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Massimiliano Pierobon, Member, IEEE, and lan F. Akyildiz, Fellow, IEEE

Abstract—Molecular nanonetworks stand at the intersection
of nanotechnology, biotechnology, and network engineering. The
research on molecular nanonetworks proposes the interconnection
of nanomachines through molecule exchange. Amongst different
solutions for the transport of molecules between nanomachines,
the most general is based on free diffusion. The objective of this
paper is to provide a statistical-physical modeling of the inter-
ference when multiple transmitting nanomachines emit molecules
simultaneously. This modeling stems from the same assumptions
used in interference study for radio communications, namely, a
spatial Poisson distribution of transmitters having independent
and identically distributed emissions, while the specific molecule
emissions model is in agreement with a chemical description of
the transmitters. As a result of the property of the received
molecular signal of being a stationary Gaussian Process (GP),
the statistical-physical modeling is operated on its Power Spectral
Density (PSD), for which it is possible to obtain an analytical ex-
pression of the log-characteristic function. This expression leads to
the estimation of the received PSD probability distribution, which
provides a complete model of the interference in diffusion-based
molecular nanonetworks. Numerical results in terms of received
PSD probability distribution and probability of interference are
presented to compare the proposed statistical-physical model with
the outcomes of simulations.

Index Terms—Co-channel interference, diffusion equation,
molecular communication (MC), nanonetworks, statistical-
physical interference model.

I. INTRODUCTION

OLECULAR nanonetworks are one of the new frontiers

in communication engineering and networking. Pro-
posed for the interconnection of intelligent autonomous nano-
devices, or nanomachines, they are based on a bio-inspired
paradigm called Molecular Communication (MC) [1]. MC
realizes information transmission between devices through the
exchange of molecules, which are emitted by a transmitting
device, propagated through different techniques and received
by the destination device. This new paradigm, inspired by the
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natural communications in biology, is expected to be especially
attractive due to its inherent biocompatibility. Envisioned appli-
cations [2] of molecular nanonetworks range from the biomed-
ical field, in intra-body diagnosis and intelligent drug delivery,
to the industrial fields, as a support to the monitoring and
control of goods production and waste disposal, and security/
safety applications, such as for biological and chemical attack
detection.

Several MC techniques have been proposed so far, which
differentiate themselves for the way in which molecules are
propagated from the transmitter to the destination device. These
techniques involve either passive molecule transport (diffusion-
based architectures [3]) or active molecule transport (molecular
motors [4], bacteria chemotaxis [5]). We consider the diffusion-
based architectures as the most general alternative, since they
do not rely on an ad-hoc infrastructure for molecule propaga-
tion, but they are based on the spontaneous Brownian motion.
We believe that by studying the diffusion-based MC we can
provide solutions that can then be easily tailored and expanded
to be applied to other more specific MC techniques.

Molecular nanonetworks architectures based on diffusion-
based MC have been a subject of study in the latest years and
contributions from the literature propose diverse solutions on
the way to encode information in the diffusing molecules. In [6]
the information is encoded in the time of arrival of molecules
at the receiver, in contrast to [7] where each molecule carries
a piece of information according to its molecular composition.
Other contributions [8]-[14] agree on the higher potential of
encoding the information in the variations of the concentration
of molecules in the space, which is also confirmed by our
studies [15] on the information capacity of this architecture.

In this paper, we focus on the study of the interference
in diffusion-based molecular nanonetworks by taking into ac-
count the information encoding on the molecule concentration.
Previous literature has addressed the problem of diffusion-
based MC interference in the same architecture. In [16] the
effects of intersymbol and co-channel interference are analyzed
in reference to two specific modulation techniques proposed
by the same authors. In [17] the intersymbol interference is
characterized in a unicast MC system with binary amplitude
modulation. In [18], interference is studied for another specific
modulation technique, based on the transmission order of dif-
ferent types of molecules. Our contribution in [19] characterizes
the intersymbol and co-channel interference by modeling the
attenuation and dispersion of Gaussian pulses. The interference
analysis provided in this paper completes our work on the
end-to-end physical and noise modeling of diffusion-based MC
published in [12]-[14], respectively, by providing closed-form
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mathematical expressions to evaluate the impact of interference
in an MC system.

The objective of this paper is to provide a statistical-physical
modeling of the interference in the diffusion-based molecular
nanonetworks when multiple transmitting nanomachines emit
molecules simultaneously. Since our goal is to consider a worst
case scenario for the analysis of interference, we do not con-
sider coordination among transmitting nanomachines, whose
emissions at any time instant are random and modeled through
a stochastic process. In diffusion-based molecular nanonet-
works, interference can be considered either as a disturbance
in the reception of one or more molecular signals, or as an
effect that can be exploited to enhance the communication
of information from many/all transmitting nanomachines. As
an example, nanomachines could send the same molecular
signal upon sensing an over-threshold value in the environment.
The interference of these signals at the receiver could then
convey information regarding not only the presence of an over-
threshold value, but also the number of transmitters that are
detecting this value. The results presented in this paper will
support the end-to-end design of these systems by providing a
mathematical framework to quantify the impact of interference
in diffusion-based MC as function of physical parameters. Our
method to characterize interference differentiates from the pre-
vious literature on molecular nanonetworks, since we develop
a general model independent from specific modulation and
coding techniques. In particular, this modeling stems from the
same general assumptions used in interference study for radio
communication networks, namely, a spatial Poisson distribution
of interfering transmitters having independent and identically
distributed (i.i.d.) emissions. Moreover, the specific probability
distribution used for the molecule emissions is in agreement
with a chemical description of the transmitters in terms of
Langevin equation [20], which models the randomness in the
chemical reactions involved in the production of the molecules.

