
Physica D 237 (2008) 1165–1172
www.elsevier.com/locate/physd
Towards molecular computers that operate in a biological environment

Maya Kahana, Binyamin Gila, Rivka Adara, Ehud Shapiroa,b,∗

a Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
b Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel

Available online 8 February 2008

Abstract

Even though electronic computers are the only computer species we are accustomed to, the mathematical notion of a programmable computer
has nothing to do with electronics. In fact, Alan Turing’s notional computer [L.M. Turing, On computable numbers, with an application to the
entcheidungsproblem, Proc. Lond. Math. Soc. 42 (1936) 230–265], which marked in 1936 the birth of modern computer science and still stands
at its heart, has greater similarity to natural biomolecular machines such as the ribosome and polymerases than to electronic computers. This
similarity led to the investigation of DNA-based computers [C.H. Bennett, The thermodynamics of computation — Review, Int. J. Theoret. Phys.
21 (1982) 905–940; A.M. Adleman, Molecular computation of solutions to combinatorial problems, Science 266 (1994) 1021–1024]. Although
parallelism, sequence specific hybridization and storage capacity, inherent to DNA and RNA molecules, can be exploited in molecular computers
to solve complex mathematical problems [Q. Ouyang, et al., DNA solution of the maximal clique problem, Science 278 (1997) 446–449; R.J.
Lipton, DNA solution of hard computational problems, Science 268 (1995) 542–545; R.S. Braich, et al., Solution of a 20-variable 3-SAT problem
on a DNA computer, Science 296 (2002) 499–502; Liu Q., et al., DNA computing on surfaces, Nature 403 (2000) 175–179; D. Faulhammer, et al.,
Molecular computation: RNA solutions to chess problems, Proc. Natl. Acad. Sci. USA 97 (2000) 1385–1389; C. Mao, et al., Logical computation
using algorithmic self-assembly of DNA triple-crossover molecules, Nature 407 (2000) 493–496; A.J. Ruben, et al., The past, present and future of
molecular computing, Nat. Rev. Mol. Cell. Biol. 1 (2000) 69–72], we believe that the more significant potential of molecular computers lies in their
ability to interact directly with a biochemical environment such as the bloodstream and living cells. From this perspective, even simple molecular
computations may have important consequences when performed in a proper context. We envision that molecular computers that operate in a
biological environment can be the basis of “smart drugs”, which are potent drugs that activate only if certain environmental conditions hold. These
conditions could include abnormalities in the molecular composition of the biological environment that are indicative of a particular disease. Here
we review the research direction that set this vision and attempts to realize it.
c© 2008 Elsevier B.V. All rights reserved.

Keywords: Turing machine; Finite automaton; Molecular computer; DNA computing; Smart drug
1. From Turing machines to molecular computers

In 1936 Alan Turing conceived of the Turing machine [1], a
notional rule-based device that moves over a potentially lim-
itless tape with symbols written on it and can read, write
and rewrite these symbols. The Turing machine marks the
beginning of modern computer science and still stands at
its heart, as a provably universal model of computation. A
decade later, John von Neumann described the architecture of
the first practical programmable computer [11]. It made use
∗ Corresponding author at: Department of Computer Science and Applied
Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel.

E-mail address: ehud.shapiro@weizmann.ac.il (E. Shapiro).

0167-2789/$ - see front matter c© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.physd.2008.01.027
of electrical implementation of Boolean logic circuits by re-
alizing “0” and “1” as the absence or presence of electri-
cal signals. It was only decades later that scientists began
to realize [2] that natural biomolecular processes within liv-
ing cells, such as DNA duplication, transcription and transla-
tion, realize Turing machine-like information processing op-
erations using DNA, RNA and enzymes. Similarly to the
Turing machine, in these processes an input string is pro-
cessed in a stepwise manner adding symbols according to fixed
rules. This knowledge encouraged researchers in the field of
biomolecular computing [2,3] to use biomolecules (DNA, RNA
and enzymes) to construct programmable molecular comput-
ers. DNA is composed of four building blocks A, C, T and
G termed nucleotides or bases. They are covalently strung

http://www.elsevier.com/locate/physd
mailto:ehud.shapiro@weizmann.ac.il
http://dx.doi.org/10.1016/j.physd.2008.01.027


1166 M. Kahan et al. / Physica D 237 (2008) 1165–1172
together to form a directional strand, which can specifically
bind a complementary strand (C to G and A to T) in an
anti-parallel manner, named hybridization, forming double-
stranded DNA (dsDNA; one strand is called forward or sense
strand and the other is called reverse or anti-sense strand). In na-
ture, DNA is located in the cell’s nucleus; it is double-stranded
DNA and carries the genetic information applied during devel-
opment and function of almost all known living organisms.

