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Fundamental Transmitting Properties of Carbon
Nanotube Antennas

G. W. Hanson, Senior Member, IEEE

Abstract—Fundamental properties of dipole transmitting an-
tennas formed by carbon nanotubes are investigated. Since carbon
nanotubes can be grown to centimeter lengths, and since they
can be metallic, the properties of carbon nanotubes as antenna
elements are of fundamental interest. In this paper, dipole carbon
nanotube antennas are investigated via a classical Hallén’s-type
integral equation, based on a quantum mechanical conductivity.
The input impedance, current profile, and efficiency are presented,
and the radiation pattern is discussed, as are possible applications.

Index Terms—Carbon nanotube, dipole antennas, electromag-
netic theory, nanotechnology.

I. INTRODUCTION

CARBON nanotubes (CNs) were discovered in 1991 [1]
and have since lead to an enormous amount of research

into their fundamental properties. Roughly speaking, a single-
wall carbon nanotube (SWNT) is a rolled-up sheet of graphene
(i.e., a monoatomic layer of graphite) having a radius of a few
nanometers and lengths (so far) up to centimeters [2]. Thus, their
length to radius ratio can be on the order of 10 or more. Mul-
tiwalled carbon nanotubes (MWNTs), carbon nanotube ropes,
and other related structures also exist, although attention here
will be focused on SWNTs.

At an atomic level, graphene has the honeycomb structure
shown in Fig. 1, where the small circles denote the location of
carbon atoms and the lines depict carbon–carbon bonds [3]. Lat-
tice basis vectors are and , as shown, and the relative po-
sition vector is , where are integers. A
carbon nanotube can be formed by wrapping the graphene sheet
into a cylinder (of course, carbon nanotubes form naturally in,
for example, the arc discharge of carbon electrodes and are not
made by literally rolling graphene sheets into cylinders).

Obviously, the cylinder can be formed by wrapping the sheet
along any preferred axis. If the cylinder axis is the axis in
Fig. 1, the resulting tube is called a zigzag CN. If the cylinder
axis is the axis in Fig. 1, the resulting tube is called an armchair
CN. If the cylinder axis is neither the nor the axis as shown,
the resulting nanotube is called a chiral CN. Thus, carbon nan-
otubes can be characterized by the dual index , where

for zigzag CNs, ) for armchair CNs, and ,
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Fig. 1. Graphene sheet showing coordinate system, lattice basis vectors, and
position vector. Circles denote the positions of carbon atoms.

, for chiral nanotubes. The resulting cross-sectional
radius of a carbon nanotube is given by [3]

(1)

where nm is the interatomic distance in graphene.
Electrically, carbon nanotubes have fascinating properties.

For example, they can be either metallic or semiconducting,
depending on their geometry (i.e., on ) [3], [4]. Armchair
CNs are always metallic (they exhibit no energy bandgap),
as are zigzag CNs with , where is an integer. Fur-
thermore, carbon nanotubes can exhibit dc ballistic transport
[3] over at least micrometer lengths. When ballistic transport
occurs, the resistance of the tube is independent of length and
is, theoretically, approximately 6.45 k . This resistance value
results from having two propagation bands (called the -bands)
forming parallel propagation channels, where each channel has
resistance equal to the resistance quantum [5], k .
Carbon nanotubes have been made into transistors [6], [7], gas
sensors [8], nanotweezers [9], and field emission devices [10],
among other uses.

Whereas the dc and optical properties of carbon nanotubes
have been studied both experimentally and theoretically, their
radio-frequency properties have not been considered as thor-
oughly [6], [11]. Since carbon nanotubes can be grown having
lengths on the order of a centimeter, and can be metallic, a nat-
ural topic is to consider carbon nanotubes for centimeter and
millimeter-wave antenna applications, as originally proposed in
[12].

In [12], carbon nanotube dipole antennas were considered
based on a transmission-line model. In this method, two parallel
conductors form a transmission line, and the transmission-line
parameters’ inductance , capacitance , and resistance are
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determined for the line, based on the line geometry and mate-
rials. Then, the usual transmission-line quantities, such as prop-
agation constant, phase velocity, and characteristic impedance,
are determined. The transmission-line current due to an open-
circuited end is obtained and used to model the flared-out trans-
mission line, which forms a dipole antenna. The radiated field
can then be obtained, and other antenna parameters determined
from the approximate current distribution, which is a standing
wave in the lossless case. Transmission-line modeling of carbon
nanotubes is further considered in [13] and [14] and references
therein.

