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Blocking in queueing network models with finite capacities can lead to deadlock
situations. In this paper, deadlock properties are investigated in queueing networks
with multiple routing chains. The necessary and sufficient conditions for deadlock-
free queueing networks with blocking are provided. An optimization algorithm is pre-
sented for finding deadlock-free capacity assignments with the least total capacity. The
optimization algorithm maps the queueing network into a directed graph and obtains
the deadlock freedom conditions from a specified subset of cycles in the directed graph.
In certain network topologies, the number of deadlock freedom conditions can be
large, thus, making any optimization computationally expensive. For a special class
of topologies, so-called tandem networks, it is shown that a minimal capacity assign-
ment can be directly obtained without running an optimization algorithm. Here, the
solution to the minimal capacity assignment takes advantage of the regular topology
of tandem networks.

Keywords: Queueing networks, blocking networks, deadlocks, deadlock prevention.

1. Introduction

Queueing network models are frequently applied for performance evaluation
of computer systems and communication networks. Numerous methods are avail-
able for analyzing queueing networks under the assumption that all stations have
infinite capacities. However, in actual systems the resources have finite capacities,
and queueing networks with finite capacities should be used for performance analysis.

In a queueing network with finite capacities, each station has only a finite
waiting room for buffering jobs. Blocking arises due to the limitations imposed
by the capacity of these stations. In particular, blocking occurs when the flow of
jobs through one station is interrupted due to another station that has reached its
full capacity. The set of rules that dictate when a station becomes blocked or
unblocked is commonly referred as the blocking mechanism. In this work, we
consider the so-called blocking-after-service or BAS mechanism, also referred to
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as Type 1 or manufacturing blocking mechanism [1]. In BAS, a job which has com-
pleted service at a station / and attempts to proceed to station j must find an empty
buffer space in station j. If station j is full, the job is blocked and forced to wait in
station i’s server until it can enter destination station j. A server which contains a
blocked job cannot serve other jobs waiting in the queue.

Finite station capacities and blocking can lead to a deadlock situation in the
queueing network. As an example, suppose a job has finished service at a station,
say station 1, and wants to proceed to some other station, say station 2. If the wait-
ing room of station 2 is full, the job is blocked in the server of station 1. Suppose
another job has finished service at station 2 and has selected station 1 as its next
station. If station 1’s waiting room is also full, this job is blocked at station 1. In
this situation, the jobs in the servers of both stations 1 and 2 are permanently
blocked. As a result, a deadlock situation arises.

There are two approaches to solve deadlock problems in finite capacity
queueing networks. First, one can extend the blocking mechanism by providing
additional algorithms that dynamically resolve a deadlock situation. For example,
some deadlocks can be resolved by allowing blocked jobs to select an alternate desti-
nation station. Note however, that adding a deadlock resolution mechanism signifi-
cantly increases the complexity of the queueing network model, and, as a result, may
render an analytical solution of the model intractable. Second, one can select the
waiting room at each station sufficiently large such that deadlocks cannot occur.
This solution requires knowledge of so-called deadlock freedom conditions, that is,
conditions on the size of the waiting room of the stations which prevent deadlock
situations. An advantage of the second approach is that it does not involve changes
to the blocking mechanism.

In this study, we take a preventive approach to deadlocks and derive deadlock
freedom conditions for finite capacity queueing networks with BAS blocking and
multiple routing chains. For queueing networks with a single routing chain,
Kundu and Akyildiz [3] proved that a network is deadlock-free if the number of
jobs in the network is less than the capacity of the directed cycle with minimal wait-
ing room. However, these conditions for deadlock freedom cannot be straight-
forwardly extended to networks with multiple routing chains since a deadlock
may result from dependencies between jobs from different routing chains.

We demonstrate these dependencies in the network model shown in fig. 1.
The figure depicts a queueing network with two stations and two routing chains.
We denote by B;, the waiting room, referred to as buffer, of chain r at station i
and by K, the total number of jobs in chain r. Let the parameters be given by

K, =5; K; =6;
Capacity of B;; = 3; Capacity of B, = 3;
Capacity of B;, =4; Capacity of By, = 3.
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By By
. . l. 1 . . job of chain 1
By, B,
D [:] [I D D D job of chain 2
Station 1 Station 2

Fig. 1. Blocking network with 2 chains.

In fig. 1, the job from chain 2 residing in the server of station 1 cannot proceed to the
full buffer B,,. Thus, the job waits in the server until space in By, becomes available.
On the other hand, the job in the server of station 2 cannot enter buffer B,,, since By,
is full. Thus, a deadlock situation occurs, even though the conditions for deadlock
freedom given by Kundu and Akyildiz [3] are satisfied for each routing chain in
isolation.

We show that deadlock situations in multiple-chain queueing networks
always occur in so-called buffer cycles. A buffer cycle is a cyclic sequence of buffers
in the networks where the buffers may belong to different routing chains. The set of
feasible buffer cycles is obtained from the transition probability matrices of the
routing chains. We show that a queueing network with multiple routing chains is
deadlock-free if and only if each buffer cycle is deadlock-free.