Molecular computers [3–10,12–17] typically use synthetic
DNA that is chemically synthesized as a single-stranded DNA
(ssDNA). To manipulate DNA molecules, many molecular
computers operate by using a diversity of enzymes. Some
enzymes, called nucleases, digest dsDNA molecules by
cleaving the covalent bonds between two adjacent nucleotides
while other enzymes (ligases) can ligate two dsDNA molecules
by forming covalent bonds between them. Some nucleases
cleave DNA only in specific locations in a sequence-dependant
manner, while others can cleave any DNA molecule at any
location. In addition, cleavage of dsDNA can split it into two
double-stranded DNA molecules each with a short sequence
overhang named ‘sticky-ends’. Those ‘sticky-ends’ can bind, or
stick to complementary sequences. Other enzymes will cleave
the dsDNA in a blunt manner, meaning no single-stranded
overhangs will be formed upon digest of one dsDNA into two
separate dsDNA molecules.

The field of DNA computing began by attempts to exploit
the parallelism, the sequence specificity of hybridization and
the storage capacity of DNA molecules to solve complex
computational problems.

Another area related to DNA computing is ‘Synthetic
biology’, which utilizes artificial genetic circuits that have a
potential to become important tools for controlling cellular
behavior and studying biomolecular systems [20]. Relatively
simple artificial networks, including feedback systems [21–
23], toggle switches [24,25], oscillators [25–28] and cell–cell
communication systems [29], were constructed using predictive
models that uncovered network behavior and helped guiding
experimental design [30]. Artificial genetic circuits could act, at
the genetic level, as tiny “programs” though control or monitor
in specific manner cellular behavior, providing various potential
applications in biotechnology, medicine, environmental science
and other areas [20,31].

2. Molecular computers solve computational problems

In 1994, Adleman and co-workers realized the first concrete
molecular computer [3] that can solve the Hamiltonian path
problem that is related to the famous traveling salesman
problem. It is a member of the family of the so-called NP-
Complete problems, which have so far defied polynomial-time
solutions on conventional computers. He discovered a way to
harness the power of DNA to solve this problem, finding the
shortest path from start to end by going only once through all
the points (cities). In Adleman’s method each DNA molecule
represents a directed edge (legal path between two points), and
employs a chemical reaction that uses these DNA molecules
as input to generate a combinatorial library of DNA molecules
that represent all possible legal paths from any two points.
From this combinatorial library a DNA molecule representing
the correct solution was obtained by a series of biochemical
steps employing standard molecular biology techniques. Since
then other NP-complete problems have been solved by similar
methods [4–10]. In 2003, Stojanovic et al., have successfully
implemented a DNA-based computer that can play tic-tac-toe
against a human player and never lose [12].

Some researchers in the field believe that the parallelism,
low energy consumption and information density that
characterize molecular computers could be used to attack
computational problems like NP-complete problems, which
resisted conventional methods. However, difficulties in scaling
up DNA-based solutions for computational problems gave rise
to the opposite opinion that DNA computing would never
be able to compete directly with silicon-based technology.
Today the general notion is that the true potential of molecular
computers lies in their ability to directly interact with the
biochemical environment. This ability suggests the vision of
an autonomous molecular computer that can interact with
endogenous biological molecules, check for disease indicators,
perform diagnosis based on these indicators according to
programmed medical knowledge and administer in vivo, upon
positive diagnosis, the requisite drug [17–19].

3. Molecular computers that interact with a biological
environment

Interaction between a computer and a biological environ-
ment may be possible if the computer uses components similar
to those naturally existing in the cell, e.g. DNA, RNA, and en-
zymes. Molecular computers use these molecules as their soft-
ware, hardware, input and output. Molecular computers can op-
erate in vitro, in a laboratory vessel (tube) or other controlled
experimental environment or in vivo, occurring within the com-
plex environment of a living organism or natural setting. We
review several examples of such computing devices.

