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Abstract: T h i s  paper introduces a locat ion update  pol icy  which 
min imizes  the  cost of mobile  t e rmina l  ( M T )  location tracking. An  
M T  dynamica l l y  de t e rmines  when  t o  per form locat ion update  based 
o n  i ts  mobil i ty  p a t t e r n  a n d  the  incoming  call arrival probability. 
T h e  per formance  of this  s c h e m e  is  close to tha t  of t he  op t ima l  
pol icy  reported earlier. However ,  t he  processing t i m e  requirement  
of this  s c h e m e  is  ve ry  low.  T h e  m i n i m a l  compu ta t ion  required by  
this  s c h e m e  enables  i ts  usage in M T s  which h a s  l imited energy 
supply  and  compu ta t iona l  power.  
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1 Introduction 
Current Personal Communications Networks (PCNs) employ 
a cellular architecture such that the PCN covera e area is 
divided into cells. All mobile terminals (MTs) wi&in a cell 
communicate with other MTs through a base station which 
is installed within the cell. This base station is connected 
to  other base stations and stationary terminals through an 
underlying wireline network. In order to  route incoming calls, 
each M T  reports its location to  the network by a process called 
l oca t ion  upda te .  In current cellular systems, cells are grouped 
together into l o c a t i o n  areas  (LAs). An M T  performs location 
update whenever it enters a new LA. When a call arrives, 
the network polls each cell of the LA to  locate the MT. This 
polling process is called t e r m i n a l  pag ing .  

In this paper, we introduce a dynamic location update 
mechanism which can be tailored to  the mobility and call 
arrival pattern of each individual MT. The location update 
decision process is distributed over time. Changes in the call 
arrival and mobility pattern of an MT are taken into account 
from time to  time while the computational requirement is lim- 
ited. A number of mobility tracking schemes were reported 
in [2, 3 ,  4, 51 and a brief introduction of these schemes can be 
found in 11. Most of the previous schemes assume the mo- 

oryless random walk model b, 4, 51 or the Markovian model 
[3]. Our mechanism is not based on a specific assumption on 
movement pattern. Analytical results demonstrated that the 
performance of our mechanism stays close to  that produced by 
an optimal policy given in [4] under various movement and in- 
coming call arrival probabilities. Moreover, the performance 
of our mechanism never falls below that  of a no-update policy 
(location update is never performed). This means that the 
cost effectiveness of mobility tracking is improved by using 
the location update policy. 

This paper is organized as follows. In section 2, we describe 
the system model. In section 3 we introduce the proposed dy- 
namic location update mechanism. Section 4 presents the per- 
formance evaluation for the dynamic location update mecha,- 
nism. The conclusion is given in Section 5. 

bility o f t  I, e MTs to  follow s ecific models such as the mem- 

2 System Model 
2.1 Terminal Mobility 
We assume that the PCN coverage area is divided into hexag- 
onal cells of the same size such that each cell has six neighbors. 

Figure 1 shows an example of a PCN coverage area with 61 
cells. Our location update mechanism does not require spe- 
cific assumptions on the mobility pattern of the MTs and any 
knowledge of specific mobility parameters. However, in or- 
der to  demonstrate the performance of our mechanism, we 
use the two-dimensional memoryless random walk mobility 
model throughout this paper. We assume that  X t  is the ID 
of the cell where an M T  is located a t  discrete time t .  The 
MT will stay a t  cell Xi a t  time t + 1 with probability q or it 
will move to  one of the neighboring cells with probability p ,  
where p + q =I 1. We also assume that if the MT moves to 
one of the neighboring cells, there is equal probability, i.e., i, 
that any one of the neighboring cells is selected. 

It can be seen in Figure 1 that each cell is surrounded by 
rings of cells. The inner-most ring consists of only one cell 
(cell (9 in Figure 1) and we call this the center cell. Ring 0 
is surrounded by ring 1 (consisting of all cells labeled ‘1’ in 
Figure 1) which, in turn, is surrounded by ring 2 (consisting of 
all cells labeled ‘2’ in Figure l),  and so on. For a given center 
cell, we assume ri ( i  2 0 )  is the set of all cells in the ith 
ring. In this paper, all distances are measured in terms of the 
number of rings such that the distance from a selected center 
cell to  the cells belonging t o  set ri is i rings. For example, 
the distance of the center cell (ring 0) to  each cell in ring 4 as 
indicated in Figure 1 is 4 rings. 

