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ABSTRACT

Queueing network models are being used to analyzeivarious
optimization problems such as server allocation, design ang eapa-
¢ity issues, t};;%aamai rmmag and workload allocation in computer
systems, communication networks and flexible manufacturing sys-
tems. This paper presents procedures for optimizing the perfor-
mance and cost paramelers for closed queueing network models
with arbitrarily connected single and infinite server stations. The
throughpuls are maximized for fixed costs. The mean response
times are minimized for given fixed throughput values, In both
cases the linear and nonlinear cost functions are considered. The
method of Lagrange multipliers is used to solve the optimization
problems. Numerical examples are given to zi?umm&e and to dis-

cuss the solutions.

Key Words: Computer System Design, Performance Evelustion,
Oplonization, Queneing Nelworks, Lagrange Multipliers. :

1. Introduction
Cost evaluation and performance prediction processes am ‘;m am;mrtmt

step in the planning and design of computer systems, c&mmumm&m% ?ﬁ%&%wf,}f‘kﬁ
and flexible manufacturing systems. Queueing uezwmk : m{ad@?ﬂ“ hmf@ rm’*{*iv«?d
special interest for performance analysis in the last two dﬁmﬁw Several analyt-
teal methods have been derived for the analysis of qaeu&mg mzmm}c models in

recent years |8, 11, 2&} In sddition to the com pnm&wn «t)? ;ﬁwfamxmme meas-

M;Izdz 5 woek weme mmm«d b the Sehoot of Tnformation snd Computer Selence, 105, snd ﬁy the Al
foree (Biee o the Bdeadfle Resenrch, AFUSH, under Goant Noo AFOSR.B8.0008.
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ures, queu&_%a‘gvm@wr& :mmieis can also be used for oplimization of perfor-
mance measures. In tbé}; optimization procedure an objective function, such as
the costs, the throughput, the utilization or response time, ¢an be obtained by
appropriate ﬁ&ieti«i{}_ﬁ;{‘,}f certaln system inpul parameters which are called as
decision variables. Within the modeling by queueing networks, the quantities
such as service rates and the number of jobs can be assumed as decision vari-
ables by wizif;k ah{: o%jmtiy%ve funetion is to be reached. Deeison variables are
selected aub.;et:% m eermm constraints. For example, we optimize the
throughput {)f a gweu qwuemg petwork model by proper selection of service
rates al each smt,ma sa&ygﬁ& o the cost constraints which restrict the range of
the d(:f:iﬁif}{i vm‘mbiﬁs« Qmumug nedwork models represent the relationship
between iim a?::;azziwe fm;cmn and the system inputl parameters, Within these
modeis it ;s‘pm‘sﬁ‘;&sigm have an optimal design of computer systems, communi-
cation nﬁmc}r& 8;{1{3 ﬁmuiﬁ& manufacturing systems by usiog the mathematical
optimization tuzhmqum

Several authors ;;gx{& discussed the issue of oplimization in recent years.
Trivedi 3&& Wagmrfzii consider a computer configuration design problem
where the mm;mter a:f&mm is modeled by 3 closed ceniral server model. The
«y%em Lhmugh;mt is ﬁ%w a&ﬁﬁt«wxf funclion to be maximized by proper choice
of demt:t:: ageﬁds ﬁl&ﬁj@ﬁt to a cost constraint. A non-linear cost function Is con-
sidered in the analysis. Trivedi, Wagner and Sigmon [22), Trivedi and Sigmen
[23] analyze a compuler system configuration problem in which the objective is
1o select the CPU speed, the capacities of secondary storage devices and the
allocation of a set of files across the secondary storage devices so as to maxin-
ize the system throughput subject to 1 cost coustraint. Kleinrock [10], Chandy,
Hogarth and Sauer [5] consider a similar decison model as Trivedi and Kinicki
[20] but their model is an open queueing network model. Chandy, Hogarth and
Sauer [5] extend Kleinrock's model [10] in two different directions. First they

allow locally balanced open queueing networks with multiple jobs classes as well
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as the open networks analyzed by diffusion approximation [12]. Second they
consider a rich class of nonlinear cost functions. Ferrari [8] uses a cyclic queue-
ing model to optimize throughput subjet to a nonlinear cost constraint. He
solves the problem graphically and hence his method is ?ﬂ%f@‘ﬁﬂ&d to problems
with only & few devices. ok B g R

