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ABSTRACT

The application of Norton’s theorem from electrical
circuit theory on queueing networks with infinite capaci-
ties is well-known and very useful for cases where a node
of the network should be analyzed under different work-
load. In this work a method is developed which allows
the application of Norton’s theorem on queueing networks
with finite capacities. A node is arbitrarily selected and
the subnetwork containing all remaining nodes are
replaced by a composite node with infinite capacity. The
entire network is reduced to a two-node network having
the node of interest and the composite node. Although
blocking causes interdependencies between nodes in the
network the selected node is totally isolated from the
rest of the network by constructing phases in the server
which reflect the blocking events. An algorithm is given
to compute the parameters of the phases. Several exam-
ples are di d to d t the efficiency and gen-.
erality of the technique. Comparisons with simulation
results show that the proposed technique provides accu-
rate results for throughput values.
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1. Introduction

Queueing networks have experienced a dramatic increase in
their importance regarding performance evaluation of computer sys-
tems and communication networks. When considering systems in
which the nodes have infinite capacities, numerous methods have
been introduced in the past two decades. However, since in actual
systems nodes have a finite capacity, queueing networks with
blocking should be used for performance analysis. Queueing networks
with blocking have thus become an important research topic within
performance evaluation during recent years. Several computational
methods have been developed to analyze queueing networks with
blocking. These are networks where the nodes have finite capacities,
hence blocking can occur if the node is full to its capacity. A job
which wants to come to the full node must reside in the server of the
source node until a place is available in the d tion node. The
interest in networks with blocking comes primarily from the realiza-
tion that these models are useful in the study of the behavior of sub-
systems of computers and communication networks, in addition to
detailed descriptions of several computer-related applications such as
flexible manufacturing systems. In this work we consider the so-
called transfer blocking mechanism in queueing networks. In this
case, the blocking event occurs when a job completing service at
node ¢ cannot proceed to node j because node j is full. The job
resides in node i’s server, which stops processing until node j
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releases a job. This type of blocking has been used to model systems
such as production systems and disk I/O subsystems.

Several investigators in recent years have published results on
queueing networks with transfer blocking. Since we are investigating
closed queueing networks with transfer blocking we discuss here the
previous work only for this type of networks. Akyildiz [3] studied
two-node closed queueing networks with transfer blocking and multi-
ple server nodes. He showed that the equilibrium state probability
distributions of such blocking systems are identical to those of a
two-node closed queueing network without blocking. Akyildiz (5]
also showed that the throughput of a blocking network with K total
number of jobs is approximately equal to the throughput of a non-
blocking network with an appropriate total number of jobs K. The
well-known mean value analysis algorithm [22] is extended by Akyil-
diz [6] to single server queueing networks with blocking. The approxi-
mation is based on the modification of mean residence times due to
the blocking events that occur in the network. Two algorithms for
the computation of throughput values and the mean queue lengths in
Markovian blocking queueing networks with multiple servers is given
in [7] which is extended in [4] to networks with general service time
distributions and FCFS scheduling disciplines.

Suri/Diehl [25] developed a method for approximate analysis of
closed tandem queueing networks with transfer blocking. They
approximate groups of two nodes by .2 variable capacity node,
defined as a superposition of fixed capacity nodes. They start with
the last two nodes and successively reduce the network until two
nodes in tandem remain. The method is easy to implement and -
shows good accuracy but involves much computation. At each step
all conditional probabilities have to be found, since they are used to
construct the equivalent variable capacity node. The major disad-
vantage of their technique is that one of the nodes must have an
infinite capacity. Additionally, their method only gives the
throughput of the entire network it does not give statistics for indivi-
dual nodes. Another drawback is that the capacity of each down-
stream node must be smaller than the total number of jobs in the
network.