We denote the interarrival times of incoming calls by T .  
Assuming that T i s  a generally distributed iid random variable 
with probability distribution function F ( t )  and mean 1 /X .  

2.2 Mobility Tracking 
The PCN has the current location information of an MT af- 
ter each location update and terminal pagin . We assume 
that the 1ocati.on of each M T  is recorded in a fatabase which 
is updated whenever current information is available. This 
database update process is called l oca t ion  reg i s t ra t ion .  In or- 
der to  determine if a called M T  is located in a particular cell 
when a call arrives, the network performs the following: 

1. Sends a polling signal to  the target cell and waits until a 

2. If a reply is received before timeout, the called M T  is 

3.  If no rep1:y is received, the called M T  is not in the target 

We define the c e n t e r  cel l  to  be the cell where the MT’s last 10- 
cation registration occurred. When an incoming call arrives, 
the PCN polls the cells in the vicinity of the center cell in a 
shortest-distance-first order. For example, in the PCN COV- 
erage area given in Figure 1, we assume that the called MT 
is located a t  ring r3 and cell 0 is the center cell of the MT. 
The PCN will poll the rings in the following order: ro, r1, rz,  
r:l. The network polls a ring by sending a polling signal to  
all cells in the ring. In this case, the number of cells polled 
before the MT is found‘is 37. In general, given that an M T  

timeout occurs. 

located in the target cell. 

cell. 
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Figure 1: Two-Dimensional PCN Coverage Area. 

is located in ring rh the number of cells polled before the MT 
is successfully located is: 

h(k)  = 3k(k  + 1) + 1 

We assume that when an incoming call arrives, the network 
is able to locate the called M T  within the same discrete time 
period. The following is an ordered list of tasks that an MT 
performs within each discrete time period: 

Determine if the location of the M T  is changed as com- 
pared to its location during the previous discrete time 
period. 
If the location of the M T  is changed, calculate the next 
location update time. 
If an incoming call is pending, receive the call and set 
the location update time to infinity (no location update 
is necessary until the next movement). 
If current time is bigger than or equal to the next loca- 
tion update time, perform location update and set next 
location update time to infinity. 

A method for determining the next location update time is 
given in Section 3. The operation of the WT during a call is 
not considered here and the above list is valid only when no 
call is currently in progress. For the rest of this paper. we 
assume that the time is always expressed in the number of 
discrete time periods. We will not explicitly indicate the unit 
of time hereafter. 

3 Dynamic Location Update 
We assume that the cost for each location update. denoted 
by U, is independent of the location of the MT. We also as- 
sume that the cost for terminal paging is proportional to the 
number of cells polled before the M T  is found. Given that 
the -kfT is currentIy located in ring rk, the cost for terminal 
pagrng is: 

Q(kI= W k )  (1) 

where V represents the cost for polling a particular cell. It 
is clear that if the arrival time of the next incoming call is 
known in advance, the MT should perform a location update 
right before the call arrival if the cost for location update is 
less than the paging cost (U < Q ( k ) )  at that time. Otherwise, 
no location update should be performed because the paging 
cost is lower than the location update cost. In reality, we do 
not know in advance the arrival time of each incoming call. 
However, given the incoming call interarrival times distribu- 
tion function, F ( t ) ,  and the time elapsed since the last call 
arrival, we can determine the probability distribution of the 
residual call arrival time. Assuming that T is the incoming 
call interarrival time with distribution F( t )  and t, is the time 

elapsed since last call arrival. The probability of an incoming 
call arrival within the next At time units is: 

Since the cumulative probability of call arrival increases with 
time. the risk of not updating the location also increases with 
time. We define the weighted paging cost At time units from 
the current time as: 

The weighted paging cost at a given time interval from the 
current time is the terminal paging cost multiplied by the 
probability of call arrival during that time interval. As it can 
be seen in equation (21, the weighted paging cost increases 
with time. Its value approaches that of the paging cost, Q ( k ) ,  
as the time interval: At. increases. The weighted paging cost, 
therefore. takes into account of the increasing probability of 
ha\-ing to pay the terminal paging cost as time advances. A 
location update should be performed at the time when the 
weighted paging cost exceeds the location update cost. We 
propose a location update mechanism which determines the 
time of the next location update based on the call interarrival 
time distribution function, E( t ) ,  the distance traveled since 
the MT's last location registration, k, and the time elapsed 
since the last call arrival, t , .  The following equation gives the 
weighted paging cost on the left hand side and the location 
update cost on the right hand side: 