4. A programmable autonomous finite automaton that
solves simple computational problems in vitro

A finite automaton is a simplified Turing machine that
can only read, not write, on its input and can move only
in one direction. The input is a sequence of symbols in
which their interpretation depends on the application. The
machine can be in one of a finite number of internal states;
of which one is designated an initial state and some are
designated accepting states. Its software consists of transition
rules, each specifying a next state based on the current
state and the current symbol. It is initially positioned on the
leftmost input symbol in the initial state. In each transition
the machine moves one symbol to the right, changing its
internal state according to one of the applicable transition
rules. Alternatively, it may ‘suspend’ without completing the
computation if no transition rule applies. A computation
terminates on processing the last input symbol. An automaton is
said to accept an input if a computation on this input terminates



M. Kahan et al. / Physica D 237 (2008) 1165–1172 1167
Fig. 1. An example of a two state finite automaton accepting inputs with even number of b’s. (A) Diagram representing an automaton with two states, S0 and S1,
and input alphabet a and b. Incoming straight arrow represents the initial state. Labeled arrows represent transition rules. The double circle represents the accepting
state (S0). The sticky-end of a transition molecule detects the current state and symbol by hybridizing with the sticky-end of the input, and determines the next state
by directing the attached enzyme FokI to cleave the input molecule in a specific position with the next symbol. The transition molecule consists of a sticky-end that
detects a 〈state, symbol〉 combination (blue), a FokI recognition site (dark red) and spacer (pink) that determines the location of FokI’s cleavage position inside the
next symbol. This position, in turn, will define the next state. Transitions with one base pair (bp) spacers transfer from S1 to S0, 3-bp maintain the current state, and
5-bp transfer S0 to S1. (B) Example of input molecule that encodes the string ab. (C) The encoding for the input symbols a, b, and terminator (sense strands) and
the sequences of the 〈state, symbol〉 sticky-ends. (D) Structure of the output-detection molecules. (E) Computation cascade of processing the input molecule ab.
in an accepting final state [13]. In 1995, Rothemund described,
without implementing, a DNA-based Turing machine [14]. In
2003 Benenson et al. [15], have designed and implemented
a two states, two symbols finite automaton that uses dsDNA
molecules as input and transitions and a DNA-manipulating
enzyme, the bacterial nuclease FokI as hardware [32]. An
example of a two state finite automaton that accepts only input
strings with a’s and b’s that have an even number of b’s is shown
in Fig. 1.

The automaton’s input string is realized by a dsDNA
molecule that encodes the input symbols and a terminator that
signals the end of the string. Fig. 1(B) represents an example
of input molecule that encodes the string ab. Each symbol is
realized by a unique sequence of 6 base pairs (bp) consisting
of two overlapping 4-bp frames: the leftmost frame encodes
the symbol combined with the state S0 and rightmost frame
encodes the symbol combined with the state S1 (Fig. 1(C)).
Upon cleavage, the sense strand of one of the frames will
be exposed; forming a 4-nucleotides sticky-end represents the
state and symbol. Transition rules are realized by a short
dsDNA molecule. Each transition molecule is composed of
four regions: (1) inert dsDNA tail; (2) FokI recognition/binding
site; (3) spacer region of zero to five base pairs; (4) four-
nucleotides sticky-end, comprised of the anti-sense strand. The
system also contains output-detecting molecules of different
lengths (Fig. 1(D)), each of which can interact selectively with a
different output molecule to form the output-reporting molecule
that indicates the final state and can be readily detected by gel
electrophoresis.

The computation is initiated by input cleavage by FokI,
revealing four nucleotides sticky-end on the sense strand. This
sticky-end represents the initial state of the automaton (S0) and
the first inputs symbol. The computation proceeds via a cascade
of transition cycles. In each cycle, a transition molecule that
possesses a complementary sticky-end to the input molecule
will hybridize to it, followed by FokI cleavage inside the next
symbol resulting in exposure of a new four-nucleotide sticky-
end. The length of the transition spacer determines the cleavage
site of FokI inside the next input symbol, hence exposing
one of the two frames’ sense strand encoding the next state



1168 M. Kahan et al. / Physica D 237 (2008) 1165–1172
and symbol. The computation proceeds until no transition
molecule matches the exposed sticky-end of the input or until
the terminator symbol is cleaved, forming an output molecule
that encodes the final state. In Fig. 1(E), for example, the ab
input is not accepted, since the final state is S1 which is a non-
accepting state.