The statistical-physical modeling detailed in this paper
is based on the property of the received molecular signal
of being a stationary Gaussian Process (GP), which results
from the molecule emission distribution and the diffusion-
based molecule propagation. As a consequence, the statistical—
physical modeling is operated on the received Power Spectral
Density (PSD), for which it is possible to obtain an analytical
expression of the log-characteristic function. The expression of
the received PSD log-characteristic function ultimately leads
to the estimation of the received PSD probability distribution.
The received PSD probability distribution provides a complete
description of the GP of the received molecular signal, which
corresponds to the interference in diffusion-based molecular
nanonetworks. By using the derived statistical-physical inter-
ference model, we also provide numerical results in terms
of received PSD probability distribution and probability of
interference for selected values of the physical parameters of
the molecular nanonetwork, such as the diffusion coefficient,
the transmitter density and the average power of molecule emis-
sions, and we compare them with the outcomes of a simulation
environment.

The remainder of the paper is organized as follows. In
Section II we list the main reference models, assumptions, and
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Fig. 1. Reference diffusion-based molecular nanonetwork considered for the
interference modeling.

definitions used in this paper for the statistical-physical model-
ing of the interference in molecular nanonetworks. The main
goals of the statistical-physical modeling of the interference
are introduced in Section III, together with the probabilistic
description of the received signal and a description of the
steps for the statistical-physical modeling of the received PSD.
In Section IV, we analytically compute the log-characteristic
function of the received PSD and numerically derive its PDF.
Numerical results are provided in Section V for the simulation-
based evaluation and the probability of interference. Finally, in
Section VI, we conclude the paper.

II. INTERFERENCE IN MOLECULAR NANONETWORKS

In this section, we describe the main reference mod-
els, assumptions, and definitions used in this paper for the
statistical-physical modeling of the interference in molecular
nanonetworks.

A. Reference Molecular Nanonetwork

In the following, we detail the main elements of the reference
molecular nanonetwork considered in this paper. As sketched in
Fig. 1, these elements are the molecular transmitters, responsi-
ble for the emission of molecular signals, the diffusion-based
propagation, which broadcasts the molecular signals in the
space by means of free molecule diffusion, and the molecular
receiver, which senses the incoming molecular signals.

A Molecular Transmitter, identified by a number k and
located at xy, is responsible for the emission of molecules in
the space according to a molecular signal s (t) as function of
the time ¢. In general, the molecular signal sy (¢) can assume any
value as function of the time ¢, provided that the concentration
of molecules in the space is always kept at a positive value, as
explained in the following. We assume that all the transmitters
emit molecules of the same species n within an equal definite
volume V7, whose size is negligible with respect to the distance
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between each transmitter and the receiver.! Upon this emission
of molecules, identified with the time derivative dX,,(t)/dt in
the number X, of molecules of species n inside the volume
Vr at the transmitter k£, each molecular transmitter k causes a
change in the molecule concentration ¢(z, t) at its location Ty,
which is expressed through the following relation:

dc(z,t) 1 dX,(t)

otV d 0T —Zp) = sk(t)o(T —21) (1)

where Oc(Z,t)/0t is the time derivative in the molecule con-
centration at the location Z and time ¢, and §(.) is the Dirac
delta. Moreover, we assume that a transmitter is able to produce
molecules, thus resulting in a positive time first derivative
dX,(t)/dt >0 and a positive transmitted signal sy (t) > 0,
or to subtract molecules, thus resulting in a negative time
first derivative dX,,(¢)/dt < 0 and in a negative transmitted
signal sy (t) < 0. These processes are identified in Section II-B
with chemical reactions, where the molecules composing the
molecular signal can appear as either products or reactants. The
former case corresponds to the production of these molecules
at the transmitter location, while the latter case corresponds to
the alteration of these molecules into a form that cannot be
recognized by the molecular receiver, and it is equivalent to
subtracting these molecules from the space at the transmitter
location.

The Diffusion Propagation broadcasts the emitted molecu-
lar signal s (t) from each transmitter location Zj, to any other
location Z in the space. In this paper, we rely on the assumption
to have a 3-d space, which contains a fluidic medium and
has infinite extent in all the three dimensions. Moreover, the
molecules of species n are all identical and undistinguishable,
and they move independently from each other according to the
Brownian motion. We define the total molecule concentration
in the space as cpase + ¢(T,t), Where cpqse is @ component of
the molecule concentration that is positive, homogeneous in
the space, and constant in time, while ¢(z,t) is the varying
component of the molecule concentration as a function of the
space = and time t. We assume that the component cpgse
has a value sufficient to keep the total molecule concentration
positive throughout the space even when ¢(Z,t) < 0 due to
transmitters subtracting molecules from the space, si(t) < 0.
Consequently, the value of cp,se is chosen according to the
molecular signals sy, (t) that we intend to transmit. The diffusion
propagation is based on the following Diffusion Equation [23],
[24] in the variable ¢(Z, t):

