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Abstract. In several cases, the DNA sequences of an organism are available in 
different stages of its evolution and it is desirable to reconstruct the DNA se-
quence in a previous evolution stage for which the exact sequence is not known. 
A CAD tool for backtracking the DNA sequence evolution based on Cellular 
Automata (CA) and Genetic Algorithms (GAs) was developed. Furthermore, 
the proposed system is able of automatic production of synthesizable VHDL 
code corresponding to the CA model. More specifically, DNA is modeled as a 
one-dimensional CA with four states per cell, i.e. the four DNA bases A, C, T 
and G. Linear evolution rules, represented by square matrices, are considered. 
The evolution rule can be determined using the global state of the DNA se-
quence in various evolution steps. This determination is accomplished using 
GAs. Moreover, because of the final produced CA’s binary states and its local 
rule simplicity, the hardware implementation of the proposed model is straight-
forward. Finally, the FPGA processor that executes the CA model was fully de-
signed, placed and routed. 

1   Introduction 

Bioinformatics research has proven to be very successful. Thanks to the development 
of advanced biochemical and biophysical instrumentation methods, we are able to 
collect valuable information about genome and proteome sequences, and structures of 
biological macromolecules [1]. The collected data, however, are often noisy and am-
biguous, and thus the need for better techniques to solve complex problems connected 
with proper interpretation and plausible reconstruction (in terms of models) of the 
obtained biochemical information. It requires more accurate and faster database and 
data processing technologies, and better computational intelligence algorithms. Bio-
chemical and biophysical laboratories collect data only about constituent elements 
that must be combined, analysed, and processed in order to obtain valid bioinformat-
ics models [2]. Fortunately, several of the existing computational intelligence tech-
niques can be adopted for solving bioinformatics problems, and new methods are 
being developed almost daily. In general, we can use computational intelligence 
methods providing that they are wisely combined with bioinformatics, as illustrated 
by the authors in [2]. 
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Following the aforementioned outline, we figured out that DNA can be modelled 
as a one-dimensional Cellular Automaton (CA) [3]. In this model the phosphate chain 
corresponds to the CA lattice and the deoxyribose sugars to the CA cells. At each 
sugar molecule one of the four bases A (Adenine), C (Cytosine), T (Thymine) and G 
(Guanine) may bind. These four bases correspond to the four possible states of the CA 
cell. CAs appeared to be a promising model for DNA [3], because the DNA structure, 
function and evolution can be simulated using several mathematical tools (such as 
linear algebra and operators), introduced through the use of CAs. Following that line 
we developed a simulator, named CAs for DNA, for the study of DNA sequences with 
the help of CAs. CAs for DNA is an interactive simulation tool that includes a Graphi-
cal User Interface [GUI] which has been implemented using Matlab facilities. More-
over, in elementary CAs, the CA evolution rule can be extracted from a given number 
of CA evolution patterns. This method can also be applied to the CAs that model 
DNA. As a result, the developed simulator is able for modelling DNA evolution by 
extracting CA rules using Genetic Algorithms (GAs) [4]. The evolution rule can be 
determined by providing the global state of the DNA sequence in various evolution 
steps. Then, since the rule of evolution and the sequences of DNA are known for 
several evolution steps, it may be possible to determine the DNA sequence in previ-
ous evolution steps. 

Finally, in order to speed up the application of CA to the study of DNA sequences 
the proposed tool is capable of producing Very High Speed Integrated Circuit 
(VHSIC) Hardware Description Language (VHDL) synthesizable code for the hard-
ware implementation of the CA rules that model DNA. More specifically, CAs for 
DNA using a translation algorithm, that checks the CA parameters values previously 
determined by the user with the help of GA, automatically produces the synthesizable 
VHDL code that describes the CA algorithm. It should be mentioned that CAs are one 
of the computational structures best suited for hardware realization. The CA architec-
ture offers a number of advantages and beneficial features such as simplicity, regular-
ity, ease of mask generation, silicon-area utilization, and locality of interconnections. 
As a result, the automatically produced VHDL code can be fed into a commercial 
Field Programmable Gate Arrays (FPGA) CAD system, and the layout of the dedi-
cated hardware that executes the CA algorithm can be designed to any FPGA Pro-
grammer. In this paper, the design processing of the finally produced VHDL code, i.e. 
analysis, elaboration and simulation, has been checked out with the help of the Quar-
tus II, v. 7.2® design software of the ALTERA® Corporation. Test benches were 
automatically constructed by our system, for the simulation needs of the VHDL code, 
and the Simulator of Quartus® was used to simulate the operation of the dedicated 
processor described by the VHDL code obtained. Consequently, the implementation 
of the resulting VHDL code results in a FPGA, which is able to perform some real 
experiments, and to serve as a powerful “virtual lab” dedicated to the modelling of the 
backtracking of DNA sequences evolution. 

