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INTRODUCTION

Biopolymers such as nucleic acids and proteins encode

biological data and may be viewed as strings of chemical

letters. While electronic computers manipulate strings

of 0’s and 1’s encoded in electric signals, biologically

encoded data might, in principle, be manipulated by bio-

chemical means. During the last decade, several approach-

es to compute with biomolecules were developed, and the

field has become known as biomolecular or DNA com-

puting. The approaches varied widely with respect to the

model of computation they employed, the problems they

attempted to solve, and the degree of human intervention.

One approach focused on the application of the Turing

machine model and, more generally, string-processing

automata to biomolecular information processing. Its

goal is to construct computers made of biomolecules that

are capable of autonomous conversion of an input data-

encoding molecule to an output molecule according to a

set of rules defined by a molecular program. Here we

survey the field of biomolecular computing machines and

discuss possible future directions.

BACKGROUND

The seminal work of Adleman[1] demonstrated that com-

monly used biochemical manipulations of DNA can be

utilized to solve real-world computational problems and

initiated the field of biomolecular computing. In the bio-

molecular approach to computing, the computational

paradigm is chosen to fit the capabilities of biomolecules,

rather than adapting the biomolecular machinery to com-

putational schemes borrowed from electronic comput-

ers.[2] The problems initially solved by DNA computing

were so-called ‘‘combinatorial problems.’’ An example of

such a problem is the traveling salesman problem, which is

to find the most efficient route through several cities given

a distances chart between them, passing through each city

exactly once. Solving the problem can be performed by

calculating all possible routes that pass exactly once

through each city, comparing them and choosing the

shortest one. As the number of potential routes is expo-

nential in the size of the problem, this computation may

require an exponential number of steps. More efficient

solution methods are not known for the traveling salesman

problem and for similar such problems, termed NP-hard.

It was hoped that the potential massive parallelism of

DNA manipulation could speed up the solution of NP-hard

problems. The DNA computing technique employed to

solve the traveling salesman problem included 1) genera-

tion of all possible solution candidates (e.g., various

routes) encoded in DNA strands and selection of the cor-

rect ones, 2) their amplification and detection by known

molecular biology techniques, and 3) isolation and char-

acterization of the shortest one. Computational problems

solved in vitro with variations of this approach encom-

passed instances of Hamiltonian Path,[1] SAT,[3] maximal

clique,[4] and ‘‘knight move’’[5] problems. The computer,

i.e., the physical system that produced a solution, com-

prised the biomolecules themselves, the laboratory

equipment required to realize their biochemical manip-

ulation, and the laboratory personnel who operated

the laboratory equipment, performing the operations re-

quired to execute the computation. Therefore while these

computing systems used biomolecules for computa-

tion, they realized laboratory-scale, rather than molecular-

scale, computers.

A second direction in DNA computing, proposed by

Winfree,[6,7] uses self-assembly of DNA tiles.[8,9] It relies

on the mathematical theory of tiling. One result of this

theory discovered by Wang[10] is that aperiodic assembly

of appropriately designed tiles emulates the operation of

a Turing machine, a universal computer. The tiles have

colored edges, and they may be assembled once two ad-

jacent tiles have edges of the same color. DNA tiles[8] are

relatively rigid flat constructs with four sticky ends, with

one sticky end emulating one edge of a tile and different

sticky ends emulating different colors. DNA tiles make

contact through complementary sticky ends, emulating

recognition by the same color. Initial breakthrough in

this area was achieved by constructing a periodic two-

dimensional crystal from DNA tiles, based on Wang as-

sembly rules. The first actual computation performed by

this technique was a cumulative XOR (exclusive OR)

logical operation on a string of four binary bits.[9] In this

experiment, an input string was built from alphabet

tiles (either ‘‘0’’ or ‘‘1’’) and then a second row of tiles
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self-assembled upon it. The first tile of the second row

contained the result of the XOR operation between the

first two bits, and each subsequent tile performed the

operation between the intermediate cumulative result and

the next unprocessed bit. Besides the potential to realize

universal computation through Turing machine emulation,

the technique of DNA tiles self-assembly may become a

basis for fabrication of smart, aperiodic materials on a

nanoscale, as suggested by several recent results.[11,12]