Von Mayrhauser and Trivedi {25] consider a configuration ée&?gm problem
where the computer system is modeled as a closed queueing network. The
mean response time to an interactive user request is minimized am% the épe&&
of the devices are the decision variables. Geist and Trivedi (7] ‘ziefv-einﬁafl an
optimization model for assigning » fixed set of files across an a;émmbiaga of
memory devices so as to maximize system throughput. Trivedi and Kinicki
|20] and Trivedi and Wagner [21] consider single server queueing networks and
show by using the resulis of Price {15] that the optimization problem is global.
They use the convolution algorithm as the base for 0;3&3%2@%30@ and maximize
the throughput and minimize the costs. Note also that they db not give explicit
closed form solutions for the optimization problem.

Kenevan and von Mayrhauser |9] show that the throughput:is a log con-
vex function of the number of items in a closed, single class, .5.&3&’?03‘3( of an
arkilrary number of single and infinite servers, They alisz:s ém&*é %hai f‘ezﬁ??mcai
throughput is a convex function of the relative utilization of the:ssérvers which
is the generalization of Price’s proof [15]. Kobayashi and Gerla [18] determine
the optimal routing in central server models with single-server stations and
multipte classes of jobs. Heiss and Totzauer [8] consider open BCMP queueing
networks with load independent service rates. They deterntine the throughputs
to optimize a linear objective function which is chosen to'beis weighted sum of
station utilizations. As restrictions, minimal and maxima througlputs and max-
imal response times are allowed per Job class, Stecke [19] investigates BCMP
networks in which she imposes a constraint on the total workload in the sys-

tern. She shows that throughput as a funetion of the mﬁé'iﬁf'the %;ewi% rate at
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2 server to the sum of the workloads, not purely concave but rather quasi-

concave,

‘fha& yaper m!mgamzed as follows: In section 2 the optimization problems
are presem«eé ixx 3&::&412; 3 we briefly describe the mean value analysis, hen-
cefmth in 3?{{3% i‘nrm “«AVA and derive the constralut which will be used in
apyiwa&ma cf Lagf'nge multiplier technigue for optimization of performance
Messures. :11:1 section 4 we oblain an iterative formula for maximum
throughput. The .{érmnia has & closed form solution in case of linear cost con-

straints. Responge time minization procedure is given in section 5. Additon-

ally, numerical examples are given to illustrate and to discuss the solutioas.

Optimization

In the égﬁizﬁ%zﬁ{iéa procedure of performance measures such as response
mzze:s, thmugizpaw‘ mmmmm, the objkctive is 1o determine the optimal ser-
vige mife.s as dﬁ{:mm& variables subject to certain constraints. The cost con-

st.rmm is L%zg most common ease and has the following form in the lincar case:

$oam =0 ’ (1)

Ak

where N is5 the ﬁ&mber of stations in the queueing network, The parameter 4 is
the cost mmzm’ma for station i. ¢ denotes the total cost of the queunecing net-
work. :

The ponlinear cost function is the more realistic case where the total costs

are computed as follows:

®
3o ;x;}‘ e L a; = 1 {2}

L Awed
where «; camm‘hs the increase of the costs for each station 7 in the network.
For the special case, oy =1 for ¢ =1,2,.,N we obtain the linear cost function,
equation {i},
In the f{: %{zwmg we summarize the different cfxmmxnmt:@zz problems which

we will xmmagmp m this work.
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i) Throughput Mazimization under Fixed Costs

The total cost for the queueing network model is assumed to be
known. The total cost s the budget available for ;%mmifg%i:tg a given
number of stations with specific service rates. The total £§rang§3;m% is
maximized by determining optimal service rates under cost constraints.