2   Modeling DNA in Terms of Cellular Automata 

In this session we suggest strategies for modelling DNA in terms of CAs by including 
a simultaneous translation of DNA properties into CAs. In the presented model the 
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phosphate chain corresponds to the CA lattice and the deoxyribose sugars to the CA 
cells. At each sugar molecule one of the four bases A, C, T and G may bind. These 
four bases correspond to the four possible states of the CA cell. In non-sexual repro-
duction, the DNA molecule is passed from an individual to its offspring, whereas in 
sexual reproduction, the DNA of the offspring consists of parts of the parental DNA. 
We define as an evolution event a change in state, which may occur in one or more 
CA cells. Therefore, mutation is an evolution event and it corresponds to cell state 
changes. The time step in CA evolution is the time interval between two CA cell 
changes and, therefore, the time flow is not uniform. A result of modeling DNA as a 
CA is that the DNA strand and the individuals passing it from one generation to the 
other may exist in different time scales and, therefore, the DNA evolution is time-like 
separated from the life of the individuals that carry it. 

The main question that rises when one tries to model DNA is whether mutations 
are completely random or not. If mutations are completely random, then CAs, which 
are deterministic computational models, can not model DNA evolution. In this case 
probabilistic methods, such as Markov chains may be appropriate. Although the an-
swer to this question is not known, there are some indications that mutations and, 
therefore, DNA evolution may not be completely random [5, 6]. 

We will proceed to the model construction by assuming that mutations, i.e. CA cell 
changes are not completely random, but depend on the states of some of the cells that 
are located near by. Neighbor-dependent mutation has been studied using Markov 
chains and revealed biases in mutation rates that depend on the neighboring bases. 
Suppose that a state change at the ith cell occurs, and a time step is taken. In the 
model presented here it is supposed that the state of this cell has changed as a result of 
the effect of the states of its neighbors. The new state of the ith cell at this time step 
(which is generally the t+1 step) is given by: 
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where operator, 
∧

M , may be a mathematical function, a logic function, a matrix etc. In 

the case of linear evolution rules the operator 
∧

M  of equation (1) is a matrix, M [3]. 
While, a vast number of evolution rules can be applied to the CA that models DNA, 
the study of linear rules reveals the dynamics of the CA evolution and provides a very 
good insight to the structures created by evolution. The use of linear rules is further 
justified by the fact that a linear algebra has already been successfully used to the 
analysis of mutation rates. Most of the studies on mathematical models of DNA are 
limited to nearest neighbor interaction. Because of that, we have chosen to use in our 
simulations an evolution rule that incorporates only nearest neighbor interaction. As a 
result, all the elements in a matrix row of M are zero, except the three neighboring 
elements that are equal to one. In equation (1) cell states are one of the four bases A, 
C, T and G, which are represented by numbers of the quaternary number system, 
which contains only four numbers, i.e. 0, 1, 2 and 3. We represent the bases with 
numbers as follows: A →  0, C →  1, T →  2, and G →  3. In elementary CAs, 
given an evolution pattern the evolution rule that generated it can be determined. It is 
very probable for such a method to exist for CAs that model DNA evolution. In this 
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case if the evolution of the DNA sequence at various time steps is given, it will be 
possible to determine the evolution rule (or rules) that generated this evolution. After 
that, since the evolution rule and the DNA sequence at present time are known, it may 
be possible to predict the next evolution event (or events) and, therefore, the DNA 
sequence at the next time step. 

3   CAs for DNA CAD Tool 

CAs for DNA is an automated simulation and hardware implementation tool for ex-
tracting with high success the CA evolution rule, or rules that model the evolution of 
DNA sequence with the usage of GAs. A vast number of evolution rules can be ap-
plied to the presented CA that models DNA evolution. The CA rule space comprises 
all the possible local rules that may be applied to the CA cells. For CAs with only two 

states per cell, the number of all possible rules is given by 22
n

, where n is the number 
of cells in the neighbourhood. In one-dimensional CAs with only two states per cell, 
the neighbourhood of which comprises the left, the right and the same cell, the num-

ber of all possible rules is 28, while in the four-state CA these rules are extended to 44
3

