The Hierarchical Model of Distributed System Security

G. Benson, W. Appelbe and I. Akyildiz

School of Information and Computer Science

Georgia Institute of Technology
Atlanta, GA 30332-0280

Abstract

The Hierarchical Model (H.Model) is an access matrix-based
model used to define non-disclosure in distributed multilevel se-
cure applications such as secure file systems, secure switches, and
secure upgrade/downgrade facilities. The H_Model explicitly en-
codes access rights, synchronization primitives, and indirection
in its state matsix. Serializability of concurrent commands is
formally defined in terms of the H Model syntactic model of com-
putation. H_Model serializability conditions are independent of
the semantic security predicate.

1 Introduction

There are two reasons for building secure distributed systems:
(1) to link secure machines in a secure manner, and (2) to sat-
isfy security requirements for distributed a.pp]icatiohs. A secu-
rity model for the first problem, e.g., [8,15,16,19], calculates an
aggregate security model from a group of security models. A
security model for the second problem provides a global view
that satisfies the requirements for a distributed application. An
example of a distributed application is a distributed Multilevel
Secure (MLS) file system where the file system! consists of mul-
tiple secure file servers and untrusted hosts that communicate
over a local area network. Untrusted hosts access the commu-
nications media via trusted interface units. This paper presents
the Hierarchical Model (H_Model) which models non-disclosure
in the trusted subjects implemented in the secure file servers. The
trusted subjects are modeled as concurrently executing compo-
nents that enforce a global file system security policy.

A security model consists of semantic and syntactic compo-
nents. The semantic component provides a security predicate
that defines security. Example security predicates are the ss-
property and the *-property (2] for sequential systems, and the

IThe file syst ted by Martin Marietta Corporation,
and is being modeled at the Georgia Institute of Technology.

is being imp

CH2703-7/89/0000/0194$01.00 © 1989 IEEE

194

restrictiveness property [15] for distributed systems. The syntac-
tic component defines a model of computation. Example models
of computation are state machines with sequential schedulers for
sequential systems [2], and operator nets for distributed systems
[8]. The semantic component of the H_Model is identical to a
security predicate that describes security in a sequential envi-
ronment; however, the syntactic component of the H. Model ad-
ditionally provides concurrent processing. An important aspect
of the H_Model is that the syntactic component (model of com-
putation) is hidden from the security predicate. This is done
by assuring that state transitions appear as if they are executed
sequentially, even though they can be executed concurrently.

The H_Model is a distributed analog of the Harrison, Ruzzo,
Ullman model (HRU) [12]; bothk models define a syntactic model
of computation, independent of a semantic security predicate.
The H_Model provides concurrent processing which ‘may be used
to model either distributed systems or centralized systems with
concurrent commands. The syntactic model used in the H_Model
is a deterministic finite state machine whose input is a set of con-
current commands, where each command is a sequence of atomic
operations that act as transitions. The H_Model uses blocking
operations to control concurrency. Concurrent commands in the
H Model are analogous to concurrent database transactions [5).
In both cases, a global state is concurrently accessed by multiple
users. In a database, a given set of transactions are considered
“correct” if [5):

i) The transactions correctly implement the database
transaction policy when executed sequentially.

ii) The transactions appear to the user to execute se-
quentially even when executed concurrently.

The method for achieving objective (i) is specific to the database
transaction policy, and objective (ii) is obtained through serial-
izability. The database analogy to the H-Model is that instead
of transactions the H.Model uses commands, and instead of a
database the H_Model uses an access matrix called a state matrix.

Objective (ii) in a database hides concurrent execution from the
database transaction policy because transitions appear to execute
sequentially. The same concept applies to the H_Model because
a semantic security predicate defined for sequential commands
is applicable even if the commands merely appear to execute
sequentially, as opposed to actually executing sequentially.

The motivation for providing concurrency is that sequential
models do not reflect all security-relevant events. For example,
consider a policy that allows users to access directories of files.
Suppose the policy were designed such that a distinct access right
is added or removed between a user and every file in a directory
whenever access to the directory is granted or removed, respec-
tively. A concurrent model could allow two users to concurrently
alter their access rights to the same directory by interleaving
their respective sequence of access right modifications to distinct
files. We cannot merely assume that a sequential model would
be correct if it were executed concurrently. For example, does a
sequential model allow a user to fork two processes that add and
remove access to the same directory simultaneously? If so, are
we assured that there.is not some subtle bug in the sequential
model that could potentially result in some undefined state? We
have found that synchronization problems often result in security

problems [3] and as a result, they should be modeled.

Security proofs are inductive over the length of all legal sched-
ules of concurrent commands. Constraints on legal schedules
should not violate the constraints imposed by the architecture.
For example, commands that are executed on different machines
should be allowed to execute concurrently, unless a distributed
synchronization constraint (such as secure remote procedﬁre call,
or secure distributed semaphore) is assumed or explicitly mod-
eled.

