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ABSTRACT

Queucing networks which contain finite capacities have proved useful in modeling actual
computer systems and communication networks. The finite capacity of smtions intro-
duces blocking events which should be considered in the performance evaluation.

Specifically, we shall examine the effects of rejection blocking upon queusing networks.

Rejection blocking is defined in the following manner. Upon completion of its service of
a particular station’s server, a job attempis to proceed to its next stqvos, 1f, at that
moment, its destination station is full, the job is rzjected. The job goes back 10 the server
of the source station and immcdéateiy receives a new service. This is repeated until the
next station releases a job and a place becomes available. In the first part of this work the
well known exact product form solution for the cquilibrium state probabilities is
presented for closed rejection blocking networks which have reversible routing. An algo-
nthm s given for computation of performance measures in reversible networks with
rejection blocking. In the second part nonreversible networks with rejection blocking are
analyzed. The analysis is based on the transformation of the state space of 2 z:mdmg
queucing network into an equivalent state space of a nonblocking network with infinite
station capacities. It is shown that the state spaces of both systems are isomorphic under
a given condition. Markov processes describing the evolution of both networks over time
have the same structure. This leads to the product form solution for blocking networks.

Based on product form solution new formulae are given for the exact computation of per-
formance measures.

"Key Words:” ?ﬁr‘fﬁmmm Evaluation, Queueing Networks, Ekm}ﬁm Mm%aum State
Probabilities : S5
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1. Introduction

Queueing networks have received a special attention in the Ias%"fi?wfé*‘ v r‘s"i’ﬁ}}é&:rt‘r}rmam;:

#

cvaluation and analysis of complex multiprocess, multiresource wmmwr swmms;fﬁ queucing

network is composed of a collection of stations (devices with qﬁem‘g) th %xhwh‘ jé}imipmcmﬁs

procesd from one station to another in order to satisfy their service seniirements. The basic

results of queueing network theory were given by Jackson and Gasdon/Newell [JACKE3,
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GORD67a). ’E‘hﬁy showc;:i i.%zat {;pf:n and closed queucing networks with a single job class, with
exponential axm 41 aué ‘semm time distributions, and FCFS queueing disciplines at cach station
haye a praduct jﬁ{m;{}{gsg{z‘ T %1& product form solution states that L};e equilibrium state proba-
bilities consist of a' gmdacz of terms where each term represents a state of the queues. Their
result implies ﬁmtmzhe mdméa;ﬁ stations behave as if they were separate queueing systems,
Baskett, Chandy, Muntz a;x;i Palacios [BCMP75] extended the results of {}gihﬁﬁ, GORD674]
to obtain product form *s{éiﬁiii}ng for open, closed and mixed queueing networks with different
job classes, mn»cxpcmeﬂtmi sgz:mm: time distributions and different queuging disciplines such as
FCFS, &wagga:,S}gmng {P’S} and Last Come First Served Pre-emptive Resume (LCFS-PR).

»»»»»

qaeﬁﬁzng aciw;&rk% {BLEE‘F% Ci“iA“@?S REISTS, REIS80, SAUES1).

~ Product 3{};1;:{3 ﬁ&twarks(aim known as BCMP or separable networks) have proved invalu-
able for the m@dci}ig’g ﬁzfg a ggzjié;y of computer and communication systems. They are sufficiently
ﬁsxihia as 1o adf:qua;qig fﬂﬁ}fg}?ﬁ%ﬁ@f the features arising in such applications. They have not, how-
ever, been able to ;:rmw:%e pmpf:r insight into the phenomenon of i}fmzkmg "t”ius is because pro-
ducz form mcmmyks asmmi: Lhai aath station in the network has an mﬁmtﬁ capacity. Since in
m:zuai syawms ii‘m reioames ha*:n a finite capacity, queueing networks with bk}chng must be

us&d for p&rfoﬁwz}cc anaiysg Eiz}ckmg arises because af the lzmzmnons imposed by the capa-

city of ﬂmzss xtaum&
‘0 In recent years there thas ‘been a growing interest in the development of computational
methods 1o analyze queueing networks with blocking. Researchers from various areas such as
Computer Performance Analysis, Operations Research, and Electrical Engineering Telecom-
munication Systems have studied blocking networks. Several papers have been published deal-
ing with various ty';;evs of blocking types.
Formally, we &zatmgm&%& between three types of blocking: *‘fmw‘”ef Egias:.fzmg“ "Service