Oclz,t) _ DV2¢(7, 1) )

ot

IAs an example, we consider the size of a molecular transmitter or receiver
within the same order of magnitude of the size of the components used in nature
by cells to realize information molecule exchange via chemical reactions (bio-
logical circuits) [21], whose mathematical model is presented in Section II-B.
These components can be identified with DNA strands (whose average size
ranges from a fraction to tens of nm), which contain the necessary information
to encode enzymes to produce cellular signaling molecules or chemical recep-
tors for signaling molecule concentration detection [21], RNA polymerases
(sized around 15 nm), which realize the DNA transcription process, and
ribosomes (with average size of tens of nm), which realize the DNA translation
process [22]. Overall, we can consider the minimum size of the transmitter
volume V7 as being in the order of tens of nm.
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where 9(.)/0t and V?(.) are the time first derivative and the
Laplacian operator (sum of the 3-d spatial second derivatives),
respectively. D is the diffusion coefficient and it quantifies
the total flux of molecules, equal to a molecule concentration
moving with a definite velocity in the three spatial coordinates,
generated by diffusion in response to a gradient of the molecule
concentration in the space, equal to the first derivative of
the molecule concentration with respect to the three spatial
coordinates. The diffusion coefficient D is considered a scalar
(the molecule flux in response to a concentration gradient is
equal in all three spatial coordinates), constant in time, and
homogeneous in the space within the scope of this paper, and
this is in agreement with the assumption of having independent
Brownian motion for every molecule in the space [23], [24]. As
a consequence of this assumption, the diffusion coefficient D
depends on the absolute temperature of the system 7', assumed
constant and homogeneous, the molecule shape and size, and
the fluid viscosity 7, which quantifies the resistance of the
fluid to the molecule motion. If molecules are approximated by
spherical particles with radius p,,, then the diffusion coefficient
D has the following expression:

p_ kBT 3)
67npp

where k is the Boltzmann’s constant. Typical values of the dif-
fusion coefficient D at room temperature for common elements
(e.g., oxygen) in air are around 0.2 [cm? sec™!], while in water
are around 10~ [cm? sec 1] [24]. The diffusion of molecules
in a biological environment, characterized by a higher viscosity
with respect to water, has a value around 107 [cm? sec™!]
(cellular cytoplasm, [25]).

The Molecular Receiver senses the total incoming molec-
ular concentration cpqse + ¢(Zg,t) at its location Zp and re-
covers the received signal Y (¢) from the varying component
¢(Z R, t). This is expressed by the following relation:

Y (t) = c(ZTg,1). “4)

As a consequence, when no transmitter is emitting molecular
signals (creating or subtracting molecules), the total molecule
concentration is constant and equal to cp4se, and the received
signal Y (¢) is equal to zero. The molecular receiver is consid-
ered in this paper as an ideal molecular concentration detector
located at = . This assumption is in agreement with the goal of
this work of analyzing the interference of multiple transmitted
signals at a location in the space, and it is an approximation of
a real molecular receiver whose size is negligible with respect
to the distance to each considered molecular transmitter.

B. Assumptions on Interferers

For our interference study, we consider multiple molecular
transmitters (interferers), each one emitting a molecular signal
from a different location. We apply the following assumptions:

¢ The molecular transmitters are assumed to be infinite in
number and distributed in the 3-d space according to a
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spatial homogeneous Poisson process? whose rate is equal
to the transmitter density A, which corresponds to the
average number of transmitters per unit volume. For this,
the probability to find a number K of transmitters in a
region V' of the space is expressed as follows:

[/\V]Ke—AV

P(K transmitters in V') = %

(&)

e The molecular transmitters emit independent and iden-
tically distributed (i.i.d.) molecular signals s (¢). Each
s (t) is a white Gaussian signal [28], whose values at each
time instant ¢ have zero mean and variance equal to o2,
expressed as

sp(t) ~ N(0,0%) Vi (6)

The expression in (6) models the variability of the trans-
mitter emissions according to the variance parameter 0.
As demonstrated in Appendix A, the parameter o2 cor-
responds to the average power, or variance, of the rate
of produced molecules per unit time from the chemical
reactions occurring inside the receiver volumes when at
equilibrium. Consequently, o2 quantifies the variability of

the signals emitted by different molecular transmitters.

C. Definition of Interference

We define as interference the received signal Y (¢) expressed
as the propagation function f4(.) of the multiple transmitted

molecular signals si, where k = 0, ..., 0o, as follows:
Y(t) = fa (Z sk(t)0(z — ffk)) @)
k=0

where §(.) is the Dirac delta, f4(.) is the diffusion propaga-
tion function that transforms the sum of transmitted molecular
signals sy, into the incoming molecular concentration ¢(Z g, t)
at the receiver location Ty through the diffusion (2) and,
according to (4), into the received signal Y (¢).