The remainder of this paper is organized as follows. Section 2
presents the H. Model. In section 3 we evaluate our model and
compare it with other security models. Section 4 is an example,

and section 5 summarizes the paper.

2 The H_Model
The H_Model consists of:

i) A Set of Tokens: Every token has a unique type. Ev-
ery type has a unique class. There are three classes:
indez, lock, or right. A token in the class indez is de-
noted by z, a token in the class lock is denoted by {,
and a token in the class right is denoted by r. There
is an unbounded number of types of class indez, and
a bounded number of types of classes lock and right.

195

A type of class index has potentially an unbounded
number of tokens, and a type of class lockor right has
a bounded number of tokens. A definition that ad-
mits parameters from more than one class is denoted
by a concatenated name. For example, a parameter
that may be in any of the three classes is denoted by
(zlr),. We also denote index parameters, s or o when
we want to denote a subject or an object as intended
in the HRU model [12].

~

ii) A Finite Set of Commands: A command is of the

form:

<o Xy s typeg,,
Iy typey,...,dy s typey,,
T1itype, ... Tyt tyPe,,) =

command ¢;(z; : type,,, -

n

Pn

Here, ¢; is a name, and u, v, and w are constants.
Each formal parameter is a token. The formal param-
eters z3,...,%, are of types type,,, for k = 1...u.
The formal parameters Iy, ...,l, are of types typey,,
for k = 1...v. The formal parameters ry,...,7, are
of types type,, ,fork = 1...w. Eachp,fora=1...n

is one of the following operations:

i) entern((zlr)a, s,0)
‘i) delete((zlr)g, s,0)

where s and o are formal parameters whose type is of

class indez.

2.1 Components

The operations in a command are transitions on the global state.
The global state is an unbounded state matrix M, with a row
and column for every token whose type is of class indez. A co-
ordinate of M is denoted [s,0]. The value of M[s,o0] is a subset
of the tokens. A scheduler accepts a set of commands as input
and issues the operations in a given command in the order in
which they are written. A command in a set that contains a for-
mal parameter of the wrong type is ignored. The scheduler may

interleave operations in distinct commands.

For example, consider a system with two hosts, one shared
disk, and two access rights (read and write). Only one host may
access the disk at a time. A model of the system may contain
five types: host, disk, read.t, writet, and mutex_t, of classes,

indez, indez, right, right, and lock, respectively. Assume two host

tokens, and one token from each of the other types is defined. A
command assures that only one host has disk access by entering
and deleting the lock, /;. An example command for this model
has the following form:

command ¢j(21 : host, 23 : disk, ry : read_t,
T : write_t, /; : mutex.t) =
enter(ly,z1,22)
enter(r1,21,22)
enter(r2,21,22)
delete(ry, 21, 22)
delete(r2, 21, 22)
delete(ly, z1,22)

The body of a command is a sequence of operations. The
semantics of an operation is defined in terms of the transition
function, t:

set of operations X set of states — set of states

The H Model has two operations: enter and delete which in-
sert, and remove a token to or from the state matrix, respectively.
A token’s type distinguishes tokens with different semantics, e.g.,
a host, a disk, an access right. A type’s class distinguishes types
of different purposes. The indez, lock, and right classes represents
indirection, synchronization constraints, and access privileges, re-
spectively. An enter and delete operation may modify the value
of at most a.bsingle coordinate.

The H_Model operations are analogous to the HRU [12] model
enter and delete operations which enter a token and delete a
token in the state matrix, respectively. A difference between the
HModel and the HRU model concerns lock variables. A lock
may not be entered in the state matrix where the lock already
exists; and lock may not be deleted where the lock does not
exist. If an operation cannot execute, the operation blocks. The
H_Model does not contain create or destroy subject operations
as in the case of the HRU model, because subjects and objects
and their respective status (created, not created, and destroyed)
can be constructed using the H.Model primitives [4].

The formal description of the H_.Model operations is given
below:

i) enter((zlr)q,s,0)

vs',0' t(enter((zlr)e,s,0), M)[s',0] =
M[s,d] ifs'#sord #£o
M[s', 0] U{(zir).} otherwise

This operation puts (zir), in M{.,0]. I (zir), is a
lock, then the operation blocks until

196

t(enter((zlr)s,s,0), M)[s',0'] # M; otherwise, the
operation is not blocked. Informally, if (zlr), is a
lock, the operation blocks until (zir), is not in M(s, o).
If (zi7r), is not a lock, then the operation is executed
regardless of the value of M(s,o].

i

~

delete((zlr)q, 3, 0)

Vs', o' t(delete((zlr)s,s,0), M)[s',0] =

M[d, o] ifd #sord #o
Mis', 0 — {(zir)s} otherwise

This operation removes (zir), from M{s,o]. If (zlr),
is a lock, then the operation blocks until
t(delete((zir),, 5,0), M)[s',0] # M; otherwise, the
operation is not blocked. Informally, if (zlr)s is a
lock, the operation blocks until (zir), is in M(s, o].
If (zlr)q is not a lock, then the operation is executed
regardless of the value of M{s,o].

