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Abstract- A novel paging scheme under delay bounds 
is proposed for personal communication systems. This 
paging scheme is independent of the location probabil- 
ity distributions of the mobile users and satisfies the de- 
lay bounds, while minimizing the amount of bandwidth 
used for locating a mobile user. The proposed paging 
scheme includes the optimal partition algorithm and pag- 
ing procedure with respect to paging costs and average 
delays. The numerical results demonstrate that our pro- 
posed scheme is very effective in the minimization of the 
paging costs for location probability conditions such as 
uniform and non-uniform distributions. 
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I. INTRODUCTION 

Tracking a mobile terminal in wireless systems includes 
location registration and paging process, both of which cause 
increasing signaling costs as the demand of wireless services 
and number of mobile users grow rapidly. Location registra- 
tion is concerned with reporting the current cell locations. A 
mobile terminal (MT) registers with the system when it en- 
ters a new location area (LA) consisting of a number of cells. 
Therefore, the system is always aware of the current location 
of a mobile user. On the other hand, paging is the process in 
which a system searches for the mobile user by sending poll 
messages to the cells in the last registered location of the MT. 

In particular, paging costs and delay bounds must be con- 
sidered since the paging cost is associated with bandwidth 
utilization and delay bounds influence the call setup time in 
wireless systems. Our objective is to minimize the paging 
costs under delay bounds. Paging cost is usually measured in 
terms of cells to be polled before the called user is found [3], 
[4]. To improve the efficiency of bandwidth utilization, many 
paging schemes have been proposed, which reduced the pag- 
ing costs based on location probabilities computed using dif- 
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ferent methods [5], [8], [9], [ 131. Specifically, multi-step pag- 
ing schemes were suggested to satisfy the delay bounds while 
reducing the paging costs [l], [2], [7], [lo], [ l l ] ,  [12]. In 
each step, a group of cells called paging area (PA) is searched 
in one polling cycle. A polling cycle is the round trip time 
from when a paging message is sent until the response is re- 
ceived. The paging delays could then be represented by the 
required polling cycles; in other words, the number of PAS to 
be searched before the called MT is found. 

On the condition of delay bound, the minimization of pag- 
ing costs necessitates the partition of an LA into PAS. How- 
ever, it has been proved that the partition of PAS subject to 
delay constraint is an NP-complete problem and involves 
complex and time-consuming computation when an LA is 
very large [ 11, [ 111. Moreover, most of the previous pag- 
ing schemes were based on some specific location probability 
distributions, and they could not provide the optimal partition 
algorithm to minimize the paging costs. 

In this paper, we present an optimal partition algorithm for 
dividing an LA into PAS, which is also very simple to im- 
plement. The rest of this paper is organized as follows. In 
Section 11, we describe the problem formulation in which 
the paging delay bounds are taken into account. In Sec- 
tion 111, the partition algorithm and paging procedure are pre- 
sented. We demonstrate the performance of the proposed 
paging scheme and conclude the paper in Section IV and V, 
respectively. 

11. ANALYTICAL MODEL 

We assume that each LA consists of the same number of 
cells, N, in a wireless system. The worst-case paging delay is 
considered as the delay bound, V, in terms of polling cycle. 
For instance, if 2) is equal to 1, the system should find the 
called MT in one polling cycle, requiring all cells in the LA 
to be polled simultaneously. The paging cost, C, which is 
the number of cells polled to find the called MT, is equal to 
N .  In this case, the average paging delay is at its least value, 
which is one polling cycle, and the paging cost is at its highest 
value, C = N .  On the other hand, when 2) is equal to N, 
the system will poll one cell in each polling cycle and search 
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all cells one by one. Thus, the worst-case occurs when the 
called MT is found in the last polling cycle, which means the 
paging delay would be at its maximum and equal to N polling 
cycles. However, the paging cost may be minimized if the 
cells are searched in decreasing order of location probabilities 
as demonstrated in [5 ] ,  [ 111. 