Dallery/Frein [12] introduce an iterative technique to obtain
performance measures for the same network configuration as investi-
gated by Suri/Diehl. Their throughput values are generally less accu-
rate than those provided by the method of Suri/Diehl. However, they
obtain values for the mean number of jobs which cannot be com-
puted by the method of Suri/Diehl. Perros, Nilsson and Liu [21] give
an algorithm for an arbitrarily connected network where some nodes
have finite capacity. They partition the set of nodes in a so-called
blocking subnetwork and a non-blocking subnetwork. The non-
blocking subnetwork containing infinite capacity nodes is replaced by
a composite node using parametric analysis for infinite capacity net-
works. The reduced network is then analyzed numerically. However,
if all nodes of the network have finite capacity this method reduces
itself to a numerical analysis method which, as generally known, is
applicable only on very small networks. Onvural/Perros [16] present
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an approximation for cyclic networks with blocking which calculates
throughput values as a function of the number of jobs. They initially
calculate throughput values for certain populations and then generate
a function which fits the determined points. Equivalencies between
closed networks with different blocking mechanisms are studied by
Onvural/Perros [17] where they show if the number of jobs in a net-
work with transfer blocking is one more the capacity of the node
with the smallest capacity there is an exact product form solution.

Our work is mostly motivated by the studies of [8, 9, 18, 22].
Although these studies are focused on open queueing networks with
blocking, the concept of constructing phases in order to represent
blocking events helped us to execute the parametric analysis of closed
queueing networks with blocking. In recent years several other inves-
tigators have published results on queueing networks with blocking.
A bibliography concerning queueing network models with blocking is
given by Perros [20]. A recent workshop gives also a good overview
about the area of queueing networks with blocking [19].

2. Model Assumptions

We consider closed queueing networks with N nodes and K
total jobs. The service time at node i is exponentially distributed
with mean value 1/p; (for ¢ = 1,...,N). The scheduling discipline
at each node is assumed to be FCFS. Each node has a fixed finite
capacity B; where B; = (queue capacity + 1),
(for ¢ =1,2,..,N ). Cases in which the nodes can have infinite
capacity are also allowed, (B; = o0 ), (for some

§=1,2,.,N). Any node whose capacity exceeds the total
number of jobs in the network can be considered to have infinite
capacity. A job which is serviced by the ith node proceeds to the 5~
th node with probability p;;, (fors , 7 =1,2, --- , N), if the 5
th node is not full. That is, if the number of jobs in the j~th node,
kj,islessto B; for j = 1,2,...,N. Otherwise, the job is blocked in
the +th node until a job in the j~th node has completed its servicing
and a place becomes available. Furthermore it is valid that

K<EB

i=1

)

whxeh 1mph$ that the total number of jobs K in’ t,he network mayﬂ »

not exceed the total capacity of the entire network.

One ot the most important problems to realize regarding block-
ing queueing networks is that finite node capacities and blockmg can
introduce the problem of system deadlock. Deadlock may occur if a
job which has finished its service at node i’s server wants to join
node j, whose capacity is full. That job is blocked in node ¢.
Another job which has finished its service at j-th node now wants to
proceed to the 7-th node, whose capacity is also full. It blocks node

via [

(vi.m [ (1

7 . Both jobs are waiting for each other. As a result a deadlock situa-
tion arises. The following assumption states that a closed queueing
network containing finite node capacities is deadlock free if and only
if for each cycle C in the network the following condition holds [1]:

K <Y B 2

jEc

Simply stated, the total number jobs in the network must be smaller
than the sum of node capacities in each cycle. Since tandem queue-
ing networks have only one cycle, this condition, equation (2),

corresponds to equation (1). Equation (1) is a sufficient condition for
tandem networks to be deadlock free.
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3. Norton’s Theorem Application on Queueing Networks

The parametric analysis is based on an application of Norton’s
Theorem from electrical circuit theory to queueing networks.
Chandy, Herzog and Woo [11] showed that Norton’s Theorem pro-
vides an exact analysis for product form queueing networks [10)].

For this type of queueing network models an equivalent net-
work is constructed where a node o is arbitrarily selected. All other
(N - 1) nodes, which we refer as the subnetwork I', are replaced by a
single node, called the composite (flow-equivalent) node. The total
throughput of the original network can be computed with the load-
dependent t.hroughput (k) (for all jobs k= 1,2,..,K) of the subnet~
work and the service rate u, of the selected node. As mentioned
before, this method provides exact results for product form queueing
networks. Queueing networks with blocking do not possess exact pro-
duct form solution due to interdependencies between nodes caused by
finit of capacities. Consequently the application of Norton’s
theorem on queueing networks with blocking will provide approxi-
mate results.

The application of Norton’s theorem on queueing networks with
blocking is executed in five steps.