As noted in [12], several effects make the carbon nanotube
transmission line act differently from an ordinary metallic trans-
mission line. Without going into detail, for a carbon nanotube
transmission line there exists a kinetic inductance that dom-
inates over the usual magnetic inductance [12]. Also, both the
usual electrostatic capacitance and a quantum capacitance must
be taken into account. One result is that the wave velocity on a
carbon nanotube transmission line is on the order of the Fermi
velocity rather than the speed of light (here we assume
that the transmission line exists in free space). For a CN,

m/s; as explained later, here we find that the prop-
agation velocity on a carbon nanotube dipole is

. Thus, wavelengths are much shorter on a carbon nan-
otube, compared to on a typical macroscopic metallic tube.

In this paper, fundamental properties of finite-length dipole
antennas formed by carbon nanotubes are investigated using
a Hallén’s-type integral equation. The input impedance, cur-
rent profile, and efficiency are presented and compared to or-
dinary metallic antennas of the same size and shape. Possible
applications of carbon nanotube antennas are discussed. The
carbon nanotube is accounted for using a semiclassical con-
ductivity derived explicitly for infinite carbon nanotubes [15],
[16]. At the frequencies of interest in this paper, this semiclas-
sical conductivity is equivalent to the more rigorous (and com-
plicated) quantum mechanical conductivity also derived in [15]
and [16], which accounts for interband transitions ignored in
the semiclassical analysis. The integral equation method utilized
here can be considered as being, overall, a semiclassical tech-
nique, since the classical Maxwell’s equations are used. This
formulation should be accurate through terahertz frequencies,
although at higher frequencies (and, therefore, involving higher
energy photons), interband transitions should be taken into ac-
count using the full quantum conductivity. This paper is a con-
siderably expanded version of [17], all units are in the SI system,
and the time variation (suppressed) is .

II. FORMULATION

The integral equation that is ultimately solved [(31)] is similar
to the well-known integral equation for a metal-tube antenna.
However, it is instructive to derive the integral equation in order
to appreciate the difference between a carbon nanotube and a
metallic tube. We will consider a two-dimensional (infinitely
thin) tube, in the form of a circular cross-sectional cylinder of
radius and oriented along the axis, as shown in Fig. 2.

Fig. 2. Carbon nanotube and metallic tube geometry.

Following [15] and [16], the conductivity is derived starting
with Boltzmann’s equation [18], [19], specialized to the case of
a -directed electric field and resulting current flow solely
in the direction under the relaxation-time approximation

(2)

where is the electron’s distribution function, is the elec-
tron’s velocity, is the electron’s charge, is the relaxation
frequency ( , where is the relaxation time), and
is the two-dimensional electron momentum. In (2), is the
Fermi–Dirac distribution

(3)

where is the Fermi energy, is the electron’s energy,
is Boltzmann’s constant, and is temperature. As discussed in
[15] and [16], this semiclassical (not fully quantum-mechanical)
model describes only intraband motion of electrons, which is,
however, sufficient at the frequencies of interest here. Writing

Re and Re , where is a
small quantity, and inserting into (2) leads to

(4)

The axial current density (in two dimensions) is [18]

(5)

where is the reduced Planck’s constant. Writing
Re and , we have [15], [16]

(6)

Although the derivation in [15] and [16] is aimed at carbon nan-
otubes, it is fairly general [18], applying to any two-dimensional
(infinitely thin) material that can be modeled using the relax-
ation-time approximation of Boltzmann’s equation. The spe-
cific material type comes into play by specifying the energy-mo-
mentum relationship , and the Fermi energy , in (6).

In particular, for the carbon nanotube, , and is
specified by

(7)

for zigzag CNs and

(8)

for armchair CNs, where is a constant
, , and , and
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where accounts for the quantized momentum in
the circumferential direction. For small radius carbon nanotubes

, (6) can be approximated by [15], [16]

(9)

where is the Fermi velocity for a CN. Although Boltzmann’s
equation is collision-driven, and therefore most applicable at
frequencies , the result (9) agrees with a quantum me-
chanical expression through terahertz frequencies [15], [16].
Note that the units of are siemens (S), rather than S/m, since
the carbon nanotube is modeled as an infinitely thin tube sup-
porting a surface current density.

