
Performance Effects of Information Sharing in a Distributed
Multiprocessor Real-Time Scheduler

Hongyi Zhou

Bellcore
RRC 4C-306, 444 Hoes Lane
Piscataway, NJ 08855-1300

Abstract

In this paper, we investigate two questions regard-
ing real-time multiprocessor Scheduling f o r large-scale
NUMA architectures: (1) how are the latency and the
quality of scheduling affected by different degrees of
completeness in the information shared among multi-
ple, potentially concurrent schedulers? and (2) how
can scheduling information be represented so that it is
efficiently and concurrently accessible? W e present a
real-time scheduling algorithm f o r multiprocessors that
i s scalable in the number of tasks performing scheduling
and in the m a z i m u m amount of computation t ime con-
sumed by those tasks. W e also develop a jlezible repre-
sentation f o r shared information within the distributed
scheduler that M easily varied regarding i t s degree of in-
format ion completeness. W e then show that the shar-
ing of incomplete (us. complete) information can lead
t o increased performance regarding scheduling latency
with f e w or no losses in scheduling quality. In addi-
tion, we show that thw holds f o r a variety of parallel
machines, ranging f r o m NUMA t o distributed memory
machines .

1 Introduction
Recent research in multiprocessor scheduling has fo-

cussed on the effects of multiprogramming on system
throughput and on the speedup of parallel program
execution [I, 121. Experimental results have been at-
tained for parallel program scheduling on dedicated
multiprocessors, such as the work on co-scheduling [6],
on real-time multiprocessor scheduling [4, 13, 3, 21, and
others. Research in multiprocessor operating systems
has complemented such work by designing interfaces
among hierarchically structured schedulers and task
dispatchers in experimental and Unix-compatible mul-
tiprocessor operating systems [I].

Karsten Schwan Ian F. Akyildiz

College of Computing
Georgia Institute of Technology

Atlanta, GA 30332

In such research, it is often assumed that schedulers
- like other operating system components - are inter-
nally concurrent so that they can be easily scaled to
different size parallel machines and to varying applica-
tion demands. For large-scale parallel machines, this
implies that scheduling decisions are made by multiple
potentially concurrent and cooperating tasks. Further-
more, since large-scale machines typically exhibit non-
uniform memory access (NUMA) characteristics (or do
not offer shared memory at all, as with distributed
memory machines), such tasks should access scheduling
information locally whenever possible. In other words,
scheduling information must be distributed across mul-
tiple memory units.

Distribution of scheduling information enables ac-
cess locality and concurrency during scheduling. How-
ever, additional scheduling overhead may result from
accesses to remote scheduling information required in
several situations, including when a processor’s sched-
uler attempts to schedule a task on a remote processor.
Such overhead can be reduced by a scheduler’s use of
incomplete information about other processors’ sched-
ules, but usage of incomplete information also results in
tradeoffs regarding the quality vs. latency of schedul-
ing decisions. For example, while some scheduling algo-
rithms simply use recent estimates of total workload on
remote processors (an example of incomplete informa-
tion) [9] when performing task to processor assignment,
it has been shown that more complete information re-
garding remote processors’ schedules is required if a
task must be co-scheduled with other tasks [SI.

In this paper, we investigate two open questions re-
garding multiprocessor scheduling for NUMA architec-
tures:

Incomplete scheduling information - how are the
latency and the quality of scheduling affected by
different degrees of completeness in the informa-
tion shared among multiple, potentially concur-
rent schedulers?

46
1052-8725192 $3.00 D 1992 IEEE

0 EBcient information representation - how can
scheduling information be represented on NUMA
and distributed memory machines so that it is ef-
ficiently and concurrently accessible?

We will addrese the issues listed above for a cer-
tain class of parallel programs: real-time applica-
tions executing on dedicated NUMA multiprocessors.
Specifically, the parallel applications this research ad-
dresses are the dynamic generalizations of real-time
applications studied earlier in [4, 111. In dynamic
real-time applications, it is possible to create on-line
time-constrained tasks that cannot be predicted or ac-
counted for prior to program execution. Since such dy-
namic tasks’ timing requirements are not known prior
to program execution, schedulability analysis must be
performed on-line. Off-line scheduling algorithms are
also required, because in actual real-time systems dy-
namically created tasks typically eo-exist with a min-
imal statically defined task set. In this paper, we are
concerned with on-line multiprocessor scheduling.