The semantics of an example command is given below.

command c;(my : host, Iy : dskl, I7 : reql, I3 : bufl) =
delete(l;,my,4)
enter(my, 6,7)
enter(lz,6,my)
enter(g, 3,4)
delete(l3, 3,4)

Command, ¢;, accepts four formal parameters (ml,ll,lg,l;;), of
types host, dskl, reql, and bufl, respectively. The class of the
host type is indez, and the classes of dsk], reql, and bufl are lock.
The token g is a constant whose class is right. The command
waits until }; may be deleted from M[m,,4]. Next, indez m, is
entered into M[6,7]. The command then waits until /; may be
entered into M[B,m,]. Next, right q is entered into M[3,4]. The
command then waits until /3 can be deleted from M[3,4]. Assum-
ing that the command runs to completion when no concurrent
commands are executing, the resultant matrix has three, four, or
five changes, with respect to the original matrix, depending on
whether or not m; and ¢ are in the original matrix.

A command defines the correctness criteria of the security
enforcing mechanisms. Since distinct security enforcing mecha-
nisms execute concurrently, an c¢xecution history is represented
as a sequence of atomic operations which may be interleaved with
operations from different coinmands. Whenever commands must
be synchronized in order to enforce the security predicate, explicit
synchronization constraints must be modeled. The synchroniza-
tion constraints are presented in the form of locks. An important

synchronization constraint is a critical section. A critical section
is a sequence of operations that execute atomicly with respect
to operations from different commands. In section 2.2 we show
how to build critical sections using locks, and demonstrate that

correctly formed critical sections imply serializability.

2.2 Scheduler

This section presents recursive equations that define the H_Model.
The equations represent our recursive specification of the H_Model
being implemented in the Gypsy verification environment.[10]
The equations could have been specified iteratively, but are spec-
ified recursively in order to simplify the proofs.

When a command is issued, the command runs to completion
by executing its operations in order. We write ¢; = p1,...,pa to
denote that command ¢; is the operation sequence py,...,Pn,
where |c;] = n. We denote the first operation in a command
¢; by first_c(c;), and the remainder of the operation sequence
rest_¢(c;), where |¢j| = 0 implies first_c(c;) is undefined and
restc(cj) = ¢;. The coordinate referenced in operation p, is
denoted by coord(p,); the kind of operation (enter or delete) ref-
erenced in operation p, is denoted by op(p.); the token refer-
enced in operation p, is denoted tok(p,); and the class of the
token referenced in operation p, is denoted class(p,). Execution
of command c; is given by the function 7 which sequentially

applies the operations in ¢; to the state matrix:

M <P iflel=0
t(first-c(c;, M) i iflel =1
T (rest_c(c;), t(first_c(c;), M)) otherwise

T(ciaM) =

Definition 1. Multiple commands can be ezecuted concurrently
by interleaving operations in the commands. The set of of all
possible interleaving histories, h, of commands of a set of com-

mands, C;, is an interleaved set (iset).

iset(C:) = {h| iset1(Ci, h)}

where
true if[h| =0 A Ve € Ci lex| =0
true if Jex € Ci first_c{ex) = first_c(h) A
iset1(C;,h) = iset1{(((C; — {ex})V

v {rest_c(r1)}), rest_c(h))
false othcrissc

In other words, the iset of a st of commands is a set of sequences
of operations. Iset is defined recursively, where for each A in iset,
first_c(h) is equal to the first operation in some element ¢k in C;.

An interleaving contains all the operations in the commands, and

preserves the relative ordering of operations. For example,

iset({php% ,plapb}) =
{P1, 2, P12P2,, P11 1292, P22 P11 P12 P22 P21 5
P12P11 P2 P25 PLaP1y P22 P21 » P1aP2: PL P2y)
Not every interleaving of a set of commands may be scheduled

because of the semantics of the blocking operations given in sec-
tion 2.1. For this reason, we define a scheduleset.

Definition 2. A Scheduleset of a set of commands and an ini-
tial matriz is the set of all legal schedules of the respective com-

mands according to the semantics presented in section 2.1.

scheduleset(C;, M) = {h | h € iset(C;)and legal(h,M)}

where
true if|h| =0
true if first(h) = enter(zr,s,0) A
legal(rest_c(h),t(first(h),M))
true if first(h) = enter(l,s,0) Al ¢ M[s,0]A
legal(h, M) = legal(rest_c(h),t(first(h),M))

true if first(h) = delete(zr,s,0) A
legal(rest_c(h),t(first(h),M))

true if first(h) = delete(l,s,0) Al € M[s,0]A
legal(rest_c(h),t(first(h),M))

| false otherwise

“In other V\}ords, a scheduleset of a set of commands and an initial

matrix is a subset of the iset of the commands. Operation se-
quences in an iset in which locks are entered where they already
exist in the state matrix, or deleted where they do not exist in

the state matrix, do not appear in a scheduleset.