We consider the partition of the LA given that 1 < 2) < 
N, which requires grouping cells in an LA into smaller PAS 
under delay bound D. The initial state P is defined as P= 
b l , n ,  * - .  , p j , .  . * , p ~ ] ,  where pj  is the probability of j t h  
cell to be searched in decreasing order of probability. We 
use triplets PA* (i, qi,  n i )  to denote the PAS, in which i is the 
sequence number of the PA; qi is the probability of the called 
MT being found in the ith PA, and ni is the number of cells 
contained in this PA. Accordingly, the location probability qi 

of the ith PA is: 
qi = P j -  (1) 

j €  PA' ( i )  

Thepaging cost under delay bound 23, E[C(D)] ,  is computed 
as follows: 

I) i 

E[C(D)] = Cqi ki,  where ki = C n h ,  (2)  
i= 1 k=l 

and the average delay, E[D(V)J,  is 

P 
E[D(D)]  = xi qi. (3) 

i= 1 

111. PARTITION ALGORITHM A N D  PAGING PROCEDURE 

In order to minimize the paging costs under an upper delay 
bound V, we develop an optimal partition algorithm and the 
corresponding paging procedure. 

A. Partition Algorithm 

The objective of the optimal partition algorithm is to mini- 
mize the average number of cells to be searched for the called 
MT. Given a location probability distribution of a user, there 
are three necessary conditions to minimize the paging costs. 

Lemma If a paging sequence P satisfies the following con- 
ditions of the partition, the paging cost E[C(V)] can be min- 
imized: 

1. Probability condition: The cells must be searched in a 
decreasing order of the location probability. In other words, if 
U and v are cells with probabilities pu > p u ,  then the optimal 
paging sequence PAP that minimizes E[C(V)] must satisfy 
U E PAp(g,q,,n,) and v E PAp(h,qh,nh) for all g 5 h. 

2. Forward boundary condition: It determines the largest 
probability cell (i.e., with the largest location probability) in 
a PA. We denote that the MT can be found in the ith PA with 
probability qi, as defined in (l), and pi+l is the largest proba- 
bility cell in the (i + l ) th paging area with ni+l cells. Then, 

1 pi+l (ni+l - 1) must be less than or equal to qi. This con- 
dition implies that the largest probability cell in the (i + l ) th  
PA can not be moved "forward" to the ith PA that is prior to 
the (i + l ) th PA. 

3 .  Backward boundary condition: It chooses the smallest 
probability cell (i.e., with the smallest location probability) 
in the PA. The backward boundary condition demands that 
qi should be less than or equal to p f  (ni+l + l), where p f  
is the smallest probability in the it" paging area, and ni+l is 
the number of cells in the (i + l ) th  PA. Thus, the smallest 
probability cell pf can not be moved "backward" to the (i + 
l ) th  PA, which comes after the ith PA. 

Proof With regard to the probability condition, suppose 
the paging scheme P is optimal, but there exists U E 

for g > h. Let PI denote the new paging sequence derived 
from P. In this new sequence, U and v are swapped so that 
U E PApr (9, q i ,  n,) and v E PAP, (h, q i ,  n h ) .  We note that 

PAp(g,q,,n,) and E PAP(h,qh,nh) with Pu > Pu 

E[C(DD)I - E[C'(D)I (4) 

= ( ki * q i  + k g  * q g  + k h ' q h )  
i=l,  i#g,h 

-( ki 

k g  'Pu + kh ' P u  - k g  ' P u  - kh 'Pu 

(kg - kh)(Pu - P v )  > 0, 

qi + kh . q g  + kg * q h )  
i=l,  i#g,h 

= 
= 

where kg is larger than kh for g > h according to the defini- 
tion in (2). This is a contradiction to the assumed optimality 
of P. Therefore, the probability condition in the Lemma is 
necessary. 

Given that the first probability condition is satisfied, the 
cells can be organized in a non-increasing order of probabili- 
ties. Let pe be the smallest probability in the ith PA and pi+l 
be the largest probability in the (i + l ) th  PA. The paging cost 
C1 of an MT being found in the (i + l ) th PA according to 
partition P is calculated from: 

C1 = ai-1 +qi * (ki-1 +ni)  +qi+l* (ki-1 + n i  + ni+l), (5)  

where ai-1 = cf=i ql kl ,  and kl is defined in (2). If we 
move the largest probability cell p a l  in the (i+ l ) th  partition 
to the i th partition, the paging cost C2 is then determined by 

C2 = i i i - 1  + (qi + p i + , )  * (ki-1 + ni + 1) (6) 

+(qi+l -p i+ , , )  * ( k i - l +  ni + ni+l ) -  

Since we do not want to lose the optimality of the partition, 
the following condition must be satisfied: C1 5 C2. which 
produces 

qi . (ki-1 + ni) + qi+l * (ki-1 + ni + ni+l) 

I (qi + p;+i)  * ( k i - l +  ni + 1) 
+(Qi+l -p i+ , , )  . (ki-1 + ni + ni+l - 1). (7) 
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After the simplification, we obtain the following result: 

(8) 1 
P i+l .  (ni+l- 1)  5 qi. 

