
1

Graph Spectra of Carbon Nanotube Networks

Stephen F. Bush, Senior Member, IEEE, GE Global Research Center

Sanjay Goel, Member IEEE, University at Albany, SUNY

Abstract- Sensor coverage will benefit from finding better
ways to communicate among smaller sensors. Also, as
development in nanotechnology progresses, the need for low-cost,
robust, reliable communication among nano-machines will
become apparent. Communication and signaling within newly
engineered inorganic and biological nano-systems will allow for
extremely dense and efficient distributed operation. This paper
examines these potential benefits from the perspective of using
individual nanotubes within random carbon nanotube networks
(CNT) to carry information. One may imagine small CNT
networks with functionalized nanotubes sensing multiple
elements inserted into a cell in vivo. The information from each
nanotube sensor can be fused within the network. This is clearly
distinct from traditional, potentially less efficient, approaches of
using CNT networks to construct transistors. The CNT network
and routing of information is an integral part of the physical
layer. Single-walled carbon nanotubes (SWNT) are modeled as
linear tubes positioned in two dimensions via central coordinates
with a specified angle. A network graph is extracted from the
layout of the tubes and the ability to route information at the
level of individual nanotubes is considered. The impact of
random tube characteristics, such as location and angle, upon the
corresponding network graph and its impacts are examined.

Index carbon nanotubes, communication networks, and sensor
networks.

I. INTRODUCTION

Due to their small size nanotubes can reach deep into their
environment without affecting their natural behavior. For
example, a single CNT is small enough to penetrate a cell
without triggering the cell's defensive responses. Individual
nanotubes can be used to construct a network of sensing
elements. The depth and coverage provided by such a network
of sensing elements would be greater than today's sensor
networks. Unfortunately, networking such a collection of
sensors using current techniques, including wireless
techniques, negates the advantages of the small CNT size. The
solution proposed in this paper is to use the random CNTs
themselves as the communications media, thus bringing the
scale of the network down to the scale of the sensing
elements.

Current technology is focused on utilizing an entire CNT
network as semiconducting material to construct a single
transistor or Field Effect Transistor (FET). Many such
transistors are required to build legacy network equipment.
The result is that nano-scale networks are embedded within
each device that might be otherwise more effectively and
directly utilized for communication. Consider re-thinking the
communication architecture such that the CNT network itself
is the communication media and individual nanotubes are the
links. Much research has gone into understanding how to
align tubes. Unfortunately, cost and separation of impurities
(metallic tubes) is still an unsolved problem. In the approach
proposed in this paper, lower-cost, randomly oriented tubes
are directly utilized as a communication media. Fig. 1
illustrates a sample communication network where users at a
molecular level simultaneously share random CNT network
bandwidth. The black lines depict the nanotubes and the dark
red lines show input/output channels (or probes) into the
network media. Each user has a distinguishable impact on the
receiver via network interaction as shown by the range of
resistances from each user as shown in the figure.

Fig. 1 Routing through an embedded random carbon
nanotube network.

To analyze such graphs a spectral analysis is used. Spectral
analysis reveals the topological properties of a graph such as

Manuscript received January 30, 2006; intended for submission to Nano-Net 2006.
Stephen F. Bush: GE Global Research Center, Niskayuna, NY, 12309, USA phone: 518-387-6827; fax: 518-387-4042; e-mail:ba
Sanjay Goel: University at Albany, 1400 Washington Avenue, Albany, NY 12222, Phone: (518) 442 4925; Fax: (518) 442 2568, e-mail: goel(albany.edu.

1-4244-0391-X/06/$20.00 ©2006 IEEE
1



17

16

15

14

12

11

2

its patterns of connectivity and typically involves computing
the eigenvalues and eigenvectors of the Laplacian matrix of a
graph. The Laplacian matrix of a graph is an undirected, un-
weighted graph without graph loops or multiple edges from
one node to another. The eigenvalues are related to the
topology of the graph and represent specific features. For
instance, the second smallest eigenvalues represents the
measure of compactness of a graph. A large value implies a
compact graph where as a small value represents an elongated
graph. Such an analysis is often used for relative comparisons
of graphs; however, only graphs with the same number of
vertices can be meaningfully compared. Spectral analysis has
been used in a wide variety of applications, including,
semantic analysis of documents to cluster documents into
areas of interest, comparing structural, functional and
evolutional similarity in RNA molecules, connectivity on the
Internet, etc. Though very elegant there are some limitations
to this technique. For instance, Mihail and Papadimitriou [8]
argue that for randomly generated graphs that satisfy a power
law distribution, spectral analysis of the adjacency matrix will
simply produce the neighborhoods of the high degree nodes as
its eigenvectors and miss any embedded structure. For graphs
that do not have skewed degree distributions, however
spectral analysis is an efficient tool that reveals inherent
embedded structures. Even for graphs with skewed degree
distributions transformations can be applied to enable spectral
analysis in recovering the latent structure with a high
probability [5]. A graph spectral technique precisely solves
the problem of determining resistance through the random
tube layouts and is applied to the analysis of the CNT graphs
to reveal their inherent structural properties, discussed later in
this paper.