We investigate this problem in section 4.

i) Response Tune Mamization for Each Station

The response time of cach station for a given gqueueing network is
minimized where a given fixed throughput value is controlled. The service
rates are also, in this case, under cost constraints, In ‘z;;éezéiéix"ﬁ a solution

is given to this problem.

3. Mean Value Analysis

We consider BCMP [|8] queueing networks with N sﬁaiiéfx?&smi K jobs.
We denote u, as the service rate of the -th station. As generally known, BCMP
networks contain the following station types: Type £ o Affm - FCFS, Type 1I: »
/Gjt - PS, Type IlI: o jG{IS (Infinite Servers), Type IV: o jGlI-LCFS-PR.

The Bard/Schweitzer [2,18] algorithm provides the following solution for
the analysis of BCMP networks containing single and ’inﬁlﬁié’;ﬁﬁ:*?@? stations.

The mean response time of the i-th station {for i =1, N} &

fwgm{ 1 S R Typeld) £ 15
L =1, P {3
g Type{d} =18

The throughput of the network is obtained by g,,;g;;,;m Lm

R ; s 2
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;;;;;;;;

The miean number of jobs al the i-th station (for i =1,..,N]} is alsc obtained
by Litte’s law:

e ssone

: B i o oig { b (33

where ¢ is the mean number of visits that a job makes to station
Lt = ¥ e pa for {=},.N
#H i3
#5 is the trapsition probability that a job after completing service at station 5
proceeds to station £,
In the fa§3:§u*§;zg we derive new formulas which provide a differeni perspee-
tive on performance measures like mean response times and mean number of

jobs.

By substituting equation (5) in equation {3) we obtain:

$ . . K-l e oyl
o i At K Mk ) Typels} ¢ 15 i
G 5)
e e Typeld) =15

#i

‘fk:s;i'ving [éa{;éaﬁm‘;'{ﬁ} for § we get

1
I;i g #
K-1 At Type{d) ¢ IS
i { 1~ g i ‘
1w | - | ) {g}
e Typeld) =18

M -
&*Eﬁia;%mé‘{ (8)

Xog
&; By 4 ﬁ’ )( £ - f‘: ig})
: & : fud e
CTgeldp A IS 1 K-1 5 4 Tapeis] =& {
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Equation ($) is the constraini used in application of Lagrange multipliers

.
) s g o _ K-1
technique for optimization of performance measures. In [1] we assumed ﬁ‘f{

is approximately equal to one and simplified equation {9). Using the simplified
equations we then solved the optimization problems accordingly. However, the
accuracy of the resulis is violated by this assumption. Similar way of attacking

the optimization problems as in [1] was also utilized by {4.17].

4. Throughmy Optimization for Fixed Costs

In the planning phase of ecomputer systems, communication némwi:s and
flexible manufacturing systems we have w consider the fact that only a certain
amount of money is available. The objective is to apﬁmiﬁz'ﬁw @-rfﬁrmmm
measures within the avallable budget. In this section we show how the
throughput can be macimized by selecting the service rates ;:?ff:gaaiz station
within the available budget. ' _ |

The objective here is o find the optimal service rates 4. whia:;b provide the
maximum throughput 3’ subject to the nonlinear costs. ’i?hfs;%};ww cost is 8 spe-
cial case of the nonlinear ease. Note that another solution was given by Trivedi
and Wagnee {21] 1o this problem. They derive an explicit formula for total
throughput » from the normalizalion constant which is then madimized sublket
to the linear costs, equation (1), dependent on service rates. Howeéver, queue-
ing networks s:wz:ﬁéﬁ by [21] may contain only single server stations. We
include infinite server stations to the model considered for optiniization prob-
lems. The solution suggested by [21] s further simplified here by using the
MVA as the base for optimization.