A third direction in DNA computing is an attempt to

realize the vision,[13] recalled by Adleman in the conclu-

sion to his seminal paper of a programmable, autonomous,

molecular-scale computer: ‘‘In the future, research in

molecular biology may provide improved techniques for

manipulating macromolecules. Research in chemistry

may allow for the development of synthetic designer

enzymes. One can imagine the eventual emergence of a

general purpose computer consisting of nothing more than

a single macromolecule conjugated to a ribosomelike

collection of enzymes that act on it.’’ This paradigm of

biomolecular computers is the focus of our review. It

views a DNA strand as a string or a tape that functions as

the input as well as the memory storage for automata such

as a finite automaton or a Turing machine.[13] This para-

digm is inspired by the realization that some biomolecular

machines in the living cell are essentially simple automata

operating on digital information encoded in directional

biopolymers.[14,15] An automaton operates by scanning a

tape of symbols one symbol at a time, possibly modifies

one symbol in each step, moving to an adjacent symbol

and changing its state according to a predefined set of the

transition rules. The tape of symbols may be naturally

encoded in a polar biopolymer such as DNA or RNA. The

transition rules of the machine may be encoded by tran-

sition molecules similar to tRNA. A transition, i.e., the

physical modification of the input according to the tran-

sition rules, may be accomplished, in principle, by a

combination of different processing enzymes. Taking this

viewpoint, DNA and RNA polymerases, the ribosome,

and recombinases can all be viewed as simple molecular

automata. For example, RNA polymerase is, mathemati-

cally speaking, a so-called finite state transducer, which

translates a string over the alphabet {A, T, C, G} into a

string over the alphabet {A, U, C, G} according to a

simple translation table. An artificial molecular automaton

may be able to operate autonomously, realizing a truly

molecular-scale computer. Such a computer could have

several important applications, discussed below.

The concept of a biomolecular computer was first in-

troduced by Bennett[13] in 1982 as a hypothetical design

for an energy-efficient computer. In this conceptual de-

sign, a set of artificial enzymes encoded the transition

table of the machine and operated on RNA-based data

tape. The design did not include any concrete imple-

mentation details. Several detailed designs were proposed

since then. Rothemund[16] and Smith[17] proposed models

for molecular implementations of Turing machines. Gar-

zon et al.[18] designed a model of finite automata and

Sakamoto et al.[19,20] implemented a semiautonomous

state machine that could perform state transitions.

MOLECULAR AUTOMATA

Automata

Generally, an automaton consists of 1) a data tape divided

into cells, each containing a symbol selected from the tape

alphabet, and 2) a finite-state device driven by transition

rules. The device is positioned over one of the cells and is

in one of a finite number of internal states. Depending on

the symbol read and the internal state, a transition rule

instructs the device to write a new symbol, change state,

and move one cell to the left or to the right. The Turing

machine[21] is the most general automaton, capable of

writing on the tape as well as moving in either direction.

Fig. 1A demonstrates a Turing machine with two symbols

and two states, with the upper part of the panel showing

the application of one transition rule. Each rule is of the

form initial state, current symbol!new state, new sym-

bol, direction of movement (R=right, L=left). A more

restricted, yet important, class of automata is called finite-

state acceptors (finite automata for short).[22] A finite

automaton is a unidirectional read-only Turing machine.

Its input is a finite string of symbols. It is initially posi-

tioned on the leftmost input symbol in a default initial

state and, in each transition, moves one symbol to the

right, possibly changing its internal state (Fig. 1B is an

example of a computation step of a finite automaton).

Each of its transition rules specifies a next state based on

the current state and current symbol. The computation

terminates after the last input symbol is processed. Al-

ternatively, it may suspend without completion when no

transition rule applies. Some states are deemed accepting

and the automaton accepts an input if there is a compu-

tation with this input that ends in an accepting final state.

Otherwise, it is said to reject the input.