Once the deadlock freedom conditions are available they can be applied to
find an assignment of capacities to the buffers of each station such that deadlocks
cannot occur. Of particular interest are capacity assignments which yield a dead-
lock-free network with the least total capacity. We refer to these assignments as
minimal capacity assignments. We present an optimization algorithm which yields
a minimal capacity assignment for multiple-chain queueing networks with arbitrary
topology. The set of buffer cycles is obtained by mapping the queueing network into
a directed graph such that each cycle in the graph corresponds to a buffer cycle in the
queueing network. The minimal capacity assignment is obtained with standard
linear optimization techniques.

A potential drawback of the optimization algorithm is its computational
complexity which makes the algorithm impractical for networks with a large
number of buffer cycles. As a worst case, we consider so-called tandem networks,
that is, networks where all stations are connected in a sequence. In tandem networks
with N stations and R routing chains, the number of buffer cycles is given by R”. By
taking advantage of the regular topology in a tandem network we can provide a
minimal capacity assignment without running an optimization algorithm.

The remaining sections of this study are structured as follows. In section 2
we describe the class of queueing models which is considered in this study. The
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cenditions for deadlock freedom are stated and proved in section 3. In section 4 we
define a capacity assignment to be minimal if it achieves deadlock freedom with the
least total capacity. Then we present an optimization algorithm which generates a
minimal capacity assignment for arbitrary network topologies. In section 5 we
show that a minimal capacity assignment can be directly given if the network has
a so-called tandem topology. In section 6 we conclude our results.

2. Model description

We consider a closed queueing network I' = (A, R, P) with the following
properties:

e The network contains a finite set A/ of stations and a finite set R of disjoint
routing chains. Each job in the network belongs to exactly one routing
chain. Let R; C R denote the set of routing chains whose jobs visit station
i. Let N, € N denote the set of stations visited by jobs from routing chain
r. P is a set of matrices P = (P, P,..., P|r|) where P, is the |N'| x | N|
transition probability matrix for routing chain r. The elements of P, are
denoted by p;; , with the following interpretation. A job of routing chain r
which has received service by station i proceeds to station j with probability
pij,r- Throughout the paper, we assume that p;;, > 0 implies that r € R,
and r € R;.

e Each station i has a single server. The service times for jobs at station i are
i.i.d. and given by a random variable Y;. We assume that the service times
are such that for all times > 0 we have Prob(Y; > t) > 0. The scheduling dis-
cipline of a station is arbitrary, but non-preemptive.

e Each station keeps separate buffers for jobs from different routing chains. B;,
denotes the buffer at station i (excluding the server) for jobs from routing
chain r. Each buffer may accommodate only a finite number of jobs. Let @
be an assignment of capacities to the buffers of T, i.e.,

‘P{B,,llEN,rGR,}—-){O,l,Z,} (1)

A buffer can have infinite capacity, i.e., ®(B;,) = oo, or no capacity at all, i.e.,
®(B;,) = 0. The total capacity of station i is computed by 3,z ®(B;,) + 1.

ir
e The jobs from chain r in I is fixed and given by K,. The total number of jobs
in the network is denoted by K = 3, % K,.

e The number chain-r jobs in buffer B;, cannot exceed its capacity ®(B;,).
Assume a job of chain r has completed service at some station i and wants
to proceed to a station j. If B;, is saturated, i.e., ®(B;,) jobs are waiting in
B;,, the job is blocked at buffer B;, and must reside in the server of station i
until a place in B;, becomes available. A server which contains a blocked
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job cannot serve other jobs. The described blocking mechanism is referred to
as blocking-after-service or BAS.

3. Conditions for deadlock freedom

In this section we present the deadlock freedom conditions for a queueing
network as described in section 2. The conditions consider a worst case scenario
in the sense that any network will eventually be deadlocked even if the probability
to enter a deadlock state is very small. The theorem for deadlock freedom (DLF
theorem) is stated in terms of conditions that must hold for each buffer cycle in
the network. A buffer cycle is defined as a cyclic sequence of buffers such that
each buffer in the sequence belongs to a station which can have a blocked job at
the next buffer of the sequence. A formal definition of a buffer cycle is given as
follows.

DEFINITION 1

A buffer cycle is a sequence of buffers C = (B, ,, B;,r,,-- -, Biy,_ 11> Biyyray)
such that

Pininsryrmny >0 and r, €R; foralll<m< M,

(2)

piMihrl >0 and 1574 GR,’M.
Let C denote the set of all buffer cycles in T'.

The next definition provides the set of stations in buffer cycle C that may contain a
job from routing chain r which is blocked at a buffer in the same cycle.

DEFINITION 2

The set of stations with buffers from routing chain r in buffer cycle C is
defined by

§{9) = {i| B;, € C}. (3)

For example, C; = (By;,B,;) and C, = (By;, By,) are two buffer cycles in the
network shown in fig. 1. From deﬁnltlon 2 we obtaln the sets of stations with
potentlally blocked jobs to be S, (@) = = {1,232}, S2 = ( for cycle Cy, and S, (@) =
{1}, S = {2} for cycle C,.

Next we state the conditions for deadlock freedom in a queueing network
with multiple routing chains. Theorem 1 states that for each buffer cycle C there
must exist at least one routing chain r which, at the same time, cannot saturate
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all its buffers in cycle C and have S,(C) jobs blocked at some other buffers in the
cycle.