As a comparison to (9), the conductivity of a two-dimensional
(infinitely thin) metal cylinder will be derived, starting from (6).
In this case, quantization in the circumferential direction can
be ignored as a first approximation, since we assume that the
circumference of the metal cylinder is much greater than the
electron’s de Broglie wavelength . Since is on the order
of 0.5 nm for copper in both two and three dimensions, this
should be a reasonable approximation. The interpretation of the
resulting conductivity is described later.

The well-known Fermi-gas model of electrons in metals leads
to [18]

(10)

which is derived by applying Schrödinger’s equation to nonin-
teracting electrons in an infinite (in this case, two-dimensional)
region of space. Using (10), changing to polar coordinates and
making the standard approximation

(11)

yields the result

(12)

where denotes the two-dimensional conductivity for a
Fermi-gas metal such as copper. Using the Fermi energy in two
dimensions [20], [21], , we have

(13)

where is the number of elections per m and is the mass
of an electron. It is interesting to note that, although the details
of the derivation would change slightly, for a three-dimensional
conductor the three-dimensional version of (6) leads to an anal-
ogous result

(14)

although in that case is the three-dimensional electron den-
sity such that the units of are S/m. In
either case the well-known semiclassical result for static con-
ductivity (which is also identical to the classical result) [18],

, is recovered for , and the usual fre-
quency dependence [19],
is reproduced by (13) and (14). For copper,

electrons/m [19].
The integral equation for current density can be obtained from

Ohm’s law

(15)

for all along the tube, where denotes either for the
carbon nanotube or for a metal tube and is a surface cur-
rent density (A/m). Actually, the conductivity developed for the
nanotube (9) applies to an infinitelylong tube. End effects will
alter the energy band structure near the tube ends, changing the
conductivity. However, for a long nanotube antenna this effect
can be expected to be small, and is ignored here. However, cau-
tion should be exercised when considering carbon nanotubes in
the proximity of nearby objects, since the energy band structure
may be strongly affected, although this is a matter requiring fur-
ther research.

The remainder of the formulation follows standard antenna
analysis. Starting with [22]

(16)

where

(17)

, and writing , we obtain

(18)

where is the half-length of the antenna. In (18)

(19)

is the standard thin-wire kernel, which will be appropriate here
since the radius will be on the order of a nanometer (the thin-
wire kernel and Hallén’s integral equation are discussed in [23])
and where

(20)

Ohm’s law (15) is then

(21)
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where is an incident field and is the scattered field.
Writing the scattered field as (18), we have the Pocklington
integral equation

(22)
where

(23)

is the antenna’s impedance per unit length. The above integral
equation is identical in form to the Pocklington equation for
an imperfectly conducting finite-thickness tubular wire antenna
[24]. In that case, however, rather than (23) for the infinitely thin
tube, if the metal tube’s wall thickness is

(24)

if is thin compared to the skin depth, [24],
and

(25)

if is much greater than the skin depth.
Therefore, from the preceding derivation we can see that the

two-dimensional conductivity ( for an infinitely thin metal
tube or for the carbon nanotube) plays the same role as the
product of bulk conductivity and wall thickness (i.e., )
or bulk conductivity and skin depth (i.e., ) for a finite-
thickness metal tube. This is consistent with the idea of a sheet
conductivity , where is a thickness parameter.
Note that (22) also holds for a solid cylindrical conductor if one
uses the impedance [24]

(26)

where

(27)

and where and are the usual first-kind Bessel functions.
At this point it is instructive to consider in more detail the

conductivities (9), (13), and (14). In particular, (9) is the surface
conductivity (S) of the carbon nanotube. Since the wall of an
actual single-walled CN is a monoatomic sheet of carbon, and
since high-quality carbon nanotubes can be grown (i.e., without
significant defects or impurities), the resulting infinitely thin
surface conductivity model should be valid.

For a carbon nanotube, the relaxation frequency is taken as
[16], and here we use m/s.

The carbon nanotube conductivity for armchair tubes with
various values is shown in Fig. 3(a), where, for example,
for , nm, and for , nm.