A micro-liter of computation mixture holds close to
three trillion automata that can operate in parallel and
independently. A computation over a 4-symbol-long input, at
room temperature, rendered output-reporting molecules with
50% yield, in approximately 1 h. As for energy consumption, in
each transition two ATP molecules were consumed, releasing
1.5 × 10−19 J. Multiplying this number by the transition rate
(109 transitions per second) provides an energy consumption
rate of 10−10 W, with accuracy of 99.8% per transition.

The automaton was shown to operate with several software
programs on various inputs. In this design [15], unlike an
earlier design [13], the transition molecules hybridize to
the input molecule without ligation. The cleavage of the
input molecule drives the computation forward by increasing
entropy and releasing heat and, since software molecules are
recycled, a fixed amount of software and hardware molecules
can, in principle, process any input molecule of any length
without external energy supply, except perhaps for garbage
collection. Scaling up this automaton by the number of symbols
and/or states is limited to the number of non-palindromic
sticky-ends that can be designed and the length of the
transition’s spacer, respectively. Sticky-end limitations allow
several tens of symbols. The characteristics of FokI enable
a finite machine with small number of states. Despite the
performance advantages of this automaton, bacterial enzyme
may not work well in cells of higher organisms, hindering its
practical application.

The discovery of new enzymes able to digest dsDNA
molecules resulting in longer sticky-ends and/or able to cut
dsDNA far deep in the dsDNA molecule or engineering of
the existing enzymes might allow the construction of automata
with increased complexity, as well as enable better operation in
eukaryotic cells. An example to a slightly more complex finite
automaton was shown by Keinan and co-workers. They have
shown a 3-symbol-3-state finite automaton using the BbvI and
T4 DNA Ligase enzymes as hardware [33].

The fact that computations do not consume software
molecules allowed Adar et al. to extend the range of
applications of the molecular automaton from deterministic to
stochastic computations [16]. A stochastic automaton ascribes
each pair of competing transition rules (e.g. S0

a
→ S0 and

S0
a

→ S1) two probabilities the sum of which is 1. The
output of a stochastic computation is the probability to obtain
each final state, computed by summing the probabilities of
all possible computation paths that result in the same final
state. Stochastic automata are useful for the analysis of
sequences or processes that are not deterministic. A stochastic
molecular automaton realizes the intended probability of each
transition by the relative concentration of the software molecule
encoding that transition. The results of Adar et al. show
robustness of programmed transition probabilities to input
Fig. 2. Regulation of the automaton’s transitions by an overexpressed mRNA
species. (A) Absence of an overexpressed mRNA (disease indicator is absent)
will result in the original transition conformation in which the positive
transition molecule (Yes→Yes) is inactive and the negative transition molecule
(Yes→No) is active. (B) When the mRNA is overexpressed (disease indicator
is present), the ‘inactivation tag’ which is a short open region in the mRNA
molecule (light blue) displaces the sense strand of the active negative transition
molecule (Yes→No) thus destroying its activity. The ‘activation tag’ of the
mRNA, which is another short open region on the same mRNA molecule (light
green) displaces the sense strand of the inactive positive transition molecule
(Yes→Yes), thus enabling the “waiting oligo”, which is the correct transition
sense strand, to hybridize to the anti-sense strand — resulting in an active
transition. Strand that fades out represents longer, not shown, RNA.

molecule concentrations and to absolute software molecule
concentrations and a good fit between predicted and actual
probabilities of multi-step computations.

5. Diagnostic computation of mRNA, in vitro

Benenson et al. used this stochastic automaton to logically
analyze, in vitro, the levels of messenger RNA (mRNA)
species [17]. mRNA is an RNA molecule that encodes a
chemical “blueprint” for protein production. Expression levels
of specific set of mRNAs can diagnose the presence or absence
of a disease. Benenson et al. implemented successfully, in
vitro, a diagnostic two state finite automaton that uses mRNA
molecules as input, stochastically processes their levels, and
upon positive diagnosis administers an active drug as output.