This is exactly the forward condition in the Lemma. 
In a similar way, we can move the smallest probability cell 

pi" in the ith partition backward to the (i + l)th partition. 
Accordingly, the paging cost C3 is determined by 

C3 = iii-1 + (qi -pa)  . (ki-1 + ni - 1)  (9) 
+(qi+l +pi") * (ki-1 + ni + ni+l). 

Due to the requirement of the optimality, we have Cl 5 C3. 
Consequently, we obtain the following formula 

(10) qi I P: * (W+I + I ) ,  

which is the backward condition in the Lemma. 

B. Paging Procedure 

In this section, we illustrate the paging procedure in which 
the paging areas are constructed in accordance with the opti- 
mal partition algorithm in the previous part. We first partition 
the LA into a series of PAS in such a way that all PAS con- 
sist of approximately the same number of cells, followed by 
testing the boundary conditions described in the previous sec- 
tion. 

Step 1: Calculate the number of cells in each PA as 

no = 9 

and determine the variable k as: k = N - noD. 
Step 2: Determine a series of PAS as PAo(l) ,  PA0(2), 

. - -, PAo(D) with the location probabilities of q1, q2 ,  . , q'o, 
respectively. no cells are allocated to each of the first (D - IC) 
PAS, and (no + 1)  cells are assigned to each of the remaining 
IC PAS. For example, the first PA consists of no cells and the 
last PA, i.e., Dth PA, consists of (no + 1)  cells. 

Step 3: Test the first PA using the backward boundary con- 
dition in Section 111-A. If q1 > p i  - (n2 + 1). then p i  will 
be moved to the second PA. Otherwise, keep the partitions 
obtained from Step 2. We keep testing the first PA until the 
backward condition is satisfied. 

Step 4: Test the first PA using the forward boundary con- 
dition in Section 111-A. If q1 < p i  . (n2 - l ) ,  then p i  will be 
moved to the first PA. If this movement occurs, we go back 
to Step 3 in which the backward boundary condition will be 
tested again. This procedure continues iteratively until the 
forward condition is satisfied, that is, q1 2 p i  - (n2 - 1). 

Step 5: Test the second PA using forward and backward 
boundary condition as in Step 3 and 4. This procedure con- 
tinues until each PA has been tested and meets the conditions 
described in the Lemma. The finalized partitions will be the 
optimal paging sequence which produces the minimum pag- 
ing costs. 

Step 6: The system polls nl cells in PA*(l,  q1,nl) first, 
followed by searching PA* ( 2 4 2 ,  nz), and so forth. The pag- 
ing procedure stops when the called MT is found. 

This paging procedure guarantees that the conditions de- 
scribed in the partition algorithm can be satisfied. Thus, the 
paging costs are minimized under delay bounds. 

Example: Suppose there are 10 cells in an LA, and the upper 
delay bound is assumed to be 4 polling cycles. Also assume 
that the probabilities of an MT being found in each cell in the 
LAs are as follows: 0.35, 0.15, 0.15, 0.10, 0.05, 0.05, 0.05, 
0.04,0.03, and 0.03. 