(a)

(b)

Fig. 3. (a) Conductivity (9) as a function of frequency for carbon nanotubes,
for various m values (i.e., various radius values). Solid lines are Re(�); dashed
lines are Im(�). (b) Conductivity � (9) as a function of frequency for carbon
nanotubes, m = 40 (a = 2:712 nm), and � , (13), for an infinitely thin
two-dimensional bulk approximation copper tube having the same radius. Solid
lines are Re(�); dashed lines are Im(�).

In order to provide a comparison to the CN results, it would
be useful to make a comparison to a metal dipole of the same
size and shape. However, the interpretation of the copper tube
model at the nanoscale needs some explanation. In contradis-
tinction to the case of a macroscopic metal dipole, the value of
conductivity plays an important role for nanometer radius an-
tennas. Keeping in mind that , it is clear from
(24)–(26) that if becomes very small, will be relatively
large, significantly alternating the antenna’s properties from the
perfectly conducting case.

As a concrete example, consider a solid copper dipole an-
tenna that has total length 0.47 , so that it is approximately
at resonance, and assume GHz. When
(i.e., m), there is not much difference in the input
impedance assuming a perfect conductor and the input
impedance assuming bulk copper , as shown in Table I
[results were obtained from (31) assuming the solid conductor
impedance (26)]. This is why, generally, antennas can be well
approximated as perfect conductors at radius values of typical
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TABLE I
INPUT IMPEDANCE AND EFFICIENCY FOR A SOLID CYLINDRICAL METAL WIRE

APPROXIMATELY NEAR RESONANCE (TOTAL LENGTH IS 0.47�), FOR

MICROMETER AND NANOMETER RADIUS VALUES. Z AND

Z ARE THE PERFECTLY-CONDUCTING AND BULK COPPER

APPROXIMATIONS, RESPECTIVELY

interest (usually larger than a micrometer). However, for very
small radius values, becomes very large, such that and

have very different values, as can be seen from the table for
the nm and nm cases (the use of the bulk copper
approximation in computing will be discussed below).

Also shown in the table is the efficiency , where
is the power radiated and is the power input

Re (28)

with being the current at the feed point. It is clear, then, that,
although good agreement is generally found between measure-
ments of a real metal dipole and simulation results assuming
a perfect conductor, this will only be true for radius values on
the order of a micrometer or larger. In fact, in order for the
perfect conductor and imperfect conductor models to give rea-
sonable agreement at nanometer radius values, the conductivity
of the material would need to be several orders of magnitude
larger the bulk copper value. Therefore, for nanometer radius
antennas, one must account for the finite conductivity of the ma-
terial rather than assuming a perfect conductor model.

However, at this time, the value of conductivity for nanometer
radius wires is unknown. For example, recent measurements on
rectangular cross-section copper traces indicate that when lat-
eral dimensions fall below 100 nm, surface and grain boundary
scattering cause a significant increase in resistivity. In partic-
ular, for 50 50 nm copper traces, the resistivity was approxi-
mately twice as large as the bulk value for copper [25]. Further-
more, resistivity was shown to increase sharply as dimensions
were reduced, although no values were presented under 40 nm.
There will also be a strong influence of impurities and material
imperfections in fabricating extremely small dimension copper
traces. Therefore, at this time, it is impossible to have a realistic
value of conductivity to use for the copper dipole at nanometer
radius values, and it is clear that the usual perfect conductor ap-
proximation is not meaningful. To provide a contrast to the CN
results, and to avoid somewhat arbitrarily choosing a value of
conductivity, the bulk conductivity of copper will be used. That
is, (13) will be used, where , which is the
bulk copper value [19]. However, it should be recognized that
the resulting conductivity may be far too large. This material,
described by , will be called the two-dimensional bulk ap-
proximation (TDBA) copper.