In this paper, the impact of scale on a traditional
communication network is considered as the network is scaled
down to the size of a carbon nanotube network. An obvious
consideration from a network perspective is the change in
capacity, specifically in bandwidth. Simple harmonic
oscillation, which provides bandwidth, increases with
reduction in scale; thus potential bandwidth increases
dramatically [9]. The increase is 1/L where L is a linear scale
dimension. The capacity, Ci, of a link from a transmitter at

j to a receiver at i is given by Shannon's famous formula
(1). Considering all possible multi-level and multi-phase
encoding techniques, the theorem states that the theoretical
maximum rate of clean (or arbitrarily low bit error rate) data
with a given average signal power that can be sent through an
analog communication channel subject to additive, white,
Gaussian-distribution noise interference is:
Cij = BWln(1+ (S1IN)ij )(1
The term BW is the bandwidth of the communication and
(S / N) , is the signal-to-noise ratio (SNR) of the link. SNR

measures the ratio between noise and an arbitrary signal on
the channel, not necessarily the most powerful signal possible.
In Fig. 2, the channel capacity, assuming that the noise is

minimal (SNR=1/2), rises as the scale is reduced towards zero
using (1).
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Fig. 2 The approximate capacity increase with reduced
scale is shown. As the scale becomes smaller, the potential
capacity grows significantly.

In addition to the increased bandwidth potential, the nanotube
density allows for an increase in the number of bits per square
meter. Consider a wireless network of today. A typical bit-
meters/second capacity is limited in a traditional wireless
network as described in [6]. The maximum wireless capacity
approximation in a wireless broadcast media can be used to
determine the collective capacity. Assume a perfect
distribution mechanism in which all links are used as
efficiently as possible to disseminate route update information
[1]. Assume a network of n nodes is spread over an area A
and each possible connection has capacity W. Also, assume
A is a guard distance to ensure channel transmissions do not
overlap. The maximum wireless capacity in bit-meters per
second is shown in (2).

Cmax (2)

Generalizing to a uniformly random distribution of n sensors
over a circular area A, the density is n / A, and the expected

nearest-neighbour distance is A / n . The total distance that
data must travel is shown in (3).

E[d] = E(3)
k=l n

Now consider a carbon nanotube network. A point source
could radiate information omni-directionally via a tube
structure limited by the degree of compactness of the tube
network. If tubes could be well aligned, then the notion of a
guard distance would be unnecessary. A macroscopic source
is assumed to generate data omni-directionally. A carbon
nanotube is on the order of 1.4 nm in diameter. If tubes radiate
compactly from a circular source, the capacity is shown in
Fig. 3. Essentially, the limit is reached as an extremely large
number of tubes are joined to the source without overlapping.
Unfortunately, current technology cannot align tubes with this
degree of accuracy.
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Fig. 3 The capacity of a carbon nanotube network is
shown as a function of the area available for nanotube
connectivity. This is significantly higher capacity over
much smaller distances than could be achieved with a
wireless network.

A Mathematica [10] framework for evaluating random CNT
networks has been developed and is being used to verify
design characteristics of carbon nanotubes. The framework
relates tube placement characteristics comprised of tube center
location txy tube angle 0, and tube density d,I. The

intersections of tubes form vertices V and tubes form edges
E of a graph G(V, E). In the specific instance of FET

mobility, the graph structure impacts the mobility ,u of the
FET. Thus, a goal has been to find the relationship among
tubes, the CNT network, and mobility as shown in (5)2. Let

f(txy,0, 4dt) be a function of physical tube characteristics.

Mobility is approximated in (4).
Lsd (Ion -Ioff ) tox

W 20EVsd

Ion and Ioff are FET gate 'on' and 'off currents that are

determined by the resistance of a CNT network; w and Lsd
are the gate width and length respectively.
f (txy, 0, dt ) > G(V, E) > (ARsdd) (5)
A key component of the tube layout is the overall
directionality of the tubes, that is, the angle of each tube
relative to all other tubes. Isotropy is a measure a global
measure of this directionality. Isotropy quantifies the
directionality of the tubes and is defined in (6).