THEOREM 1 (DLF THEOREM)
A multiple chain queueing network I' is deadlock-free if and only if for all
C € C there exists a routing chain r € R such that

Z (I)(Blr) + iSr(C)l > Kr' (4)

iesl

For a given buffer cycle C and a given routing chain 7, the term on the left of (4) is
said to be the DLF term of routing chain r in buffer cycle C. We say that routing
chain r satisfies the DLF condition in buffer cycle C, if inequality (4) holds for
chain r in buffer cycle C. A capacity assignment ® is said to satisfy the DLF condi-
tions for buffer cycle C, if there is at least one routing chain which satisfies the DLF
condition in cycle C. A capacity assignment @ is said to be deadlock-free if ® satisfies
the DLF conditions for all buffer cycles C € C.

Proof
Necessity: Assume there exists a cycle C = (B;,,,, B,,,,..., B
such that for all r € R we obtain

iM—l rMAI’BiMrM)

Y #(B,,)+I5° <K, (5)

T

With our assumption on the service time distribution we can construct a feasible
state where all buffers in C are saturated, i.e., B; , holds ®(B, , ) jobs of chain
rm for all 1 <m < M, the server of each station i, contains a job from chain r,,,
if m < M, and the server of station iy, contains a job from chain r,. Note that
the entire cycle will have |S,(C)| servers which contain a job from chain r. There
exists a positive probability that each job in the server of station i, (m < M) has
picked station i, as destination station, and the job in the server of station iy
has selected station i as its next station. In this state, no server can release a job
and eventually, each station i,, is blocked. Thus, a deadlock persists.

Sufficiency: Assume that assignment ® satisfies the DLF condition for all
buffer cycles, but the queueing network is in a deadlock state. Then there must
exist a permanently blocked job in the server of a station, say i;. Assume that the
blocked job is from routing chain r, (r, € R; ). Assume that the blocked job in
the server of station i; is blocked at a buffer, say B, ,, of station iy, that is, B; ,. con-

i

tains ®(B,;,,,) jobs. Station i, itself must be blocked, otherwise a space in B;,,, will

eventually become available and station i; would not be permanently blocked. The
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job in the server of station i, is blocked at a saturated buffer, say B;,,, of station i;.
We can continue to apply this argument. Since there is only a finite number of
stations in the network, we will eventually encounter a job from routing chain
ry+1 In the server of some station, say station i, which is blocked at a saturated
buffer B ;,  of a previously considered station i;. Then, buffers B, ,, ,B; -

» By, r, define a buffer cycle C=(B;,,., B, r. - B,M P wBerM) Note
that a job from chain 7, 1s blocked in the server of station i,_; if B; , is a buffer
in the cycle. Therefore, | S,¢ [ jobs from chain r are blocked in servers of stations
which have a buffer in the cycle. Since all buffers in the cycle are saturated, there
are ). e s©) ®(B; ,) jobs from routing chain r in the buffers of the cycle. The
sum fof each chain r must be less or equal the total number of jobs K|, otherwise
the shown construction would not have been feasible. This implies that for all rout-
ing chains r with buffers in cycle C we have

> o(B,)+|89<K,. (6)

ineS©

However, this contradicts our assumption that ® satisfies the DLF condition for all
cycles. O

If the DLF conditions (4) are satisfied for a buffer cycle C, they are clearly
satisfied for any cycle which contains the buffers of C as a subset. Therefore, to
guarantee deadlock freedom of a network, it is not required to test the DLF condi-
tions for all buffer cycles. Let us denote by C C C’ if the set of buffers in a buffer
cycle C is a subset of the set of buffers in a cycle C'. We refer to a buffer cycle C
as a minimal cycle if no cycle in C is contained in C, i.e., for all cycles C’ € C we
have C’ ¢ C. We denote by C the set of all minimal cycles. The following lemma
states that a network is deadlock-free if the DLF condition is satisfied for all
minimal cycles.

LEMMA 1

Given a multiple chain queueing network I" with C, the set of all buffer cycles
and C, the set of all minimal cycles. Then, I is deadlock-free if the DLF condition (4)
is satisfied for all C € C.

Proo

flf C C C’, then S,(C) & S,(C’) for all » € R. Therefore, if a routing chain r
satisfies the DLF condition in cycle C, that is, ), 5O ®(B; ,)+|S; ©)| > K,
then chain r also satisfies the DLF condition in all cycles C' with C C C'. Now
the claim follows immediately since for any cycle C, either C € C, or C D C’ and
el O
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4, Deadlock-free capacity assignment algorithm

With the deadlock freedom conditions of theorem 1, we can decide whether a
given capacity assignment may result in deadlock situations. In this section, we will
show that theorem 1 can be applied in a constructive manner. In particular, we will
use theorem 1 to develop an algorithm which finds a deadlock-free capacity assign-
ment with the least total capacity. Such a capacity assignment is referred to as
minimal.