The automaton consists of three programmable modules: (1)
input module, by which specific mRNA or mutated mRNA



M. Kahan et al. / Physica D 237 (2008) 1165–1172 1169
Fig. 3. Controlled release of the active drug, short single-stranded DNA molecule, upon positive diagnosis. Two types of input molecules that share the same
diagnostic moiety (gray) but differ in their output moiety were exploited. Each of the “output moieties have a stem-loop structure. The stem (light colored) holds
the functional part (dark colored) inactive. Upon positive diagnosis, the diagnostic moiety in both inputs will end with high concentration of Yes state and low
concentration of No state. Transition-like molecules will cleave the stems of the input molecules that contain the drug, only if their diagnostic moiety cleavage
ended in a Yes state. Different transition-like molecules will cleave the stems of the input molecules that contain the drug-suppressor, only if their diagnostic moiety
cleavage ended in a No state. Drug-suppressor molecules would then suppress drug molecules in an equimolar manner. This will result in access of free drug
molecules that will then be active. Changing the ratio between these two inputs will determine the diagnostic confidence level above which the drug will be released.
levels regulate the automaton’s transition probabilities; (2)
computational module, which is a stochastic one, and (3) an
output module, capable of controlling the release of an active
drug. As a proof of concept Benenson et al. programmed
the computer to identify and analyze mRNAs of disease-
related genes associated with small-cell lung cancer (SCLC)
and prostate cancer (PC), and to produce a short ssDNA
molecule functioning as anti-cancer drug [34]. The computer’s
operation is governed by a ‘diagnostic rule’ that encodes
medical knowledge in simplified form. The left-hand side of
the diagnostic rule encodes a conjunction of specific mRNA
conditions (under-expression/over-expression/mutation). The
right-hand side of the rule contains the drug to be released if all
the conditions hold. The released drug is ssDNA, which inhibits
the synthesis of an oncogenic protein by binding to its mRNA
(a drug for the specific set of conditions tested) [34]. The
computer’s design allows any sufficiently long RNA molecule
to function as a molecular indicator and any short ssDNA
molecule, up to at least 21 nucleotides, to serve as the output
drug.

The computation begins in the Yes state and checks one
condition at a time. If a condition holds, the automaton remains
in the Yes state; otherwise, the automaton changes its state to
No and remains in that state for the rest of the computation. The
input module adjusts the automaton’s transitions probabilities
by specific mRNA levels or by point mutated mRNAs. The
probability of each transition is regulated by a specific mRNA
expression condition, so that presence of an over-expressed
mRNA increases the probability of a positive transition and
decreases the probability of its competing negative transition,
and vice versa if the mRNA level is normal (Fig. 2).
Alternatively, normal expression of an under-expressed mRNA
decreases the probability of a positive transition and increases
the probability of its competing negative transition, and vice
versa if the indicator is absent. This regulation is achieved
by a displacement process; DNA strand detaches from its
complementary strand to hybridize with the mRNA that offers a
longer and energetically more favorable complementary region.

The stochastic behavior of the automaton is governed by
the confidence in the presence of each indicator, so that the
probability of a positive diagnosis is a result of the probabilities
of the positive transitions for each of the indicators processed.
By changing the ratio between positive and negative transitions
of a particular indicator one can fine-tune the sensitivity of a
diagnosis to the presence of its indicator. Instead of releasing
a drug molecule on positive diagnosis and do nothing on
negative diagnosis, Benenson et al. designed two types of input
molecules (Fig. 3); one, will release drug molecule on a Yes
result and do nothing on a No result and the other will release
drug-suppressor molecule on a No result and do nothing on
a Yes result. The drug-suppressor is ssDNA molecule with a
sequence complementary to the drug molecule. Upon negative
diagnosis, the drug-suppressor molecule will hybridize to the
drug molecule, thus preventing its activity. The ratio between
the released drug and drug-suppressor molecules determines
the final drug concentration. This allows fine control over the
diagnosis confidence threshold beyond which an active drug is
administered.

The operation of this bio-molecular finite automaton in vivo
has yet to be demonstrated.