G(& t , )Q(k) = U (3) 

Given the values of k and t , ,  the time until the next location 
update, r(k). can be determined by solving equation (3) for 
At: 

~ ( k )  = {At  I G(&, te )Q(k)  = U} 
Since the probability G(At,t,) can never exceed 1, equa- 

tion (3) is valid only when U 5 $(k). When U > Q ( k ) ,  the 
weighted paging cost, W(At, E,, k), can never exceed the lo- 
cation update cost, U. WO location update is necessary under 
this situation, i.e., r(k) = CO- As the distance, k, changes 
when the M T  moves to another ring, ~ ( k )  is updated. As 
suming that the M T  moved to the current ring at time t ,  
and the distapce of the MT from its center cell is k. The next 
location update time is: 

If the MT moves to another ring before tu, a new value for 
tu d l  be determined based on the up-to-date distance k and 
the time elapsed since the last call arrival t , .  The proposed 
location update mechanism is summarized as follows: 

The following information is collected whenever the MT 
enters a ring: i) the distance traveled since the last loca- 
tion registration, k, ii) the cost for the network to page 
for the MT, Q ( k ) ,  and iii) the time elapsed since the last 
call arrival, t,. 
Using the data obtained in the previous step, determine 
the time until next location update, ~(k), by solving 
equation (3) for At- 
Record the ~ ( k )  value obtained in the previous step and 
initiate a location update at time tu = t ,  + ~ ( k ) -  

3.1 Geometric Call Interarrival Time Distri- 
bution 

Here we consider the special case where the call interarrival 
time distribution is geometric. Based on this assumption, we 
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Figure 2: State Transition Diagram. 

develop the expression for the time until next location update, 
s(k). The probability distribution of call interarrival time is: 

(5) F(E) = 1 - (1 - X I t  
Because of the memoryless property of the geometric dis 

tribution, the residual call arrival time is independent of the 
time elapsed since the last call arrival. As a result, the prob- 
ability distribution of the residual call arrival time given the 
time elapsed since the last call arrival, E,, is the same as F’(t) 
given in equation (5): 

G(& E , )  = 1 - (1 - AIAt (61 

Substituting equation (6) in equation (3) and solving for At, 
the next location update time, ~(k), is: 

A s(k) value of cm indicates that no location update is nec- 
essary. As can be seen from equation (7), no location update 
is needed either when k = 0 or when U 2 Q(k) .  The first 
case represents the situation right after a location registra- 
tion. The network knows exactly the location of the MT. No 
location update is therefore needed until after the next move- 
ment. In the second case, the location update cost is always 
higher than or equal to the weighted pa ing cost no matter 
what the probability weighting, G(AE,E,f, is. It is therefore 
more economical not to perform any location update. The 
next location update time, E , ,  is computed from equation (4). 

4 Performance Evaluation 
4.1 Analytical Model 
Here we develop an analytical model for the dynamic location 
update mechanism based on the random walk mobility model 
and the geometric call interarrival time distribution. We c a p  
ture the activity of an MT using an Imbedded Markov chain 
(see Figure 2) of which the state i ( i  2 0 is defined as the dis- 

cell. State transitions of the Imbedded Markov chain occurs 
right after: 1) a movement to one of the neighboring cells, 2) 
a call arrival or 3) a location update. The transition proba- 
bilities (0 5 i 5 N )  and l 1 j ~ j - 1  (0 < j 5 N )  represent 
the movement of the WT to a neighboring cell such that its 
distance from the center cell is increased or decreased, respec- 
tively. The transition probabilities C;”Q (0 5 i 5 N )  represent 
the arrival of incoming calls when the M T  is i cells away from 
the center cell. The transition probabilities d~ (0 < i 5 N )  
represent location updates performed when the M T  is i cells 
away from its center cell. 

It can be seen in equation (7) that the location update 
time interval ~ ( k )  decreases as the distance k increases. The 

tance between the current location o f t  i e M T  and its center 

average time at a state, k, is zero if ~ ( k )  = 0. This is because 
every transition into this state will result in an instantaneous 
tramition to state 0 because of a location update. The highest 
statte of the Imbedded Markov chain, N ,  can be determined 
by finding the n\p d u e  such that: 

r ( N )  > 0 
r ( N  + 1) = 0 

The transition a ~ ~ ~ + 1  in Figure 2 represents an increase of 
the MT”s distance from N to N + 1. This movement results 
in an immediately location update which changes the state of 
the MT from N -b 1 to 0 instantly. 