The next two definitions provide serializability. A command
sequence ¢j...c, is denoted €. The first command in ¢ is de-
noted first_p(¢), and the remainder of the command sequence is
denoted rest_p(g), where |¢| = 0 implies first_p(€) is undefined,
and rest_p(¢) = & The definitions of first_p and rest_p are com-
pared with first_c and rest_c in the example below.

€ = p1p2p3 paPspe

e o’
¢ c2

o first_p(€) = p1p2ps
o rest_p(t) = pspspe
o first_c(€)=p1

o rest_c(€)= p2p3psPspe

Definition 3. The sel of permutats ds in @ com-

mand set i3 a perm.

"Ofb

perm(C;) = {e|perm1(C;, €)}

fICl=0A [gf=0

if firsi_p(¢) € Ci A

perm1(C; — {first_p(c)}, rest.p(c))

false otherwise

irue

true
perm1(C;,T) =

For example,
perm({e;, e2,¢3}) = {c1eze3, 16302, c2cr03, €301, c3cr€2, €36261 }

Definition 4. A command set is serializable if and only if ev-
ery schedule is ezecutable, and every schedule yields the same
final state as if the commands were ezeculed in some serial or-
der.

serializable(C;) iff
VM Vh € scheduleset(C:, M)
3¢ € perm(C;) T(h,M) =T(e, M)

For each M in which scheduleset{C;, M) = B, serializable(C;) is
vacuously satisfied. Otherwise, for each element of
scheduleset(C;, M), there must exist some sequential schedule of
commands that returns the same final state.

" The number of serializable, concurrent schedules is not always
polynomial in the size of the commands in a given command set
[4]. Therefore, an algorithm that determines if a given set of com-
mands is serializable is not necessarily efficient, if the algorithm
executes -by enumerating every possible concurrent schedule. We
avoid enumeration by providing a polynomial time algorithm that
computes two serializability conditions. The correctness criterion
of the serializability conditions is if the serializability conditions
are satisfied by a given command set, then the command set is se-
rializable. The serializability conditions are satisfied whenever all
critical section are nested, and all operations in all distinct com-
mands that reference common coordinates are in shared critical
sections. The algorithm that computes the serializability condi-
tions is a straightforward application of the respective definitions
of the serializability conditions given below.

Definition 5, The first operation in a critical section (crit) en-
ters a lock in a coordinate (s,0), and the last operation in the
critical section deletes the lock from the same coordinate.

crit(pa, ps, ¢5) if
Pa,y Db iR Cj A
op(pa) = enter A op(py) = delete A tok(p.) = tok(ps) A
coord(p,) = coord(py) A @ < b A class(pa) = lock

198

Definition 6. pn; inc; and pm, in c; share a critical region,
scr(¢;(Pm;)€k (Pm,), if and only if pm; and pm, are in critical
section that share the same lock and coordinate.
scr(c,'(pmj)’ck(Pmk)) iff
3Paj, Pbjs Pars P CTEPajs Bb;1€5) A €rillpe,, Poy,ck) A
coord(p,;) = coord(p,,) A tok(ps;) = tok(ps,) A
a; <m; <b; A ap <my < b

Definition 7. A command set, C;, has proper critical regions
(per(C;)) if every pair of operations in distinct commands that
reference a common coordinate are in shared critical regions.

per(C;) iff
Vej, e € C; me,. i Cj Vpm, in ¢

coord(pm ;) = coord(pm,) = 361‘(Cj(pmj),6k(pmk))

$od

Definition 8. A , nest(c;) if and only
if all critical sections in the command are nested.

nest(c;) iff
VDay Pbs Pdy Pes Py P

U”-t(Pu:Pb:cj) A Cﬁt(pdypercj) =
ea<d<e<bord<a<b<e

and. P!
y Cj; 38

Nested critical sections provide dynamic two-phase locking: “Lock
each entity accessed by the transaction immediately before the .
corresponding action; release all locks immediately following the -
last step of the transaction” [17]. The theorem that dynamic two-
phase locking assures serializability is proved by Papadimitriou
in [17].

Theorem 1. If a set of commands has proper critical regions
and is nested, then the set of commands is serializable.

per(Cy) A nesi(C;) = serializable(C;)

Theorem 1 is a corollary of Papadimitriou’s theorem.