Additional contributions of this work include:
0 a novel real-time scheduling algorithm for multi-

processors that is designed to be scalable in the
number of tasks performing scheduling and in the
maximum amount of computation time consumed
by those tasks; and

0 a representation for shared scheduling information
- called load intervals - that can be easily varied
regarding its degree of information completeness.

This paper is organized as follows. In Section 2, we
define the scheduling problem being addressed by this
work. Section 3 describes the scheduler and its schedul-
ing algorithm. The performance evaluation of the algo-
rithm in Section 4 is carried out on a 32-node GPlOOO
BBN Butterfly and on a SUN Sparcstation using arti-
ficial workloads for the distributed scheduler. Projec-
tions of those results to distributed memory machines
(like the Intel iPSC series machines) are presented in
Section 4.1.3. Section 5 concludes the paper.

2 Problem Description
We are concerned with the problem of allocating and

scheduling a set of n independent preemptable sporadic
tasks on a shared-memory multiprocessor system with
p identical processors. Each processor in such systems
has local memory that can be shared with other pro-
cessors a t some penalty in memory access time via a
switching network. The time required for the comple-
tion of a memory reference therefore depends on the
relative locations of the requesting processor and the
target memory unit. For the shared memory imple-
mentation of the distributed scheduler, we also assume

that locally cached data values are subject to hardware-
supported shared memory consistency constraints. The
BBN Butterfly multiprocessor and hierarchical cache
architectures are examples of such systems.

Each task is described by (A, S, C, D) , where A is its
arrival time, S is the earliest possible time a t which its
execution may begin (start time), C is the estimated
maximum computation time, and D is the deadline by
which it must complete its execution, which are all as-
sumed known when the task arrives at the system (or
at latest, when it is scheduled). We shall denote the
i-th task by Ti and use the subscript i in all of its pa-
rameters. The larity l of task T; on a processor is given
by 1 = A - Ci where A is the total available processor
time in the scheduling interval [Si, Di]. Note that since
A varies with time, a task’s laxity changes over time. A
task’s laxity may be used as a measure of its urgency at
some given point in time. For example, a task’s laxity
of 0 at time t implies that the task must be scheduled
immediately in order to meet its deadline. A task’s
mazimum laziiy value is the maximal value among its
set of laxities on the parallel machine’s processors.

The function of a scheduling algorithm is schedu-
lability analysis and schedule construction. Schedula-
bility analysis determines whether a feasible schedule
exists for a set of tasks, whereas schedule construction
calculates a feasible schedule, if it exists. Schedulability
analysis is particularly important in dynamic real-time
applications because it determines a t run-time whether
the timing constraints of newly created tasks can be
met. Specifically, we call a newly arriving task d y -
namically schedulable if it can be scheduled to meet its
timing constraints such that all previously scheduled
tasks also remain schedulable.

Some of the existing real-time multiprocessor
scheduling algorithms [4, 131 define a schedule S as a
sequence of slices, where each slice is a vector of length
p (the number of processors). The ith element of this
vector indicates the task assigned to run on processor
P, during the time interval defined by the slice’s start
time and duration (or length). Therefore, a slice de-
scribes some subset of tasks that can run in parallel
during some time interval.

Given the schedule description above, a multipro-
cessor scheduling algorithm operates by extending an
empty or partial schedule with new slices, one slice at
a time [13]. Efficiently accessible global data struc-
tures for the slice-based schedule description have been
designed for small-scale UMA machines [lo]. For
large-scale parallel machines and NUMA machines, the
important implementation issues that should be ad-
dressed include:

0 Concurrency of access - since multiprocessor

47

scheduling consists of both (1) schedulability anal-
ysis (also called ‘scheduling’) and (2) task schedul-
ing (also called ‘low-level scheduling’ or ‘dispatch-
ing’ [12]), tasks performing steps (1) or (2) should
be able to access all required information concur-
rently, thereby avoiding unnecessary serial bottle-
necks.

schedulability analysis. Additional waiting queues may
exist in individual processors for local arrivals, if de-
sired [2]. As per the definition of dynamic scheduling,
all tasks may arrive randomly in such queues during
system execution. Note that realistic large-scale im-
plementations will require that the single global queue
be replaced by several concurrently accessible queues,

0 Locality of access - for performance (on NUMA
machines) and for reliability, scheduling informa-
tion should be distributed across processors such
that information is locally accessible whenever
possible (e.g., local ready queues), thereby avoid-
ing network contention and increased scheduling
latencies due to global data accesses by dispatch-
ers and scheduling tasks.

at the possible loss of desirable properties in global or-
derings maintained among queue elements.

