = a/3 = pA/X = p in the expression for
Cj.x given in Appendix B. Cj x can now be interpreted as the
probability that a message will be “in the past” of the receiver
if the sender process is in state j and the receiver process is
in state k. A (positive) message is generated when an event is
processed. The probability that a (positive) message arriving at
a receiving processor was generated due to completion of the
jth event above the GVT at the sending processor is precisely
the probability that the sending processor is in state j, viz. P;.
Hence the probability that a (positive) message arrives “in the
past” of the (receiving) processor when it is in state k is:

M
JH(k) =Y PiCjx fork=0.1,2,
=0

where M is the number of states. It follows that the probability
that all of the 7; (positive) messages received by a processor
in state k£ are “in the future” is:

Bliv. k) = (1= [JT(R)])™.

Now consider an antimessage that is the negative image of
the jth processed uncommitted event above (later than) the
GVT. The antimessage is generated when the processor has /
processed uncommitted events in its buffer, [ > j (probability
P)); the rollback starts (probability @;) and continues far
enough to include the jth event (probability ¢'~7, ¢ is a
parameter indicating the length of expected rollback and
will be determined later). The probability that the generated
antimessage is the negative image of the jth event above the
GVT is:

for i1k =0,1,---.

M

E=(G)=Y_ (PQuq'™7), forj=1,2,--.

1=j

Given that the processor is in state k, the probability that an
antimessage arriving at the considered processor happens to
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be “in the past” is:
M
J(k) =Y K~ (j)Cjx. fork=0.1---.
j=0

Given that the processor is in state k, the probability that all
of the io antimessages received at the processor are “in the
future” is:

D(io,k) = (1= [J7(k)])?. foriz.k=0.1.2.---.
Given that the processor is in state k, the probability that
at least one of the iy (positive) messages and i, messages
received by the processor is “in the past” is:

for il.iQ,k = 012
Given that the receiving processor is not idle and is in state

k, the probability that the message that is processed after
completion of the current event will be “in the past” is:

oo N N(1-n)
E(ky =Y (A(N) > ([N,il]+ >IN =n).ia]”
N=0 13=0 i2=0

J(il.iz,k)))>, for k=10.,1.2---

where N is the number of events processed by the re-
maining n — 1 processors during the time the receiving
processor processes its current event. If the receiving pro-
cessor is idle, the processor rolls back if the next arriving
message is positive (probability 1/(2 —n)) and “is in the
past” (probability J*(k)), or the message is an antimessage
(probability (1 — 7)/(2 — 1)) and is “in the past” (probability
J~(k)). It may be noted that for every processed event (each of
which generates a positive message), a fraction 1 — 7 is rolled
back (each event rolled back generates an antimessage). Hence
on an average, 1/(1 + (1 — 7)) fraction of the messages are
positive, and the remaining (1 — 1)/(2 — n) are antimessages.
Given that the receiving processor is idle and in state k, the
probability that the arriving message is “in the past” is:

_ 1 + (I-m) _
=eow) Byt ®
for k=0,1,2,---.

E'(k)

In the following expression we assume that the steady-state
distributions at all the processes are independent. This product-
form assumption is also implicit in the derivation of some of
the other expressions later on. Hence,

Qx = (1 = DE(k) + IE'(k), fork=0,1,--- M.

M

1) Transition Out of State k: Now we determine the proba-
bilities of rollback (R ), GVT advancement (G ), and forward
movement of a process (Fj) while a process is in state k.
Processing times of events at all of the processes are assumed
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to be identical and exponentially distributed. The mean pro-
cessing time is independent of the mean timestamp increment.}
Due to the non-pre-emption assumption, it is possible for the
GVT-regulator (process having the unprocessed event with
least timestamp) to be in state k, £ > 0. However, we observe
that the higher the value of k, the lower is the probability
that the processor is GVT-regulator. This is later verified in
(8). Intuitively, a process is more likely to roll back to the
immediate past than it is to the distant past. This issue of
locality has also been discussed in [10]. In deriving (2)—(7),
we ignore the possibility that a process in state k, k > 0 is the
GVT-regulator. When a process is in state k, k > 0 (process
is not the GVT-regulator), one of the following can occur:

i) the process completes execution of its current event
and observes a message “in the past” (rollback with
probability Ry),

ii) the GVT-regulator completes execution of its current
event and observes a message “in the past,”

iii) the process completes execution of its current event
and does not observe a message “in the past” (forward
movement with probability F}), or

iv) the GVT-regulator completes execution of its current
event and does not observe a message “in the past”
(GVT advancement with probability Gy).