3 Evaluation

Sequential security models, e.g., [2,7,9,11,12,13], are usually de-
fined in terms of finite state machines. Each model defines a se-
cure initial state, and proves by induction that every state reach-
able from a secure initial state is itself secure. Most models are
in one of two general categories: access matrix, e.g., [12], or in-
formation flow, e.g., [9]. An access matrix model defines access
privileges possessed by dillerent entities in a system. An infor-
mation flow model defines properties of input and output. An

advantage of an access matrix-based model is it defines the imple-
mentation of operating system security-enforcing mechanisms.?
A disadvantage of an access matrix-based model is it does not
define security for all types of information flow. For a stronger
definition of security, an information flow model is required. An
advantage of an information flow model is that it defines secu-
rity for some legitimate or storage channels that are considered
covert with respect to an access control model. A disadvantage
of an information flow model is that it is difficult to implement
a system that actually enforces the model. The H_Model is an
access matrix-based model, which coupled with a covert channel
analysis such as the one described in [6], provides enough security

assurances for many applications.

This section compares the H_Model with some related mod-
els: the Goguen-Meseguer model [9], the Odyssey Restrictiveness
model [15], and the Lucid knowledge model [8]. All of the re-
lated models discussed in this section express abstract properties
of security predicates. The Restrictiveness model and the Lucid
knowledge model use their abstract properties to compose secure
components into an aggregate system. A specific security predi-
cate (such as the ss-property and the =-property described in the
Bell and La Padula model {2]) can be designed and verified by
showing that the predicate is a special case of some abstract se-
mantic property. The H_ Model differs from the example models
because the H_Model provides a syntactic security property. The
H_Modél synfactic serializability property can be used in con-

bounded buffer, but hides the buffer so that it may not be di-
rectly perceived by an untrusted subject. The hidden buffer is
indirectly accessed via a trusted subject that maintains its own
buffer queue. Eventually, every item in the trusted subject queue
will be placed in the buffer, but flow control is restricted by ex-
plicit locks defined in the H_ Model. By hiding bounded buffers
the H_Model is not able to eliminate the covert channel, but is
able to assure that the covert channel is presented in the form of
2 timing channel as opposed to a storage channel. Timing chan-
nels generaly have lower bandwidth than storage channels, and
as a result have lower risk.

The Lucid knowledge model [8] provides composability and
temporal logic. The Lucid knowledge model is an operator net
model which is syntacticly similar to a data flow model. Se-
manticly, it provides reasoning processes that are able to de-
duce knowledge concerning other processes. By using knowledge
and reasoning processes, one may potentially be able to define a
wider class of semantic information than is available using stan-
dard modeling techniques. A problem with the Lucid knowl-
edge model is it uses unconventional syntax that is incompatible
with existing verification environments (e.g. Gypsy [10]). Un-
like the other related models discussed in this section ([9,15] and
the H_.Model) which are defined using first order logic, the Lu-
cid knowledgg model uses modal operators which may express

temporal ordering. The H_Model may express some aspects of

tenfporaj ordéring by saving information tokens that represent

junction with a semantic security property provided by another _

model.

The Goguen-Meseguer model [9] is historically an importasit
security model in the context of secure networks because it in-
troduces the MLS non-interference property. The MLS non-
interference property states that one process should be prohibited
from detecting any operation executed by another process unless
allowed by the information flow rules stated in the security pol-
icy. The MLS non-interference property has the appeal of being
close to the intuitive notion of security. The primary problems
with the MLS non-interference property are: it is too restrictive,
and it does not provide concurrency. The other related models
presented in this section [8,15] extend the MLS non-interference
property.

The Odyssey Restrictiveness model [15] provides composabil-
ity, non-determinism, and interrupts. A basic difference between
the Restrictiveness model and the H_Model is their respective
The Restrictive-

ness model does not use a blocking bounded buffer because of a

definitions of secure buffers. use of buffers.

potential covert storage channel. The H_Model uses a blocking

2usually either an access control list or a capability list

199

‘prd;.)‘érti‘és”of old states in its state matrix. -Such representations

are clumsy when compared with Lucid.

A potential drawback of the H.Model with respect to the sam-
ple models is that the H.Model has an implicit semantic notion
of security which is somewhat weaker than the notions expressed
in the sample models. All of the sample models express proper-
ties that are historically derivative from Goguen-Meseguer’s MLS
non-interference property. Non-interference allows for a stronger
notion of security than can be expressed in access matrix models
because some covert communication paths could potentially be
established without defining a specific access path in an access
matrix.

We believe the disadvantage of the higher risk approach of
the H_Model is offset by its advantages:

o The H Model can easily define many important currently-
existing models. The HRU [12], and the take-grant [13)
models are two example models that can be expressed in
terms of the H Model [4]. Otlier models such as the Bell
and La Padula model [2] whichi can be syntacticly defined in
terms of HRU [18] can ulsu he syntacticly defined in terms
of the H_.Model. The security predicate of such models is

independent of the H . Model. The H_Model cannot define
information flow models, models that use temporal logic,
or models that use second or other higher order logics.