Blocking"” and "Re;e*mm BJoc&mg

. In the "Transfer E‘:’aa&z‘ag " case, the blocking event occurs when a job completing service at

station i cannot proceed to station j because station j is full. The job resides in station i’s server,

which stops processing until station j releases a job. This type of blocking has been used 1o
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model systems such as production systems and disk VO subsystems. [A K%f@ﬁ?a,‘b,c,&. PERRSI,
PERRES, ONVUSBT, PERRS7, SURISE, TAKASOL Pt ;{Tf-" SR
In the "Service Blocking” case, blocking occurs when a j&% in front of Jt’fi?ﬁééze at station i
declares its destination station j before it starts its service in statich i"‘sﬁée‘%&z&iﬁ' If the destination
station j is full, the i-th server becomes blocked, ie., it can not servée 'jit«?z& "When a departure
occurs from destination station 7, the i-th server becomes unblockeid artd'the job beging receiving
service. This blocking type has been used to mode! systems such as telecommunication systems
and production systems. [BOXMS1, GORD67b, SURIS4L
In the "Rejection Blocking™ case, blocking occurs when a job mmgzcim service at station
i's server and wants to join station j, whose capacity is full. The job is reieeted by station ;. That
job goes back with a certain probability {rejection probubility) to station g‘»"‘ﬁ“’féiﬁwﬁr and receives 4
ew service with the same mean service time. This activity is n%peamd !mtzﬁ stz mzm j’mieaam 4

W Rt

job, and a place becomes available,

The "rejection blocking” type has been used 1o model wmrmc @w% Q‘i communication net-

works, computer systems with limited muiupmgmmmmfa QTGGMT%'%{% ime& and ﬁexzw&

manufacturing systems. Most of the previous work was done on t?zs:: ﬁ?{:ﬁjimf"“ mmkmg in both
open and closed quencing networks. Within this category, the studies fall into two groups. The
first group provides exact results for both open queucing networks [KONH76, KONH77] and
closed queueing networks {BALSS3, HORDSI, PITT79, YAOSS]. Konkeim/Reiser [KONHT6,
KONHT77] propose an algorithm for the solution of an open network with ‘two single server sta-
tions exhibiting exponential service time distributions. It ako ;ﬁ:ﬁﬁi&& 'ffm:dba‘ek by allowing
some departures from the second station to proceed i}af:k o ﬁw ﬁm %t&?*{}ﬂ 5 qzmm
Balsamo/lazeoalla [BALSS83], Hordijk/VanDijk [HORDS1}, ?:zteﬂ f?"!““?f}é ,.md Yaﬁf’ﬁnmwﬂ
[YAOS85] have shown the existence of product form solutions for closed :qzxeﬁfzmg networks
which satisfy one of the following three conditions: ikl Sy ¥

1) The network routing matrix is reversible. e cHon

i) The p{@iﬁzzbi;izy of blocking is constant; that is, infﬁﬁpﬁfasﬂ«zﬁi of the number of jobs in

the station causing the blocking event.

111} The service rate of each station is constant provided that it is

impossible 1o have empty station st any time.