It is possible for the GVT-regulator in state O to observe
an event “in the past” due to the non-pre-emptive rollback
assumption. Now consider two processes—one is the GVT-
regulator, and the other is the process under consideration
(receiver process). As the processing times of the processes are
i.i.d. exponential, each of the processes is equally likely (i.e.,
probability 1/2) to complete execution of its current event first.
Among the above four actions, only the second one does not
affect the state of the process (GVT-regulator finishes before
the process with probability 1/2, and observes an event in
the past with probability Qo). Hence the normalization factor
(1 — Qo/2) is used in the denominator of expressions (2)—(4).
A rollback occurs when the process completes execution of its
current event before the GVT-regulator (probability 1/2) and
observes an event in the past {(Qp):

neta/(i-2)

The process moves forward when it completes execution of its
current event before the GVT-regulator (probability 1/2), and
does not observe an event “in the past” (probability 1 — Qx):

széu—(zk)/(lf%).

The GVT advances when the GVT-regulator finishes first
(probability 1/2) and does not observe an event “in the past”
(probability 1 — Qo):

Gk:%(l—Qo)/(l—%)

I'The value of this mean does not enter our analysis because the overhead
costs such as rollback, state saving, communication, etc., have been assumed
to be negligible in our model and all the phenomena at the uniprocessor and
the multiprocessor are scaled in the same proportion, leaving the performance
measures unchanged.

k=12 (2

k=12 ()

k=1,2.--. (4



GUPTA et al.: TIME WARP WITH MULTIPLE HOMOGENEOUS PROCESSORS

Note that Gy, for & > 0 is independent of k. This is
because the rate at which the GVT-regulator processes events
is independent of the state of the considered processor. When
the considered process is in state 0, we must take into account
the possibility of its being the GVT-regulator. Here we assume
that the GVT-regulator is identical to all the processes in state
0. Specifically, whether a process is a GVT-regulator (with
probability 1/7) or not (with probability (i — 1)/4) is assumed
to be independent of the probability of observing an event
in the “past” upon completion (Qo). This is not strictly true
because the GVT-regulator is known to have the unprocessed
event with the least timestamp (either in the input queue or
being processed), so it is less likely to receive another event
with a timestamp lower than the timestamp of the event being
processed. This assumption is implicit in (5)—(7).

Since the considered process is in state 0, we have at least
one process in state 0. Given that at least one process is in
state 0 (hence the normalization factor 1 — (1 — Py)"), the
probability that exactly ¢ processes are in state 0 is:

(") P31 - Po)"

Z; =
¢ 1—(1-PRy)"

fori=1.2,---.n
where P, is the steady-state probability that a process is in
state 0.

The state of the process is not affected (i.e., the number
of processed uncommitted events at the process remains
unchanged) if: (i) the process is not the GVT-regulator
(probability (i —1)/7), (ii) the GVT regulator completes its
event before the considered process (probability 1/2), and (iii)
the GVT-regulator rolls back (Qg). Hence the normalization
factor (1 - %) occurs in the denominator of expressions
(5)—(7). Only one of the above ¢ processes is the GVT-
regulator. A rollback occurs when the process is the GVT-
regulator (probability 1/7) and, upon completion, observes an
event in the past (probability Qp), or if it is not the GVT-
regulator (probability (1 —1/:= (i —1)/i)), completes its
event before the GVT-regulator (probability 1/2) and observes
an event in the past (Qo):

n Qe (i=1Qo
Ro = ZZl i + 2i

. Qo(i +1)
= 2. 5
; 21 — (’L — 1)Q0 ( )

The forward movement of a process in state 0, Fy, occurs if
it is not the GVT-regulator (probability (: — 1)/4), completes
its event before the GV T-regulator ( probability 1/2), and does
not observe an event in the past (1 — Qo):

n Gi— 1)(1 Qo)
Fo= ZZ (z 1)Q0

(l—l (1‘(20)
Z -(1-1Qo "