The H Model defines serializability syntacticly which can
not be expressed in any of the other models [8,9,15]. As a

result, the H Model security predicate is relatively uncon-

strained.

The H.Model is easy to use. Several models can be ex-
pressed in terms of access matrices [12,13]. Rows of ac-
cess matrices correspond to capability lists and columns of
access matrices correspond to access control lists, one or
both of which are implemented in many security enforcing
mechanisms. Another reason the H . Model is easy to use
is that the H_.Model explicitly defines blocking conditions,
which supply explicit synchronization constraints. We illus-
trate an example command that uses blocking conditions
in section 4. Some secure mechanisms enforce security re-
quirements by assuring correct behavior of the mechanisms’
interface. An example operating system that uses this tech-
nique is the Gemini secure microprocessor. The security en-
forcing mechanism “forms what can be thought of logically
as a critical section with respect to the invoking domain

[1] >

o We are currently verifying the H_Model, and expect to com-

plete verification shortly. By verifying the H_Model we

hope to provide a model free of subtle bugs or ambigui-
ties. Our proof forces no assumptions on the unsuspecting
user other than the ones adopted by Gypsy [10]. In a few
situations we use unproven lemmas. We consider all of our
unproven lemmas ‘obvious’, but unfortunately, cannot be
proven in our version of the Gypsy environment. For ex-
ample, we assume commutativity of disjoint array accesses
within the scope of a single Gypsy “with” primitive.

4 Example

This section presents an example that illustrates the H_Model.
The example is a portion of a model called the Distributed Bell-
La Padula model (DBL). As its name implies, the example model
is a distributed version of the Bell-La Padula model [2]. The
purpose of DBL is to illustrate the H Model, and is not intended
as a reimplementation uf the Bell-La Padula model. Some of

the least important aspects of the Bell-La Padula model are not
represented in DBL.

200

4.1 Overview

The Bell-La Padula model defines a system as a set of appear-
ances. An appearance is a sequence of the form:

Mo V2 My 3 M

where each M; is a state, and each ¢; is a state transition (com-
mand). In an unrelated paper [14], Lamport suggests that the
behavior of any discrete system can be described as such a set of
appearances. The Multics Interpretation of the Bell-La Padula
model [2] provides eleven “rules” that act as state transitions.
The set of rules, combined with an initial state, Mg, provide a
definition of a system, i.e., a set of appearances. The purpose of
the Bell-La Padula model is to define a secure system. A given
implementation is proven secure if its behavior (set of appear-
ances) is a subset of a Bell-La Padula secure system. A system-
security predicate is function computed over a system that is
satisfied only if the system is secure. The Bell-La Padula system-
security predicate is satisfied if and only if every state in every ap-
pearance satisfies a state-security predicate. The Bell-La Padula
state-security predicate is the conjunction of the ss-property, the
#-property, and the ds-property. Since the definition of system is
discrete, the states in each a.ppear'a.nce can be enumerated with
the non-negative integers, and security can be proved by induc-
tion. The base case of the inductive proof demonstrates that the
initial state satisfies the state-security predicate, and the induc-- -
tive case demonstrates that no rule may move from a secure state .
to a non-secure state.

DBL provides an alternative description of a secure system.
The DBL system is a super set of the Bell-La Padula system
because concurrent transitions are allowed. Therefore, any sys-
tem proved secure according to the Bell-La Padula model is also
secure according to the DBL model, and in addition, some dis-
tributed systems are also secure.

4.2 Security Predicate

As described above, the Bell-La Padula security predicate is
the conjunction of the ss-property, the +-property, and the ds-
property. For simplicity, we only describe the *-property in
DBL, but an extension that includes the other two properties
is straightforward. Also, the Bell-La Padula model distinguishes
between the current security level and the security level of a sub-
Jject or object, but for simplicity, DBL omits this distinction. The
#-property is a function defined in terms of subjects, objects, and
a partially ordered set of security levels. The partial ordering re-
lation is called domninates. The *-property states:

i) If a subject has append access to an object, then the
current security level of the object dominates the cur-

rent security level of the subject.

i) If a subject has write access to an object, then the cur-
rent security level of the object dominates the current

security level of the subject.

iii) If a subject has read access to an object, then the
current security level of the subject dominates the
current security level of the object.

The DBL represents the x-property by data structures that
define privileges, security levels, and security level functions. A
privilege is a an access permission (right). Example privileges are
append (a), write (w), and read (r). Security levels are partially
ordered levels of trust. The partial order relation (dom) is ex-
plicitly represented in the state. The security level functions are
the mappings from subjects and objects to security levels, and
are also explicitly encoded in the state. The form of the DBL
x-property is given below:

a € M[s,0] = security level of o dominates security level of s
w € M[s,0] = security level of o dominates security level of s
r € M[s,0] = security level of s dominates security level of o

DBL éepreéents security levels by encoding the dom right be-

tﬁéé'h the indices that represent security levels according to the

" partial ordér. Corsider a policy that defines three security le\}els,v

levy, levé, and levs, such that levy; dominates lev,, lev; dominates
levs, and levy, and levg are not related. This configuration is rep-

resented in the state below.

lery levry lewns
lev; | dom | dom | dom
lev, dom
levs dom

The security level functions are defined using the right, f. For
example, if f € M[lev;, 0], then the security level of 0 is lev;. An

example configuration is given in the state below.