Fig. 3(b) shows a plot of conductivity as a function of fre-
quency for armchair tubes with [leading to

nm from (1)] and for an infinitely thin TDBA copper tube
of the same radius. In particular, at GHz, for we
have S. For comparison, the TDBA
copper value is, from (13), S. There-
fore, at this frequency, the carbon nanotube conductivity
(at least the real part) is on the same order of magnitude as the
TDBA copper sheet conductivity , although is quite dis-
persive compared to . From (14), the bulk conductivity of
copper is . For an ordinary
thin metal tube, will be on this same order of magnitude if

is on the order of a few nanometers.
We can convert the Pocklington equation (22) into a Hallén’s

integral equation [2] by writing

(29)
which leads to the function as

(30)

Assuming a slice-gap source of unit voltage, the final integral
equation to solve is

(31)

where are constants to be determined from .
In this paper, a pulse function, point matching solution of (31)
is found by expanding the current as

(32)

where if and
otherwise, where ,

with being the pulse width, .
Testing at points , , leads to the

system of equations

(33)

with , where

(34)
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Fig. 4. Input impedance for a carbon nanotube dipole antenna, m = 40 (a =
2:712 nm), and for a TDBA copper tube dipole having the same radius and
length,L = 10�m. Square boxes denote resonance frequencies; solid lines are
Re(Z =R ); dashed lines are Im(Z =R ).

Since , . We can approximate
the first integral in (34) as

(35)
where . In all results, we will
assume that the source is located at .

The solution was verified by comparison with the results for
imperfectly conducting tubular dipoles [24], [26], [27].

III. RESULTS

The special nature of the carbon nanotube conductivity (9) re-
sults in unique properties for carbon nanotube antennas. First, it
should be noted that nanoelectronic devices are inherently high-
impedance. For example, at the nanoscale, dc electron transport
is typically either ballistic [5], exhibiting a quantized resistance
on the order of k , or via tunnelling across gaps
[28], with an associated high tunneling resistance. Therefore,
much as 50 is considered a standard reference impedance
for macroscopic antennas, can be taken as a standard ref-
erence impedance for nanoantennas. In the following figures,
input impedance values will be normalized to . As will be
seen below, carbon nanotubes of reasonable lengths for opera-
tion from GHz and beyond will exhibit imped-
ances on this order of magnitude. This is probably a positive at-
tribute, since impedance matching to an impedance on the order
of associated with a nanoelectronic device may be facili-
tated. In the figures below, dipole antennas having half-length

m, 10 m, and 1 mm will be considered, and in all
results the dipole radius is nm [corresponding to

in (1)]. The main conclusions are that carbon
nanotube dipoles exhibit relatively sharp resonances according
to the velocity factor , resonances are suppressed
below the relaxation frequency 2 , and CNs have very low
efficiencies compared to macroscale antennas.

In Fig. 4, the normalized input impedance of a CN dipole
having half-length m is shown. Since a unit voltage
slice gap source is assumed, is the reciprocal of the cur-
rent at the center of the dipole. Also shown are the results for
a TDBA copper tube of the same dimensions. As expected, the
copper tube dipole does not resonate in this frequency range (a
perfectly conducting dipole would resonate at GHz;
the dipole characterized by does not resonant at all due to
strong damping).

Unlike the copper dipole, the m carbon nanotube
dipole does resonate in the considered frequency range. These
resonances can be associated with plasmons by the transmission
line model developed in [12], where the propagation velocity
on the antenna was found to be ( is taken here
to be 9.7 10 m/s for CNs [15], although in [12] the value
8 10 m/s is quoted). Thus, the transmission-line model pre-
dicts that , where is the speed of light in
vacuum.1 Therefore, the wavelength on the antenna should be
approximately , where is called the plasmon
wavelength [12] and is the free-space wavelength. As can be
seen from Fig. 4, the first resonance of the m carbon
nanotube antenna is at GHz. The current distribution at
this frequency is approximately a half-wave sinusoid, and thus

, or m. Setting , we
obtain , or a velocity reduction factor of

at GHz, which approximately holds
at all resonance and antiresonance frequencies shown (in Fig. 4,
boxes denote resonance frequencies, based on Im and
resonant-like current distributions). Thus, whereas a perfectly
conducting metal dipole having half-length m would
be expected to resonate at GHz, the same length
carbon nanotube antenna resonates at GHz.

The difference between the velocity reduction obtained here
and the transmission-line prediction

is most likely due to the approximate nature of the transmis-
sion-line method, since the and values of the two-wire
transmission line only approximately hold for the corresponding
dipole antenna (thinking of the dipole as a flared-out two-wire
line). Furthermore, the transmission-line model does not ac-
count for radiation, and only approximately for tube resistance.
Thus, the transmission-line model is expected to give valuable
yet fairly rough estimates of the actual antenna performance.