As evident from Figure 1, the distribution of
scheduling information and the existence of a global
task queue permit schedulers to execute on any of the
p processors (numbered from 0 to p - 1 arbitrarily) in
the parallel machine. Since the global task queue may
be simultaneously accessed by multiple schedulers, a
mutual exclusion lock L is used to serialize all queue

The algorithms presented in this paper avoid task accesses. This ensures task scheduling in queue order
(i.e., earliest deadline first). Furthermore, serialization
of queue accesses by schedulers prevents the concur-

migration for reasons explained in [15].

3 A Distributed Real-Time Multipro-

3.1 Multiprocessor Scheduler Structure

Scheduler Structure. Clearly, the NUMA or
distributed memory nature of large-scale parallel ma-
chines should determine the structure of multiproces-
sor schedulers. In our design, scheduling information
is distributed to permit concurrency and locality of ac-
cess, as mentioned in Section 2. Specifically, as shown
in Figure 1, each processor has a local ready list, called
an Earliest-deadline List (EL) [7], containing all tasks
that are guaranteed to be locally schedulable. In ad-
dition, each processor maintains in its local memory a
data structure, called a Slot List (SL) [7], that records
the time intervals currently occupied on the processor.

Figure 1 shows the distribution of all scheduling in-
formation (SLs and ELs) across the different mem-
ory units of the parallel machine. It also shows how
scheduling is performed given this distribution. Specif-
ically, tasks performing dispatching and schedulability
analysis do not run on some single dedicated processor.
Instead, each processor has a local dispatcher access-
ing its local EL, and a copy of the scheduler’s code
for performing schedulability analysis. When a sched-
uler is executed on a processor, it uses the uniprocessor
scheduling algorithm explained in [7] and the local SL
for analysis concerning the task’s scheduling on its own
processor; it accesses remote SLs for analyses concern-
ing task scheduling on remote processors. Our simple
initial implementation of the distributed scheduler uses
a single global task queue. This global queue, ordered
by increasing deadlines, contains all tasks requiring

cessor Scheduler

and Algorithm

rent execution of multiple scheduler tasks, as shown
in Figure 1 by the use of dashed ovals vs. solid ovals
for depicting schedulers. As a result, no synchroniza-
tion is necessary on the data structures accessed by
multiple schedulers (i.e., the SLs distributed across the
machine’s p processors).

Scheduling algorithm. Whenever a scheduler
runs, it first attempts to acquire the lock L on the
global queue. After lock acquisition, it inspects the
first task T in the queue and tries to schedule it on
the ‘best’ processor, using the uniprocessor schedul-
ing algorithm presented in [7]. According to our static
multiprocessor scheduling algorithm described in [14],
this ‘best’ processor should be the one on which T at-
tains the maximal laxity value, which is determined
by searching the SLs on all of the processors in the
parallel machine. After T has been scheduled, it is
removed from the waiting queue, and the lock L is re-
leased. The scheduler then finishes its current run. As
stated in Section 2, task migration is not supported,
so that each task has to be scheduled on a single pro-
cessor. However, programmers may enable migration
by explicit decomposition of a single logical task into
several physical tasks, each of which may be scheduled
separately by the scheduler.

Recall that the main subject of this paper concerns
information sharing in the distributed scheduler. Such
information sharing occurs in the scheduler during the
selection of the ‘best’ processor for task scheduling.
The remainder of this paper focuses on an evaluation
of tradeoffs between algorithm quality vs. run-time la-
tency experienced when different information is shared
during ‘best’ processor selection. Toward this end, we
call the multiprocessor scheduling algorithm explained

48

, ,

Figure 1: Structure of the Multiprocessor Scheduler

in this section an SL-algorithm, because it uses the
complete remote scheduling information contained in
processors’ SLs for ‘best’ processor selection. Since this
incurs significant run-time costs due to remote memory
accesses, the SL-algorithm’s latency is reduced when
incomplete scheduling information is used, a t some loss
in quality of scheduling decisions. Accordingly, in Sec-
tion 3.2, we introduce the load interval representation
for incomplete scheduling information, and we define
an m-algorithm as the variant of the SL-algorithm that
(1) uses slot lists locally and (2) uses m load intervals
as approximations of remote processors’ scheduling in-
formation. Performance comparisons between these al-
gorithms are presented in Section 4.