The security level of s is leva

The security level of ss is levy
o The security level of s3 is levs
o The security level of oy is levs
o The security level of o, is levy

e The security level of o3 is levs

sy Sy 83 01 o0y o3 levyy levy lews

$1

$2

83

01

o2

03
131
leny if f dom | dom
lev, | f f dom
lev f f

dom

dom

Access privileges are indicated by right tokens. A state satisfies
the x-property if and only if the star predicate given below is

satisfied.

star(M) iff Vs,o,lev,,lev,
(a € M[s,0] A f€ Mlevy,s] A f € Mllevo, 0] =
dom € Mlev,,lev]) A
(we Mls,o] A f € Mllev,,s] A f€ Mllev,,0] =
dom € Mlev,,levy]) A
(r € M[s,0) A f € Mlevy,s] A f€ M[lev,,0] =
dom € M[lev,,lev,])

An example state matrix that satisfies the star predicate is

given below. The example state matrix has three privileges:

201

i) a € M([sy1,00]
ii) 7 € M([s2,s1]

ili) w € M(sa, 03]

Privilege (i), for example, indicates that sy has append access
to 0. Since f € M[leva, s1], and f € Mlevy,o02], the security
levels s1, and o, are levy, and levy, respectively. Since, dom €
M [levy, leva], the security level of o3, dominates the security level
of s;. Therefore, privilege (i) satisfies the «-property as given in
the star predicate. The other two privileges can be shown to

satisfy the star predicate through similar reasoning.

81 82 83 07 03 o3 levyy levy lew

dom | dom | dom

lew f i
levy | f
lews f f

dom

dom

4.3 Model of Computation

The DBL model of computation is a list of commands. Each
DBL command is analogous to a Bell-La Padula rule. The com-
mands change the state by modifying privileges or security level
functions. The purpose of the commands is to define a secure
system, e.g. set of appearances. As described in section 4.1, a
specification is proved secure according to DBL by demonstrat-
ing that the specified system is a subset of a DBL system. Some
appearances in a DBL system need not be included in any spec-
ification, because they contain deadlocks. Although deadlocks
should be avoided in any practical implementation, deadlocks are
not non-secure unless the deadlock occurs in a non-secure state.
An example command called get-read which enters the read (7))
privilege is given below. The get-read command proceeds to com-
pletion if its result satisfies the ster predicate, and blocks without
changing the state otherwise.

get-read(s,o0,levs,lev,) =
enter(l1,lev,,lev,)
delete(lock: dom,lev,,lev,)
enter(dom, lev,,lev,)
enter(i1,lev,, s)
delete(lock: f,lev,,s)
enter(f,lev,,s)
enter(l1,lev,, 0)
delete(lock: f,lev,,0)
enter(f,lev,,0)
enter(l1,s,0)
enter(r, s, 0)
delete(l1,s,0)
enter(l1,lev,,0)
enter(l1,lev,, s)
enter(l1,lev,,lev,)

The get-read command executes by computing three tests. If
any of the tests are not satisfied, then get-read deadlocks. The

202

first test validates that the security level of the subject dominates
the security level of the object. The next two tests validate that
the security level function parameters are associated with the
respective subject and object parameters.

The get-read command is secure, because the 7 right is not
entered into the state unless the security level of the subject
dominates the security level of the object. We claim but do
not formally prove here, that if the state is secure according to
the star predicate before get-read executes, then the resultant
state after get-read executes is also secure. Furthermore, get-read
satisfies the conditions of theorem 1 of section 2.2.

The get-read command, as presented here, is intended to il-
lustrate the H_ Model, and is not intended as an alternate formal-
ism of the Bell-La Padula model. Some aspects are the Bell-La
Padula model are omited for simplicity, and other aspects of the
Bell-La Padula model should be enhanced in an analogous dis-
tributed model. For example, the DBL as presented here, does
not distinguish between active subjects and passive objects, but
DBL can be extended to include these features [4]. Also, DBL
can be augmented with a more complex data structure for locks,
so that more concurrency can be modeled.

5 Conclusion

The H_Model defines security for distributed applications and
concurrent applications implemented on centralized systems. The
H Model differs from other security models for distributed envi-
ronments because the H_Model hides the distributed model of
computation from the security predicate. In section 2.2 we prove
this result. The H_Model is currently being used to define secu-
rity for a distributed Multilevel Secure file system.