The GVT advancement for a process in state 0 occurs when
either the process is GVT-regulator (probability 1/i) and does
not observe an event in the past upon completion (1 — Qy), or

(6)
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it is not the GVT-regulator (probability (i — 1)/7), the latter
completes its event before (1/2), and does not observe an
event in the past (1 — Qg):

N, 1mQe | Gz10-Qu)
GO_ZJ 1_(1 I)QO

_Z 1*Q0)

(i-1)Qo

2) Transition Out of State k Into State j: After determining
the collective probabilities, we now determine the individual
transition rates from state £ to state j. The virtual time
distribution of uncommitted events at a processor has earlier
been approximated by a Poisson distribution with rate pA. This
excludes events which are yet to be generated (holes), and
includes events which will ultimately be cancelled. The virtual
time distribution of committed events is Poisson (mA/n).
The difference can be accounted for by a virtual-time Poisson
distribution (corresponding to events which cause a rollback)
with rate (p; + p,) where the holes are Poisson distributed
in virtual time with rate p; (true messages arriving out of
sequence in virtual time), and the antimessages (messages
that will annihilate “false” events which currently exist) are
Poisson distributed in virtual time with rate p,. In addition,
there will be Poisson-distributed streams in virtual time with
rate p; for messages, and corresponding antimessages that will
arrive in the future (real time). These are the messages which
have not yet arrived, but will arrive at a future time and
subsequently become annihilated. The messages that arrive
“in the past” (and hence cause a rollback) will be Poisson
distributed in virtual time with rate (p; + p, + py). Since the
uncommitted events are Poisson distributed with rate p and
the incoming messages “in the past” are Poisson distributed
with rate p; + pq + py, the length of rollback is geometrically
distributed with parameter, say,

9

_ ptFpatpy
7[) .

Since p¢, pa, and py are unknown, the above expression is
of little use. However, it does establish that rollback length is
geometrically distributed—a fact that we will use shortly. It
may be noted that since we have used M as an approximation
to an infinite number of states, the geometric distribution for
the rollback length is truncated.

Let rr,; be the probability of rollback from state %k to
state j. We note that a rollback of length 1 does not cause
a change of state, since only the event being processed is
rolled back and the number of processed uncommitted events
remains unchanged. This occurs when the arriving message
has a timestamp lower than the current event (k 4 1** event)
being processed, but greater than the last processed event. Thus
a process rolls back from state k to state k& with probability
p (recall the definition of p from the previous unlabeled
expression). A rollback stops at a state with probability p
and continues beyond that state with probability ¢ = 1 — p.
Further, no arriving message will have a timestamp less than
GVT. Hence the maximum length of rollback at state k is
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k + 1. Then
Ry 7p, for0<j<k
Ryq* fork>0 and j=0
- ) 8
k3= Ry, k=0 and j=0 ®)
0, for k < j.

Ry, is the probability of rollback from state & and is given
by (2) and (5). The probability r; ; is due to the geometric
distribution of the length of rollback.

We derive gi ;, the probability that the GVT advances by
exactly ¢ events when the process is in state k. The timestamp
increments at the processes are identically and exponentially
distributed. For & > 7 and & > 0, we observe that the GVT
can advance in two ways (see Fig. 1):

1) The GVT moves up (probability Gi); its next event
has a timestamp which lies between the timestamps of
the 4th and 4 + 1th events of the considered process
( (%)LH, because the timestamp increments at the two
processes are i.i.d. exponential) and all the remaining
(n — 2) processes have their virtual-clock time greater
than the timestamp of the ith event of the considered
process. L; ;41 (Appendix A) is the probability that a
process with [ uncommitted events and processing the
[ + 1th event has a virtual-time higher than the time-
stamp of the ith event on another process:

L\t M n-2
i = G (5) (Z PzLi,l+1) ,
=0

fork >1>0.

2) The GVT moves up (probability G}); its next event
has a timestamp greater than the timestamp of the ith
event of the process (17), and at least one of the
remaining (n — 2) processes has a virtual-clock time that
lies between the ith and ¢ + 1th event of the process:

N[/ n
vi= Gk (5) [(Z PzLi.lJrl)
1=0

M n-2
- (Z PlLi+l,l+1) } )

=0
for k >i>0.