3.1. Construction of the Subnetwork

3.2. Computation of Throughput of the Subnetwork

3.3. Construction of the Phases for the Selected Station

3.4. Computation of Service Times and Branching Probabili-
ties for Phases

3.5. Analysis of the Two-Station Network

These steps will be explained in detail in the following sections.

g

3.1. Const of the Sub

‘We obtain the subnetwork I' by shortening the selected node o,
i.e., setting its service time equal to zero as in the case of infinite
capacn.y queueing networks. However, in case of finite capamty
queueing networks we have to take the blocking events into account’
which occur on the paths between the selected node o and the nodes
of the'subnetwork . Therefore we assume the capacity of nodes in
the subnetwork I' to be infinite which are direct successors of node o.
However, if a node is a successor of o and receives arrivals from other
nodés within the subnetwork. T -its capacity remains unchanged. By
this way the subnetwork I' is converted to subnetwork I'’ which is
explained formally as follows:

‘Let W = { ny, nig, ......, my } be' the set of all nodes in the ori-
ginallly given network and \I' be the set of all nodes which contains
all successors of node 1, i.e.,

twork

i7#£; 8 py >0) —v(ﬂjE‘I’;)] (3)

Subnetwork T is transformed into I'" as follows:

ivmAc 8ne¥, 8nd v,) = (5 :=oo)](4)

We give an example to illustrate this theory. The queueing
model is given in Figure 1 where we assume that there are N =7
nodes, K = 12 jobs and the capacity of each node is selected as
B, =3,B,=4,B;=4, By=3,Byg=,B;=3,B;=17.



Figure 1.
We select node 1 to be analyzed under various workload. For that
reason we shorten node 1, i.e., we set its service time equal to zero
and obtain the subnetwork I" given in Figure 2.

Figure 2.

In subnetwork I it can easily be seen that nodes 2,3 .and 4 are
direct ors of the selected node o = 1. Since node 2 receives
also arrivals from node 5 it keeps its finite capacity while nodes 3
and 4 receive arrivals only from o. It follows that their capacity are

assumed to be infinite in I'’ as given in Figure 3. Everything else in.

I’ remains the same as in T'.

Figure 3.

For substituting I’ by a composite (flow-equivalent) node we
need to compute throughput values (k) of T.

3.2. Throughput Analysis of the Subnetwork

In order to obtain the throughput values of the subnetwork I'
which is a blocking network itself we apply the technique by Akyildiz
[5, 7). The basic concept is that the state space of the blocking
queueing network with K total number of jobs is transformed into
the state space of a non-blocking queueing network with X total
number of jobs. The number of states in both networks should be
approximately the same, if not identical. This would indicate that
Markov processes describing the evolution of both networks over
time have approximately the same structure. That, in turn, would
guarantee that the throughputs of both networks are approximately

916

equal.

The following steps are executed in order to compute the
throughput values in queueing networks with blocking {5, 7].

]

Determine the number of states in the blocking queueing

network.

ii)  Determine the total number of jobs K in the non-
blocking queueing network. Note that K may be a non-
integer number.

iii) Analyze the non-blocking queueing network NB with K

jobs using the a-MVA [13] which is applicable to queueing
networks with non-integer number of jobs, and obtain the
throughput values which are approximately equal to the
throughput value of the blocking network I with K
jobs.

A (K) = yp(K) (s)

3.3. Phase Construction of the Selected Station

So far we have analyzed the subnetwork I and replaced all
nodes in I’ by a so-called composite (flow-equivalent) node c¢. The
load-dependent service rates u. (k) of this composite node are set
equal to the throughput values A+ of the subnetwork I'’ which are
computed as described in section 3.2. We assume the capacity of the
composite node to be infinite. Thus, the composite node does not
cause blocking at the selected node o. The behavior of node o is
therefore not dependent on nodes of the subnetwork I'. Here we show
how the interdepend, between selected node o and subnetwork
I’ have to be taken into account.

By assuming the capacity of o’s successor nodes in I’ to be
infinite we neglected the blocking events at node o which might have
occurred due to some full nodes in I'’. However, the blocking events
must be considered for node o, i.e., a job cannot leave node & due to
some full nodes in the subnetwork. Therefore, we modify the service
mechanism of node & such that 2ll delays a job might undergo due to
blocking events in the originally given network can be represented.