£
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The gemné gmug ﬁf swémz, is characterized by the $p¢c:ﬁc miszm method [AKYLSS,
L:%&E?E? L»‘\Bl SG, SURIE%; Caseaxss‘?’agaﬁa [CASE79] studied a blocking queueing network
consisting 4 af v.m of more stations in tandem in an effort (o obtain an approximate expression of
the maximum thm}ug%;g@z, bt

‘ Since the " sery ice him&mg“ is identical to "rejection blocking”™ in case of tandem networks,
we mmzdu 1hﬁ wg;:k {}f Sunfl}mh 1 {SURIB4] also in the group of studies for rejection blocking
networks.,. i‘}m, 33;;&33;&;%‘;1:;;1‘;&?5%8&3 study examined closed tandem queueing networks with
finite smz%;::;n capacitics in w%i;:&z the first queue has a capacity graamf than the number of jobs in
the system. By z;;;fai;gii{:g;ign of Norton's Theorem [CHANT75], they reduce each two-station to
a single station with a variable size queuc capacity that is casily ar_miyzg%i An approximation
gi}gmi thm is dﬁ;ivm >'f<}r t?m ggggxi mean residence time Gf the ﬁﬁtwc}rk, assuming exponentially
diazrihurﬁd &s:m e 1;mea Hw major disadvantage to this iechnique i§ that only the total
mrcmg%paz mt! thr: mtai _mean rf:%adcm;e time of a network can be determined. Performance
measures fm‘ mdmdaa} atmf}ns are impossible to compute. Another disadvantage is that it is
rcsir;m:d m nesmrks wnh %maﬁ ;mpuiatxons {computation of marginal probabilities) and with

mm%iy sm{cﬁcd mawns Ti;'a addzzwn the capacity of the first station must be infinite.

éex’tmimh&r mvcsiagazars in recent years have published rﬁmiis on queueing networks
with rejection as w:f:ﬁ as trarss%cr blocking. A bibliography of mﬁins about gueuging network

madel& with ,ﬂI zype:s: of §x§mkzw is given by Perros [PERRB4].

In this Wﬁt%i‘ Wmesgng a computational aigorithm for analyzing closed queueing networks
with rejem’mzbiwgiag ar;rli(rtmfsibic routing. As mentioned before, an exact product form
solution exists for closed njcct;c:m blocking networks which have a reversible routing. However,
o algorithm %}&s been m@;msﬁé for the computation of the normalization constant. In order o
compute the equilibrium state probabilities in the product form solution, the normalization con-
sxaﬁi must be determined for closed networks. A naive technigue to compute the normalization
constant is to enumerate all states and compute their relative probabilities. Absolute probabilities

~ can then be determined from the relative probabilities by normalizing their sum to one. This is of

course feasible only for smau networks, because for larger networks, the number of states grows
rapidly. L ‘
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We consider closed queueing networks with ¥ stations and X jobs which constitute a single
job class. Each station has single server and each server has an ex;}aaczﬁfiaﬁy distributed service
time with mean value 14, {for i = 1.2...N). Each station has a fixed fini te l{’:ﬁﬁﬂé;i}’g M, whéw
M, = queus capacity + 1. A job which is serviced by station i proceeds to station j with the transi-
tion probability p; (fori,j = 1.2,.¥), if station j is not full. In other w&fﬁ’s!tﬁé number of jobs in
station j, &, is less than a1,. Otherwisc, the job will be rejected from the station J, and it will
retumn to the server of station i and receive another round of service. This i§ repeated until a

place is available in station j. Furthermore, we assume that

1
x

X <% M,
fmd
which means that the total number of fobs, X, in the network may not exceed the total capacity
of the entire network. The service discipline of each station is First-Come-First-Served.
ection 2 explores the product form solution for reversible networks given by Hordifk and
van Dijk [HORDS1]. In section 1 we introduce an algorithm for the computation of G(X) and
derive formulae for performance measures for reversible networks. Section 4 and § contain the

analysis of nonreversible networks.

2. Product Form Solution for Reversible Networks with Rejection Rlocking

A queusing network is "reversible” [KELL79, MELAS2], if the following condition is

satisfied:

by =& py forall Ejel2. N 0 ol ¢
This equation states that the rate at which jobs arrive at station j from station ¢ equals the
rate at which jobs leave station j to return 1o station i. Simple examples for revérsible networks

are two-station networks and central server models.