DEFINITION 3
A deadlock-free capacity assignment ®" for a queueing network T is minimal
if for all deadlock-free assignments @ for I' it holds that

DY B> Y (B, (7)

iEN reR; iEN reR;

Hence, any capacity assignment which allocates less total capacity to the buffers of
the queueing network than a minimal capacity assignment will have a deadlock. In
the remaining part of this section we will present an algorithm which finds a minimal
capacity assignment. The algorithm is executed in two steps:

(1)  Find the set C of minimal cycles and establish the DLF conditions for each
cycle in C.

(2) Formulate an optimization problem of minimizing the total number of buffer
capacities, subject to the constraints that the DLF conditions be satisfied for
all cycles C € C.

Next we discuss the steps of the algorithm in detail. At the end of the section, we
present an example of the optimization algorithm.

We approach the problem of finding the buffer cycles of a queueing network
as the problem of finding cycles in a directed graph. The following lemma allows to
map the queueing network into a directed graph.

LEMMA 2
Given a multiple chain queueing network I'. Obtain from I' a directed graph
Gr = (Vr, Er) with set of vertices V' and set of arcs Ep by

@B Ve={B,lieN,reR},
(ii) Er = {(BiraBjs) lpij,s > 0}

Then, there exists a one-to-one mapping between the buffer cycles in I" and the
cycles in Gy.
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Proof
The proof follows immediately from the definition of a buffer cycle in defini-
tion 1 and the construction of the directed graph. O

The cycles in the directed graph can be obtained with a cycle-finding algo-
rithm for directed graphs, e.g., Johnson [2]. Note that with lemma 1 we do not
need to find all cycles in Gr. Rather, motivated by lemma 1, we are interested
only in the set C of minimal cycles. An algorithm which finds the set of minimal
cycles more efficiently than standard cycle-finding algorithms was presented by
Liebeherr [4].

Once the set of buffer cycles is available, we can generate the maximal subset
of buffer cycles C that must be examined for deadlock freedom of the queueing net-
work. If the DLF condition is satisfied for all buffer cycles in C, then the network is
deadlock-free. Here, we present two approaches for finding a minimal capacity
assignment for queueing networks. The first approach is based on integer program-
ming techniques and guarantees a minimal capacity assignment. The second
approach is a heuristic method which always provides a deadlock-free capacity
assignment, but may yield a suboptimal solution. The advantage of the heuristic
method is that it is computationally less demanding than solving the integer
program.

A minimal capacity assignment ®* satisfies the DLF condition in all buffer
cycles with the least total number of buffer capacities. Thus, for a given network
I', a minimal capacity assignment is obtained by solving the following optimization
problem:

Find ®* which minimizes Z Z ®*(B;,) subject to the constraints:
ieEN reR;

(VCeC)EreRr): Y ®(B,)+|8|>K,.

iesl®

Since all constraints of the optimization problem are linear the problem can be
formulated as an integer program as shown by Liebeherr [4]. A solution of the
integer program provides a minimal capacity assignment ®* for network I

In large networks the number of constraints and variables may prohibit an
exact solution by integer programming. In these cases, one must resort to heuristic
methods which find a deadlock-free capacity assignment with a low number of total
buffers, however, without guaranteeing minimality.
; In algorithm 1 we present such a heuristic method. Algorithm 1 is started with
C, the set of all minimal cycles in I'. In step 1 we define C;, C C as those minimal
cycles which contain buffer B;,. In step 2 we define " (B;,) as the smallest capacity
assignment such that B;, by itself satisfies the DLF term for routing chain r in all
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Algorithm 1

Input:  C, the set of minimal cycles in .
Output: ®*, a deadlock-free capacity assignment for T.

k iy = {C €l|By, € C}
2. ®""(B;,) := mincce, {K, — | S| + 1}
3 Select (i’,r") such that .. |C(B"|’") = in{q> |c(B|”) |Cir €C,Ci, # (0}
i'r! ir
4. @"(Byyr) := ™" (By1,1)
Cir =C \ Ci’r’

if C # () then goto Step 2.

buffer cycles in C;,, i.e.,
™" B,y + |8 | >+K, forall CeC,,.

®™"(B;,) can be interpreted as the incurred cost for satisfying the DLF conditions
in all cycles in C;, through a capacity assignment to B;,. In this sense, the ratio
®™"(B;,)/|C;,| expresses the relative cost per buffer cycle incurred by assigning a
capacity of ®™"(B;,) to buffer B;,. In steps 3 and 4 we select the buffer B,
which minimizes the relative cost ®""(B;,)/|C;,|. Note that by assigning to
buffer B;,, a capacity of ®™"(B,,,+), all DLF conditions of cycles in C;/,/ are satis-
fied. In step 5, these cycles are eliminated from the sets C;,. If there are minimal
cycles left whose DLF conditions are not satisfied we begin a new iteration (step 6).

When the algorithm terminates all DLF conditions are satisfied and we have
obtained a deadlock-free capacity assignment. However, there is no guarantee that
the assignment is minimal. In an example given below we will see that algorithm 1
yields results which are close to or identical with a minimal assignment. Note that
algorithm 1 is guaranteed to converge quickly since the number of iterations of
the algorithms is bounded by the number of buffers in T.