The optimal service rates x which determine the maximim throughput
for a given cost constraint eannot be computed by a closed form solution. How-
ever, they are determined Hteratively as follows: o ks

o Initielize the auxilary quantities

fﬁcj wer for §fe=1, . N




o lterale for n =1.2,.. untl the deviation betlween the iterations is small:

Ml — (10)
k {E Veasur-" +(k-1) T aeue-™
o A
e V/‘W
i - fhnd
Ao g L_‘ ¢ & uf ) |
p—— 4 (K1} for  Type(d) b IS
X ) { ¢ % #?,‘ gisk
{mad} G : 14 ; - ‘
N § Ve egul £9 (11}
calel gi‘ :;: — for Typ«g(i} wer [5
G e uft >t

%bi@a ltﬁimt: &ms}éan our test studies we found out that the ileration con-
verges for 0 < a < % ""i‘bis is also based on the fact that the values for u; are
not initiated wmgrzang.

Derivation. ‘
First we fewriw equation {9) as lollows:
| M ol

X 8 e

3 " + M P (12)
Cineligas . A1 Tipels} 15 ;
L * ;{ 3‘ ﬁé
Equation (12} implicitly defines A as a function of g, i.e., X =i(g)
By differentiating equation {12) by u; we obtain
9
At .
. * A for £ 1I8
: K“‘“vi % £ 2
PR iﬁi w ® ’g%;
W‘“ﬁm =1y . {gg}
; o 8 A4 {or is
#i
whers " o B 8 L ¥
A =1 % dod Py e (14}
G i, K-l v 2F By
s {i‘é 5{* A g:} .
"ifri _yi
The Lagrange function L{g.y) with objective function Mgl is written as fol-
lows;
§ / .
Lig. y) =Ma) + v (Y auf- C) {15}

Fomd

where Ay is defined by equation {12}.
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By differentiating L{zy) by #, and y we obtain the following nonlinear

system equation for determining the maximum throughput and the optimal ser-

vice rates:

2L, B ot
3 §ilf+¥«€’# "
aL = &
e & ul =0
ay % )

By substituting equation {13) into {16) we obtain

X o

. *A 4+ yasp’ =0
Kl
2 {i’m* Gk ) €
G‘L i "
sty ) i k 4
g #i ﬁ*é’i«é»;yac;;z?”“««mﬁ RERARS -
#i ‘ RN g
Rewriting equation {18) provides
{ Aoe £ A4 4 yaf&ﬁﬁ”“’{mw'g~}k@} o
KL, : Xy
a1 " K
v s - P
9 #i LvA 4+ yo Q;:?}Wm @ for I8
#i g
By summing equation {19} over all stations  we obtain
. K-1, ey
KA + gal 0= =220 Y 4o pl §
s : ;
Then it follows that
F e
ya{ ==X ) aaul™ '~ C)
A= a1
' g
By substituting equation {21} into equation (18] we derive
X
e for
o k-1 i
# g —k
[ Karaaur: | K
K-1 T he
£ e i 3 et B for
{ K gﬁ( #d

By summing over all stations ¢ we obtain

K X R S e — BT
x{{%i ) 2:: “f #l !ﬁ:? M&;{

{jf.“ i E o z‘f*k £ sy . :
i # s

By solving equation {23) for A equation {10} is derived.

‘(18}

(17)

for =% [¥

(19)

{20)



Frem f:giz;éii.ais (23) we obtain

Y ikl A A, & .
¢ - %ﬂk PN T T &fﬁf{ p SRR £ e ui 1)° (24)
Ras e £is i

By substituting equation (24) inlo equation (22} and by rewriting we
obtain equation {11).