6. Boolean logic using micro-RNAs as input, in vitro

Winfree and colleagues realized in vitro DNA-based logic
gates and circuits to diagnose levels of micro-RNA (miRNA)
molecules. miRNAs, are short, single-stranded, non-coding
RNAs, 21-23 nucleotides long that negatively regulate gene
expression. A logic gate performs logical operation on one or



1170 M. Kahan et al. / Physica D 237 (2008) 1165–1172
Fig. 4. Boolean logic gates are realized by DNA molecules. Regions that trigger displacement reactions are marked with the same color. (A) AND gate of two
miRNA inputs. It consists of two translators and one AND gate. Each miRNA input will displace a translator’s output strand. Only if both “translator output” strands
will be released, they will displace the gate output strand, increasing the fluorescence intensity. (B) OR gate of two miRNA inputs. It consists of two translators and
one OR gate. Each miRNA input can separately displace a distinct translator, but both translators would produce the same output strand. The final output gate (OR)
could then be displaced by each of the translator outputs. (C) NOT gate was implemented by using a one input AND gate and an additional strand that triggers the
gate (called inverter). The input strand acts as a competitive inhibitor, thus when present it will block the inverter strand and the gate would give a negative result,
and vice versa. Strand that fades out represents longer, not shown, RNA.
more logic inputs and produces a single-logic output. Logic
gates are the building blocks of digital circuits. Combinations of
these logic gates generate circuits designed for a specific task.
Winfree and colleagues implemented a complete set of Boolean
logic functions: AND, OR and NOT (Fig. 4) [35].

The gates function without enzymes. Rather, their operation
is based on strand displacement, where a free strand interferes
with a double-stranded DNA molecule by pairing with one of
its strands, causing its other strand to break loose. This simple
design, although essential when conducting computations in
biomolecular environment, is time consuming in the range
of hours, therefore might exceed the biological relevant
timescale. AND gate was implemented by dsDNA assembled
by three complementary ssDNAs, an output strand and two gate
strands (Fig. 4(A)). Each gate strand contains a recognition
region that is complementary to its input. The strands were
designed to assure output release only upon presence of the
two gates inputs. OR gate was implemented by using two
gates that produce the same output (Fig. 4(B)). NOT gate
was implemented by using an additional strand that triggers
the gate (called inverter), unless the input is present to act
as a competitive inhibitor (Fig. 4(C)). Since NOT gate is
implemented by additional strand that is added with the input,
it is restricted to the first layer of the circuit. Multi-layer circuits
are achieved by using ssDNA both as input and output. Output
strand of each gate serves as an input to a downstream gate or
as an evaluator. The strands are fluorescently labeled to provide
a simple readout in a variable mode imager, e.g., Typhoon
(Amersham). Signal restoration was attained by using amplifier
gates; one input strand releases more than one output strand.
Leaks were reduced by using thresholds, gate that requires
presence of more than one copy of the input.

Winfree and colleagues realized successfully multi-layer
circuits, constructed of five layer circuits consisting of 11 gates
and receiving 6 miRNA molecules as inputs. In the first cascade
these inputs interact with translating molecules releasing
output strands that are used as inputs in the next cascade.
To minimize non-specific interactions between the circuits,
computational optimization means were used. Their system
operated successfully and autonomously in the presence of



M. Kahan et al. / Physica D 237 (2008) 1165–1172 1171
Fig. 5. Molecular system for the evaluation of logic gates NOR, NAND, OR and AND. Two variables gates are shown. Synthetic siRNAs are used as input and
expression levels of the fluorescent protein as output. Evaluators 1 and 2 are formed by inserting siRNAs targets into non-coding regions of one (for NOR and
OR gates) or two (for NAND and AND gates) synthetic mRNAs, encoding for ZsYelllow protein (for Evaluator 1, NOR and NAND gates) or a repressor (LacI or
LacI-KRAB), which suppresses the expression of dsRed protein (for Evaluator 2, OR and AND gates).
mouse brain total RNA extract, an environment that supposedly
simulates the conditions existing in living cells.

The simplicity, modularity and scalability of the system
demonstrated by Winfree and colleagues enable a promising
foundation for future applications.

7. Evaluation of a specified combination of synthetic small
interfering RNAs, in vivo

Benenson and colleagues developed, in living cells, a
molecular system for the evaluation of logic expressions over
the presence (or absence) of siRNA [36]. Synthetic small
interfering RNAs (siRNAs; a class of 20–25 nucleotides long
double-stranded RNA molecules that inhibit mRNA translation
to protein) were used as input and the expression of a
fluorescent protein was used as the output. Target sequences
of siRNAs were consecutively fused into non-coding regions
(UTR) of a synthetic mRNA molecule that encodes for the
output or for its repressing protein which inhibits translation
upon the binding of siRNA to its specific target sequence on the
mRNA. The cells were genetically engineered to possess these
mRNA molecules. Different combinations of siRNA molecules
were inserted into the cells by transfection (a method to transfer
foreign DNA molecules into the cells by making small holes
in their membrane; this can be done either by electrical or
chemical means).