A finite automaton with two states and an alphabet of

two symbols is shown in Fig. 1C. It determines whether a

string of symbols over the alphabet {a, b} contains an

even number of a’s. On a diagram, an incoming arrow

represents an initial state, and a double circle represents an

accepting state. Below the diagram, a sample computation

over an input abba shows the intermediate configurations

obtained during the sequential application of the transi-

tion rules.

A two-state, two-symbol automaton can have eight

possible transition rules. The programming of such an
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automaton amounts to selecting the transition rules and

determining the accepting states. Fig. 1D shows some

examples of additional final automata. The topmost au-

tomaton determines whether an input string contains at

least one b symbol. A second one determines if an input

string begins with a and ends with b. It is an example of

a nondeterministic automaton with two transitions (S1,

b!S0 and S1, b!S1) applicable to the same configu-

ration. A computation ending in an accepting state uses

S1, b!S1 for all b symbols except the last, and uses S1,

b!S0 for the last b.

Early Designs of Molecular Automata

Bennett[13] described a ‘‘truly chemical Turing machine’’

with a linear tape analogous to RNA, where the internal

state and head location are realized by a special chemical

modifier attached to one of the nucleotides. Each transi-

tion rule is realized by a hypothetical ‘‘enzyme’’ that

exclusively recognizes a unique combination of a nucle-

otide and its modifier, replaces a nucleotide by an output

symbol, and attaches a next-state modifier to one of the

adjacent nucleotides, according to the desired head

movement (Fig. 2).

In Fig. 2, a transition molecule 7 that recognizes a

combination of the symbol a and the state S0 loads itself

with the molecule for the symbol b and a molecule for the

state S1. The loaded molecule 2 reversibly attaches itself

to a data tape 1. An intermediate complex 3 forms through

new chemical bonds between the transition molecule and

the symbol a and state S0, between the new symbol b and

the data tape, and between the adjacent symbol b and the

new state S1 (dotted lines). In the next intermediate 4, the

old symbol a and state S0 become attached to the transi-

tion molecule and are detached from the data tape; the

new symbol b is inserted into the data tape; the new state

S1 attaches to the symbol b that lies to the right of the

site of newly inserted symbol. The transition molecule

6 dissociates from the completely modified data tape

5 and is subsequently stripped of the attached old state

and symbol.

Bennett introduced several logical elements that re-

main relevant till this day. First, he proposed to encode

a data tape in a single biopolymer, using a natural

Fig. 1 Examples of automata.
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‘‘alphabet.’’ Second, he introduced the important con-

cept of a ‘‘transition molecule,’’ i.e., representation

of each transition rule by a separate molecule or mo-

lecular assembly.

Following work on molecular automata dealt with re-

alizing this concept. Different ways to encode tape sym-

bols and machine states and to build transition molecules

were proposed and various biochemical transition mech-

anisms were considered.

Rothemund[16] proposed a detailed design for a mo-

lecular Turing machine that utilized a common DNA

structural motif known as a ‘‘cohesive terminus’’ or a

‘‘sticky end.’’ A sticky end is a short (one to six nu-

cleotides) stretch of single-stranded DNA emerging from

the double-stranded DNA molecule of a potentially un-

limited length. The advantage of a sticky end as compared

with the dsDNA is that it is reactive compared with

dsDNA. Molecules with sticky ends may interact once the

DNA sequences of their sticky ends are complementary,

irrespective to the sequence of their double-stranded part.

This technique is extensively used in recombinant DNA

technology. Rothemund’s hypothetical computer com-

prised a data tape and transition molecules made of DNA

and hardware containing DNA ligase and restriction

enzymes. Ligase is an enzyme that may glue together

fragments of DNA that have complementary sticky ends.

Restriction enzymes recognize specific locations in the

double-stranded DNA and cut inside of near this location,

forming two fragments with complementary sticky ends.

Rothemund pioneered an encoding system of ‘‘frame

shifts,’’ where a long stretch of double-stranded DNA

encoded a symbol while shorter sticky ends derived from

this stretch encoded state-symbol combinations. This

entailed a particular design of the transition molecules,

using SII-type restriction enzymes that cut DNA outside

their recognition sequence. The machine was not designed

to be autonomous as it required a number of manual steps

to perform a single transition (Fig. 3).