Due to the linearity of (2) [23], [24], given multiple molec-
ular signals transmitted simultaneously from multiple transmit-
ters, the resulting varying component ¢(Z,t) of the molecule
concentration is the sum of the varying components of the
molecule concentration resulting from the emission of each
molecular transmitter, computed as if each transmitter were
emitting alone (additive channel). As a consequence, we can
express the received signal Y (¢) as the sum of the propagation
functions applied separately to each transmitted molecular sig-
nal, which results into

Y(t) =) fa(su(D)6(z — 21)) (8)

2The use of a spatial Poisson process to model the molecular transmitter
distribution is in agreement with the stochastic modeling in biology of the
spatial distribution of cells or cell groups, which exchange information through
molecular communication. As an example, bacteria in a plate or bacteria
colonies in a 3-d medium, such as cheese [26], are proven to have a distribution
that fits a Poisson process [27].
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where the propagation function f4(.) is computed as the so-
lution of the diffusion equation (2) when a single transmitter
is emitting a molecular signal s (¢). For this, we consider the
following expression:

de(z, 1)

ol = DV )+ su(1)0(@ — 7).

)
The solution of (9) in terms of ¢(Z,t) corresponds to the
following propagation function fy4(.):

fa(sk(t)d(z — 2x)) =c(T,1)
=ga(rk,t) * si(t)

o0

:/gd(’/‘k-,T)Sk(T—t)dT (10)

0

where (. *.) is the convolution operator [29], and g4(r,t) is
the Green’s function of the diffusion equation [30], equal to
2

e 4Dt

ga(ri,t) = ( (1)

4r D)3/
where rj is the Euclidian distance between the transmitter &
location and the receiver location, ry, = |Zx — Zg|, and D is the
diffusion coefficient. As a result, we can express the received
signal Y'(t) as

Y(t) = galre,t) «si(t) (12)
k=0

where g4(ry,t) is expressed in (11), (. *.) is the convolution
operator [29], and si(¢) is the molecular signal transmitted
from each transmitter k, whose distribution is given by (6).

III. STATISTICAL-PHYSICAL INTERFERENCE MODELING

The goal of the statistical-physical interference modeling is
to find a probabilistic description of the received signalY (¢)
expressed in (12), as function of the transmitter density)\,
the diffusion coefficientD, and the average powerc? of the
molecular signals emitted by the transmitters.

In standard statistical-physical modeling of the interference
for radio communication networks [31], since the propagation
function corresponds to a multiplication of each transmitted
signal (uncorrelated random process with zero mean value) by
the radio propagation amplitude loss, independent with respect
to the time variable, the received signal Y (¢) is an uncorrelated
stochastic process with zero mean value. As a consequence, the
received signal Y (¢) can be probabilistically described with the
Probability Density Function (PDF) Py (y) of a time sample,
for which analytical expressions are usually provided in terms
of log-characteristic functions [32].

A. Probabilistic Description of the Received Signal

In the context of diffusion-based molecular nanonetworks,
as a consequence of the expression of the propagation function
in (11) as function of the time variable ¢, the received signal
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Y (¢) is in general a correlated stochastic process, which cannot
be described by the PDF Py (y) of a single time sample. A
probabilistic description of the received signal Y'(¢) can be
provided upon the following considerations:

» Consider a realization of the spatial homogeneous Poisson
process of the transmitter locations, expressed in (5),
the distances r, between each transmitter k = 1, 2., , 00
and the receiver.

* Given the previous consideration, each term of the sum in
(12) is a convolution of a deterministic function gg4(ry, t)
of the time ¢ with a zero-mean Gaussian white random
signal s(t) with zero mean and variance equal to o2.
The result of this convolution is a zero-mean stationary
Gaussian process yi|ri with autocorrelation function
Ry, |r.(t) equal to o multiplied by the correlation of
9a(rg, t) with itself [28]. This is expressed as follows:

Ryplri (1) = GZ/Qd(Tk,T)gd(Tk,TH)dT- (13)
0

¢ The autocorrelation of the sum of two uncorrelated ran-
dom processes is a random process whose autocorrelations
is the sum of their autocorrelations [28].

As a consequence of the aforementioned considerations, the
received signal Y|R, given a realization of the transmitter
locations R, is a zero-mean stationary Gaussian Process
(GP), probabilistically described as follows:

Y|R ~ GP (0, Ry g(t)) (14)
whose autocorrelation function Ry (t) is equal to the sum

for each transmitter £ = 1,2,...,00 of the autocorrelation
function R, |, (¢) in (13), expressed as

Ryir(t) =Y Ry, ()- (15)
k=0

Since Y'|R is a continuous time stationary random process,
according to the Wiener-Khintchine theorem [28] it can be
equivalently described in terms of Power Spectral Density
(PSD), which corresponds to the Fourier transform [29] of the
autocorrelation function Ry |z(t). Given the expressions in (15)
and (13), the PSD Sy |p(w) results in the following:

Sy|r(w) = o? Z |Gd(rk,w)|2 (16)
k=0

where |.|? denotes the squared absolute value operator, and
Gy(r,w) is the Fourier transform [29] of gq(rg,t) in (11),
whose expression is

e~ (LN 257w

17
7 Dry, an

Ga(rp,w) =

where 7, is the Euclidian distance between the transmitter k
and the receiver, and D is the diffusion coefficient.
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B. Statistical-Physical Modeling of the Received Power
Spectral Density

The received PSD Sy (w) is defined as the distribution of the
power of the received signal Y over each frequency w. Given
the presence of multiple transmitters, and the probabilistic
assumptions described in Section II-B, the received PSD Sy (w)
is a measure of the power of the interference which affects
the communication system in each received frequency w. As
a consequence, we aim at the statistical-physical modeling of
the received PSD Sy (w) through the expression of its PDF
Ps, (w)(s) as a function f(.) of the PSD value s, the frequency
w, \, D, and o2. This is expressed as follows:

PSy(w)(S) :f(57w7>‘aD702)' (18)

As detailed in the following, the PDF Ps, (,,(s) of the PSD
Sy (w) is computed from the PSD Sy |g(w) in (16) by taking
into account the spatial homogeneous Poisson process of the
transmitter locations in (5).