3.2 M-Algorithms Using Incomplete
Scheduling Information

In the SL-algorithm, the SLs of p processors are the
basis for sharing scheduling information among multi-
ple schedulers. Specifically, whenever a scheduler needs
to choose the ‘best’ processor for a task to be scheduled,
it calculates the task’s current p laxity values by search-
ing these p SLs. The task is then scheduled on the
processor with maximal laxity value. However, exper-
imental results demonstrate that for NUMA architec-
tures (and also for distributed memory machines), such
searches incur significant costs due to remote memory
accesses. As a result, reductions in algorithm latency
require additional reductions in the number of remote
memory accesses. In other words, the use of incomplete
scheduling information is indicated.

One type of incomplete scheduling information used

in previous work is the cumulative computation time
of tasks in remote ready queues [9, 51. Unfortunately,
such an approximation of processor load is not suffi-
cient for real-time applications due to their task timing
constraints defined by arrival times, start times, and
deadlines. Specifically, a processor’s real-time schedule
may consist of a set of occupied time intervals that are
not adjacent (i.e., there may be an idle period between
any two consecutive busy periods). Therefore, esti-
mates of total processor load are not good predictors
for task schedulability. This is shown in the example in
Figure 2 (a). In this example, task T with [A, S, C, D]
= [0,60,50,140] can only be scheduled on processor PI
due to the task’s timing constraints and the available
times on processors PI and P2 (on PI, time 40-135 is
available). However, total cumulative load on proces-
sor Pz is less than that on PI, therefore causing the
task’s assignment to the wrong processor.

The representation of incomplete scheduling infor-
mation developed in our work is called load inter-
vals. In this representation, the entire time span
(ETS) from system-start-time to system-end-time is di-
vided into a number of time intervals of equal length’:
[I-start;, I-endi], i = 1,2, ..., m, where m is the total
number of intervals. Processor workloads are main-
tained for each load interval [I-starh, I - e d .] , where
each instantaneous workload is defined as the ra-
tio of cumulative task computation time occupied in
[I-Start; , I-End,] divided by the total length of inter-
val [I-Start; , I - E d] .

‘The last interval may have a different length.

49

A S C D
T 0 60 50 140

p1 5
40 135 200 0

Load Intervals 0.8 0.0 0.3 1.0
for PI I I I 1 I

0 50 100 150 200

Load Intervals 0.0 1.0 0.4 0.0
for P2 I I I I I

0 50 100 150 200

Figure 2: Example of the Load Intervals

A scheduler executing an m-algorithm uses the local
SL only for schedulability analysis on its own proces-
sor, whereas load intervals are used to share scheduling
information with other processors. Specifically, each
processor maintains a load array data structure ,which
records the workloads of load intervals on its own pro-
cessor. Each array element represents a load interval
[I-start, I-end] with three fields: interval-start, inter-
val-end, and workload. An m-algorithm selects the
‘best’ processor for task Ti as follows. First, it calcu-
lates a containing period for Ti. This period totally con-
tains Ti’s scheduling interval [Si, Di] and it intersects
some integer number of load intervals. Namely, the
start time of the containing period is equal to the start
time of the first load interval included in this contain-
ing period, and the end time of the containing period
equals the end time of the last load interval included.
Second, the m-algorithm computes the workload in the
containing period for each processor from 0 to p - 1,
by accessing the remote load arrays. Task Ti is then
scheduled on the processor with the least workload in
the task’s containing period, and the workloads of the
appropriate load intervals on that processor are up-
dated accordingly. However, it is not guaranteed that
task Ti is schedulable on that processor. If it is not
schedulable, task Ti is then scheduled on the processor

with the second least workload in the task’s contain-
ing period. If the task is again not schedulable, it is
then scheduled on the processor with the third least
workload, and so forth.

When using 4 such load intervals, the scheduling in-
formation in Figure 2 (a) appears as shown in Figure 2
(b), and a comparison of workloads in the task’s con-
taining period [50, 1501 (which contains the second and
third load intervals) correctly identifies processor PI as
the ‘best’ processor. .

Load intervals are easily varied approximations of
scheduling information. The information carried by
them is equivalent to the cumulative task computation
time used in [9] when a single load interval spans all of
the ETS on each processor. At the other extreme, the
information carried in load intervals equals that con-
tained in the SLs when the number of load intervals is
equal to the total number of time units in the ETS.