A shorter carbon nanotube dipole is considered next, in
Fig. 5, where the dipole’s half-length is m. The first
resonance of the carbon nanotube antenna is at GHz
(yielding ), and the first antiresonance is at

GHz (yielding ). Additional reso-
nances occur at higher frequencies, but are not shown, although
all resonances are due to plasmon effects. Note that a perfectly
conducting dipole would resonate at GHz. As
with the m antenna, the m TDBA copper
antenna does not resonate at any frequency due to damping.
As can be seen by comparing Figs. 4 and 5, the m
and m carbon nanotube dipoles both resonate in a
manner similar to a perfectly conducing dipole, but at resonant

1There is a typo in [12, (18)]: it should read v � 3v � 0:01c, using v =
8 � 10 m/s.
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Fig. 5. Input impedance for a carbon nanotube dipole antenna, m = 40 (a =
2:712 nm), and a TDBA copper tube dipole having the same radius and length,
L = 1 �m. Solid lines are Re(Z =R ); dashed lines are Im(Z =R ).

Fig. 6. Input impedance for a carbon nanotube dipole antenna, m = 40 (a =
2:712 nm), and for a TDBA copper tube dipole having the same radius and
length,L = 1mm. Solid lines are Re(Z =R ); dashed lines are Im(Z =R ).

frequencies corresponding to the velocity reduction factors of
and for the m and m

antennas, respectively.
Plasmon resonances were not observed at the lower frequen-

cies (below the relaxation frequency, roughly 53 GHz). For ex-
ample, the normalized input impedance of a mm carbon
nanotube antenna, and of a TDBA copper tube antenna, is shown
in Fig. 6. A perfectly conducting metal tube dipole having this
length would resonant at GHz, and thus we might ex-
pect the carbon nanotube dipole to resonate near GHz,
using the velocity reduction factor found for the

m dipole. However, no resonance is evident, consis-
tent with the above discussion. Note that the input impedance
values are nevertheless on the order of magnitude of the resis-
tance quantum.

As a further example, Fig. 7 shows versus frequency
for several different length CNs. The m tube res-
onates as described previously, and the m CN res-
onates at approximately the value predicted by (i.e.,
near GHz, although the first resonance is pushed a
bit higher in frequency). However, the m CN should
resonate at GHz but does not resonate until a much
higher frequency (near GHz). Thus, it seems clear

Fig. 7. Input impedance versus frequency, showing the effect of relaxation
frequency damping on antenna resonances.

Fig. 8. Current distribution on a carbon nanotube antenna, m = 40 (a =
2:712 nm), L = 10 �m, F = 10 GHz.

Fig. 9. Current distribution on a carbon nanotube antenna, m = 40 (a =
2:712 nm), L = 10 �m, F = 160 GHz, which is near the first resonance
frequency.

that resonances are suppressed below the relaxation frequency
.

Figs. 8–11 show the current distribution on the m
carbon nanotube dipole at various frequencies. As can be seen
from Fig. 8, at frequencies far below resonance, the current dis-
tribution is approximately triangular, as for an ordinary short
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Fig. 10. Current distribution on a carbon nanotube antenna, m = 40 (a =
2:712 nm), L = 10 �m, F = 292 GHz, which is near the first antiresonance
frequency.

Fig. 11. Current distribution on a carbon nanotube antenna, m = 40 (a =
2:712nm),L = 10�m,F = 578GHz, which is near the second antiresonance
frequency.

dipole. Fig. 9 shows the current near the first resonance, where it
is seen that the current is approximately a half-sinusoid. Figs. 10
and 11 show the current near the first two antiresonances. Cur-
rent profiles on the same size TDBA copper antenna are quite
different, but are not shown (on these antennas, as frequency is
raised starting at 10 GHz, the current magnitude transitions from
being approximately triangular to becoming strongly damped,
without exhibiting any resonance effects).

For the mm CN dipole antenna, the current distribution
at GHz is shown in Fig. 12. In accordance with the
preceding discussion, it can be seen that the current is strongly
damped at this frequency and does not show resonance effects.

Finally, the effect of relaxation frequency on the current dis-
tribution is shown in Fig. 13 for the m dipole at

GHz (i.e., near its first resonance when ps).
Although in the range of 3–0.3 ps is typical of carbon nan-
otubes, smaller are also shown for illustrative purposes.