The PDF Ps, (. (s), as happens in standard
statistical-physical modeling for the PDF Py (y) of the
interference for radio communication networks [31], does
not have a closed-form mathematical expression. As a
consequence, we aim at the expression of the log-characteristic
function s, (,,)(€2) of the received PSD Sy (w), which is
defined as the natural logarithm of the characteristic function

by (w)(§2), as

Vsy () () = In [@sy () ()] - 19)

The characteristic function @, (.)(€2) of the received PSD
Sy (w) is defined as the expected value of the function €7
of the PSD value s

D5y () () = Esy (0 [619°] = /Psy(w)(S)ejQSds. (20)

The PDF Ps, (.(s) of the PSD Sy (w) is computed through
the Fourier transform [29] of the exponential with the log-
characteristic function s, (,,)(2) as argument. This is ex-
pressed as follows:

Psy ()(s) = / etsy @D qQ, Q1)

As mentioned above, the formula in (21) does not in general
result in a closed-form expression, and it is computed through
numerical methods.

In the following, we derive the log-characteristic function
Vs, () (€2), which admits an analytical expression as a func-
tion U(.) of A, D, o2, the PSD frequency variable w, and
the characteristic function frequency variable 2, expressed as
follows:

Vsy () () =¥\, D,0%,w, Q). (22)
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IV. LOG-CHARACTERISTIC FUNCTION AND PDF OF THE
RECEIVED POWER SPECTRAL DENSITY

In this section, we analytically derive the log-characteristic
function s, (,,)(€2) of the received PSD Sy (w). Through the
derivation detailed in Section IV-A, we obtain the following
analytical expression:

16v2A02Q [ e 20
() =j——— [ (x+1)e e 7 27 2203 dg
1/sz()()33wm0( )

(23)

where A is the transmitter density (number of transmitters per
unit volume), D is the diffusion coefficient, o2 is the average
power of the molecular signals emitted by the transmitters,
w is the PSD frequency variable, and 2 is the frequency
variable of the characteristic function. Subsequently, we derive
the PDF P, (,,)(s) of the received PSD Sy (w) by numerically
computing the expression in (21).

A. Derivation of the Log-Characteristic Function s, (., (Q)

In the following, we derive the log-characteristic function
sy (w)(2) of the received PSD Sy (w) in diffusion-based
molecular nanonetworks. By applying the rule of the iterated
expectations [28], we can perform the expectation in (20) with
respect to the transmitter locations R = {ry};_; 5 ., Where
r, are the random distances between each transmitter k =
1,2,...,00 and the receiver, and substitute the PSD value s
with the PSD Sy |z (w) of the received signal given a realization
of the transmitter locations. As a consequence, we obtain the
following expression:

Psy(w)(©2) = ER {emSY\R(w)] (24)

where the PSD Sy|z(w) is computed through (16) and (17).

Since the transmitter locations are resulting from a spatial
homogeneous Poisson process, as described in Section II-B, the
distances 7, are i.i.d. random variables, and the distribution in
the number & of molecular transmitters in a space region V is
given by (5). As a consequence, for an infinite space region,
represented by a sphere centered at the receiver with infinite
radius, namely, V' = lim,_,(4/ 3)mp3, we derive the following
expression from (16) applied to (24):

)= Jim > (5

[)\ (4/3) 7rp3] P e-A4/3)mp®
' k!

k

y 2
By (w) (2 |:6JQ‘72|Gd(Tk,w)‘ D

(25)

where the summation from (16) is substituted with the power
k operator (.)*, and the average operator Er[.] is written in
terms of summation in k of the average operator E,, [.] of the
k-th transmitter distance, weighted by the probability density
from (5).
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By applying the following Taylor series expansion [33] sub-
stitution to (25):

Z‘% 26)
k=0

and by applying the definition of log-characteristic function

sy (w)(2) from (19), we obtain the following expression:

: 4 Qo Tk W
¢5Y<W>(Q):3L%1O§WP3>\ (Em [em 2|Ga(rr, )\2}_1) on

Since the transmitters are distributed according to a Poisson
process (5), the distribution of the distance between the trans-
mitter and the receiver, given a space region V = (4/3)mp3, has
the following expression:

3r2

P.(r)=—, 0<r<np.