4 Performance Evaluation
The following properties of the distributed scheduler

0 Concurrency of access - since scheduling informa-
tion is separated into EL and SL lists, both of
which are distributed across the processors in the

are apparent from the previous sections:

50

parallel machine, dispatchers resident on each pro-
cessor are able to run concurrently with each other
and with scheduling tasks performing schedulabil-
ity analysis, thereby avoiding unnecessary serial
bottlenecks.

Locality of accem - the distribution of ELs,
SLs, and load arrays results in local accesses to
scheduling information whenever possible, thereby
also avoiding network contention and increased
scheduling latencies due to remote memory refer-
ences by dispatchers and scheduling tasks.

No task migration - task migration is not permit-
ted, so that the problems mentioned in Section 2
are eliminated. Specifically, (1) the costs incurred
by task migration are avoided, and (2) processors
are never forced to be idle when there are ready
tasks.

The two remaining interesting performance aspects
of the dynamic, distributed multiprocessor scheduler
are (1) the performance effects of sharing complete
vs. incomplete scheduling information and (2) schedul-
ing performance in terms of the number of task sets
that can be scheduled. We evaluate (1) by comparing
the performance of malgorithms with that of the SL-
algorithm. Since there exists no optimal dynamic mul-
tiprocessor scheduling algorithm [3], (2) is evaluated
based on the performance evaluation of our dynamic
algorithm’s static counterpart [14].

The results described in this section are attained
by experimentation and simulation. Experimental re-
sults are attained on a sample NUMA machine, a 32-
node GPlOOO BBN Butterfly multiprocessor. Specif-
ically, the uniprocessor and the distributed multipro-
cessor scheduling algorithms described in this paper
are implemented using a real-time threads [8] package
available on that machine, thereby permitting exact
measurements of access latencies to local and remote
data structures (i.e., ELs, local and remote SLs, and
load arrays). In addition, scheduling latencies of the
SL- and malgorithms can be evaluated precisely. The
quality of scheduling decisions made by SL- and m-
algorithms is evaluated using synthetic workloads im-
posed on the scheduling algorithms. Such simulation
runs are performed with the same algorithm implemen-
tation on a SUN Sparcstation.

4.1 Load Intervals versus Slot Lists

We evaluate the impact of information sharing in
the distributed scheduler on two important factors re-
garding the performance of the scheduling algorithm:
(1) the quality of scheduling decisions in terms of the

number of task sets found schedulable and (2) the la-
tency of scheduling decisions. Clearly, these two fac-
tors depend on the degree of completenesa of schedul-
ing information carried by the data structures being
used. Below, we show that the quality of schedul-
ing decisions improves as the degree of completeness
of scheduling information increases (i.e., as the num-
ber of load intervals increases). However, scheduling
cost (i.e., the latency of making a scheduling decision)
also increases with the number of load intervals. Ex-
periments are conducted to evaluate the actual delay
caused by searching the load arrays versus the delay
caused by searching the slot lists when a scheduler se-
lects the ‘best’ processor for a task. Simulation studies
are also performed to reveal the impact of the num-
ber of load intervals on scheduling quality. In addition,
appropriate values for the number of load intervals cor-
responding to ‘good’ approximations of scheduling in-
formation are determined.

4.1.1 Quality of Scheduling Decisions
Ideally, the SL- and malgorithms should be evaluated
with synthetic workloads consisting of some number of
task sets with feasible schedules. Algorithms’ quali-
ties can then be characterised as the number of task
sets that can be feasibly scheduled by them. Unfortu-
nately, the feasibility of a randomly generated task set
can be determined only by exhaustive search. For p
processors, the complexity of such a search for n tasks
is O(pn * n!). Although branch and bound techniques
may be used to reduce the search time, we consider
such an approach impractical.

The synthetic task generator used in our simulation
studies generates task sets with randomly generated
start times, worst case execution times, and deadlines.
100 task sets are generated for each simulation run,
given task set size, N, as an input. The task set sire N
determines system workload. All tasks in each task
set are placed into the global waiting queue at the
same time and are then scheduled one by one. Since
each generated task set is not guaranteed to be feasi-
ble (Le., a feasible schedule for the task set may not
exist), scheduling quality of malgorithms is compared
with that of the SL-algorithm according to the num-
ber of task sets, out of the 100 generated sets, that are
found schedulable. Task start time and task computa-
tion time are random variables with exponential distri-
bution. The deadlines of tasks are defined as: deadline
= start time + computation time + a random initial
laxity value, where the initial laxity value is also ex-
ponentially distributed. Since simulation results using
uniform start times and uniform computation times are
found very consistent with the results using exponen-
tial distributions, they are not reported here.