 
or 464. The whole rule space of such CAs must be searched in order to find the possi-
ble CA evolution rules that model the DNA sequence evolution. In this work GAs are 
used to search the CA rule space. A possible evolution scheme of the proposed CA is 
shown in Fig. 1, where the first row gives all the possible states the cells within the 
neighbourhood could take. The ri’s in the second row are the rule components which 
take values from the discrete set {0, 1, 2, 3}. The last row shows the coefficients as-
sociated with the corresponding components. The rule R can be defined as R=(r0, r1, 

r2, r3, …, r63). The numerical label D assigned to R is given by: ∑ −

=
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which is simply the sum of the coefficients associated with all nonzero components. 

Possible
States

Rule
Components

Coefficients47 46 45 44 43 42 41 40...463

r7 r6 r5 r4 r3 r2 r1 r0
...r63

013 012 011 010 003 002 001 000...333

 

Fig. 1. Evolution rules of the four state classical CA model of DNA evolution 

After the assignment of the origin DNA sequence by the user of the simulation 
tool, an initial population P that contains n possible solutions, meaning n CA evolu-
tion rules is constructed randomly. The value of n is user-defined and should be a 
compromise between accuracy and computer time and memory. For each possible 
solution i of population P with n individuals an error function is given by: 
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where y(i, j) is the measured state at data point j for chromosome i and ),( jiy
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 is the 

predicted state, in correspondence. Each chromosome in the current population is 
ranked with respect to Mer of equation (2). The chromosome with the least Mer occu-
pies the first position, the chromosome with the second least Mer occupies the second 
position and so on. Chromosomes with the same error share the same rank. After the 
final ranking we calculate the fitness function for each chromosome. The fitness func-
tion of the ith chromosome is defined as: 
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The pseudocode of the GA algorithm for the selection of CA evolution rules can be 
summarized as follows: 

Table 1. Pseudocode of the GA algorithm for the selection of CA evolution rules 

Pseudocode Comments 
1. Start  
2. Set the current generation number i =1. /* Take a time step */ 
3. Set the GA algorithm parameters. /* User defined GA parame-

ters */ 
4. Generate the population set P with n individuals.  
5. Compute Mer (modulus of error function) for each individ-
ual in P. 

/* Use Equation 2 */ 

6. Rank the individual in R.  
7. Calculate the fitness function. /* Use Equation 3 */ 
8. Apply the parent selection technique to P.  
9. Employ crossover and mutation to P to produce the corre-
sponding offspring set P’. 

 

10. Calculate the corresponding fitness function for the chro-
mosomes in the offspring set P’. Select the n fittest individual 
from both the population set P and the corresponding set P’, by 
comparing the fitness value. Reset P using the corresponding 
newly selected n individuals and nullify the offspring set P’. 

 

11. Set the generation number i=i+1.  
12. If generation number less than a prespecified number of 
generations G 
Go to 7 and repeat until has been reached 
Else finish. 

/* G is the user defined 
number of generations */ 
 
/* Final state */ 

13. Stop  

 
A paradigm of the functional operation of CAs for DNA is presented in Fig. 2. 

These simulations show that the evolution data visualization is straightforward, and 
the evolution patterns can be studied and interpreted [7]. 
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4   Automatic FPGA Implementation 

To implement the aforementioned CA model in hardware, synchronous very large 
scale integrated (VLSI) circuits should be used. These implementations could lead to 
dedicated FPGA processors that can be designed using commercially available FPGA 
CAD systems. Furthermore, the hardware implementation of the algorithms could be 
achieved after the manual translation of their parts into a synthesizable subset of a 
hardware description language (HDL). 

 

Fig. 2. The final screen of the CAs for DNA after the execution of the GA algorithm. (The 
graphical user interface of the simulator) (A: white, C: dark gray, T: light gray and G: black.)  