Example

Next we apply the minimal capacity assignment algorithm to an example.
Figure 2 depicts a queueing network with three routing chains. The network con-
tains 429 elementary buffer cycles, that is, buffer cycles where no buffer appears
twice. However, the set of minimal buffer cycles contains only 19 elements. Thus,
with lemma 1, only 19 buffer cycles must be considered to determine a minimal
capacity assignment. These cycles are given as follows:

Cy = (By1, By),

C, = (Bgy, Byg»),
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Fig. 2. Muitiple chain queueing network.

C; = (Bs3, Bz, Big 2, Bes),

Cy = (B, Bar, Byo 1),

Cs = (B, By, Bsy, By 2),

Ce = (B, Ba1, Bsy, Bgs, Byo3),

C7 = (Ba, By, Bsy, Byg2),

Cs = (Ba1, Ba, Bz, Byo2),

Cy = (Byy, Bsy, Bgs, Byo 3, B3),

Cio = (Baa, Bsy, Bgs, Big 3, Boy, Byy),
Ci1 = (Baz, Bsy, Big 2, Bs),
Ci2 = (Bay, Bsy, Bgs, By 3, B3),

Ci3 = (Bay, Bsy, Bgs, Big 3, Boy, Byy),
Ci4 = (Byz, Bsy, Byg 2, B33),

Cis = (Baz, Byo 1, B33),

TLZ



Table 1
Results for example.

K1=10 K1=46 K1—3

K =10 K, = Ky =

K3 =10 K3 =125 K3 3

minimal heuristic minimal heuristic minimal heuristic
> @B 36 37 175 175 8 8
iEN reER;
®*(By;) 9 9 45 45 2 2
®*(Byy) 10 10 4 4 3 3
®*(Byg2) 9 10 4 4 3 3
®”(Bg;) 7 9 122 122 0 0

Ci6 = (Baa, Byo 1, Boy, By,),
Ci7 = (Bag, Bz, Byg 2, B33),
Ci9 = (Bs3, Byg2, Be3)-

In table 1 we show the solution of the optimization for different values of
K = (K, K;, K3). The optimizations were solved with the programming package
LINDO [6]. We also include the results obtained with the heuristic method given
in algorithm 1. Table 1 only depicts non-zero capacity assignments. Note that for
all values of K, the heuristic method of algorithm 1 provides results which are
very close to or identical with an optimal solution.

S. Deadlock-free capacity assignments in tandem networks

The computational complexity of the capacity assignment algorithm pre-
sented in section 4 increases with the number of mimimal cycles in T', as given by
the number of elements in C. For some networks the size of C can make the optimi-
zation algorithm impractical. As a worst case, consider the network in fig. 3. Here C
is identical with the set of all buffer cycles in the network. Note that in the queueing
network in fig. 3, the set C contains R" minimal cycles. In the following we show
that the effort to obtain a minimal capacity assignment can be greatly reduced if
we take advantage of networks with a regular topology such as the network
shown in fig. 3.

We refer to networks which have a topology as shown in fig. 3 as tandem net-
works. Tandem networks can be formally defined as follows.



Fig. 3. Tandem network.

DEFINITION 4

A tandem network T = (N,R) is a multiple chain queueing network
I' = (M, R, P) with

R;=R forallie N (8)
and for each station i € N there exists a station i’ € N’ (i # i') such that for all
reR:

1 ifj=i,
Pijr = { " 9)
0 ifj#£i

In a tandem network, each station has a buffer for all routing chains, i.e., R, =R
for all i € NV, and jobs from each routing chain can visit all stations, i.e., N, = N
for all r € R. Each buffer cycle in a tandem network contains one buffer from
each station, and the length of each buffer cycle is equal to |V |.

Our main result in this section is that minimal capacity assignments in
tandem networks can be provided without running any optimization algorithm.
The result is presented in the following theorem where we state that a minimal
assignment for tandem networks is obtained by allocating non-zero capacities to
the buffers of only one station.

THEOREM 2 -
For a tandem network I' = (M, R), the following capacity assignments



®; (i € N') are minimal:

( K, ifj=iand K- K, > |N|,
K—|N|+1 ifj=iand K > |N| > K - K,,
o7 (B;,) = 1 (10)
0 ifj=iand |[N|> K,
L 0 if j # i,

forje N and re R.

Note that theorem 2 defines a set of | N | different capacity assignments; That
is, there is one capacity assignment ®; for each station i € . The remainder of this
section contains the proof of theorem 2. The proof consists of two parts. The first
part is proven through lemma 7 which states that the capacity assignments given
above do not allow deadlock situations. For the second part of the proof we have
to show that any capacity assignment which assigns less total buffer capacities to
the stations of the tandem network will result in a deadlock. This claim is made
in lemma 8. The proof of lemma 8 requires considerable effort since we must effec-
tively construct a deadlock for a large class of capacity assignments. Before we state
and prove lemmas 7 and 8, we present a set of technical lemmas which will be used
for the proof of lemma 8.