Note that for linear costs, i. e., a =1, equation {10) and {11) become the

4 it

following closed forms, le., there is no need for Herations in lnear cost case,

smossmsS

- —— Zok (25)
e B VERY v (K- Y aw
s B T {ad s E
At E ER
: .,K’ Zoes t g + {K~1) for Tupe{s} 5£ 15
3 . 1
=1 =& (28)
e g NOYT
A E-73 M far ?&g«:{t} i £
FAg %y

Example,

We consider the following queueing network model:

M@m ueusd

— (9 —

»eP

Qusund m«@
-——“@M

Figure 1.
There are N =5 slalions, K =20 jobs. Stations 4 and 5 are of Type 3 where

other stations have Types of 1.2 or 4. Transition probabilities are given by:



The mean number of visits ¢ that a job makes o station ¢ ist
. 2y wwll ey w03 ey wel5] £, B8] £y w8,
The service rate cosly ¢ are:
2y w07 £ =] ey weB) 4 @l gy el

We investigate the effect of different parameters o, of the cost function,
equation {23, on the maximum throughput A, In Table 1 we show éifiemfz% £
vice rates u/ computed using the iterative procedure, equations { 10 and 11}, for
different o values. We also give the throughput values (3} w%ﬁtk are obtained

by mean value analysis using the optimal servies rates g/t

o 0.5 5 ] 125 1 15 .76 | 165
uy | 37.153 | 12.688 | 7242 | 5.105 | 4.011 | 3.358 | 3.330
uy | 7810 | 2680 | 1550 | 1.105 | 0.801 | 0.748 | 0.578
ue | 19,154 | 6.642 | 3738 | 2630 | 2.078 | 1.745 | 1.583
s¢ | 1085 1 0496 | 0370 | 0331 | 0.320 | 0.321 | 0.32
gl 1296 | 0551 | 0.405 | 0350 | 0.344 | 0343 | 0.347
3 136007 [ 12305 | 7109 | 5,098 | 3.980 | 3.322 | 2703
A 138318 1 12470 1 7151 | 5048 | 3012 | 3444 | 2087

Table 1.{# =70, ¢ « 100}
The values for o = 1 are compuled from equations {23 and 28). From

Table 1 it is clear thal the service rates u, decrease at the CPU with Mercasing o
since the cost Tuctor is the greatest (e = 10] a1 the CPU. The following graph
shows the relationship between the maximad throughput and the auantity «.

The throughput decresses exponentially with incressing o,

yeoe
MG . :
’ ; A ix
T \ ¢ s

aas ! A o i)
20 o\ iz 0

A Y P ! , &«
COHGLOI030405080T 080D I0 LTI I 1AL 11T 18 1990

Figure 2. Maximum Throughput dependent on o
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5. Response Time Minimization

The f:};::gx;;ig;;ﬁgngwm’mm here is to minimize the objective function, the
iotal response tamﬁ 3?‘4_‘:;33%3}%% io the fixed cost mn&tmin;zs, 1’21%5 is equivalent
to the gquestion o maximize the throughpul since there is a dependency

between the throughput and response time which can be seen in Little's law:

"
r-£ (27)
From the equations
e e Ay A g for 1 =1,..N (28)

itis easy fo show that the total response Hime T can be computed by
{26}

We concentrate our investigation on maximizing the response tmes {or

different typesof stations individually in the queusing network.

5.1. Single Serw; Stations

The objective is w minimize the msmmé time § of a specific station of
Type 1.2,4 where a given throughput value ) is maintained. The service rates
have a linear cost consiraint, equation (1}. The total cost ¢ is known. The
response sfim‘é‘,%} ina Twm} 1,24 station is given by Littde's law:

= Ly .
}‘i g -&'l—;{:}—}s ty

If we minimize equation {30) as an objective function with conditions,

equations {6 and 20} the following optimal service rates of the jth station are

obtained:
. B o E - da 2 e
, = 2a (31)
for j=1,...N and j¢b i with
" a =K ¢ {2‘33
1S s (33)
wax 150 T oo Kxeiepe KU +{K-1}3 &
¢ er‘;‘,ﬁ ._ ai"f} it ik W o 8