51

For 24 processors, Table 1 illustrates the number of
task sets that can be scheduled out of 100 by the SL-
algorithm and by malgorithms using various values of
m. Table entries show scheduling results using vary-
ing workloads, i.e., using varying task set sizes. We
assume that the ETS (entire time span) spans time 0
to 25000. The mean computation time of tasks is 100,
tasks’ mean initial laxity value is 1000, and tasks’ mean
start time is 2000. Note that light loads (e.g., N = 100)
result in excellent scheduling decisions regardless of in-
formation completeness. Namely, the number of task
sets found schedulable when m = 1 is almost identical
to the number for m = 600. However, with heavier
loads (e.g., N = 700 and above), significant differences
in performance of the SL-algorithm compared to m
algorithms occur for varying values of m. Specifically,
good approximations (high values of m) of complete
scheduling information are required for high loads to
approach the SL-algorithm’s performance.

The results displayed in Table 1 are analogous to the
results attained with parallel machines ranging in size
from 4 to 128 processors. For comparison, some mea-
surements using 64 processors are depicted in Table 2.
Again, significant differences in algorithm performance
appear for substantive loads.

In general, these simulation results demonstrate that
increases in the value of m result in corresponding
increases in the quality of scheduling decisions made
by the malgorithms. Furthermore, we conclude from
these results that the incomplete information contained
in the load intervals may replace the complete infor-
mation in SLs even with relatively high system loads.
Specifically, for system loads ranging from 100 to 600
tasks on 24 processors, the performance of the m
algorithms approximates the performance of the SL-
algorithm for values of m exceeding 130 or 190. How-
ever, for real-time scheduling, it is not useful to share
single values (i.e., m = 1) indicating processor load
or utilization (as often done in distributed systems re-
search). The utility of replacing the SLs with the load
intervals is further corroborated by the measurements
of actual scheduling decision latency described next.

4.1.2 Latency of Scheduling Decisions
Clearly, the scheduling quality decreases experienced
by the malgorithms compared to the SL-algorithm
should be offset by improvements in scheduling latency.
Theoretically, the time complexity of the SL-algorithm
for searching p slot lists is O(pn) in the worst case,
where n is the number of tasks that have been guaran-
teed to meet their deadlines. However, since the num-
ber of slots in the SL is much less than n on average
[7], the average complexity of SL searches is much bet-
ter than the worst case time. Alternatively, when load

intervals are used for representation of scheduling in-
formation, search time complexity is O(p). However,
the actual delay experienced by the malgorithms’ load
array accesses also depends on the number of load in-
tervals. This is because (1) the number of load intervals
is inversely proportional to the load interval length for
fixed values of the ETS and (2) short load intervals
require more load intervals to be included in some con-
taining period.

Slot lists and malgorithm implementations on a 32-
node GPlOOO BBN Butterfly (a 68020-based machine)
observe the following facts For slot lists, each slot access
requires three memory references [7]: one for accessing
the slot’s address, a second for accessing the slot’s start
time, and a third for accessing the slot’s end time. In
contrast, each load interval in a load array can be ac-
cessed using a single memory reference, because array
accesses are performed with indices replicated across
processors’ memory units and the number of array el-
ements is fixed. This description might suggest that
a ratio of 3:1 will result for the SL- vs. malgorithms
performance. However, this is not the case because all
schedulers execute local code and access scheduling in-
formation on remote processors only during ‘best’ pro-
cessor determination. As a result, actual differences
in decision-making latencies between the SL-algorithm
and the malgorithms will be less than the ratio of 31.

Below, we refer to the process of selecting a ‘best’
processor as a scheduling decision-making. We obtain
the scheduling decision-making latencies for a variety
degrees of information completeness by measuring the
scheduling delays caused by the SL-algorithm and the
malgorithms for different values of m. Figure 3 depicts
the observed decision-making latencies for 24 proces-
sors as a function of system workload. At each load
level, we measure the decision-making latency for each
task in the task set. Note that the figure depicts the
averages of measured values. Observed variances are
small and are not shown in Figure 3.

The measured values depicted in Figure 3 demon-
strate that decision-making latencies significantly de-
pend on m, thereby demonstrating that it is impor-
tant to obtain an acceptable degree of completeness
in shared scheduling information. Furthermore, the
use of incomplete scheduling information is shown
preferable to the use of complete information, because
the decision-making latencies of the malgorithm for
m 5 190 are significantly lower than those of the SL-
algorithm. This holds in conjunction with the simu-
lation results in Table 1 where values of m equal to
or exceeding 190 result in good scheduling quality for
most reasonable system loads.