Remark

Note that the network shown in fig. 1 also is a tandem network. Thus, with
theorem 2 we can give two minimal capacity assignments, ®] and ®;. Assuming the
same network parameters as in section 1 we have |[N'|=2and K = K, + K, = 11.
Therefore, ®] and @3 assign capacities as shown here:

®7(By) =5, P3(Bu) =0,

®1(B12) =6, ®3(B12) =0,

1(By) =0, ®(By) =S5,

®1(Byn) =0, ®3(By)=6.
It can be easily verified that ] and ®; are the only minimal capacity assignment for
the tandem network in fig. 1. However, for some tandem networks, there may exist

minimal capacity assignments which are different from the assignments given in
theorem 2. For example, in a tandem network with |V | =3, R ={l,2}, and



K, = K, = 3, a capacity assignment ®' with ®/, = 1 (for i = 1,2,3 and r = 1,2) is
minimal.

In tandem networks, a violation of a DLF condition by a routing chain r can
be easily detected if the number of stations in the tandem network is equal to the
number of jobs of the routing chain, that is, K, = |\'|. This assertion is shown
in lemmas 3 and 4. In lemmas 5 and 6, we show how to modify the structure of
tandem networks such that we can take advantage of lemmas 3 and 4, yet, any dead-
lock in the modified network corresponds to a deadlock in the original network.

LEMMA 3

Given a tandem network I' = (N, R). Let ® be a capacity assignment for I'
such that ), v ®(B;,) <K, +1 and K, = |N| for some routing chain r € R.
Let C be a buffer cycle in T such that | §/)| > 0. If routing chain r satisfies the
DLF condition for cycle C then it does not satisfy the DLF condition in any
buffer cycle C’ with S,(CI) = N \S,(C). (For two sets 4 and B, we use 4\ B to
denote the relative complement of B with respect to 4, ie, A\B:=
{x€ A|x ¢ B}).

Thus, if the number of jobs in a routing chain is equal to the number of stations, and
the total capacity which is assigned to the buffers of this routing chain exceeds the
number of stations by at most one, we can always find a buffer cycle such that the
routing chain does not satisfy the DLF condition.

Proof

Assume a capacity assignment ® and a routing chain re€ R with
Y ien ®(B;,) < K, + 1. Let C be a buffer cycle in I such that chain 7 satisfies the
DLF condition, i.c.,

> ®(B,) +]5| > K, (11)

i€ S,(C’

Now assume a buffer cycle C’ with S,(C’) =N\ S,€). Then, we obtain for the DLF
term of chain r in cycle C”:

Y @B +IS =Y @B, +(IN|-]S)) (12)

ies ies

IA

(K,+1— > OBy | + (K-S (13)

ie S,(C)

<K, +1. (14)



The equality in (12) follows from S,(CI) = N \S,(C). For (13) we wuse
> ien ®(B;;) <K, +1 and K, = |N|. Finally, we obtain (14) from (11). Thus,
the DLF condition of chain r in cycle C' is not satisfied. O

The following lemma provides an even stronger result. Similar to lemma 3, we
assume that the number of stations in the tandem network is equal to the number of
jobs of a particular routing chain. Here, however, we assume that the total capa-
cities assigned to the buffers of the routing chain is less than the number of stations.
Then we can partition the stations of the tandem network into two sets such that the
DLF condition of the routing chain is violated in both sets. The result is proven by
Liebeherr and Akyildiz [5] where we provide an algorithm that achieves the desired
partition.

LEMMA 4

Given a tandem network I' = (M, R). Let & be a capacity assignment for T
such that };c v ®(B;,) < K, and K, = | N'| for some routing chain r € R. Then
N can be partitioned into two disjoint sets A'; and A, such that

@ ) ®By)+|Ni|<K,and
iGN]

) > B(B,)+|N:| <K,
ieN,

Lemmas 3 and 4 enable us to make statements regarding the deadlock
properties of routing chains where the number of jobs is equal to the number of
stations in the tandem network. The next two lemmas, lemmas 5 and 6, show
how to modify a tandem network such that we can take advantage of lemmas 3
and 4. We refer to Liebeherr and Akyildiz [5] for complete proofs of lemmas 5
and 6.

LEMMA §

Given an arbitrary network I' = (N, R, P), and ®, a capacity assignment for
I'. Consider a routing chain » € R with K, jobs. Reduce the number of jobs in chain
r by one and define a new capacity assignment &’ which differs from & in the capa-
city assignment to only one buffer B;, with ®(B;,) > 0 as follows:

®(B;,)—1 ifg=randi=j,

<I>,(Biq) = {

®(B;,) otherwise.

Then @ violates the DLF condition for chain r with K, jobs in a buffer cycle,
if ®' violates the DLF condition for chain r with X, — 1 jobs in the same buffer
cycle.
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Lemma 5 says that given a routing chain with a large capacity assigned to its buffers,
e, > ien ®(Bi;) > K,, we can reduce both the capacity assignments and the
number of jobs such that any deadlock in the modified network also results in a
deadlock in the unmodified network. In lemma 6 we show how to modify a network
such that at least one routing chain has more jobs than the modified network has
stations, yet, any deadlock in the modified network can be extended to a deadlock
in the original network.

LEMMA 6

Given a tandem network I' = (M, R) and a capacity assignment & for I" such
that the following conditions hold:

(@l) > ®(B;) <K, forallr € R, and
ieN

BY Y K >[N
rer

Then one can effectively construct from I" a tandem network I'' = (N, R’) with
N'C N and R’ C R, such that

(y1) K, > |N'|for at least one r € R'.
(61) IfT’is not deadlock-free, then I is not deadlock-free.