For each possible blocking delay at nodes of I'” we add a service
phase to node 0. The connection between the added phases and the
original server of node o are the same as the transitions between the
nodes in the originally given network. However, blocking delays may
not only be caused by node o’s immediate successors but also by
nodes which occur in each cycle of the network where the selected
node o is represented. Let C,({) be the {-th cycle that starts and
ends at node o, i.e.,

Cll) = (@, s Gy s o)
where jl' is the g-th node in the cycle I. Now let us consider one of
these cycles, (a,j,x ) Jigs ...,0). For instance, assume that there are k;

jobs at node o and the number of jobs in the network be such that
nodes j,l through j,‘ can be full at the same time. In this case, a job
upon service completion at node o may find node j;, full, blocking
node ¢’s server. Now the question is when this blocked job will
depart from node o. If upon service completion at node jl‘ a job
chooses to go to node j‘z which is not full, then the job at node j¢‘
will depart and at the same time another job at node ¢ will join node
j,‘ unblocking server of the node o. However, if a job at node j,2
gets blocked because its destination is full then the blocked job at
node ¢ cannot depart. Hence, in the worst case a job at node o will
wait for service completions at nodes 7, -, 2, before leaving node
o. In other words, when we construct the delay phases for node o we
have to take into consideration those nodes j,’ which occur in each
cycle € (1) of node o and which might cause blocking of node o.



In constructing the phases the following rules must be obeyed:

R1) If two or more cycles are identical up to a certain element

then the elements prior to that element are represented

only once in the phase construction.

I Q)= (o5, Jig» ....,j,') is a path in cycle C,{{)

starting from node o with B;, > K,

i €00)8 4y Ao T

then the nodes, (j,' , j,'“ 5 o8 ) of Co(l) are not con-
sidered in the phase construction for this cycle. In other
words, if the sum of node capacities in Q,(!) exceeds the
total number of jobs then the last node of (/) and all
its successors in C; (/) are not taken into account in the
phase construction for node o for that cycle.

Note that due to the deadlock freedom property, equation (2), it is

not possible that one node l_,-' (Ij, £ o) occurs more than once in a

cycle C,(1).

Let us continue with the example given in Figure 1 and show how to

construct the phases for node 1. As we can see, node 1 is & member

of 4 cycles in this model:

Ci1)= (1,251) ©C(2)= (1,26,7,1)
c3)= (1371) Cia)= (1,471)

Applying rule R1) node 2 is not included twice in the phase construc-
tion, i.e., in one case as a member of C(1) and in the other case as a
member of C1(2). The rule R1) does not hold for node 7 in Cy(3) and
C1(4) because these two cycles are not identical until the position of
node 7, ie., [1,3,7] £ [1,4,7) . According to rule R2) we con-
sider only node 2 out of the elements of C,(1) for the phase construc-
tion of node 1, since the property {Bjs = co} holds. Considering
C(2) we see that {By + Bg + By > K } is satisfied. Hence, node 7
is not included in the phase construction for C,(2). In Figure 4 we
show the complete phase construction for node 1.

R2)

Figure 4.

3.4. Computation of Service Times and Branching Probabil-
ities for Phases

After the construction of phases we need to determine the
parameters such as branching probabilities and service times of the
phases. In the transfer blocking case, 2 blocked job cannot leave the
node until a place is available in the destination node. Therefore, the
blocking time of a job is equal to the mean remaining service time of
the particular destination node [6]. For an (M /G /1 / FCFS)
queue the mean remaing service time ¥ is given by [14}:

[

TG ®

Ll

where 7 and 22 denote the first and the second moment of the ser-
vice time distribution.

For nodes with exponentially distributed service times we have

T = L and 22 = -22- which gives us:
u 5

- 1
F = —
13

M

Based on this argument the pseudo service time of each phase
which represents the blocking events, is equal to the mean service
time of the according node in the original given network.

Since blocking events occur with certain probability in the net-
work, the delay phases in node § are entered due to according
branching probabilities a;; which are computed by:

a; = py  Pi(B; +1) ®

where j are nodes which appear in the phase co_n§truction of node ¢,
p;; are transition probabilities of t.he_ original netfvork . and
P;(B; + 1) are blocking probabilities which are determined itera-
tively as explained in the nexs section.