Another interesting result apparent from the data in

52

Table 1: Quality Comparison of Scheduling Decisions, p = 24

Table 2: Quality Comparison of Scheduling Decisions, p = 64

Figure 3 is that slot lists are efficient representation of
complete scheduling information for two reasons. First,
when the load interval length equals unit time (i.e., the
number of load intervals equals the total time of the
ETS), the information carried in the load intervals is
equivalent to the complete information contained in the
slot lists. However, the latencies of the malgorithms
with m = ETS substantially exceed that of the SL-
algorithm. Second, with increasing system load, the
latency of the SL-algorithm actually decreases due to
slot merging and becomes lower than that of the m
algorithms with values of m exceeding 600 (and for
values of m exceeding 400 for extremely high loads not
shown in Figure 3).

4.1.3 Decision Latency for Distributed Mem-
ory Architectures

The ratio of local to remote memory access times is
1:7 on the GPlOOO BBN Butterfly. An optimistic as-
sumption places the corresponding ratio for distributed
memory machines (e.g., the Intel iPSC series machines)
at 1:50. We simulate expected performance on a dis-
tributed memory machine by experimentation with
slightly altered implementations of the SL- and m
algorithms, where each remote memory reference (to
a remote load interval or to a remote slot) is repeated
6 times. This results in an experienced ratio of local to
remote memory access times of 1:42. In addition, we
compare NUMA performance with UMA performance,

using implementations of the SL- and malgorithms
where ‘remote’ data structures are actually resident in
local memory on the GPlOOO BBN Butterfly. Measure-
ments are given in [15]. Those measurements demon-
strate that load interval representations are not inter-
esting for UMA machines, because such machines do
not exhibit any differences in local to remote access
costs. More importantly, those measurements demon-
strate that the importance of incomplete versus com-
plete information usage increases with increases in lo-
cal to remote memory access costs [15]. We conjecture
from our results that the sharing of complete schedul-
ing information is not practical in distributed memory
systems.

4.2 Performance of the Dynamic Multi-

To our knowledge, no optimal dynamic real-time
multiprocessor scheduling algorithm [3] has been de-
scribed in the literature. Furthermore, the generation
of feasible task sets is an NP-hard problem. Therefore,
we gain additional confidence in the performance of the
SL- and m-algorithms based on the evaluations of the
SL-algorithm’s static (off-line) counterpart.

The static SL-algorithm also uses SLs and ELs to
record scheduling information. It schedules tasks one
at a time (as in the dynamic algorithm) and does not
permit task migration. It differs from the dynamic al-
gorithm only in its choice of the next task to be sched-

processor Algorithm

53

Delay (ms)

7.0
6.0

5.0

4.0
3.0

2.0

1.0

0.0
100 200 300 400 500 600 700 800 900

0 slot list
o m=600 + m=400 * m = 300
x m = 190
o m = 130
0 m = l

N, number of tasks in a task set

Figure 3: Comparison of the Average Scheduling Decision Latency

uled from the global task queue. Namely, as with the
dynamic SL-algorithm, it will usually schedule tasks in
order of deadlines, earliest first. However, in contrast
to the dynamic SL-algorithm, tasks with zero or very
small maximal laxity values are always scheduled first,
even if tasks with earlier deadlines exist. Once a task
has been chosen, it is scheduled on the processor on
which it attains the maximal laxity, as with the dy-
namic SL- and m-algorithms in Section 3.1. Therefore,
the static SL-algorithm is basically an EDF algorithm
without task migration. However and in contrast to
other pure EDF algorithms, the static SL-algorithm
uses tasks’ laxities to discover those tasks that must be
scheduled immediately. This is useful when there are
several tasks with relatively large computation times
(and large deadlines) but small laxities.

Details of the static SL-algorithm, examples, and a
performance comparison to a static algorithm using a
pure LLF scheme (a simplified version of the algorithm
in [13]) appear in [14]. In that evaluation, the static SL-
algorithm’s performance is shown competitive to that
of the LLF algorithm in terms of the number of task
sets that can be scheduled. By formal proof, we fur-
ther show that the static SL-algorithm is better than
a pure EDF algorithm, and by simulation, we demon-
strate that the static SL-algorithm performs as well as
the LLF algorithm when the cost of task migration is
assumed 5% or more of the average task computation
time.