Now we proceed with the proof of theorem 2. In lemma 7 we show that the
capacity assignments given in theorem 2 yield a deadlock-free network. Recall that
theorem 2 defines | N'| capacity assignments ®;, one for each station i € A. In

the following, we assume that the index i of capacity assignment ®; is arbitrary, but
fixed.

LEMMA 7

For a tandem network I' = (N, R) the capacity assignments ®; (i € ) from
eq. (10) yield a deadlock free network.

Proof

To prove freedom of deadlocks, we distinguish three cases: (a) |NV'| > K,
(b)K—K,>|N|,and (c) K > |N| < K — K,. We take advantage of the fact that
in a tandem network each buffer cycle C must contain a buffer from station i. We
will assume without loss of generality that the buffer from station i belongs to rout-
ing chain r, that is, i € S,(C).

@) |[N|>K
In this case, it is not possible that the servers of all stations in T’ are
occupied by jobs. Hence, for each buffer cycle C there must exist a chain r € R
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with:
15| > K,. (15)
With (15), routing r satisfies the DLF condition for cycle C.
b)K—-K, > |N|
Here, theorem 2 assigns capacities such that ®;(B;,) = K, . Since per assump-

tion we have |S,(C)| > 1, the DLF term for routing chain r in cycle C evaluates
to

> ®i(B)+18 =K +|5|>K,. (16)
jeS,‘C)

Clearly, the DLF condition is satisfied.

(C)KZ‘N|>K_Kr
We first consider all cycles C with

ieS and |S©|<|N|-(K-K). (17)
Since all cycles in a tandem network have a length of | NV |, ie., 3 ,cr | S| =
| N'|, we obtain from (17) that there must exist a routing chain g (¢ # r) such

that |Sq(C)| > K,. But this satisfies the DLF condition for chain ¢ in cycle C.
Now we consider K > |N'| > K — K, and all cycles C with

ieS© and |S9|>|N|-(K-K). (18)
With i € §¢) and ®}(B;,) = K — |N'| + 1 we obtain

Y @B +ISON2 (K- |IN|[+1)+(IN]|- (K-K)) (19)

jes’®
=K, +1 (20)
> K. (21)
Thus, the DLF condition for routing chain r in cycle C is satisfied. O

As our last step for the proof of theorem 2, we show in lemma 8 the mini-
mality of the assignments ®;. Lemmas 7 and 8 together prove the correctness of
theorem 2.
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LEMMA 8

Consider a tandem network I' = (A, R). Any capacity assignment ® which
allocates less total capacities to the buffers of some routing chain r than assignments
®; (i € N') from eq. (10) will result in a deadlock situation.

Proof

For K < | N'|, no capacity is assigned to any buffer, and ®; is trivially mini-
mal. In the following, we investigate the minimality of ®; for K > | N|.

To show minimality, we must show that any capacity assignment which
assigns less total capacity to the stations of the tandem network than ® will
result in a deadlock situation. Let us select an arbitrary routing chain r € R and
consider a capacity assignment ® which satisfies:

> %i(B) -1 ifg=r,

_ jeN
> &(B,) = ! (22)
JEN > ®i(B,) if g #r.
JEN

Thus, ® assigns one buffer space less to the buffers of routing chain r than capacity
assignment ®;. The total capacity assigned to buffers from chains g#r by ®
remains unchanged. Note that we do not have any assumptions on how & distri-
butes the capacities to the stations of the tandem network. In particular, we do
not assume that ® assigns non-zero capacities to only one station. For K > |N|,
we will show that assignment @ results in a deadlock in at least one buffer cycle
inI.

Recall that in theorem 2, the capacities assigned to buffers from routing chain
r are different for K — K, > | N'| and K — K, < |\ |. Here we show only the proof
of the case K — K, > | N'|. A proof for the case K — K, < | N | is given by Liebeherr
and Akyildiz [5].

For K — K, > | |, consider the tandem network I'’ = (A, R\{r}) that is
obtained from I' by eliminating routing chain r. Further consider capacity assign-
ment ® as given in (22). Since I'’ satisfies conditions (1) and (1) in lemma 6,
one can construct a network I'" = (", R") with N" C N and R” C R\{r},
such that I'” contains a routing chain g € R” with K, > |N'"|.

Now consider the tandem network I'" = (V" {r, ¢}). We will construct a
deadlock in I'"”. With lemma 6, any deadlock in I'"” can be extended to a deadlock
inI". Dependent on the size of X, relative to | /" |, the construction of the deadlock
in I'" will be different for K, > |N'"| and K, < |[N'"].

K. >|N"|:
Note that K — K, > | N'| must hold in this case. (K — K, < || implies
> ser” K+ K, — K, < |N'"| which contradicts K, > | V" |.) Therefore, capacity
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assignment ® assigns the following total capacities to buffers from routing chains r
and g:

> 8B, =K -1, (23)
JEN
> 3(B;,) =K, (24)
JEN

We apply lemma 5 repeatedly to chains » and ¢ until K, = |N"| and K, =
|N ”|. Then, by applying lemma 4 we can effectively partition A’” into two sets
N{" and N3 such that chain r does not satisfy the DLF condition in either
subset.