3.5. Analysis of the Two-Station Network

So far we reduced the entire network to two-node network
which contains finite capacity node o with complete constructed
phases and the composite (low-equivalent) infinite capacity node ¢
representing all other nodes. The two-node network for the example
given in Figure 1 has the following structure:

Re (K)

Figure 5.
As pointed out in equation (8) the blocking probabilities

- P;(B; + 1) need to be determined for the analysis of the two-node

- the throughput values of the originally given mnetwork, are computed

917

network. These parameters P;(B; + 1) and the desired throughput
values A of this two-node network given in Figure 5 which are also

by an iterative way.

Initially we set all branching probabilities a;; between service
and delay phases of node o to zero and eliminate all phases. Station
¢ has then its originally given structure, i.e., it has exponentially dis-
tributed service time with mean value 1/u, and finite capacity B, as
shown in Figure 6.

e ®

ke (K}

Figure 6.
This network is analyzed by the method given in [5] and the
total throughput X is computed. Using X the throughput of each node
7 is determined by

Aj= X-e;

7

)
where ¢; is the mean number of visits that a job makes to node j
and is given by
N
o = X & wy

i=1



Now these computed throughput values \; are used as the
arrival rates for [ M /M /1 / B; + 1] nodes which are considered
in the phase construction of node 0. Here we assume that each node
in the originally given network behaves approximately as a single
server node with exponentially distributed service times and Poisson
arrivals. Recall that a job in the transfer blocking protocol is already
served, a destination is chosen and the job is blocked in the server.
Logically this blocked job occupies the (B; + 1)st place in the queue
of the jth destination node. The probability that the (B; + 1)th
space in node j is occupied, provides the probability that one or
more predecessors of node j are blocked in the originally given net-
work.

Hence, using the well-known formula for steady state probabili-
ties of [M /M /1 / B;] nodes the values for the blocking probabili-
ties P;(B; + 1) are computed [14]:

LB 41 Yi=iDineg,
i i B < K
1-p;’
PiBy +1) = | o it B; > k (9
with
4 Xy .
p; = —=— for j=1,.,N (11)
By

where ):_,- is the effective input rate to node j which can be expressed
in terms of the arrival rate X; at node j:

Xj =% [1-Pi8 1] fe =18 (2)

Equations (10) and (12) are used as a fixpoint iteration for com-
putation of P;(B; + 1) values. Note that the convergency of this
fixpoint iteration was shown by Altiok (8] for open queueing networks
with blocking. The values for P;(B; + 1) are then used to determine
the branching probabilities a;; from equation (8).

Let us continue here to discuss the example given in Figure 1.

Since nodes 2,3,4,6 and 7 appear in the phase construction for node 1

we consider these as individual [M /M /1/B; + 1] nodes:

A

A, 2
B+ 1 [~ @

Ay Az
B+ 1 @

A, i
By 1 Q

A'S

Figure 7.

Using the fixpoint iteration equations (10) and (12) we compute
P;(B; + 1) values. which are then used for determining the branch-
ing probabilities ¢;; of delay phases in equation (8).

a12= pi-Py(By+1)

@25 = pos " Po(Bg+ 1)
@13= p1z- Pg(B3+1)
G1y= py - Py B,+1)
ag7= pg - P¢(By+1)
g = pg-PiB:+1)
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The two-node network has now a complicated structure since
the branching probabilities a;; in o are not zero as shown in Figure
5. In order to analyze this type of networks efficiently we reduce the
serving and delay phases of node ¢ to a Coxian server with two
phases. Marie [15] showed that this transformation provides good
results for nodes with general service time distribution if the squared
‘coefficient of variation is greater than 0.5. Once all the parameters
of the phase type distribution illustrated in Figure 5 are known we
can construct a Coxian-2 representation by determining its first
moment 1/, and the coefficient of variation é, and then fitting a
Coxian-2 distribution according to the following equations:

B = 2 fi, (13)
Ba= &7 i (14)
1
By = (15)
B0\ Vg g2

This transformation leads to the following queueing network
model:

Re (k)

Figure 8.