]Let M and T be two geometrically distributed iid random 
variables which represent the inter-movement time and the 
call interarrival time, respectively. As described before, p and 
A denote the movement probability and the call arrival prob- 
abiility, respectively. We define 7 as: 

$ . = l - X  ($1 
According to the mobility model given in Figure 1 , movement 
of the MT may not always result in a change of ifs distance 
from the center cell. When the M T  is residing in a ring other 
than sing ran the probability that a movement will result in a 
change of the distance from the center cell is $. Given that 
an M T  is residing at ring vkka the probability that the M T  will 
move to another ring during each discrete time period is: 

..={ for k = 0 

f p  for k > o 
We further define &, mk and ,& as: 

y k  = 1 - Z k  (91 

Qk = y k 7  (10) 
@k = 1 - Qk (11) 

Given that an M T  is located at ring rko the probability that 
its next movement to another ring will result in an increase 
of its distance from the center cell is: 

The Probability that a movement to another ring occurs be- 
fore the arrival of a call (Pr [M < TI) is: 

z k 7  

1 - Y k 7  
$k = -- 

According to the ordered list of tasks performed by an M T  
given in Section 2.2, we assume that if both a movement and a 
call arrival occur at the same discrete time period, the move- 
ment is performed before the call is received. This means that 
if an M T  is at state k when both movement and call arrival 
occur, the next state of the M T  is 0. We further assume that 
if either the movement time or the call arrival time coincide 
with the location update time, the location update will not 
be performed. A new location update time will be selected 
after the movement or the call is complete. Since the prob- 
ability that more than two events occur at the same time is 
low when the discrete time period is small, the effect of the 
abiove assumptions to the analytical result is minimal. The 
statte transition probabilities of the Imbedded Markov chain 
art:: 
For ~ ( k )  = 00: 

@k for k = 0 
ak .k+ l  = 

@kpk for k > 0 
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Let T T T ~  be the average so journ  t z m e  of s ta te  k which is the 
smallest of three time intervals: the deterministic update time 
~ ( k ) ,  the residual incoming call arrival time and the time until 
next movement. The expression for xk is: 

Kk = { [ . ( ~ ) a ; ( ~ ) + '  - (r(li) + l)Cy;fk) + 11 if r(li) < cc 
if ~ ( k )  = CO 

+ * x 

1 
PI, 
- 

- 1) where ~ ( k ) ,  a and ,8 are computed from equations (7), (10) 
and (11)) respectively. The average t i m e  between s ta te  tran- 
sztions,  p ,  is: 

- f fk (G' ; (k ) - '  - I)]} 
f f k  - 1 

f N 

3=0 

The total  location update and t e r m i n a l  paging cost is: 

- " I  - 1) - f fk(CV,'(k)- l  

f f k  - 1 

r ( k ) - I  
Xk 

- Y k  [ y k ( y * y k  - 1 

s ( k )  

balance equations can be obtained as: 

dk,O = ( Y k Y )  

Assuming p k  is the equilibrium probability of state I C .  The 

ao, ipo  = b i , o p i  + a N , N + l P N +  

~ , " = I ( ~ J , O  + d3 ,0 )p3  for > (12)  

p N  = a N - 1 , N P N - 1  for N > 0 (14) 

The equilibrium probability of each state can be expressed 
in terms of the equilibrium probability of state N as: 

p k  = Q k p N  for 0 5 k < N (15) 

where q k  is the ratio of the equilibrium probabilities of states 
IC and N ,  The probability of state N can then be solved by 
applying the law of total probabilities as: 

for N > 0 
1 

PN = 
1 + rl3 

The equilibrium state probability of states IC can be obtained 
by substituting equation (16) into equation (15). Equations 
(12) through (16) are valid only when N > 0. When there is 
only one state (i.e. N = 0), the equilibrium state probability 
of state 0 is equal to 1 ( p o  =. 1). Assume Sh and SA are 
the cost for location update and terminal paging per state 
transition, respectively. The expressions for 5'; and Sh are: 

U a o , l  i f N = O  
U ( P N a N , N + l  -k E,"=, ~ J ~ J , O )  if N > 

i f N = O  

s: = 

c o , o [ x k Q ( 1 )  + y k Q ( O ) ]  

p o c o , o [ x k Q ( 1 )  + l / k Q ( o ) l  E;"=, P J C J , O X  

{ ~ j Q ( . i )  + ~ 3 b 3 Q ( . 1  + I)+ 
(1 - P ~ ) Q ( . I  - 1111 i f N > O  

st = 

4.2 Performance Bounds 
We will compare the performance of the proposed dynamic 
policy with a no-update policy and an optamal policy [4, 51 as 
described below: 

No-update policy: No location update is performed under 
this policy. When a call arrives, the network searches for the 
M T  starting from the cell where the last call arrival occurred. 
Since the purpose of location update is to reduce the cost for 
tracking down the MT, an effective location update policy 
should reduce the average cost as much as possible compared 
to the no-update policy. 