E < (28)

If we express in (27) the average operator F,., [.] of the distance
r1, between the transmitter and the receiver by using the distri-
bution of this distance in (28), we obtain the following:

14
Vsy (o) (Q) = lim fﬁp% (i0?Gatra)? 37 0
Sy (w) p—oo 3 / P3
(29)

By using the formula of the integration by parts [33] for the
integral in (29), we obtain the following expression:

. —2¢/25° () -2
jQO’QW L 4]QO'

4
Q) =lim —7p°> T
’(/)Sy(w)( )=1lim 37Tp Ae B (D)

pP—r00

P N
x/ e e T ol (30)
2D
0
We note the following result:
‘ ‘9027‘;2 ELed
lim p3 | ¢’ o7 —1] =0 (31)

p—+00

which is demonstrated by considering the following inequality:
e 2VaDP

D .

< —, forp— o
P
and by repeatedly applying L’Hdpital’s rule [33] to the follow-
ing limit:
lim p3(e'/? —

p—+00

1) =0. (33)

By applying (31) to (30), we obtain the following expression:
16 Ao2Q) / W ‘1
73 7D? 2D

Q02 ¢ V32" 38
*Qw/ 5T J T (=DMZ —dr.
R3

,(/)Sy (w)( )

(34)
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Fig. 2. PDF Ps,, (,,)(s) of the received PSD Sy (w). Different curves refer
to different values of the frequency w.

By operating in the integral of (34) the following variable

substitution:
w
T=4/——r
2D

we obtain the final expression of the log-characteristic function
Vsy () (2) of the received PSD Sy (w), which is as follows:

(35)

16V2N2Q [
J 37V D3w J

ceT2% 52,0

(x4 1)e "™ 27 22203 du.

QZ)SY (w) (Q) =

(36)

B. Derivation of the PDF Ps,, (., (s)

In this section, we derive the PDF Ps, (,)(s) of the re-
ceived PSD Sy (w). In general, the log-characteristic function
expressed in (36) does not have an expression which can be
recognized as from a known probability distribution. For this,
we numerically compute the formula in (21) by using the
MATLAB f£ft function applied to the values of the expression
in (36). We also numerically compute the infinite integral in
(36) by using the MATLAB numerical integration.

The numerical results in terms of PDF Pg, (,(s) of the
received PSD Sy (w) are shown in Figs. 2 and 3. The values
of the PDF Pgs, (.(s) are computed for a transmitter density
A equal to 10Y [transmitters m~3], an average power o2 of
the molecular signals equal to 10° [molecules? m~¢ sec™3]
and for values of the PSD value s ranging from 0 to 5-
10* [molecules® m~% sec Hz ). The diffusion coefficient D ~
107 [cm? sec™ ] is set to the diffusion coefficient of molecules
diffusing in a biological environment (cellular cytoplasm, [25]).
Different curves in Fig. 2 refer to different values of the
frequency w, from 0.09 Hz to 1.89 Hz, while Fig. 3 shows
the PDF Ps, (,,(s) values for a range of frequencies w from
0 to 2 Hz. This frequency range covers the frequencies of most
of the biochemical oscillation mechanisms described in [34],

b}
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Fig. 3. PDF Ps, (4,)(s) of the received PSD Sy (w) for a range of frequen-
cies w from 0 to 2 Hz.

including the slower oscillations in neurons that generate the
delta waves [35].

As apparent from Figs. 2 and 3, the curves of the PDF
Ps, () (s) as function of the PSD value s tend to horizontal
lines for low values of the frequency w, while they tend to
concentrate the higher values around s = 0 as the frequency
w increases. This is an expected behavior since, according to
the absolute value of the expression of the Fourier transform of
the propagation function G4(r,w) in (17), which is a negative
exponential function of the square root of the frequency w,
lower frequencies are subject to lower attenuation than higher
frequencies in the diffusion propagation. As a consequence,
for lower frequencies the received PSD tends to have a shape
similar to the PSD of the white transmitted signals sy (¢) in (6),
equally distributed among all the possible PSD values s with
a probability value around 0.01. On the contrary, since higher
frequencies are more attenuated, for a high w lower values
of the received PSD are more probable, which is more likely
distributed around s = 0, with the highest value around 0.16
for w close to 2 Hz.

V. NUMERICAL RESULTS

In this section, we provide a simulation environment to
evaluate the statistical-physical interference model presented in
this paper (Section V-A). In addition, we study the probability
of interference, defined as the probability for a single molecular
signal sent by a transmitter to suffer interference at the receiver,
by using both the statistical-physical interference model and
the simulation environment (Section V-B).

A. Simulation-Based Evaluation

The simulation environment is based on the following addi-
tional assumptions:
e The space where the transmitters are distributed is con-
fined within a sphere with radius p around the receiver
location. This is motivated by the need to have in the
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simulation environment a finite number of transmitters,
which is equal to K = |\(4/3)mp3|, where |.| denotes
the rounding to the nearest lower integer.

 The transmitted signal s, (n/fs) from each transmitter is
discrete, sampled with a frequency fs, and composed by
N, samples.

» The simulation is repeated for a number of iterations Iter,
where each iteration is based on i) a different realization of
the spatial Poisson process with density A of the molecular
transmitter distribution expressed in (5), ii) a different
realization of the Gaussian process in (6) with variance
equal to o2 for each transmitter k and for each sample
se(n/f,).