% K-1 .0 {$h
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The service rates of the remaining stations i for i =1,.. N and i £ j are

obtained by:

for  Type(s) £ IS

\/5
\/_

{35}
for Type{ r‘} ik
wheore
M
& o 125 o 15 {3%}
RY A
f9 g
Derivation,

The Lagrange funetion is derived as follows:

1 ' Ae; he e .
R T e 2 11 D) 4 3 e Kt o [3 st 00 1 87)
K Py L1 e By - ¢"< |
}lé‘aﬂw T }k&j e ﬂiw« ;{ }aﬂ‘ L1 Lo 3 -

Differentiating by i, 85, v and g, we oblain the following system of equa-

fions:
4 " X s
Zf f’ - A 2 b i {t + Wy =0 (38)
4 3 {aj~ }sé‘jJ {33»~ TA?B? S ;
fori, j=12,.N and i ;aé Je '
-
[ - gy 1 ww Y for z {&
{i‘ia £l i A {{}:
a1 K ’
S : (39}
@ i, X g s
¥y 5 + Gs g =0 for s i ]
s G RS e
for 4,7 =1, N and i
é ¥ : M {’f-— i 3\ e iy
Bl Teation " dei i
g«éf« £ g & fy w 9 {"il}

€ gy it



We can solve equation (39) as follows:

[ D D

o = g
i f {or ok I8
i g
; Jhg = — }‘ﬁi
¥2 K 5
,;: ¢ by g == 3 & i gg {"1«}
; Gt
a Hi

for i,j =1,...N and i3 J.

Rawr’iﬁng_ equation {(42) we get

X & %
seit ¥y o~ & 5. K1 A% for % s
: %’ oty K (3
#y ¥ & { "}
e v—— for '
o YT ¢ ¥

for i,f=1...5 and 3£ j.

By substituting equation (42} in equation {40} we obtain

;k s

Wﬂwpﬂi{m««««« 3 _%:”. 3 ‘wq Va6 o= K iéé}
- 1 5{ 1

o~ Ae; ‘

- A
K

for f,i=1.,N {95

We substitute equation (43) in equation {41} and get 3 T
A # A - &
o #y - —X Yiofe e + )
¥e i

66 = O [45)
R

For the sake of simplicity we introduce the following auxiliary quantities:

¥y
e {4{;}
ol K
w o= 3 \un {47)
iy
K-\
& s x £y 3 é';g}
e § 8 L iE K

From (45) we obtain then equation (36) which has the following rewriiten
form ‘ :

g P
'z’waf ).s«««e;;;ia

= {49)
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We substitute {49) into (44) and obtain the following equation for deter-

mining the optimal service rates u/ in the j-th station:

K ¢ ple a1 e~ KCH K- DNp; #he; (KO- (K~ 1)2s) ﬁ%ﬁimﬁ =0 (50)
Note that this eguation gencrally possesses two solutions. The mean
response times I are minimized when the optimal service rates uf are chosen
t0 be the greater values of the solution. The lesser values matimize the
response limes. Using g/ we determine the auxiliary variable ¢ from equation
{40} and the service rates p, of the remaining stations i =1,..N and 5 # ¢ from

equation {35).

Remark, Equation {35) may not always admit a unique solution. This is the case
when the f?s::sirfsd throughput value 3 cannot be obtained under the given total
cost €. In this ease the solution procedure, equations {35 and 38), provides
negative service rates which will be demonstrated in the f{:ii#zwﬁgé éizmgﬁm in
the following example we minimize the respouse time at the CPU. |

Franmple

There are N =4 stations and & =10 total number of jobs. The total cost is

O =10,

@..g__.
:

@«-m

@ 1 b——-«

5
[ £

{ueued -—«m@«j %

Figure 3.
The mean number of visits ¢ is computed:

eyl | eyl g meo, =03
Single costs for the service rates are ¢, =mey megy wpy ]

The objective is to minimize the response time 7, of the frst station subject

to the total cost € ==10 while keeping the total throughput fixed at A =100,
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From equations {31 and 35) we obtain the following optimal result for service

rales:;

W}f}% ‘19 P sbg =217 1 gy w0841 : ¢ g =88 43

It can %ﬁgiv b«& seen %31&?, the total throughput of X =100 cannot be reached for

the given. mat ::mza%amm of ¢ =10.