Our definitions in section 2.2 are being implemented in the
Gypsy [10] formal programming environment. We structure our
Gypsy proof on an abstract machine. The abstract machine is
the unbounded size state matriz and a transition function. The
transition function accepts a sequence of operations and produces
a final state. We use Gypsy lemmas to prove the serializability
theorem. All of our functions in the Gypsy implementation are
functional and zero assignment - all code is implemented in the
form of functions, and local variables are not used. Each lemma is
defined in terms of an arbitrary vector and functions that operate
on elements of the vector. A a result, universal quantification is
implicit without the need fur explicit quantifiers.

In a related paper, [4], we extend our results to include a
wider class of secure systems. We show that the critical section

conditions of theorem 1 combined with a least privilege condition,

'

assures security for intermediate states as well as final states.
The purpose of the extended result is to prove that if the critical
section conditions, and the least privilege conditions are satisfied
by a given set of commands, and the set of commands satisfies the
security predicate when executed sequentially, then every state
reachable from a secure initial state through concurrent execution

is secure.

In future work we will formalize a mapping between a specifi-
cation language described in [14] and the H_Model. The mapping
provides a formal framework for modeling and specifying secure
distributed systems. In addition, the specification language aug-
ments the model by defining liveness predicates.

References

[1] System Overview Gemini Trusted Multiple Microcomputer
Base (version 0). Carmel, CA, 0 edition, May 1985.

[2] D. Bell and L. LaPadula. Secure Computer System Uni-
fied Ezposition and Multics Interpretation. Technical Re-
port MTR-2997, MITRE Corp., Bedford, MA, July 1975.

3

=

G. Benson. Secure Message and File Facility. Technical Re-
" port MMC-D-87-63773-012, Martin Marietta Corp., Denver,
CO, September 1987.

G. Benson, I. Akyildiz, and B. Appelbe. A Formal Pro-
tection Mo}iel of Can%bﬁter Secuﬂty in Distributed Systems.
Technical Report GIT-IdS-SQ /08, Georgia Institute of Tech-
nology, Atlanta, GA, 1989

N

C. Date. Vol-
ume 1, Addison-Wesley Systems Programming Series, Read-
ing, MA, 4 edition, November 1987.

(5]

An Introduction to Database Systems.

[6] D. Denning and P. Denning. Certification of programs for
secure information flow. In Communications of the ACM,
pages 504-512, July 1977.

[7] R. Feiertag, K. Levitt, and L. Robinson. Proving multi-level
security of system design. In Proc. 6"* ACM Symposium
on Operating Systems Principles, pages 57-65, ACM, IEEE,
1977.

[8} J. Glasgow and G. MacEwen. Reasoning about knowledge
in multilevel secure distributed systems. In Proc. 1988 IEEE
Symp. Security and Privacy, pages 122-128, IEEE, Oakland,
CA, 1988.

[9] J. Goguen and J. Meseguer. Security policies and security
models. In Proc. 1982 IEEE symp. Security and Privacy,
pages 11-20, IEEE, Oakland, CA, 1982.

203

{10]

11

Lo

[12]

{13]

(4]

(15)

(16]

(18]

(19]

D. Good, B. DiVito, and M. Smith. Using the Gypsy
Methodology. Technical Report, Computational Logic Inc.,
Austin, TX, 1988.

J. Haigh and W, Young. Extending the noninterference ver-
sion of MLS for SAT. In IEEE Transactions on Software
Engineering, pages 141-150, February 1987.

M. Harrison, W. Ruzzo, and J. Ullman. Protection in oper-
ating systems. In Communications of the ACM, pages 461—
471, ACM, August 1976.

A. Jones, R. Lipton, and L. Snyder. A linear time algorithm
for deciding security. In Proc. 17** Annual Symp. on Found.
Comp Sci., 1976.

L. Lamport. A formal basis for the specification of concur-
rent systems. In Y. Paker et al., editor, Distributed Operat-
ing Systems. Theory and Practice., pages 446, NATO Ad-
vanced Study Institute, Springer-Verlag, Berlin, July 1987.
Vol. F28.

D. McCullough. Noninterference and the composability of
security properties. In 1988 IEEE Symp. Security and Pri-
vacy, pages 177-186, IEEE, Oakland, CA, 1988.

D. McCullough. Specifications for multi-level security and a
hook-up property. In Proc. 1987 IEEE Symp. Security and
Privacy, pages 161-166, IEEE, Oakland, CA, 1987. '

C. Papadimitriou. The Theory of Database Concurrency
Control. Computer Science Press, Rockville, MD, 1986.

P. Pittelli.
represented as a special case of the Harrison-Ruzzo-Ullman

The Bell-LaPadula computer security model

model. In Proc. 10" National Computer Security Confer-
ence, pages 118-121, NBS, Gaithersburg, MD, September
1987.

J. Rushby. Security policies for distributed systems.
September 1988. SRI International (Unpublished Draft).