They implemented successfully two types of evaluator
systems (Fig. 5): (1) siRNAs capable of regulating directly
the reporting mRNA that encodes for a fluorescent protein
(ZsYelllow). This evaluator realizes NAND and NOR gates
using siRNAs as input and (2) siRNAs capable of regulating
the repressor (LacI or LacI-KRAB) that regulates the reporter
mRNA that encodes for another fluorescent protein (dsRed).
This second evaluator realizes AND and OR gates using
siRNAs as input. They implemented molecular circuits with up
to five logic variables, confirming the computation with all the
possible combinations of the siRNAs, which simulates all the
variables combinations.

In future, they plan to develop a sensing module using
intracellular mRNAs as input. This will allow implementation
of Boolean expression of mRNA species (such as a conjunctive
normal form, CNF, or a disjunctive normal form, DNF).
The synthetic siRNAs, upon insertion into living cells and
interaction with intracellular mRNA molecules, will serve
as translator molecules. The development of a sensing
module, would allow arbitrary Boolean decision-making, using
endogenous mRNA species as inputs.

8. Future directions of biomolecular computers

Since molecular computers can directly access data encoded
in intracellular bio-molecules, in a way electronic computers
will never do, we believe that this new computer species is of
fundamental importance and will be proved to be valuable for a
wide range of biotechnological and biomedical applications.

Development of a molecular computer that conducts
computations in living cells has to cross few barriers: (1)
delivery of its hardware and software into living cells;



1172 M. Kahan et al. / Physica D 237 (2008) 1165–1172
(2) interference of cellular components, such as ions and
enzymes in computer’s activity; (3) the hardware and software
should not be toxic to the cells; (4) computation should be
sufficiently fast to overcome the computer’s degradation; (5)
the molecular computer should interact with cell molecules
in their physiological concentration. This should be correlated
with the delivery method to ensure that the molecular
computer’s components will be in adequate concentrations and
(6) computation in the cells should preferably take place in
the locality of the intracellular molecules that serve as input.
Overcoming all those barriers will not be simple, but doing so
holds great promise for both analysis applications in biological
systems and therapeutic applications in medicine.

Acknowledgement

We thank K. Katzav for the prompt and excellent preparation
and design of figures.

References

[1] L.M. Turing, On computable numbers, with an application to the
entcheidungsproblem, Proc. Lond. Math. Soc. 42 (1936) 230–265.

[2] C.H. Bennett, The thermodynamics of computation — Review, Int. J.
Theoret. Phys. 21 (1982) 905–940.

[3] A.M. Adleman, Molecular computation of solutions to combinatorial
problems, Science 266 (1994) 1021–1024.

[4] Q. Ouyang, et al., DNA solution of the maximal clique problem, Science
278 (1997) 446–449.

[5] R.J. Lipton, DNA solution of hard computational problems, Science 268
(1995) 542–545.

[6] R.S. Braich, et al., Solution of a 20-variable 3-SAT problem on a DNA
computer, Science 296 (2002) 499–502.

[7] Liu Q., et al., DNA computing on surfaces, Nature 403 (2000) 175–179.
[8] D. Faulhammer, et al., Molecular computation: RNA solutions to chess

problems, Proc. Natl. Acad. Sci. USA 97 (2000) 1385–1389.
[9] C. Mao, et al., Logical computation using algorithmic self-assembly of

DNA triple-crossover molecules, Nature 407 (2000) 493–496.
[10] A.J. Ruben, et al., The past, present and future of molecular computing,

Nat. Rev. Mol. Cell. Biol. 1 (2000) 69–72.
[11] J. Von Neumann, First draft of a report on EDVAC, 1945.
[12] Stojanovic M.N., et al., A deoxyribozyme-based molecular automaton,

Nat Biotechnol. 21 (2003) 1069–1074.
[13] Y. Benenson, et al., Programmable and autonomous computing machine

made of biomolecules, Nature 414 (2001) 430–434.
[14] P. Rothemund, A DNA and restriction enzyme implementation of Turing

machines, DNA based computers II, in: Proc. Second DIMACS Workshop
on DNA-Based Computers, 1995.
[15] Y. Benenson, et al., DNA molecule provides a computing machine with
both data and fuel, Proc. Natl. Acad. Sci. USA 100 (2003) 2191–2196.