The presented system CAs for DNA is able of automatic translation of the CA algo-
rithm’s code into synthesizable VHDL code based on the user’s choice of simulation 
parameters. There are many reasons for implementing an algorithm, which simulates 
a system, using a hardware description language, and especially VHDL, instead of 
using standard VLSI design CAD tools. Mainly, because the VHDL models present 
the most reliable design process with the minimum cost and time and, furthermore, 
because they are capable of avoiding design errors. Furthermore, because the execu-
tion time in software depends on the complexity of the rule, while the execution time 
(throughput) in hardware is almost independent of the rule complexity. In our CAD 
tool, the primary parameters of the translation algorithm are used to produce the 
VHDL code. In the beginning, the CA algorithm is read by the translation algorithm. 
After the CA algorithm is read, the translation algorithm searches the CA code to 
detect the CA rule found by the GA algorithm in order to produce the VHDL code for 
the main component, i.e. the CA cell. This will be the behavioral part of the final 
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VHDL code, containing process and signal assignment statements. Subsequently, the 
translation algorithm searches the CA code to detect the lattice size, the boundary and 
initials CA conditions, in order to construct the structural part of the final VHDL 
code. The structural part implements the final module as a composition of subsys-
tems, like the aforementioned main component (schematic Fig. 3). The final VHDL 
code produced by translation algorithm, including both the behavioral and structural 
parts, addresses all the basic VHDL concepts (i.e. interfaces, behavior, structure, test 
benches) included in the IEEE Standard 1076-2002. No previous knowledge of 
VHDL is required, since the VHDL code is directly produced from the high-level 
programming language code through the translation algorithm. However, there is 
always a possibility of functional simulation of the VHDL code with the use of the 
appropriate automatically generated test benches. The simulation results of the VHDL 
code are guaranteed to be found in complete agreement with the compilation results 
of the CA algorithm, produced during the phase of estimating the CAs algorithm 
performance and of verifying its functional correctness. 
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Fig. 3. Three (3) cells neighbourhood of the proposed CA architecture and its corresponding 
basic structural element 

The automatically produced synthesizable VHDL CA code is translated into a 
hardware schematic of the defined architecture using predetermined timing con-
straints in Quartus II, v. 7.2® design software. The next step includes translation and 
mapping. In this phase the hardware schematic is mapped to the specific hardware of 
the FPGA and the communication channels between the generated components are 
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specified. The final phase is the generation of a configuration file. Finally, this trans-
lates the mapped design into a stream of bits that control the switchboxes, LUTs and 
other components of the FPGA. It should be mentioned that for hardware implemen-
tation purposes, the performance and the size of reconfigurable hardware such as 
FPGAs have been drastically improved in the last several years. With the latest FPGA 
chips, more than one hundred grids can be computed in one clock cycle (less than 50 
ns), and the reconfigurability of FPGAs makes it possible to compute any kind of CA 
on the same chip. 

Design of the proposed processor results in an ALTERA Stratix EP1S10F484C5 
FPGA device, which indicates a maximum clock rate around 240MHz and consists of 
100 CA cells. Initial data is loaded in a semi-parallel way and the automatic response 
of the processor provides the CA evolution of the DNA sequence under test. More 
specifically, inputs to the dedicated processor are the lines through which the initial 
conditions are transferred to the CA, the clock, the reset and load control signals, the 
boundary condition signals, as well as the power and ground connections. Further-
more, for comparison purposes we have evaluated the speed of the traditional  
software Matlab CA code implementation running on a typical Pentium IV 3GHz 
Windows XP computer system and the results justify the aforementioned integration 
of the FPGA processor. More specifically, a speed-up of 6 times for a medium length 
CA and a speed up of 23 times for an extra long length CA was measured concluding 
that the implementation of CA is significantly faster in FPGA hardware than in opti-
mized software, thus enabling real parallel processing of data using custom digital 
structures. As a result, the proposed CA is running faster when implemented to a 
dedicated ASIC processor compared to a general purpose computer. 

5   Conclusions 

In this paper, CAs for DNA, an automated simulation and hardware implementation 
tool for DNA sequence evolution by extracting CA rules with the usage of proper 
GAs was developed. CAs for DNA was based on a CA DNA evolution model. Based 
on this model, a CAD tool of DNA evolution was developed, a GA methodology has 
been presented to determine the evolution rules generating given evolution patterns 
and a fast FPGA processor that executes the CA model was fully automatically de-
signed, placed and routed. Speed is extremely significant in this application domain 
and it is really important to observe that hardware performance becomes available out 
of a general purpose FPGA card. As future work, the FPGA processor as well as the 
GA algorithm for the selection of the CA evolution rule, can be calibrated with real 
data (DNA sequences) of different microorganisms in various evolution steps target-
ing to the production of suitable drugs. Moreover, Register Transfer Level (RTL) 
design could be used by the proposed tool for the CA implementation giving better 
results. Furthermore, this work will facilitate the development of CA models of the 
self-organizing properties of DNA. As CAs models are developed, they are expected 
to contribute to the interpretation of DNA sequences, and possibly indicate new direc-
tions in the field of artificial intelligence for bioinformatics.  
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