This network can be analyzed by the numerical method [24] or
by the load-dependent method of Marie [2]. Note that 't.hese t,etfh-
niques must be slightly modified because one node has finite capacity
and blocking can occur in the network. Additionally, we have t,o con-
sider that a job in node o’s server can be in two phases. In Fjlgure 9
we show the state space diagram for the network given in F igure 8.
The state (I;p , n) describes the situation where ! jobs are in node
o, the job being served in node o is in the p -th pha§e a.nd’n, jobs are
in the composite node. Blockirg states are labeled witha ’#

BKS)  mB) ke

Figure 9.

A job after being served in the first phase of node o can either
proceed to the second phase (with probability @4), equation (15), or
leave the node to join the composite node ¢ . Recall that the compo-
site node ¢ has a load-dependent service rate. For the example given
in Figure 1 where B; = 3 and the total number of jobsis K = 12
we obtain the following state space diagram:




»(9) B 10}

“..ll)ull

B (10)

k(11 )lc(“) B {12)

("'")“"

Figure 10.

From this diagram global balance equations can essily be
derived and steady state probabilities can be obtained using the
numerical technique or the load-dependent method of Marie. From
the steady state probabilities the throughput values are computed.
As mentioned before these throughput values are then used as the
individual arrival rates \; for [ M /M /1/B; + 1) nodes and the
values of P;(B; + 1) are computed iteratively from (10) and (12).
The values for P;(B; + 1) are then used for determining the branch-
ing probabilities ¢;;, equation (8) in the multi-phase server of Figure
4. Here the scheme of the iteration can be recognized. We repeat the
analysis between the two-node network given in Figure 8 and
[M /M /1/B; + 1] nodes given in Figure 7, each time with modified
branching probabilities a;;, until convergency is reached. The itera-
tion terminates when the absolute value of the difference between
two consecutive A values is smaller than a threshold value ¢ where ¢
is selected as € = 10™ . Note also that no computation is necessary
for branching probabilities of a node if the capacity of that node is

infinite, i.e., the capacity is greater or equal to the total number of
Jjobs.

4. Algorithm Summary

(1) Select an arbitrary node o, set its service time equal to zero
(1/#, = 0) and obtain subnetwork I".

(2 ;I‘lia.nsform the subnetwork I' into I'’ according to expression

. {4). <

(3) Analyze T with the throughput algorithm [5, 7] for finite capa-
city queueing networks and obtain My (k) for k =1,. K.
Construct the composite node ¢’ with “infinite capacity and
load-dependent service rate: ; ¢

pe(k)= Ay (k) for k =1,.K

(4) Calculate a multi-phase server for node o according to section
3.3.

(5) Iterate for ¢t = 1,2,...

(5.1) Initialize
P;(B; +1):==0forall j =1,.N

Set A0 =0
(5.2)

(a) Calculate the branching probabilites a;; between
the phases of node o by (8). Obtain the mean value
1/jt, and the coefficient of variation ¢, of the ser-
vice time distribution of node o.

(b) Represent the multi-server phases of node o by a
Cox-~distribution with two phases from equations
(11, 12) and (13).

(5.3) Solve the two-node network containing Cox-two server

and the composite node ¢ and obtain throughput A*).

(5.4) For each node j which has a server in the phase of node
o solve the fixpoint iteration from equations (8) and (10).

(5.5) Terminate if | At} - A -1 | < ¢. Otherwise assign
NS NG

and go to step (5.2).
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5. Examples

After the termination of the iteration we obtain the total
throughput of the two-node network which is also the total
throughput of the originally given network. The advantage of the
parametric analysis can be recognized when we study the entire net-
work by changing only the parameters of the selected node o. In that
case we need to compute throughput values of subnetwork I'’ only
once as described in section 3.2 which remain unchanged throughout
the analysis. All we need to do is to construct the phases of node o
in the two-node network as described in section 3.4. The required
computational effort is small since the equivalent network consists of
only two nodes.

In this section we demonstrate the application of the
parametric analysis for blocking networks by analyzing two models.
The first model is an end-to-end communication network modeled by
a tandem configuration with five nodes. The second model is a gen-
eral communication network where all nodes are connected with each
other. For each example, we illustrate the steps of the method and
give numerical results. For checking the accuracy of our technique
we compare our results with simulation values obtained by using

RESQ package [23]. Relative errors §% are calculated by:
5% = |

simulated value —~ analytical value |

- 100
| simulated value |

We also give the number of necessary iteration steps in order to
demonstrate the speed of convergency of the phase construction, We
also compare our results with results obtained by other algorithms for
finite capacity queueing networks such as the methods of Akyildiz
[5], Suri/Diehl [25] and Dallery/Frein [12]. The techniques of
Suri/Diehl as well as of Dallery/Frein are restricted to tandem
configurations where the first node must have an infinite capacity.
Additionally, Dallery and Frein assume that blocking occurs only at
immediate successors of each node.