5 Conclusions and Future Work
The two contributions of this paper are: (1) the de-

sign and implementation of a distributed multiproces-

sor scheduler and (2) the evaluation of a characteris-
tic of this scheduler important to most parallel or dis-
tributed programs, which is:

What are the performance effects of informa-
tion sharing within a distributed sched-
uler?

Specifically, we show that the sharing of incomplete (vs.
complete) information within the distributed scheduler
can lead to increased performance regarding scheduling
latency with few or no losses in scheduling quality. In
addition, we show that this holds for a variety of paral-
lel machines, ranging from NUMA to distributed mem-
ory machines, where differences in performance due to
information sharing are exacerbated on target parallel
machines with increased latencies of access to remote
information.

We also develop a novel and flexible representation
for shared information within a distributed, real-time
scheduler - termed load intervals. This representation
and the scheduling algorithm being employed can be
easily changed regarding the degrees of completeness
of information sharing (and therefore, the quality vs.
latency of scheduling decisions), so that the resulting
distributed scheduler can be easily scaled and adapted
to different large-scale parallel machines.

Our future work concerns the implementation of re-
alistic distributed operating system services, including:
(1) the scheduling of groups of related tasks that must
be run in parallel or on subsets of processors, (2) the
effects of concurrency of scheduling on scheduling la-
tency and quality, (3) the use of scheduling strategies
other than ‘best first’ when selecting a processor for
task scheduling.

54

References [12] John Zahorjan and Cathy McCann. Processor

David L. Black. Scheduling support for concur-
rency and parallelism in the mach operating sys-
tem. IEEE Computer, 23(5):35-43, May 1990.

Ben Blake and Karsten Schwan. Experimental
evaluation of a real-time scheduler for a multi-
processor system. IEEE Bansactions on Software
Engineering, 17(1):34-44, Jan. 1991.

M. L. Dertouzos and A. K. Mok. Multi-
processor on-line scheduling of hard-real-time
tasks. IEEE I).cmsactions on Software Engineer-
ing, 15(12):1497-1506, Dec. 1989.

W. A. Horn. Some simple scheduling algorithms.
Naval Res. Logist. Quart., 21:177-185, 1974.

L. M. Ni and K. Hwang. Optimal load balanc-
ing in a multiple processor system with many job
classes. IEEE Bans. on Software Engineering,
11(5), 1985.

John K. Ousterhout. Scheduling techniques for
concurrent systems. In Proceedings of the 3rd In-
ternational Conference on Distributed Computing
Systems, Miami, Florida, pages 22-30. IEEE, Oct.
1982.

Karsten Schwan and Hongyi Zhou. Dynamic
scheduling of hard real-time tasks and real-time
threads. IEEE Bansactions on Software Engi-
neering, 18(8):736-748, August 1992.

Karsten Schwan, Hongyi Zhou, and Ahmed
Gheith. Multiprocessor real-time threads. A CM
Operating Systems Reviews, 25(4), October 1991.

K.G. Shin and Y.C. Chang. Load sharing in
distributed real-time systems with state change
broadcasts. IEEE Trans. on Computers, 38(8),
August 1989.

John A. Stankovic and Krithi Ramamritham. The
spring kernel: A new paradigm for real-time
operating systems. A Quarterly Publication of
the Special Interest Group on Operating Systems,
23(3):54-71, July 1989.

Jia Xu and David Lorge Parnas. Scheduling pro-
cesses with release times, deadlines, precedence,
and exclusion relations. IEEE Trans. on Software
Engineering, 16(3), March 1990.

55

scheduling in shared memory multiprocessors. In
SIGMETRICS' 90, Boulder, Colorado, pages 214-
225. ACM, May 1990.

[13] Wei Zhao, Krithi Ramamritham, and J. A.
Stankovic. Preemptive scheduling under time and
resource constraints. IEEE Banaactions on Com-
puters, C-36(8):949-960, August 1987.

[14] Hongyi Zhou and Karsten Schwan. Real-time mul-
tiprocessor scheduling using both deadlines and
laxities. Technical report, College of Comput-
ing, Georgia Institute of Technology, Atlanta GA,
September 1991.

[15] Hongyi Zhou, Karsten Schwan, and Ian Akyildiz.
Performance effects of information sharing in a
distributed multi processor real-time scheduler.
Technical report, College of Computing, Geor-
gia Institute of Technology, GIT- CC-91/40, Sept.
1991.