The PDF Ps, (.(s) of the received PSD Sy (w), where w =

qfs/Ns,and ¢ = 1,..., N, is computed though the following
expression:

Iter

1
Psy @) (8)lo=asi/n, = T D Loy (af./N)=s
=1

(37

where 1g, (qf,/N,)=s is non-zero and equal to 1 only when
the PSD Sy, (¢fs/Ns) from the [-th iteration is equal to the
value s at frequency ¢fs/Ns, and f, and N are the sampling
frequency and the number of samples for the transmitted molec-
ular signals, respectively. The PSD Sy, (¢fs/Ns) results from
the following formula:

K 2
SY[ (Qfs/Ns) = (Z Sk (qu/Ns) Gd(rkvqfs/Ns)) (38)

k=1

where Sy (qfs/Ns) is the discrete Fourier transform of
sk(n/fs), computed through the MATLAB fft function, and
Ga(ri,qfs/Ns) is the Fourier transform of the propagation
function in (17) computed at the frequency value ¢ f,/Nj.

In Fig. 4 we show the values of Ps, (,)(s) computed for
the same parameters as for the results in Fig. 3, namely,
a transmitter density A equal to 10° [transmitters m~?]
an average power o2 of the molecular signals equal to
109 [molecules® m~% sec™] a diffusion coefficient D ~
1076 [em? sec™!], and for PSD values s ranging from 0 to
5-10* [molecules® m~® sec Hz !]. Moreover, the simulation
is run with the following parameters: a spherical space radius
p =19 pm, a sampling frequency fs; = 100 Hz, a number of
samples Ny = 104, and a number of iterations Iter = 50. The
curves in Fig. 4 have been also post-processed through the use
of a moving average filter [36] along the dimension of the PSD
value s to reduce the noise given by the limited dataset.

The simulation-based results in terms of Ps, (.,)(s) in Fig. 4
show a high degree of similarity with the values computed
through the statistical-physical model in Fig. 3. Also in the
simulation-based results, the curves of Ps, (,(s) as function
of the PSD value s tend to horizontal lines for low values of
the frequency w = ¢fs/N,, while they tend to concentrate the
higher values around s = 0 as the frequency w increases. While
for high frequencies w around 2 Hz the simulation-based PDF
has a value around s = 0 of 0.16, very close to the results of
the statistical-physical model, for lower frequencies the values
of the model-based PDF are overall lower than the values from

b}
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Fig. 4. Simulation-based PDF P, () (s) of the received PSD Sy (w) for a
range of frequencies w from O to 2 Hz.

the statistical-physical model. We believe that these differences
between the values in Fig. 3 and Fig. 4 are due to the limited
number of transmitters and the sampling of the molecular
signals sy, considered for the simulation environment.

B. Probability of Interference

We define here the probability of interference Pryserf(w) as
the probability of having at the receiver a contribution from
the interference whose PSD at frequency w exceeds the PSD
of a contribution coming from a single transmitter. This single
transmitter is placed at a distance 7, from the receiver, and it
transmits a signal st (t) with power equal to o2,, expressed as

sin [t(wp — wa)]
t

sTa(t) = Ota et (39)
The PSD of the signal sy, (t) is then constant over the fre-
quency range defined by w, and wyp, and it is expressed as

follows:

Ste(w) = o rect (w—wa) (40)
wp — Wq

where rect(.) is the rectangular function, and o2, is the constant
PSD value. The contribution Sg,,(w) to the PSD of the received
signal coming from the transmitted signal s, () is given as

Sre(w) = Srz(W) |Ga(rra, w)| (41)

where G 4(r1,,w) is the Fourier transform [29] of the Green’s
function of the diffusion equation expressed in (17). The prob-
ability of interference Pr e, r(w) is expressed as follows:

[o¢]

PInterf (w) ==
SRJ;(W)

PSy (w)(s) ds (42)

where Sp,(w) is the PSD of the signal sp,(¢) emitted by the
single transmitter, given in (40), and Pk, (.)(s) is the PSD
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Fig. 6. Probability of interference according to the simulation environment.

of the received PSD Sy (w) computed above with either the
statistical-physical model, given by (36), or the simulation
environment, given by the numerical results of (37).

In Figs. 5 and 6 we show the probability of interference
Prpterf(w) according to the statistical-physical model and the
simulation environment, respectively, for a range of frequencies
w from w, = 0 Hz to w, = 2 Hz and for a distance 7, between
the single transmitter and the receiver ranging from 1 pum to
2 pm. The values in Fig. 5 are derived from the expres-
sion in (42) by using the PDF Ps, (,)(w) computed in
Section IV-B, while for Fig. 6 we applied the values of the
PDF Ps, (4. /n.)(s) computed through the simulation detailed
in Section V-A. The constant PSD of the signal s7, () is here
set to two orders of magnitude higher than the average power
of the molecular signals emitted by the interfering transmitters,
namely, o7, = 10202

In both Figs. 5 and 6 we observe an almost zero probability of
interference Pryerf(w) for low values of the frequency w and
low values for the transmitter distance r7, from the receiver.
As the frequency w and the distance rp, increase, also the
probability of interference Prye,f(w) increases from zero to a
maximum value. In both Figs. 5 and 6, values of the probability
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of interference higher than zero occur only for a frequency w
higher than 0.59 Hz and a distance rp, higher than 1.1 pm.
In Fig. 5 the maximum value of the probability of interference
Prpterf(w) is 0.98 and it occurs for the range frequencies w
between 0.67 Hz and 0.89 Hz and for a distance r,, higher than
1.4 pm. The maximum value of the probability of interference
Prpters(w) in Fig. 6 is around 0.82 and it occurs for a frequency
w around 0.73 Hz and a distance r7, higher than 1.9 pm.
The overall lower values of the simulation-based probability
of interference Prperf(w) in Fig. 6 compared to the values
in Fig. 5 from the statistical-physical model are likely due to
the limited number of interfering transmitters and iterations
of the transmitter distribution realizations considered in the
simulation environment, as explained in Section V-A, while
the statistical-physical model considers an infinite number of
transmitters and it is based on their distribution PDF.