-2

Note that these two probabilities are not mutually exclusive.
It is possible that the GVT moves up (G}), the next event of
the GVT-regulator lies between the sth and i + 1th events of
the process ((%)IH), and at least one of the remaining n — 2
processes has a virtual clock time between the ith and ¢ + 1th
events. Hence,

1
et 1\
gri = Gy + Gy ; — Gy, 5

M n-—-2
(Z PlLi,l+1)
=0

M n—2
- (Z Ple+1,l+1) } , for k>4 > 0.
=0

©
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If the considered process drops from state k to 0 (k = 1 > 0),
it must be that the timestamp of the next event of the GVT-
regulator and the virtual clock time of all the remaining
processes are greater than the timestamp of the kth event of
the process:

ki =
k M n—2
Gi(3) (Z PlLk,t+1> ) k>0andi=k
=0 ) (10)
Go, k=i=0
0, k<i.

Now we are ready to set up the transition rates in the Markov
chain model of Fig. 2:

Tk.j t Gk k-3 0<j<k<M
0<k<M.

(11
(12)

ak,j =

brk+1 = Fi,

Informally, 7y ; is the rate of transition out of state £ and into
state j due to rollback. Similarly, gi x_; is the transition from
state k to state j when the GVT advances by k — j events.
Thus ai ; is rate of transition from state & to state j when
0 <y <k < M. Upon forward movement (F}), a process
moves from state & to state k + 1.

The following balance equations are obtained from Fig. 2:

k-1 M
Py | be g1 + Zflk,j = Pr_1bp_11 + Z Pja; .,
j=0 j=k+1
for0< k<M (13)
M-1
Py Z an,; = Pry_1by—1.m (14)
7=0
M
Pobo1 = »_ Pjaj0. 15)
J=1
Note that the following is valid:
M
(16)

> p=1
=0

C. Performance Measures

In this subsection we determine the expected length of
rollback, the expected number of processed uncommitted
events, the expected number of processed events above the
GVT, the effective message density, the probability of roll-
back, the expected number of wasted events, the expected
fraction of committed events, speedup, and an approximation
to the probability distribution function of the process’s virtual
time with origin at the GVT.

The expected length of rollback is given by 1/p, since
rollback length is geometrically distributed with rate p.% Alter-
natively, it can be computed directly by multiplying rollback

21t is truncated geometric for which the mean is not 1 /p. However, the
choice of a large enough M ensures that the error due to this is less than the
specified tolerance €.
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lengths with their corresponding probabilities. Equating the
two expressions for expected length of rollback, we have:

M+1 . i M i
SN[ PoiQiad T + L PQ
=M :
Zi:o PiQi

/p=
17

Note that p is unknown on both sides of the equation; however,
an iterative algorithm that we present later makes use of this
equation by starting with an arbitrary initial value of p, and
updating the value of p on every iteration.

The expected number of processed uncommitted events is:

A
U= Z EP;.
k=1

The expected number of processed events above the GVT is:
(19)

because the current event being processed will count as being
processed, irrespective of whether or not a rollback occurs.
This is due to the non-pre-emptive rollback assumption.

We now determine p, the effective message density of
processed uncommitted events. It may be noted that although
the unprocessed message population is greater than m due to
the presence of antimessages, we require the message density
of processed uncommitted events, since these are the ones
which are liable to roll back. We recall that the effective
message density of processed uncommitted events is less than
m/n, since the lagging processors have not yet contributed
their share of messages. Let us consider a “typical” processor.
Such a processor would have half the processors ahead of it,
and the other half lagging behind it. The processors which
are ahead have contributed their share of messages to the
typical processor. The processors which are lagging have only
contributed a fraction of their share. If we ignore the messages
sent by the lagging processors into “the future” of the “typical”
processor, we observe that the set of messages sent out by the
lagging processors to the “typical” processor is also the set
of messages that caused a rollback in the latter. A “typical”
rollback message is received 1/p events earlier than the virtual
time of the “typical” processor. Since the lagging processors
(half the total number of processors, approximately) have not
yet contributed 117 /Tprocessed fraction of messages, the effective
message density is:

1
m 25
pe 1o )
n Tprocesscd

The equations for C;;’s (Appendix A), Q’s (1), Ri’s (2),
(), Fi’s 3), (6), Gi’s (4), (7), 71’s (8), gr.i’s (9), (10),
transition rates (11), (12), balance equations (13)—(16), the
average rollback length 1/p (17), the expected number of
uncommitted events (18), the expected number of processed
events Tprocessed (19), and the effective message density p (20)
can be solved numerically. In practice, the solution requires
3-4 iterations on p. More details on the solution procedure
are given later.

(18)

Tpmcessed =U+1

(20)

1021

Once the stationary probabilities are determined, other per-
formance measures can also be computed.
The probability of rollback is:

M

Q=Y PR

i=0

@D

On average, one will find Tprocessed processed events at a
processor above the GVT. Some of these events will be rolled
back (“wasted”), while the others will be committed (“useful”).
The expected number of rollbacks for this set of processed
events is QT processed- The average length of rollback is 1 /-
The expected number of “wasted” events is:

waste = QTprocessed/p-
The fraction of events expected to commit is:

n= (Tprocessed - WaSte)/Tprocessed- (22)

Speedup is defined to be the ratio of useful events processed
by n processors to the number of events processed by a single
processor per unit real time. Since the processors are idle for
a fraction of time I, the speedup is:

S=nn(l-1). (23)

The distribution of processed uncommitted events in virtual
time has been approximated by a Poisson distribution with
rate p. The virtual time of a process is the timestamp of the
event it is currently processing. The virtual time of a process
in state j (j processed uncommitted events above the GVT)
is the timestamp of the j + 1th event being processed. With
the GVT as origin, the virtual time of a process in state j is
the sum of j + 1 i.i.d. exponential random variables with rate
p. The probability distribution function (pdf) of a process’s
virtual time with the GVT as origin can be interpreted as a
random sum of random variables and is given by (£~1 is the
inverse Laplace transform):

M P
fty=2c" ZP](———’"\ ) . 20

= pA+ s

(/))\)j-‘r-lt]e—p/\t

A
= Pop/\e_p)‘t + Z Pj ],

j=1

24

where p, given by (20), is the effective message density, and
1/X is the mean of the exponential distribution for timestamp
increments.

The effect of idle processors on the performance of Time
Warp can be approximated by observing that there are always
at least m unprocessed messages in the system. There might
be more, since message annihilation is not immediate (due to
the non-pre-emptive nature of the model). We ignore this fact
in the analysis which follows and assume that there are always
exactly m unprocessed messages. Using the urn model, a
processor is idle if all of the m messages (balls) are distributed
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PROCEDURE

input number of processes (n), tolerance (¢), message population (m)
set p = m/n. /* equation ( 20) */
set[ = ("ﬂ;l)m /* equation ( 25) */
set p to some initial value; g = 1 - p. /* equation (17) */
set P)’s to any initial value such that sum is 1. /* equations ( 13- 16) */
compute L /* Appendix A */
set7jod = fnew = 0 /* fraction of committed events */
set Syig = Snew = 0 /* speedup */
do {
Sold = Snew
Told = Mnew
compute C /* Appendix B, makes use of p */
/* 7 = pis the effective
message density at this iteration */
do {
compute Q;’s /* equation ( 1) */
compute ai; and by 41 /* equation ( 11- 12 */
update P;’s /* equations 13- 16 */
update p /* equation 17 */
} while difference between any P;’s is greater than e
compute Nnew, Snew /* equations ( 22, 23) */
update p /* equation ( 20) */
update I /* equation ( 25) */
}while $ and 7 not within desired accuracy
print S, 7, and rollback probability

Fig. 4. Algorithm for computation performance measures.
over the remaining n — 1 processors (urns). The probability
that a processor is idle can be estimated by:

(n-1"

nm

I= (25)

In the analysis in previous sections we have assumed that the
probability of a processor being idle is independent of whether
or not the other processors are idle. This approximation is good
for the usual range of message densities, but breaks down
when the message density is very small. In the latter case,
knowing that a processor is not idle significantly increases the
probability of other processors being idle, since there are very
few messages in the system.