Itis well known that there exists a positive solution fore,: = Lo

z&; 2 - = 3
& =3 ¢ p; Forij=l2. N ; . {2}

P

The relative utitizition (also called loadings) of station i is denated by 7 “and is computed
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by
; xo= iy for f=21,2, 000 N § (3)
We define the vector, & = {kyky ... ky), a5 2 state of the system where & denotes the
number of jobs in'thé station.#.'We say that a state, & = (kyk,, ... ky), is "feasible” if all &'s are
less than or cqual 1o their respective M,'s, the capacity of the station /. Otherwise, the state is
said 10 be "infeasible”, In an infeasible state, at least one of the stations in the system violates its
capacity restrictions. The E‘:}iiewing global balance equation is derived for the proposed model.

i
{ 2 E W Py ’ﬁx{ka}§ }?{&g;ﬁi;u».,,k‘{e) ﬁf (:;}

| 1l
; iwg gl

LA N
& £ E; g‘i} {” ﬁ‘j{&twii ﬂ(ﬁ;,'°' ‘t‘:{’%‘}* FIee ;kéi"'t gx-‘.x(%&ﬂ}

P 0

Informally, the left-hand side of equation (4) denotes the stream out of the staw

%

hy kg, m L k), and the fighz»hanci side denotes the stream into that state,
The binary function, §, ¢liminates the infeasible states.

o if k » M,
8tk ’“1 if atherwise

ﬁﬁ!‘d’ ;if; am% Vannlgk {1«3'{232{}3323 have shown that in a closed queucing network with rejec-
tion %}im&mg; ma: mmfim the re%mbzizty condition (1}, the equilibrium state probability solu-

*u:m for eqnanon {4) fora fca&abi& state ¢k, k;, -+, ky) is represented by the following product

2‘::91*::1 of maxgmgi mbabziztzes

(TES ",ﬁ@“’;! s k{y“; = n ‘xk s {5‘:} : {;5}

f'{ﬁ“}

GiK)is zﬁc normaixmimn constant, which adjusts all the probabilities of "feasible™ states so

that they sum to one. For formal proof of the theorem, see [HORDS1].

Although Hordijk/VanDijk [HORDS1] have shown that a product form solution exists for
networks with rejection blocking, they do not provide an algorithm for an efficient computation
of the normalization constant, G{X), as well as other performance measures. In the next section
we give a mnv{a%mi&s algorithm for the computation of the normalization constant and as well

as formulae for performance measures in such queuging networks,

SRS LR
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3. Performance Measures for Reversible Networks with Rejection Blocking

In order to compute the normalization constant for "rejection” &1&:&2@ networks, we use
the "convolution” algorithm. The normalization constant, G, is computed by the convolution of
N ovgewrs, Gt

Cu6,90,@ .. ®0Cy
where G, (fori = 1,2,.4) is a (K +1) dimensional vector with

[ a0
| &}
G =) 52 ©
Iawg
and
£
§ Yoo AwS _
| & glk=1 , RREA N O
gik) = "ﬁé_ﬁ i Sea b . {?}
| 0 i k>M,

with @ as the convolution operation

Informally, if the number of jobs in the station ¢ exceeds its =::ég_:3zw§zy, M,, the component
#:(ky will be set to 0. This eliminates all infeasible states. Once G& ) is ct:@g%ﬁz,ecﬁ, the other per-
formance measures can easily be obtained using the formulae which are given in the following.

The marginal probability, p,(=), which denotes the probability :héz‘ there are a jobs in the
station i, is obtained using the following equation:

PG 0 goald pat LR T &
g L=l & B i

By substituting the solution for p() in cquation (5) into equation (8) we get

piny = -{%'g% Go K ~ny for = 12N x?id‘iz' 2 12,}{ : %

where g,(n) is computed by equation (7) and G- is the normalization constant calculated without

considering station i,

f;;" = {;3 @ ’Gg & & G.g-g} %‘«‘6({,;; & .. & Gy L
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The mean aumber of jobs in cach station is computed using the following formula:

i M,
KEy= 3 a pin)

wwd

.....