Now we s&§&cz new %ﬁ}t‘d throughput as » =<1 and obtain as optimal service rates
}}'_W:ﬁgl.ﬁ‘%‘ B w0088 ; pg =0471  pf=0366 ; u. ==0.096
Using MVA with these optimal service rates we obtain the throughput and

the mean response time of the first station:
==1.029 & ==0.124

5.2. Inﬁmw Server $£atwm

Since t{*;’r‘x&(iﬁﬁif‘s can h{: modeled as an infinite server station we investigate
the f%m w}mm‘thé x:é?a;mme ume of Type 3 stations is minimized. The objec-
five is to éﬁtﬁrmma zi}r« ﬁg&tzmai serviee rates g such that the response time T
of a station ; »::;f 'Eym 3 is minimized while reaching the value of given wtal
throughput m?ae §s.

The ijemivé function § is

o i ' e

The optimal service rates u are computed by equation {(31) with ¢ deter-
mined by equation {36). The parameter « which occurs in equation {31) is
obtained from equation {32). However, the parameters § and ¢ have a slightly

different form here than in equations {33} and (34}:

A % n e
&wz{z: VER] - de - KC+(K-)A] 3 el (52)
bt fuk § & L I8
: : K-1 A «
e=dg [0S 8w (53)
g K R



The Lagrange function L also has a different form than jn equation {37}

1 R . L% i ‘ e
L =-dap B8 0p 28w dL L pea o (54
y =W CT R S i ~

£

Dilferentiating by 4., 5,0 9, and g we oltain the following systen of e

oy

s—“—g—“- B g umewessnF He A 1 3
{,ié(‘} ”;!;3;}: # [‘“;}, # g.« §

al &L

¥

& 4,
: and - §
¥ o ya

o gty

Fquation {44} becomes

Aoty

PO

'y

Substituting equation {49] ino equation (56) we obtain the Tallowing sy--
few

“ &l L R i = FUS Y i, “-.,‘ Fheany fomz
tem: of equations by which the optimal service rates 5/ in the »Uh <ation can

detarmined:

. ! 5 5 P
w # = k P , * Bl T T b
Koeypivls wh o KO =K 55k R R TER N 7 wi okt s

Fraample
We investigate the same example as in Figure 3, We wininive the
rexponse time for fixed tolal cost of w00 while o total thromchpnt & 1 o
muintained. From eguations {31 and 35) we abtain the oplimal serviec rates,
e o g DA [ g DAB0 o g TR0
. * '3

Using the optimal service rate p we then sompute the plinimam respon

tine for station 4 frows gquation {51

Using these optimal service rates we run MYA and abuin the followine

Re

throughput and gean response tme resuils

N e ] AMYS ?3 =2 B b

Let us aleo analvze the case where the servies rutes are modified e shew

the effect of this modification on throughpnt » and response Gue 10 The ot
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cost is still € =10. Here we select a faster service time for terminal (station 4).

Byesl o opg =08 5 py 08 1 p, ==l

end

35

Using these service rates we compute by MVA

A ==0062 I, =012
in ﬁh%% case ;?;é mean response time is the same as the above case. How-
ever, the throughput value decreases below the given throughput value of

3 =1,

- Now we seleet small values for service rates of stations 1,2 and 3 as

foy =12 ) pe =05 1 gy 05 ) py=7R
In this case we oblain with MVA

& =] OR te #1128

Let us seleet the following values for service rates which devisle more
5 o

from the optimal values
: gty esbB o g BB g w0 o gy e d

Using these service rates MVA provides

As=l451 I 0042

As can easily be seen the wtal throughput Is increasing for smaller values

i

of service rates in stations 1, 2 and 3. Consequently, the mean respoase time I,

incresses, v
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