Different behaviors of the probability of interference
Prpter(w) for high frequencies w and high distances ¢, are
shown in Figs. 5 and 6. In the former, the Py e, s (w) reaches a
plateau, corresponding to the aforementioned maximum value
of 0.98, and then decreases as the frequency value increases
from 0.89 Hz to 2 Hz, where it has a PDF value of 0.83. In
the latter, after a maximum value at 0.82, and as the frequency
increases from 0.73 Hz to 2 Hz, the Pryerp(w) oscillates
between 0.74 and 0.72. Again, this oscillatory behavior is likely
due to the limited data used in the simulation environment to
compute the PDF Ps, () (s), where we considered a limited
number of interferers, within a spherical space of radius p =
19 pm, and a limited number of iterations for the realization of
their location distribution.

VI. CONCLUSION

In this paper, we have provided a statistical-physical
modeling of the interference in diffusion-based molecular
nanonetworks when multiple transmitting nanomachines emit
molecules simultaneously. Our method to characterize the in-
terference differentiates from the previous literature since we
developed a general model independent from specific modula-
tion and coding techniques. As a result of the property of the re-
ceived molecular signal of being a stationary Gaussian Process
(GP), the statistical-physical modeling has been operated on its
Power Spectral Density (PSD), for which it was possible to ob-
tain an analytical expression of the log-characteristic function.
This log-characteristic function expression ultimately led to the
estimation of the received PSD probability distribution, which
provides a complete model of the interference in diffusion-
based molecular nanonetworks.

The numerical derivation of the PDF from the log-
characteristic function expression of the received PSD was
performed for selected values of the physical parameters of
the molecular nanonetwork, such as the diffusion coefficient,
the transmitter density, and the average power of molecule
emissions. As apparent from the PDF of the received PSD,
for low frequencies the power of the received signal tends to a
uniform distribution over the range of considered values, while
for higher frequencies the power tends with more probability to
lower values.
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We evaluated the similarities of the results from the
statistical-physical model with the outcomes from simulations,
first in terms of received PSD, and then in terms of probability
of interference. For the latter comparison, we computed the
probability of having at the receiver a contribution from the
interference whose PSD exceeds the PSD of a contribution
coming from a single transmitter. In both cases, the probabil-
ity of interference has very low values for frequencies lower
than 0.59 Hz and a distance range lower than 1.1 pum, while
it assumes very high values otherwise. We believe that the
statistical-physical model of the interference presented in this
paper will be of great help to design the future diffusion-based
molecular nanonetworks.

APPENDIX A
CHEMICAL JUSTIFICATION OF THE WHITE GAUSSIAN
MODEL FOR THE MOLECULAR SIGNALS

The white Gaussian model for the molecular signals s ()
expressed in (6) is in agreement with a chemical description of
the molecule emission at the molecular transmitters. Without
loss of generality, we assume that the total molecule concen-
tration cpqse + ¢(Tg,t) at each transmitter & is a function of
M different chemical reactions involving N different chemical
species (molecule types) within the transmitter definite volume
V. According to the chemical Langevin equation approxima-
tion [20], the time derivative d X, (¢)/dt from (1) in the number
X, of species-n molecules, and function of the time ¢, is given
by the following expression:

AXn(t) & =
T = ) Vit (X(0) D Vonn v/ (X(0) T (8)
m=1 m=1 (43)

where X(t) = [X1(¢), Xa(t), ..., Xn(¢)] is a vector that con-
tains the number of molecules of each reacting species, v,y
corresponds to the change in the number of molecules of the
chemical species n produced by the chemical reaction m,
am (X(t)), which is called propensity function, is the prob-
ability that the chemical reaction m will occur within the
transmitter volume as function of the vector X(¢), and T',, (¢)
are i.i.d. white Gaussian signals. Under the assumption to have
the chemical reactions at equilibrium within every transmitter
volume, which is expressed as Z%zl VimnGm (X (t)) = 0, and
given (43), the molecular signal s (¢) in (1) is equal to a sum
of i.i.d. white Gaussian signals as follows:

sk(t) = VLT Z:lvmn am (X)) (1) (44)

As a consequence of the property of a linear combination of
i.i.d. Gaussian random variables [28], si(t), as expressed in

(6), is a white Gaussian signal with zero mean and variance o2
equal to
M
0% = —5 V2 am (X(1)) (45)
VT m=1
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where X (t) is the vector that contains the number of molecules
of each reacting species, v, corresponds to the change in the
number of molecules of the chemical species n produced by the
chemical reaction m, and the propensity function a,, (X(t)) is
the probability that the chemical reaction m will occur within
the transmitter volume as function of the vector X (t).
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