According to Step 1 and 2, we first calculate 72.0 = 
[10/4J = 2 and k = (N - no - D) = 2. Then each 
of the first (D - IC) = 2 PAS consists of no = 2 cells, 
and each of the remaining IC = 2 PAS consists of (no + 
1 )  = 3 cells. This results in the following paging se- 
quence: PA0(1,0.5, 2 ) ,  PA0(2,0.25,2), PA0(3,0.15,3) 
and PA0(4,0.1,3), as shown in Fig. 1. Under Step 3, we 
test the first PAo(1,0.5, 2)  using backward boundary con- 
dition. Here, q1 = 0.5, p i  = 0.15, n2 = 2; there- 
fore, p i  . (n2 + 1)  = 0.45 < q1. This means the back- 
ward boundary condition is not satisfied, and the cell p i  
must be moved backward to the second PA, as illustrated be- 
tween the last two rows in Fig. l. The new paging sequence 
becomes PA1(1,O.35, l ) ,  PA1(2,0.40, 3), PA'(3,0.15,3) 
and PA1(4, 0.1,3). We then apply backward boundary con- 
dition again in which q1 = 0.35, p i  = 0.35, n2 = 3. It is 
observed that p i  (n2 + 1 )  = 1.40 > q1, which means the 
backward condition is fulfilled. In the next step, the forward 

L_______.  L _ _ _ _ _ _ _ .  L--_________. _ _ _ _ _ _ _ _ _ _ _ _ _  
10.35 0.15; j0.15 0.1: j0.050.050.05j iO.04 0.030.03\ 

, I  , I  , I  , I  , I  Cell: I I  :o 0 ;  io 0 ;  io 0 0 i io 0 0 :  ,---- - - - - - - - - - - - _ -  ------,------. 
v b 

r - - - -  - - -  _ _ _ _  
b 1 

PA0 (1,0.5,2) (2.0.25.2) (3,0.15,3) ( 3 . 0 . 1 3  

0 

( 3 . 0 . 1 3  

@ig. 1. An Example of Partition Algorithm and Paging Procedure. 

PA* 

(1.0.35.1) (2,0.40,3) (3.0.15.3) 

boundary condition will be tested to determine if the largest 
probability cell in the second PA needs to be moved to the 
first PA. We find p i  - (n2 - 1 )  = 0.3 < q1 which means 
the forward boundary condition is satisfied, and it is not re- 
quired to move any cell in the second PA forward to the first 
PA. We keep testing as in Step 5 and obtain the optimal PAS 
as: PA*(1,0.35, l ) ,  PA*(2,0.40,3), PA*(3,0.15,3), and 
PA*(4,0.1,3) as the last row in Fig. 1. As a result, thepag- 
ing cost under delay bound D = 4, E[C(4)] and the average 
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delay, E[D(4)] are computed as follows: 

. 

4 

E[C(4)] = Qj . Ici = 1 * 0.35 + 4 .0.40 
i=l 

+7.0.15 + 10 0.10 = 4.0, 
4 

E[D(4)] = i * qi = 1 * 0.35 + 2 .0.40 
i=l 

+3.0.15 + 4 - 0.10 = 2.0. (12) 

PA5 5 0.045 0.05 1 
PAR 6 0.045 0.05 1 

IV. PERFORMANCE ANALYSIS 
The numerical results for uniform and non-uniform loca- 

tion probability distributions are provided in this section. We 
compare the paging costs and average delays of the pro- 
posed scheme with three other paging schemes: broadcast 
paging [7], [ 141, selective paging [ 11, and highest probability 
first (HF'F) paging scheme [ 111. 

The paging costs and average delays versus the delay 
bounds, V, using (2) and (3) for the uniform distribution are 
shown in Fig. 2 and 3. For the selective paging scheme, 
we choose one case in which an LA is divided into three 
partitions with location probabilities 0.6, 0.2, and 0.2 [ 11. 
Fig. 2 shows the paging costs C(V) as a function of V for 
an LA with twenty cells (N=20) by using (2). It can be seen 
in Fig. 2 that the paging costs decrease with the increasing 
paging delay bounds for all paging schemes, except broad- 
cast scheme [7], [ 141. The paging costs of the optimal par- 
tition algorithm and HPF paging scheme fall very fast as the 
delay bound increases. Specifically, when the paging delay 
bound is 5, the paging costs achieve the small asymptotic 
value. The paging costs using selective paging scheme [l] 
remain the same after 23 = 3 because there are three parti- 
tions. We observe that the optimal partition algorithm causes 
the minimum paging costs, which are the same as the theoret- 
ical result from HPF scheme [ 111. It is also observed that the 
average delay increases as the delay bound increases. Never- 
theless, we consider that the paging costs have higher priority 
than the average delays under the delay bounds. We conclude 
that the optimal partition algorithm produces the same perfor- 
mance as HPF when it can be applied to the uniform location 
distribution. 