D. Algorithm

In the following we outline the procedure to solve the
system of equations. Even though the highly interdependent
set of coupled nonlinear equations appears formidable, the
following procedure computes the performance measures ef-
ficiently by utilizing the mutual dependence and structure
of the expressions derived in the earlier subsections. The
number of equations is the same as the number of unknown
variables. Since some of the equations are nonlinear, the
possibility that the system has more than one solution is
not ruled out. However, the procedure is iterative and our
tests indicated that numerical solutions converged to the same
value irrespective of the initial values assumed. Although the
intermediate expressions are not listed, all labeled equations
except (24) are necessary for solution of the system. The
procedure is presented in Fig. 4.

In the experiments, the tolerance (¢) was set to 0.001.
The final performance measures are accurate to at least two
significant figures. The solution required 3—4 iterations of the
outer loop. Each iteration of the outer loop corresponds to
approximately 100 iterations of the inner loop. Computation
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of C;,; is the more expensive portion which, fortunately, is in
the outer loop. This procedure must be run for a large enough
value of M so that the error in accuracy of the results is within
tolerance. For a tolerance of 0.001, a message density of 1,
4, and 16 approximately required (depending on the number
of processors) M to be 10, 30, and 60, respectively. The
complexity of the procedure depends most strongly on the
value of the parameter M.

IV. NUMERICAL RESULTS AND VALIDATION

The analytic model makes a number of assumptions in order
to make the analysis tractable: zero communication delays,
unbounded buffers, etc. Measurements of a Time Warp pro-
gram running on a shared memory multiprocessor (specifically,
a GP-1000 BBN Butterfly) were made and compared with
the performance predicted by the analytic model in order to
test the significance of these assumptions and the validity of
the approximations underlying the analysis. The Time Warp
program is described in more detail in [5].

The assumptions used in the analytic model pertaining to the
application program (exponential time per event, exponential
timestamp increment, fixed message population, etc.) corre-
spond to a specific instance of the parallel HOLD (PHOLD)
workload model [6]. PHOLD was used in the experiments
performed here. While this satisfies certain assumptions about
the Time Warp program (e.g., exponential timestamp incre-
ment, random message routing, fixed message population,
and others), assumptions such as zero rollback time and
communication delay still do not hold.

Fig. 5 compares the analytical estimate for fraction of
messages which are eventually committed (useful messages)
n with experimentally obtained values. We observe that for
very low message densities, the fraction of useful messages
predicted by the analytical model is less than that which
was observed experimentally. This can be attributed to the
approximation in estimating the fraction of time that a proces-
sor is idle. Consider the following: with a message population
of 1 (message density 1/n), 100% of the processed events
must be committed since no rollback can occur. In this case,
the analytic model assumes that each of the processors is
idle with probability ((n — 1)/n), independent of whether or
not the other processors are idle. In the analytic model it is
probabilistically possible for several processors to be process-
ing simultaneously; rollback can still occur and the predicted
fraction of committed messages is less than that which is
observed. Initially, as the message density is increased, the
number of rollbacks increases, which reduces the observed
fraction of committed events. Later, however, other effects
come into play which cause the fraction of committed events
to increase with message density. These effects are discussed
below. For this reason we observe a “dip” in the observed
fraction of committed events when the message density is low.

For higher message densities (Fig. 5), estimation of proces-
sor idleness is less critical since the processors are busy a larger
fraction of the time. We observe that as the message density
is increased, generally better agreement is obtained between
the predicted and measured fraction of committed events.
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Fig. 5. Analytical and experimental results for .

At moderate-to-high message densities the analytic model
overestimates performance. We believe that the principal cause
of inaccuracy is the assumption that rollback and message
cancellation requires negligible time. Nonzero rollback cost
causes overly optimistic processes to advance further into the
future, processing more incorrect events than they would have
had rollback required no time. This is because the rollback
“wave” takes a nonzero time to propagate forward and “catch
up” with the incorrect messages. Another assumption which
contributes to the discrepancy is negligible communication
delay. Since the communication delay is nonzero, a message
might be in the future of the receiving processor when it
was sent, but in the past of the receiving processor when
it arrives. This contributes to increased rollback and hence
a reduced fraction of committed events. The model assumes
these overheads to be negligible, so it predicts better than
actual performance. These effects are less prevalent for low
message populations because, as noted earlier, processes tend
to become idle rather than incorrectly advancing forward, and
message traffic is lower.