Ezample 1.

In this case we consider a tandem configuration as given in
Figure 11a.

(5. Heo{B: Hep—{B Heg{B Heo—{8 Hey

Figure 11a.
Network parameters are:
i 1 2 3 4 5
B; o) 3 3|8 3
Up | 1 |05 ]1]05]1

Here we assume the capacity of the first node to be infinite.
Therefore we will be able to compare our technique with the
methods of Suri/Diehl [25] and Dallery/Frein [12] since their tech-
niques are applicable only on this type of networks.




The subnetwork I’ is shown in Figure 11b where we shorten
node 1.
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Figure 11b.

Analyzing the subnetwork I’ we obtain the following
throughput values:
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Figure 1lc.

The phase construction for selected node 1 is given as follows:

method of Akyildiz.

Let us modify the parameters for the tandem network given in
Figure 11a.

1]2] 3] 4
B; 2|43 [4 12
u; (12151816

The structure of subnetwork I'' and the multi-phase server of
the selected node 1 are the same as given in Figure 11b and Figure
11d, respectively. Since the parameters of nodes in subnetwork I'
are modified, the subnetwork I' must be analyzed again. We obtain
the following throughput values for subnetwork I :
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Figure 11le.

In Table 2 we compare our results with simulation and the
Since the capacity of node 1 is finite the
methods of Suri/Diehl and Dallery/Frein cannot be applied.

K | Simulation | Par_An. | 6% | Akyildiz | 6% || Iter. |
8 0.388 0.3631 6.4 0.3871 2.3 5
10 0.393 0.3775 3.9 0.3871 1.5 4
12 0.376 0.3787 2.3 0.3871 2.95 5
14 0.352 0.3787 7.5 0.3871 4.29 5
Table 2. Total Throughput of the Network
Figure 114d.
Final results are listed in the following Table:

K | Simulation | Par_An. | 6% | AKYL | 6% | SUDI | 6% | DAFR | 6% || Iter.

5 0.367 0.3658 0.3 0.367 0.0 | 0.364 | 0.8 | 0.356 3.0 4

6 0.389 0.3883 0.1 0.390 03 ] 0.381 | 2.1 0.382 1.8 4

7 0.404 0.3975 1.6 0.407 0.7 | 0.392 | 3.0 0.400 1.0 4

8 0.413 0.4091 0.9 0.420 1.7 | 0.398 | 3.6 0.418 0.7 4

9 0.417 0.4144 0.6 0.420 0.7 | 0.400 | 4.2 0.426 2.1 3

10 0.419 0.4168 0.5 0.420 0.2 | 0.400 | 43 0.430 2.6 3

11 0.419 0.4178 0.2 0.420 0.2 | 0.401 | 4.3 0.430 2.6 3

12 0.419 0.4182 0.2 0.420 0.2 | 0401 | 4.3 0.430 2.6 3

13 0.419 0.4182 0.1 0.430 2.6 | 0.401 | 43 0.430 2.6 3

Table 1. Total Throughput of the Network
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Ezample 2.
The queueing model of the second communication network has

the following structure:
]

Parameters for this example are chosen as follows:

Figure 12a.

i 11213 4
B; 5|55
Yp: |1 |22

14

Pis 1 2 3 4
1 0 04102 |04
2 03 (0 04 | 03
3 02 (04 |0 0.4
4 04 {02 |04 )]0

When we shorten node 1 in this network and construct subnet-
work I'’, we note that all nodes in I'"  have finite capacity. This is

the case where each node receives arrivals from other nodes within
r.

B

B: &)

Figure 12b.
Analysis of I'’ provides the following throughput values:
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Figure 12c.
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In this network blocking may occur only at immediate succes-
sor of each node. Otherwise deadlock freedom is not guaranteed (1].
Therefore we obtain a multi-phase server for node 1 as follows:

Figure 12d.

In Table 3 we show results for the total throughput. Due to the
deadlock freedom property from equation (2) the maximum number
of jobs allowed in this network is K = 8.