[16] R. Adar, et al., Stochastic computing with biomolecular automata, Proc.
Natl. Acad. Sci. USA 101 (2004) 9960–9965.

[17] Y. Benenson, et al., An autonomous molecular computer for logical
control of gene expression, Nature 429 (2004) 423–429.

[18] E. Shapiro, et al., Bringing DNA computers to life, Sci. Amer. 294 (2006)
44–51.

[19] E. Shapiro, A mechanical turing machine: Blueprint for a biomolecular
computer. in: 5th International Meeting on DNA Based Computers, 1999.

[20] X.J. Feng, S. Hooshangi, D. Chen, G. Li, R. Weiss, H. Rabitz, Optimizing
genetic circuits by global sensitivity analysis, Biophys. J. 87 (2004)
2195–2202.

[21] A. Becskei, L. Serrano, Engineering stability in gene networks by
autoregulation, Nature 405 (2000) 590–593.

[22] A. Becskei, B. Seraphin, L. Serrano, Positive feedback in eukaryotic gene
networks: Cell differentiation by graded to binary response conversion,
EMBO J. 20 (2001) 2528–2535.

[23] F.J. Isaacs, J. Hasty, C.R. Cantor, J.J. Collins, Prediction and measurement
of an autoregulatory genetic module, Proc. Natl. Acad. Sci. USA 100
(2003) 7714–7719.

[24] T.S. Gardner, C.R. Cantor, J. Collins, Construction of a genetic toggle
switch in Escherichia coli, Nature 403 (2000) 339–342.

[25] M.R. Atkinson, M.A. Savageau, J.T. Myers, A.J. Ninfa, Development
of genetic circuitry exhibiting toggle switch or oscillatory behavior in
Escherichia coli, Cell 113 (2003) 597–607.

[26] M.B. Elowitz, S. Leibler, A synthetic oscillatory network of transcrip-
tional regulators, Nature 403 (2000) 335–338.

[27] N. Barkai, S. Leibler, Biological rhythms: Circadian clocks limited by
noise, Nature 403 (2000) 267–268.

[28] J.M.G. Vilar, H.Y. Kueh, N. Barkai, S. Leibler, Mechanisms of noise-
resistance in genetic oscillators, Proc. Natl. Acad. Sci. USA 99 (2002)
5988–5992.

[29] T. Bulter, S.G. Lee, W.W. Wong, E. Fung, M.R. Connor, J.C. Liao, Design
of artificial cell–cell communication using gene and metabolic networks,
Proc. Natl. Acad. Sci. USA 101 (2004) 2299–2304.

[30] W.J. Blake, F.J. Isaacs, Synthetic biology evolves, Trends Biotechnol. 22
(2004) 321–324.

[31] J.Z. Hilt, Nanotechnology and biomimetic methods in therapeutics:
Molecular scale control with some help from nature, Adv. Drug Deliv.
Rev. 56 (2004) 1533–1536.

[32] T. Kaczorowski, et al., Purification and characterization of the Fok I
restriction endonuclease, Gene 80 (1989) 209–216.

[33] M. Soreni, et al., Parallel biomolecular computation on surfaces with
advanced finite automata, J. Am. Chem. Soc 127 (2005) 3935–3943.

[34] C. Capoulade, et al., Apoptosis of tumoral and nontumoral lymphoid cells
is induced by both mdm2 and p53 antisense oligodeoxynucleotides, Blood
97 (2001) 1043–1049.

[35] G. Seelig, et al., Enzyme-free nucleic acid logic circuits, Science 314
(2006) 1585–1588.

[36] K. Rinaudo, et al., A universal RNAi-based logic evaluator that operates
in mammalian cells, Nat. Biotechnol. 25 (2007) 795–801.


	Towards molecular computers that operate in a biological environment
	From Turing machines to molecular computers
	Molecular computers solve computational problems
	Molecular computers that interact with a biological environment
	A programmable autonomous finite automaton that solves simple computational problems in vitro
	Diagnostic computation of mRNA, in vitro
	Boolean logic using micro-RNAs as input, in vitro
	Evaluation of a specified combination of synthetic small interfering RNAs, in vivo
	Future directions of biomolecular computers
	Acknowledgement
	References