Now consider two cycles C; and C, with

Sr(CI):INl”]a SCI) IN
(25)
S =N, S =N

Per construction of C, and C,, the DLF condition for chain r is not satisfied in
either cycle. With lemma 3 the DLF condition for chain ¢ cannot be satisfied in
both cycles C, and C,. Therefore, the DLF conditions for both routing chains
are violated in C, or C,. Thus, either cycle C; or C, contains a deadlock. Since
the modifications to I' have preserved any possibly existing deadlock (see lemmas
5 and 6), one of the two cycles C, or C, can be extended to a buffer cycle in T’
such that no routing chain r € R satisfies the DLF condition of this cycle. As a
result, we have constructed a deadlock in T.

K <|N"|:

If K, <|N"| holds, both K — K, > |N'| and K — K, < | | are feasible.
Here we only consider K — K, < [N]. Then the following holds for the number
of stations in I'” and ' as constructed above:

IN"[=IN]= ) K. (26)

s#”q

Since per our assumptions, K — K, > | NV |and K — K, < |N|, capacny assignment
® assigns the following total capacities to routing chams rand g:

> 8(B,) =K —1, (27)

ieN
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> &(B,)=K-|N|+1 (28)
ieN

=K. +K,—|N"|+1. (29)

The equality in (29) is obtained with (26). Next we apply lemma 5 repeatedly to
chain g until K, = | N'"|. Thus, lemma 5 is applied exactly K, — | V" | times. Apply-
ing lemma 5 changes the capacity assignment to chain ¢, and we use ®’ to refer to
the modified capacity assignment. ' is such that

Z (I_),(Bjr) = Z (i(Bjr)a (30)

JEN JEN

;{@’(qu): Z.;/(i)(qu)_(Kq_|N”|) (31)
= (K + K — N[ +1) = (K, — [N]) (32)

Let us define V' Z, as the set of stations in I'" with non-zero capacities assigned to
buffers of chain g. With (33) we obtain the following upper bound for |N'Z,|:

INZ,| <K, + 1. (34)

Next we select a set ﬁzq with N Z, C ./_\/?q such that

|NEZ,| =K +1. (35)
Since Y jep ®(B;,) = K, — 1, and since }:je/ﬁq ®(B;,) <Y jen (B;,) we have
> ®B;,)=K 1. (36)

JENZ,

Hence, we can apply lemma 4 and partition N Z, into two sets N'Z,; and N Z,,
such that

Y. ¥B)+INZy| <K, and > ¥'(B)+|NZy|<K,. (37)

JENZ, JENZ,

For routing chain ¢, we have with (33) that 5. _-— ®'(B;,) = K, + 1. Thus, we
JENZ, 79
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obtain with lemma 3 that either

Z B'(Bj,) +|NZ,| <K, +1 or
jemql

> (B +I|NZp| <K +1. (38)

JENZ,

Without loss of generality we will assume that the first inequality in (38) holds. Then
we can perform the following manipulations:

> (B +|N"\NZ,p|

JEN"\NZ,,
= qz (i)/(qu)'*"quH"N”l—'W‘ll (39)
jEN”\ﬁqz
= Y ¥B)+INZu|+IN"| - (K +1) VD)
jE.ATZ-ql
<K+ 1) +IN"| - (K +1) (41)

Equation (39) follows from |[NZ,| = |N2Z, |+ |NZ,,|. Equation (40) follows
with (35) and Z}. eN\NZ @'(qu) = 0. The inequality in (40) is obtained with
(38), and (42) is obtained gy canceling terms. With the above derivations, we can
define a buffer cycle C in I'"” such that

S,(C) = N’E 25 S(C) :N”\NZ 2. (43)
q9 q q

It follows from (37), and (38)—(42), that the DLF conditions for both routing chains
rand q are not satisfied. Therefore, a deadlock results in network I' . With the same
arguments as used before, the deadlock in I'”” results in a deadlock in I. O

References

[1] LF. Akyildiz and H.G. Perros (eds.), Queueing networks with finite capacity queues, Special
Issue of Perf. Eval. 10(4) (1989).

[2] B.Johnson, Finding all the elementary circuits in a directed graph, SIAM J. Comp. 4 (1975) 77—
84.



E)
4
B3]

(6]

J. Liebeherr, 1.F. Akyildiz| Deadlock properties of queueing networks 431

S. Kundu and L.F. Akyildiz, Deadlock free buffer allocation in closed queueing networks, Queue-
ing Systems 4 (1989) 47-56.

J. Liebeherr, Performance evaluation of synchronized systems, Ph.D. Thesis, Georgia Institute of
Technology, College of Computing (1991).

J. Liebeherr and L.F. Akyildiz, Deadlock properties of queueing networks with finite capacities
and multiple routing chains, Technical Report CS-94-65, University of Virginia, Department
of Computer Science (1993).

L. Schrage, Linear, Integer, and Quadratic Programming with LINDO, 3rd Ed. (The Scientific
Press, 1986).