For very high message densities, the finite approximation
to infinite buffering that is used in the analytic model be-
comes more important. This leads to numerical errors in the
computation of C;; for large j, ¢. Stirling’s approximation
to factorials were used to reduce the size of intermediate
calculations (Appendix B). The effect of this error on the
final results was approximately 0.1% for a message density
of 16, 02.-0.6% for a message density of 32, and 0.9-3.9%
for a message density of 64. The errors were higher for larger
number of processors. Overall, the effect was to overestimate
Cj.i» which means that the fraction of useful events predicted
by the model is conservative (low).

Analytical and experimental results for speedup are shown
in Fig. 6. For very low message densities, the analytical
model predicts a lower fraction of committed events, as
discussed earlier—this leads to lower speedup predictions for
low message densities. For higher message densities, speedup
plots are similar to the plots for a fraction of committed
events due to assumptions of zero rollback and communication
costs. The ball and urn model assumes that there are m
messages in the system when, in fact, there are more. Hence
we overestimate the fraction of time when the processes are
idle. In this sense the speedup curves are conservative and
hence suitable for design purposes.

An analytical estimate for the fraction of committed events
is shown as a function of the number of processors in Fig. 7.
The larger the message density, the higher the inherent paral-
lelism leading to better performance. For a constant message
density and increasing number of processors, the fraction of
committed events drops rapidly at first, and then stabilizes.
Initially, adding another processor increases the probability of
rollback sharply, but later the effect is only marginal.

Analytical estimate for the dependence of speedup on the
number of processors is shown in Fig. 8. The larger the
message density, the larger the inherent parallelism which
leads to higher speedup. As the message density is increased
the speedup plot approaches the maximum speedup possible,
viz. speedup = n, the number of processors. As the message
density approaches infinity, speedup is ideal (equal to number
of processors). This is because the timestamp increment will
be Poisson distributed in virtual time with finite rate A, while
the effective message density will be Poisson distributed with
rate pA, where p— > oc. By setting v = oc in the expression
for C;; (in Appendix B, @ = oo and 0 = A), we obtain
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Fig. 6. Analytical and experimental results for speedup.
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Fig. 7. Analytical estimate for the fraction of committed events.

Cj: =0 for all j, i. This implies that the rollback probability
is 0 and the fraction of committed events is 1, from which
speedup is equal to n. Intuitively, for an infinite message
density, a processor needs to have processed infinitely more
events than another processor in order for the latter to roll back
the former. This has zero probability, and so the probability of
rollback is zero. For a constant message density, Fig. 8 shows
the scalability of the processors.

It is illuminating to compare out analytical results with
simulations in [3]. Felderman’s simulation uses a self-initiating
model (as in [21]) where messages are only used for synchro-
nization. Fig. 8 includes a line for his simulation speedups. His
model assumes discrete (integer) virtual times, and exponential
processing times. Although in their model the timestamp
increment is geometrically distributed with rate 1/8, the
speedup shown in Fig. 8 corresponds to § = 1; i.e., a processor
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increments its integer clock by exactly one (v = v + 1) upon
completion of an event. In his model a processor independently
executes an event, advances its local clock upon completion,
and then sends a message to one randomly chosen processor.
The timestamp on the message is the processor’s local clock
time after processing the message. Let us now interpret his
model in terms of our analytic model. The interdistance
between events processed by the same process is at least
1. The timestamp increment is always 1. In our model this
corresponds to the condition that pA > 1 and A = 1 or
p > 1. It may be noted that there is a difference between the
models which is not accounted for—Felderman’s simulation
has timestamp increments of 1, while timestamp increments
in our model for the above conditions are exponentially
distributed with rate 1. For the effective message density p
to be 1, the message density m/n should be a real number
greater than 1 (in the range of 1.5-2.0). It comes as no surprise,
therefore, that Felderman’s simulation results lie very close to
our plot for low message densities. That Felderman’s model
estimates a lower speedup than our plots for larger message
densities can be understood in terms of lookahead. His model
has no lookahead (the timestamp of the event is the same as
the virtual clock of the sender). This is a characteristic of self-
initiating models. If the event just processed is rolled back,
there is a good chance that the message which was sent would
also have been processed (because it has a low timestamp)
leading to cascaded rollbacks. On the other hand, in our model
the message has a timestamp which is computed by adding a
random variable to the virtual clock of the processor. If the
event just processed is rolled back, there is a good chance that
the message which was sent would not have been processed
(because it has a lookahead corresponding to the random