1: cos aicosa ~~~~~~~~~~~~(6)
E/ sin a

I is the tube length and a is the tube angle. Tubes that are
nearly aligned have a high isotropy and tubes that are
randomly oriented have a low isotropy. Fig. 4 shows the
isotropy of a set of CNT networks with constrained tube
angles. The tube density is 1.2 per micron and lengths are
constant at 3 microns. The angles range from being
constrained between -1 through +1 degrees to -90 through
+90 degrees.

2 A Mathematica package has been developed that constructs a CNT
network from a tube layout and has supported the analytical development of
CNT network properties.

(4)
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The angle of each tube can be considered as encoding
information. Entropy, from an information theoretic
viewpoint, measures the amount of information. Angle
entropy is defined in this paper as - Pr(a) log2 (Pr(a)) where

a is the tube angle and Pr is the probability of a tube of angle
a given the network under analysis. The angle entropy of the
network analyzed in Fig. 4 is shown in Fig. 5. Clearly, the
more random the angle, the more angular entropy exists and
thus there should be a relationship between isotropy, angular
entropy, the type of networks that are formed, and ultimately,
their performance and resilience to metallic tubes.

angrle entr opy

+ _ angrl e (degr)

Fig. 5 Angle entropy increases as the range of tube angles
increases.

Clearly, there is a relationship between isotropy and angle
entropy as shown in Fig. 6 for the same networks analyzed in
the previous figure. High angle entropy implies that the
directionality and thus the isotropy are low. Information can

be stored in tube angles; reading the information from the
change in resistance of tube angles is discussed in [3].
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Fig. 6 Natural Logarithm of angle entropy decreases as

natural logarithm of isotropy increases.

As isotropy increases and entropy decreases, the density of
tube intersections increases as shown in Fig. 7. Greater
angular variation enables the tubes to intersect nearer to one

another. The inter-tube contact resistance has a greater impact
as intersection density increases. There is also an impact on
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the probability of percolation, which is considered in detail in
a paper being written by the same authors.
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Fig. 7 The density of tube intersections (nodes) varies
inversely with isotropy.

II. CHARACTERISTICS OF CNT NETWORKS

For any given orientation of nanotubes, the corresponding
network G(V, E) is extracted and resistances are assigned
based upon the probability that a tube is either a pure carbon
nanotube of 106 ohms when the gate is 'on' (10 volts) and 1012
ohms when the gate is 'off. Impure (solid nanotubes) remain
at 106 ohms regardless of gate voltage and the probability of a
solid tube is 0.33.
The network formed by the overlapping nanotubes is extracted
by determining the location of junctions. The gate area is
overlaid on this network and virtual vertices are added as
source and drain; the virtual vertices are assigned edges with
no resistance to each nanotube that is adjacent to the source or
drain edge of the layout respectively. The equivalent
resistance of the network of resistors across the virtual source
and drain is determined by (7) where li is the ith Eigenvalue

of the graph Laplacian and (i, is the a component of the ith
eigenvector of the graph Laplacian.

Rsd = E 195is 50id|
1 i

The graphs for large numbers of tube layouts with different
distributions of locations, angles, and lengths have been
generated. An example is shown in Fig. 8.

Fig. 8 Example of random CNT network generation: 10
tubes, angles uniformly distributed from 0 through zT
radians, tube centers are distributed in an area of 5 by 5

microns and tube lengths are randomly distributed from 5
to 20 microns, and the probability of a metallic edge is
0.33. The graph on the right highlights the metallic tubes
(red).

Virtual source and drain locations are specified. This results in
the addition of virtual nodes representing the source and drain
as shown in Fig. 9.

!4

Fig. 9 Virtual source and drain nodes added to the graph
from Fig. 8.