Optimal policy: A location update is performed when the 
MT's distance from the cell where the last location registra- 
tion occurred exceeds an optimal distance. The optimal lo- 
cation update distance is selected based on the mobility and 
call arrival parameters such that  the total location update 
and terminal paging cost is minimized. 

Given the no-update and the optimal policies, we expect the 
average cost of the proposed location U date mechanism to 
be close to that of the optimal policy whze, at the same time, 
it must never exceed that of the no-update policy. We denote 
the avera e costs of the no-update and the optimal policies 
by S$ an8 S; , respectively. The algorithms for determining 
S$ and S; based on the system parameters such as the call 
arrival and the movement probabilities are reported in [l, 41 
and is not discussed here due to space limitation. 

4.3 Analytical Results 
Figures 3(a), 3(b) and 3(c) show the average cost, ST, for 
location update costs, U ,  of 1, 10 and 50, respectively. The 
call arrival probability, A, and the polling cost, V ,  are fixed a t  
0.01 and 1, respectively, while the probability of moving, p ,  
varies from 0.001 to 0.5. When U = 1 (Fi ure 3(a)) there is 

and that of the no-update policies, S:. This means that the 
gain from performing location update is significant. It can 
be seen that S, is very close to S$ while it is significantly 
lower than SF. When U = 10 (Figure 3(b)) the difference 
between 5'; and S+ reduces. The values of ST are very close 
to S; for all movement probability, p ,  values. When U = 50 
(Figure 3(c)) the ST is about half way between 5'; and S+. 
Figures 4(a), 4(b) and 4(c) show similar results when p is 

a big difference between the average cost o 'f the optimal, S;, 
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Figure 3: Average Cost vs Movement Probability for (a) U = 1 (b) U = 10 and (c) U = 50. 
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fixed at  0.05 while X varies from 0.001 to 0.1. When U = 1 
(Figure 4(a)) the difference between S+ and SF is large. The 
values of ST is only slightly higher than that of S$ for all 
values of X considered. the 
difference between S$- and S;4 reduces as X increases. k r  all 
values of X considered, ST is very close to S;. When U = 10 
(Figure 4(c)) the three curves overlap each other when X is 
large. The values of ST is close to that of S ; ~  

Figure 5 shows the average cost as the location update cost, 
U ,  varies from 0.1 to 100. The movement probability, p ,  the 
call arrival probability, A ,  and polling cost, V ,  are set to 0.05, 
0.01 and 1, respectively. It can be seen that the average cost 
of the no-update policy, S$, is constant for all values of U .  As 
no location update is performed by the no-update policy, S$ 
is independent from changes in U .  The average costs for both 
the dynamic and the optimal policies increase as U increases. 
For U = 100, the costs for all three policies are close to each 
other. For all values of U considered, ST is close to  S;. 

These results demonstrated the ability of the dynamic lo- 
cation update mechanism to adjust to changes in system pa- 
rameters to minimize cost. In most cases, the average cost 
of the dynamic policy is close to that of the optimal policy. 
While it re uires significant com utation to achieve the op- 
timal cost gas demonstrated in k, 5]), the dynamic policy 
generates near-optimal performance at  much lower computa- 
tional cost. Under all the parameters considered, the average 
cost of the dynamic policy is always lower than that of the 
no-update policy. 

When U = 10 (Figure 4(b) 

5 Conclusions 
A dynamic location update policy is introduced in this pa- 
per which can adjust to changes in system parameters, such 
as the call arrival probability and the mobility pattern of the 
mobile terminal (MT),  to attain better cost effectiveness. The 
computational overhead of our policy is low and the required 
processing is distributed over time. Analytical results demon- 
strated that the dynamic policy can generate similar perfor- 
mance as the optimal policy given in [4]. Moreover, appli- 

Figure 5: Average Cost vs Location Update Cost, U .  

cation of the dynamic policy is not restricted for a specific 
assumption on the mobility pattern of the MTs. 
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