Substituting the value f{é«i‘vm}mg"mzzl probability, p, (#), equation (9) into this formula, we obtain

el M 1A R )

> “m o, " pF )

L gi{‘g} = gg & “E;“{X) a; K wn) {.EO}

The wiilization of cach station is determined by the foliowing equation:

M
pilky= % pin) {1y

wind

By subsututing the values for p;(») in equation (11) we can find a direct solution (i.c., using
the normalization constant), for utilization.

s ol R R e 5 &G0 Gy (K = n) e (1)
S T L 8 6@ |

#ml

4, i’rﬁdacz‘?grggﬁuiuti{;ﬁ for Nonreversible Networks with Rejection Blocking

Our cen{:fzmggéqgcd_{m finding an equivalent non-blocking network which has the same
number of states and the same state space structure as the blocking network. To solve this prob-
lem we use the concept of "holes” (as introduced by Gordon/Newell {GORD67b]). Note that
Gordon/Newell [GORD67b] investigated closed networks with serially connected stations and
service blocking where the blocked job stays at the head of the queue and resides there until a
space becomes available in the destination station. A "hole” is the number of available places in |
the non-blocking network. We assume that the "holes” in the nonblocking network are moving in
the opposite direction of the jobs in the blocking network. For the sake of simplicity in the fol-
lowing we will as&: tﬁc iﬁbiéﬁms I for the blocking network, @ for the nonblocking network,
“"holes” as jobs in®,

We assume that cach station in I must have capacity equal or larger than a, the number of

“holes” in @, such that the state spaces of both networks ™ and @ are isomorphic.

Miza forall i=1,2,+ N {13)
where » is computed by:
¥ o
8 o= Z isi; - & {1“'}
i
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Theorem. A closed queuting network with rejection blocking satisfying the condition, equation
(13), has the following product form solution for the cquilibrium probability distribution of

feasible states:

- g bM<k S dmi G
Pel= oy O+ | ’ as)

where
G {») represents the normalization constant with # jobs computed by equation {14). The nor-
malization constant G(n} can be obtained by the convolution algorithm [BUZE71,

CHANTS] or mean value analysis [REIS80].
Xy = 1w is the relative utilization of the i-th station in ©.

¢; is computed by equation (2). Note that the transition pmﬁaiéiiisies of "holes” in @ are

computed by considering the fact that the "holes” move in the opnosite direction in @ than

ini:
bt i R LAY an
P8 = TS w § g
I8reN

i’ 1s the service rate of the i-th station in @ and is computed hy: '

@ = z Oy b TR U (183
IR TR .4
Note also that equation (18) is derived from the fact that the job flow in @ i5 i the opposite

direction than in I
Proof.

The network @ has the same number of stations as T, ¥ = N . The @ifference is that the sta-
tion capacities arc unlimited, hence no blocking occurs and the total number of "holes” in @ is
» = K. Another difference is that the "holes” in @ move in the opposite direction than in T as
mentioned above. The service times in @ are also exponentially distributed with rates u';, cwﬁ«
puted by equation (18) and the transition probabilities in & are rﬁaw‘x’z‘niﬁwi by égﬁ;ﬁi{m {17N.

The behavior of I" cun be modeled by a Markov process X(). The t}anz@iiign structure of
X (1) can be described by the global balance equation for I'": |
N N

WPy k) kY pR) = T T wy g gl SR plky ki1, k=1, k)

FLO

pA=
M=

;‘E)
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where the binary functions ¢ and § express the impossibility of jobs departing from 2 station that

is empty and entering a station that is full:

0 i

2; {}‘}) 2 I; ’i{
L

‘ (o i kM

: 1 5 o ave
Bt %k = 11 if otherwise

The Markov process X (1) has the following state space:

T }%&
S={EIVi(0SkSM )& S h=K)

FE
Similariy, we define & Markov process X'{e) whose transition structure is described by the

following global balance equation for @ :

rz: E iigﬁ’,; ?i‘g}}#’ﬁf‘}w E g: ﬁi 3’3 %*{}. }§§k&«A z’i{;"i”'i%“' sxﬁ';““}é“ewti{}«‘}

ivg gug A% e

The Markov process X'(1) has the following state space:
S eI 0% Eﬁa}&g&*ma}
i it

We assert that § =5

i} The number of jobs in @ is defined in the following range:

02&, ¢n
Replacing the values fora we got
N
gﬁi;ﬁz_é‘f{é ""’g
dmb

i
Substituting & = (M; - &) and considering X = ¥ &, we get

iwl

‘ 05 0 CKIES M - T &

dul e
Rewriting
f}‘ifi -k {Eéf w M,
ind PES
we obtain
h N
0T hsT M
Fe s iwd



which provides
& s M

i} Substituting the value of # we obtain

N &
ek T 1
1d

iuf

Rewriting

.
T M -K)=K

Pk
Pt

and substituting &, = (M, - &) we gat

u
Lh=K
This implics that the equilibrium state probability pgyof T is f:{*gaévﬁem w the equili-
brivm state probability o’ (&3 of @ ¢
p&y=p'(&K)
Substituting the value & = (M ~ &) we obtain
pii=p M ~ &) e R
Since @ has product fo%m solution, the p’(M ~ k) va?ué@ are obtained from the
Gordon/Newell Theorem [GORD67a] which provides equation {15).
Remark, As mentioned in the introduction Balsamoflazeoalla [BALSE3] and Hordijk/VanDik
[HORDS1] investigate queueing networks with rejection blocking. ﬁawémx they have the fol-
lowing conditions which are not required in our concept: i
i)  The capacity of each station must be equal to the ol mmbcr af;obs with one ‘!esé
job divided by the towm! number of stations with {mc“ less  station,

M, = %«‘““f« for all i.

11} The total number of jobs must be greater than the toml number of stations, & » N,

This implics that no station is allowed to be empty.
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S. Performance Measures for Nonreversible Networks with Rejection Blocking
Corollary. Since the Markov processes in I” with X jobs have the same structure as the Markoy
processes in @ with a "holes" computed by equation (14), the throughput of T with & jobs satis-

fying the condition, equation (13), is equal to the throughput of @ with a jobs:

WKy =2%n) : (19
Since ;:z:; wnh " gﬁh& %maz pmdxzcz form solution, any cxact algorithm such as mean value

amiym IREIS 8&; ¢can hc app%wd for the computation of A%},

Each station’s thmwhp&{ in F is then computed by:

WEKy=€ WKy fori=1, - M (20)
- The mean number of jobs in the i -th station of I is computed by:

;‘g..l:‘fi,_fw.v:ﬂ. v S .
L AKy= X% b piby for ie=g, o0 W (21

i o GG ] o starion
da ¥ 5

where p,(b) is.the margingl probability that there are b jobs in the i-th station which are obtained

from the equilibrivm state probabilities, equation (15

T ptky  forimi, o N 22

Seasidie &

i PR SRR :
Using Little’s law the mean residence time of jobs at the i-th station in I” is determined by:

s i+ )'A",:\,”\'
TR AR

k (k ] ,
Tk e Y ! for d=1, 0 N : 2%
z&k

6. Conclusion

We have gr::ﬁéﬁﬁ&é an éigﬁﬁﬁxm for the computation of the normalization constant and for-
mulae for other g@ffm{iﬁéé measures in queueing networks with rejection blocking and reversi-
bility. This germm effe@i;% analysis of such networks. As generally known the set of reversible
networks is comamed m &iac set of non-reversible networks. However, the exact analysis of non-
reversible networks is p&&sz%iﬁ under the condition, equation (13), which weakens the set of the
non-reversible networks. . We are in the process of finding an approximate solution for cases
where the condition, equation (13}, is not satisfied. It is also interssting to investigate the cases
where the stations have gencrally distributed service times and FCFS scheduling disciplines. H.

von Brand [VONBE7] givéz{ an exact product form solution for reversible open, closed and

mixed queueing networks with rejection blocking. He also introduces an algorithm for the com-

putation of performance measures,
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