Consider the relation in (5),
namely, f (txy, 0, dt ) > G(V, E) . Note that tube center

locations tXY and tube angles 0, are random variables. Tube

density dc is the number of tubes per unit area and is not

considered a random variable in this analysis. Intuitively, one
would expect the anisotropy (8), to have an impact on vertex
density dv.
N

CosOi
it1 (8)

|sin Oi
i=l

In (8), the x component of each tube is Li CoS 0i and the y

component of each tube is Li sin Oi where Li is the length
of the ith tube. If tube lengths are infinite, the number of

vertices in G(V,E) is defined as in (9) where nf is the
number n of intersections among tubes t. The intuition is that
each new tube will overlap with n-I existing tubes assuming
no tubes are exactly parallel, yielding additional n-I nodes.
Fig. 10 shows the number of the extracted graph nodes versus

tubes. Tube angles are uniformly distributed from -g / 4 to
T / 4 radians and tubes lengths vary uniformly from 3 to 10
microns in a 5 by 5 micron area. The simulation has a lower
number of nodes because it assumes infinite tube lengths. The
simulated nodes were finite; as the tube lengths increase, it is
expected that the actual number of nodes would approach the
analytical result.
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Fig. 10 Simulated versus analytical results for tube angles
uniformly distributed from 0 to /T/2 radians. Analytical
results assume overlaps from infinite tube lengths, thus the
analytical results are an upper bound on the actual
number of nodes.

Determining the number and density of vertices when tube
lengths are finite becomes more complex. Equation (9) needs
to be modified such that each term includes the probability of
overlap between tube pairs as shown in (10), (11), and (12)
where then probability of overlap is defined in terms of the
probability of overlap in both the x and y components of tube
pairs. o° is the number of overlaps among t tubes.

Pj(02) = Pi (oX)P (°y) (10)

Pj(°y y,L, ) = Pi y, - yj |< (L, sin 0, + Li sinH )) (I11)
Pij(Ox x,L,0) = P£jxi -xj1 < (Li cosOi +±L cosO1)) (12)

Combining equations (10), (11), and (12) with (9) yields (13).
The analysis from (13) is plotted versus actual in Fig. 11.

YV =IPi(02) 2
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(+ / -)z /4 radians or (+ / -)3/z /4 radians. The
concentration of tubes required for a connected network
across the gate increases at these angles. The relation between
L and 0 to create a connected network for a given
concentration of tubes in area wLsd also needs to be
determined. If tube lengths are held constant and each tube
center is located farther apart, then tube angles must be
reduced in order to achieve a connected graph, which will
reduce the number of vertices. Thus, there is an optimal range
of 0 for a given area that meets the requirement for a
connected graph, but that also maximizes (or minimizes) the
number of vertices in the CNT network G(V, E). The
probability of a connected network comes from (8). The
requirement for a network reaching from source to drain is the
probability that tubes i and j are connected and that i and
j cover the required distance. The expected distance covered
that meets or exceeds the source to drain distance is shown in
(14).

Z Zfi,(02) xi xj +( cosO +2cosO))2Lo d (14)
i=1 j=l,j#i

Graph spectral analysis is used for analyzing the properties of
the CNT graph. Fig. 15 shows the conductance of a CNT
network that has random tube layouts with gate area 2 x 2
microns, tube density 1.5 tubes/sq micron, tube length of 2
microns and samples at tube angles of +/- {0,15,30,45,60,75,
90} degrees. The second lowest eigenvalue indicates graph
connectivity (Fiedler value). These results show that there is
very strong correlation between the second lowest eigenvalue
and both the percolation threshold and the conductance (in
units of Siemens which is the inverse of resistance). Note that
at zero degree angles, single tubes spanned the source drain
allowing for a relatively high conductance.

Conduct.ance (Siemnens)
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Fig. 12 Network resistances versus range of tube angles.

In Fig. 13, the second smallest eigenvalue of the graph
Laplacian is plotted for each of the same tube layouts as in the
previous figure. Note is the similar trend in this plot and the
previous plot of conductance.

5 10 15 20 25
Tubbes

Fig. 11 Probabilistic analyses versus simulation results
using actual tube lengths.

A maximum number of vertices are generated when the
difference between the x, y values are small, that is a high
concentration of tubes, when L is large, and when 0 is
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through the CNT network (discussed in detail next), nano-

addresses are directly mapped to combinations of gates to be
turned on that induce a path from a source to a destination.
Fig. 16 shows a conceptual view of the CNT network
infrastructure. Note that in addition to gate routing control,
sensors are often constructed directly from nanotubes in such
a manner as to change the resistance based upon the amount

+._ -Mg1 e and specificity of the material being sensed [10]. Thus, the act
of sensing may change the routing through the network.

Fig. 13 The second smallest Eigenvalue of the Graph
Laplacian versus the range of tube angles.

The probability of percolation is the probability that a given
tube layout will have connectivity from source to drain. It is
determined by using the same network parameters as in the
previous figures, namely tube density, area, and length and
analyzing many layouts with each set of tube angles. The
results are shown in Fig. 14.