It can be seen that relaxation phenomena are very important
at the frequencies of interest here (gigahertz to terahertz range).
Although above approximately GHz (when ps)
the carbon nanotube dipole shows relatively sharp resonance
behavior, ohmic losses can nevertheless be quite high due to

Fig. 12. Current distribution on a carbon nanotube antenna, m = 40 (a =
2:712 nm), L = 1 mm, F = 10 GHz.

Fig. 13. Normalized magnitude of the current on an L = 10 �m dipole at
different relaxation times, showing the influence of damping.

TABLE II
INPUT IMPEDANCE AND EFFICIENCY FOR A CARBON NANOTUBE HAVING

L = 10�m AND a = 2:712 nm AT VARIOUS FREQUENCIES

the extremely small radius of the tube. This is somewhat un-
avoidable for dipoles having nanometer radius values, and this
aspect will generally impact antennas for communicating with
nanocircuits. This topic will be considered in more detail else-
where, although some results for the efficiency of a carbon nan-
otube having nm at various frequencies are given
in Table II. The efficiency is on the order of 10 to 10 at
most frequencies. Although not included in the table, for the

m dipole, the efficiency was slightly better, although
still on the order of 10 . For shorter dipoles, was
found at terahertz frequencies, although this matter warrants fur-
ther study. However, despite these extremely low values of effi-
ciency, many of the currently envisioned nanoelectronic devices
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are sensitive to the movement of a single electron, or of a few
electrons (the so-called “single electron” devices), and these low
efficiencies may nevertheless be adequate for electromagnetic
interaction with nanocircuits.

Although not shown, the radiation pattern for all carbon nan-
otube antennas considered here is essentially that of a very short
dipole (i.e., ). This is true even when the current
has many oscillations (which, in the case of a perfectly con-
ducting dipole, would lead to a more complicated, usually multi-
lobed far-field pattern). This can be understood physically since,
despite the influence of the velocity reduction along the antenna,
the antenna is still very short compared to the free-space wave-
length. Radiation into space essentially occurs from an electri-
cally small region around the origin, and, hence, the pattern
is that of a small dipole. Mathematically, this can easily be
shown since the field is calculated from an integration of the
current over the dipole length 2 , and involves the free-space
wavenumber . Since is very small (for the numerical so-
lution, corresponding factors involving and arise), the

pattern emerges. Thus, the directivity of the carbon nan-
otube antennas considered here is approximately , al-
though the gain will be small due to the small value of effi-
ciency .

It should be noted that, at this point, it is not clear what types
of devices, or transmission lines, may be used to connect to a
carbon nanotube antenna, although a natural choice would be a
carbon nanotube transmission line feeding some sort of nano-
electronic circuit. For example, in [29], small antennas (having
lengths on the order of 50 m) are proposed for receiving ter-
ahertz radiation. Received power would be rectified to provide
dc power to microscopic or nanoscopic circuits (including un-
tethered microscopic/nanoscopic robots). In [12], nanoantennas
are suggested to solve the nanointerconnect problem—that is,
how to connect the “outside world” to a nanoscopic system. It
seems clear that antennas on the order of micrometers, give or
take a few orders of magnitude, will play an increasing impor-
tant role in research and future applications. As such, this paper
represents a very preliminary investigation into the fundamental
radiation properties of dipole antennas constructed from carbon
nanotubes.

IV. CONCLUSION

Fundamental properties of dipole transmitting antennas
formed by carbon nanotubes have been investigated via a
Hallén’s-type integral equation. The equation is based on
a semiclassical conductivity, equivalent to a more rigorous
quantum mechanical conductivity at the frequencies of in-
terest here. Properties such as the input impedance, current
distribution, and radiation pattern have been discussed, and
comparisons have been made to a copper antenna having the
same dimensions. It is found that, due to properties of the
carbon nanotube conductivity function, and its relationship to
plasmon effects, some properties of carbon nanotube antennas
are quite different from the case of an infinitely thin copper an-
tenna of the same size and shape. Important conclusions of this
paper are that carbon nanotube antennas are found to exhibit
plasmon resonances above a sufficient frequency, have high

input impedances (which is probably beneficial for connecting
to nanoelectronic circuits), and exhibit very low efficiencies.
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