T N
200 300

number of processors

Analytical estimate for speedup.

variable added). Cancellation of the message will probably
not result in a cascaded rollback.

V. CONCLUSIONS AND FUTURE WORK

We have derived and evaluated a discrete state, continuous
time Markov model for Time Warp. We have determined
the dependence of fraction of useful events and speedup
on the message population when n processes limit each
others’ rate of progress by passing messages between each
other. These messages may cause rollbacks and waste some
of the work that a process has accomplished. In addition,
we have derived expressions for several measures which
characterize the dynamics of Time Warp, such as the expected
number of processed uncommitted events at a process, the
expected number of these events which will be rolled back, the
rollback probability as a function of the number of processed
uncommitted events, the pdf of the process’s virtual clock
time, and the pmf for the number of processed uncommitted
events at a process. We have approximately determined the
fraction of time a processor is expected to be idie and have
used it to arrive at a better estimate of speedup. These have
been determined for exponential task times, negligible roll-
back time and communication delay, and unbounded buffer,
homogeneous processes.

The principal contribution is the analysis of the n process
case with a straight-forward Markovian model. The close
agreement between the analytical and experimental results
demonstrate the validity of the approximations. Our model
has successfully analyzed cascaded rollbacks where complex
earlier analyses had stumbled. The difficulty in analyzing
cascaded rollbacks was perhaps the single most important
factor which prevented extensions to the earlier two-processor
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analyses. In addition, to our knowledge this is the first analysis
to be backed by performance measurements of a Time Warp
prototype.

Possible generalizations include the following:

* Extending the model to heterogeneous processors

* Extending the analysis to general (nonexponential) time-

stamp distributions

* Incorporating overheads such as rollback costs, commu-
nication delays, and state saving costs. Use could be made
of results presented in [8] to construct an analytical model
where messages (antimessages) correspond to positive
(negative) customers
Investigating the effect of finite buffer on the performance
of Time Warp.

APPENDIX A
DERIVATION OF L;;

In this appendix we derive L;;—the probability that the
sum of j independent random variables is less than the sum of
¢ independent random variables, all of which are exponentially
distributed with the same rate A. Alternatively, L; ; can also be
viewed as the probability that Erlang with j phases is less than
the Erlang with ¢ phases. Let ¢1(¢2) denote the random sum
of j(7) random variables. Then (L1 is the inverse Laplace
transform):

Lo;=1, i=12--- (26)
Li;=1-1/2, i=12.-- @n
~ Tt :
/\ i ~ /\ J
= [ ¢ R dty | dty,
/ (A+s) /(ﬁ (/\+S)> 1| 2
0 0
ji=1,2---
fo's) to .
)\ltl 1=tz /\gtJl—le—Atl
t f
/ (i~ 1) / G-nr
0 0
3 JZ(Z+A_2>(ii+k~l>
k=1 2
for ji=1,2---. (28)

APPENDIX B
DERIVATION OF Cj;

In this appendix we derive C;—the probability that the
sum of j random variables with rate «, and a random variable
with rate (3, is less than the sum of 7 + 1 random variables
with rate «. All the random variables are independent and
exponentially distributed. Let ¢ denote the sum of j random
variables with rate «, and one random variable with rate /3.
Similarly, let ¢’ denote the sum of (i + 1) random variables
with rate «. Then

Cii=Ljy1it1. fora =3

F i+l t' Y
QT e
CO,i:/——Z.' /ﬁefﬂtdt dt’
' 0

0

(29)
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where v = «/f.
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where v = a/f3; j = 1.2,
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