Pz. Percolation

+/- anrl e

20 40 60 80

Fig. 14 The probability of achieving percolation as a

function of ranges of tube angles. A larger range of tube
angles (higher tube entropy) increases the probability of
percolation.

The most important point of these results is that the second
smallest eigenvalue of the graph Laplacian does indeed
correlate strongly with both total conductance of the network
and the probability of percolation as shown in Fig. 15.
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Fig. 16 The CNT network infrastructure is comprised of
resistance-modulated media routing information among

molecular-level addresses.

IV. ROUTING IN A CNT NETWORK

Given a CNT network, the mechanism used to route data
through such a network must be considered. Consider a

random CNT network with a matrix of gates as shown in Fig.
17. The gates are identified by number and when turned on,

change the resistance of the semiconducting nanotubes within
its area. Most nanotube sensing devices operate by changing
tube resistance. A gate that is turned on, for any reason, may

be used to route data through the network. Thus, the sensing
elements, which sense by variation in resistance, may act
simultaneously as routing elements. When a gate is turned on,

the nanotubes within the gate area become conducting.
Properly choosing gates to turn on also changes the current
flow to the edges of the CNT network, effectively creating a

controlled network, which may act as a communications
network.

-0 75-0-s 25 0 0250as5 0 75

Fig. 15 The correlation of the lowest eight graph laplacian
eigenvalues with both the probability of percolation and
the network resistance.

III. DATA TRANSMISSION IN A CNT NETWORK

Data transmission occurs via modulated current flow through
the CNT network guided towards specific nano-destination
addresses. The addresses identify spatially distinct areas of the
CNT network. Since gate control is used to induce routes

Fig. 17 Above is a matrix of gates superimposed on a

random CNT network.

The potential for such routing capability is simulated using a

specific CNT network shown in Fig. 18. The tubes shown in
red are considered the outputs of this switch. Tube 52 is
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considered the input. The hypothesis is that in this anisotropic
media, tubes are randomly dispersed at all possible angles
providing an approximately equal propagation of current in all
directions. Activating gates appropriately serve to channel the
flow into desired directions.

Fig. 18 Tubes used for I/O when the CNT network is used
as a communication network are shown in red. The red
tubes correspond to I/O contacts, one for each area
surrounding the network (areas shown in previous figure).

Using a relatively small 3 x 3 gate matrix, consider all 9
choose 3 possible combinations of gates turned on and the
impact on the predefined output tubes. In this simple
demonstration, we are checking the impact of every possible
gate state on the flow of information through the network. The
ratio of the resistances from tube 52 to all output tubes when
no gates are turned on Rof to the resistance between same

tube pair when combinations of the gates are turned onRo
for selected I 0 tubes is plotted on bar charts as shown in Fig.
19. The gates turned on that generate the bar chart values are
shown beneath each bar chart. The last number in the list
below each bar graph is the resistance threshold distinguishing
the output resistance ratio from the next highest ratio.
The effectiveness of the routing capability is measured by the
difference between the resistance ratio at each output and the
expected resistance ratio at all outputs (15); only the most
effective gate combination is shown for each output.

maxL xR - F[ IR (15)

onae f o r t __uupusOf o

Resistance ratio and gate configuration for output tube 5.
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Resistance ratio and gate configuration for output tube 50.
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Resistance ratio and gate configuration for output tube 35.

Fig. 19 The ratio of resistance with no gates turned on to
the resistance with the indicated gates turned on is shown
in the bar graphs for selected I/O tubes.

V. CONCLUSION

Information flow through a CNT network may be controlled
in spite of the random nature of tube alignment. The same

technique used for sensing in CNT networks, namely, change
in resistance of semiconducting material, may be used to
effectively route information. The traditional networking
protocol stack is inverted in this approach because, rather than

the network layer being logically positioned above the
physical and link layers, the CNT network and routing of
information is an integral part of the physical layer. The
potential benefits of better utilizing individual nanotubes
within random carbon nanotube networks (CNT) to carry
information is distinct from traditional, potentially less
efficient and wasteful, approaches of using CNT networks to
construct transistors which are then used to implement
communication networks. In closing, the author would like to
pose some theoretical questions with significant practical
impact, namely, (1) whether one might achieve an information
rate through the CNT network that approaches the maximum
flow through the equivalent network graph, in other words,
network coding at the level of individual nanotubes [7] and (2)
whether given a network resistance, one could generate the
underlying tube layout. That is, given a network resistance (as
well as minimal information regarding tube characteristics),
one can generate a set of feasible tube layouts with the given
resistance. This may be approached via the inverse eigenvalue
problem.
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