K | Simulation | Par_An. | §% | Akyildiz | 6% || Iter.
6 0.365 0.3734 2.3 0.375 2.7 4
8 0.387 0.3963 2.8 0.398 2.8 4

Table 3. Total Throughput of the Network

6. Evaluation

In the previous section we discussed several examples and com- .
pared the results obtained by our approach with the results deter- .
mined by other existing approximate techniques. It can be seen that
the accuracy of our algorithm is comparable with:those of “existing
methods. In this section we discuss the following features of the algo-
rithm:

6.1. Complexity

6.2. Iterative behavior

8.1. Complexity of the Algorithm

Similar to parametric analysis for infinite capacity networks the
advantages of the presented method become obvious if large scale
queueing networks are analyzed. If a network with a large number of
nodes is to be studied under various workload of a particular node,
then the analysis of the entire network is costly. With conventional
methods each time any parameter is varied, the total network must
be reanalyzed. Applying parametric analysis we have to analyze just
a two-node network once the throughput values of subnetwork I'’ are
known.

The reduction of the complexity of the analyzed network is
demonstrated with a comparison of the size of the state space of the
original blocking network and the two-node network, respectively.
The state space size of the the two-node network is computed by:

2 + min (K ,By+1) + 1

Number of states

(16)
Note that the factor 2 is necessary because the finite capacity node o
has two server phases. The size of the state space for a transfer
blocking network with N nodes can be computed approximately
from the last component Z’(K) of the following computation:

Z' =2,%2Zy % 2y a7



where

*  is the convolution operator.

Z; for i =1, 2,..., N is a (K + 1)-dimensional vector which is

given by:
a;(0)
(1)
Z; = e
% (K)
with the binary function
1 for k£ =012,..., M+1

o (k )={ 0 for k =M+2.,K

If we apply both formulas to the network given in Figure 1 with the
parameters provided in section 3.1 we see that the two-node network
has Z — 9 states and the original network of Figure 1 has
Z = 10888 states.

8.2. Iterative behavior

The examples given in section 5 clearly demonstrated the fact
that the iteration terminates very quickly. Indeed, the highest
number of iteration needed was 5 iterations. However, for other
examples, the number of iterations can be larger based on our experi-
ments. Solving a central server model described as follows:

N = 4nodesand K = 7 jobs

i 1 |2 13]4
B | ©
B

[
«w
o

(4
»
«
()

Transition probabilities are:
P12=025;p;3=025;p,,=05 ; p;;=1 for j =234
the algorithm converges after 13 iteration steps. The values obtained
during the iteration are shown in the following Figure.

3.95
399 *
3.85
3.8
A
3.75 N\ e —o
3.74 ®
3.651
3.6 1
3.55 + t +
1 2 3 4 5 6§ 7 8 9 10 11 12 13
‘- Valye of lteration — simulation Naof
lteration
Figure 13.

The pattern of the throughput values obtained during each iteration
is the same for all calculated values. In the first step, the branching
probabilities in the multiphase server of the selected node are set to
zero which gives the network shown in Figure 3. No blocking delays
are considered and therefore, the throughput value in the first step is
higher than in the following iteration. Since a high throughput value
provokes high probabilities P;(B;+1) the second iteration has the
lowest throughput value of all iterations.

We note that in our experiments we could not find any case
where the algorithm did not converge.
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7. Conclusions

In this work we introduced a method which shows the applica-
tion of Norton’s theorem on queueing networks with so-called
transfer blocking. We assumed that the networks investigated must
be deadlock-free. We proposed an algorithm for queueing networks
with finite capacities which enables us to profit from the advantages
of applying Norton’s theorem, i.e., selecting a node arbitrarily and
analyzing the network by modifying the par: s of the selected
node without repeating the analysis of the rest of the network. The
subnetwork is replaced by a composite node with infinite capacity.
We represented blocking delays in the selected node by phases. In
order to compute the parameters of the constructed phases we intro-
duced an iterative technique. The iteration was executed between
different views of the network, i.e. the two-node network with delay
phases in the selected node and each node in the originally given net-
work as independent M /M /1 nodes with a finite capacity. We dis-
cussed numerical examples and compared our results with simulation
as well as with other existing techniques for blocking networks.
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