Next, we calculate the paging costs and average delays for 
non-uniform location probability distributions which may not 
be represented by a particular function. Two non-uniform dis- 
tribution cases created randomly are considered in Table I. 
We demonstrate that the paging costs and average delays re- 
sulted from different paging schemes. The HPF scheme is 
not included in which the delay constraint is considered as 
a weighted factor in determining the minimum paging cost, 
is introduced in [ll].  However, to find the optimal delay 
weighted factor, an analogous or corresponding continuous 
probability density function for a discrete probability distri- 
bution must be found. This is not a trivial problem for the 
non-uniform discrete distributions. 

L 1 
. PAa 8 0.04 0.05 1 

PA9 9 0.03 0.05 1 

2 4 8 8 10 12 14 18 18 20 
The paging delsy bound, D 

Fig. 2. The Paging Costs for Uniform Distribution. 

I l r  

The pagmg delay h n d .  D 

Fig. 3. The Average Delays for Uniform Distribution. 

TABLE I 
THE INITIAL LOCATION PROBABILITIES. 

Number 

0.26 
1 

4 I 0.05 I 0.08 I 1 H 

tl PA; i 7 I 0.04 I 0.05 I 1 n 
tf PAio I 10 I 0.03 I 0.05 I 1 tl 

The paging costs and average delays of case A and B are 
shown in Table 11. The details of each PA, such as the paging 
sequence, the location probability, and the number of cells 
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TABLE I1 
THE COMPARISON OF PAGING COSTS A N D  DELAYS 

V = 3 
Case A 
V = 4 
CaseA 
V = 5 

PA’(i,(?i,%) I E[CP)I I E[” Partitions (PAS) 11 
Case A I Outimal 11 (1.0.36.1k (2.0.36.2): (3.0.28.7) I 4.24 I 1.92 _ . . .  - , . .  . I  I I 

Seiective ” (110.55.5): (2,0.31,1): (3,0.14,4) 6.01 1.59 

Selective (1,0.55,5): (2,0.31,1): (3,0.14,4) 6.01 1.59 
Optimal (1,0.36,1); (2,0.31,1): (3,0.10,2): (4,0.13,3): (5,0.10,3) 3.29 2.03 
Selective (1,0.55,5): (2.0.31,l): (3,0.14,4) 6.01 1.59 

Optimal (1.0.36.1); (2.0.31.1): (3,O. 19,4): (4,0.14,4) 3.52 2.11 

under V = 3, 4, 5, are also illustrated. The paging costs are 
indicated in bold and the average delays are indicated in ital- 
ics in Table 11. The paging costs decrease as the delay bound 
increases. For instance, the paging costs are changed from 
4.24 + 3.52 + 3.29 when V is changed from 3 to 4 and 
to 5. It can be seen that the optimal paging scheme results 
in the minimum paging costs when V is equal to 3, 4, and 
5, respectively. The selective paging scheme produces small 
average paging delays. According to the paging costs of case 
A, the paging costs of the optimal partition algorithm can be 
reduced up to 40% compared with that of the selective paging 
scheme. We also notice that the paging costs using optimal 
scheme are very small even though V is small such as 3. In 
addition, the paging costs do not change very fast when de- 
lay bounds reach a certain value. For example, in case A, the 
paging cost is reduced up to V = 4. After that, the improve- 
ment of paging cost is not as sensitve as for small values of D. 
Because of this, the delay bounds can be applied to locate the 
MT while minimizing the paging costs. The selective paging 
scheme also causes good results in some cases, but it needs 
to group the cells into PAS using complex computation; fur- 
thermore, it depends on the size and shape of the LA, which 
makes it not flexible. Our proposed scheme is simple to im- 
plement and definitely reduces the paging costs significantly 
for various probability distributions. 

V. CONCLUSION 

We have introduced an optimal paging scheme which is 
applicable to different location probability distributions in 
wireless systems. This scheme is simple to implement and 
it is able to minimize the paging costs under delay bounds, in 
particular, when the location probability distribution is non- 
uniform, which is not considered in many paging schemes. 
We also carried out some experiments and our results re- 
vealed that our proposed scheme is still very effective in min- 

imizing the paging costs. On the whole, the new proposed 
scheme in this paper provides an optimal, generic, and feasi- 
ble method of paging process in wireless systems. 
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