Fig. 3 describes a single transition S0, a!S1, b, R as

implemented by Rothemund’s hypothetical Turing ma-

chine. In this design, each data symbol is represented by a

stretch of dsDNA flanked by invariant left (L) and right

Fig. 2 An example of a single transition performed by Bennett’s hypothetical chemical Turing machine. The rule implemented is S0,

a!S1, b, R. (From Ref. [13] # Kluwer Academic/Plenum Publishers.)
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(R) short sequences. The starting circular double-stranded

DNA structure 1 represents a data string bab and a Turing

machine head, located at a symbol a. Inside a ‘‘head,’’

there are two SII-type enzyme recognition sites. One is

denoted Inv and another St for ‘‘state enzyme.’’ Inv en-

zyme invariantly cuts in the R region of a symbol that lies

to the left of the head. St enzyme cuts inside the current

symbol a, and the exact restriction site is determined

by the length of a spacer between the St recognition site

and an L region of the current symbol. This spacer is

denoted as S0.

After double restriction by Inv and St, the enzymes

are removed and a modified data tape 2 with two sticky

ends is formed. One is inside the R region of the left-

most b symbol. Another lies within the coding sequence

of a current a symbol. Because the exact structure of

this sticky ends depends on the state spacer length, it

contains information on both the current symbol and the

current state. This sticky end is recognized by the

transition molecule 3, which encodes a rule S0, a!S1,

b, R. It contains two sticky ends: one recognizes the

current state-symbol sticky end of the data tape, and

another one recognizes the sticky end within the R re-

gion of the left-hand symbol. Its dsDNA region con-

tains, from left to right, an encoding for a new symbol

b, a spacer and a recognition site of the Inv enzyme, a

recognition site of the St enzyme, a new state spacer

(S1 in this case), L region, another spacer, two recog-

nition sites of the auxiliary SII-type enzymes X and Y,

and another L region.

Fig. 3 A single transition S0, a!S1, b, R as implemented by the Rothemund’s hypothetical Turing machine. (From Ref. [16] #

American Mathematical Society.)
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The solution containing the transition molecules is

added to the cleaved data tape 2. Because real computa-

tion would require many different kinds of transition

molecules, the existence of an invariant sticky end in a

data tape would allow it to react nonselectively with dif-

ferent transition molecules. Therefore the original design

contained only right-hand state-symbol specific sticky

end. The left-hand sticky end was exposed by yet another

restriction enzyme after correct ligation to the state-

symbol sticky end and washout of the useless transitions

(not shown on the figure). Following double ligation and

insertion of the transition molecule, an intermediate

structure 4 is formed. At this stage, the new symbol b is

inserted into the tape. The head is also inserted, with the

new state encoded by the new state spacer. However, the

previous symbol a is regenerated. It needs to be excised by

means of the enzymes X and Y. The enzymes form two

complementary sticky ends in the intermediate 5: one in

the L region of the right-hand symbol b, and another one

in the L region preinserted in the transition molecule.

After their ligation, the next legal configuration 6 is

formed. The St enzyme is now positioned at the correct

distance from the next symbol b. Thus this multistep

transition process results in an insertion of a new symbol

b, excision of a previous symbol a, and change of the

machine state from S0 to S1.

Sakamoto et al.[19,20] described a different approach to

biomolecular state machines. While their system imple-

mented only a fixed state-to-state transition scheme,

which is not dependent on any input, it had the advantage

of semiautonomous operation. The system was experi-

mentally verified and shown to perform several transitions

(Fig. 4).

Fig. 4A shows a set of transition rules. Panel B depicts

the molecular transition table. Each state is encoded by

unique sequence of a ssDNA of 20–30 nt long. A transi-

tion between S1 and S2 is represented by a concatenation

of two sequences, one complementary to S1 and another

one—to S2. The ‘‘stop’’ segment does not allow DNA

polymerase to pass through. Fig. 4C shows the initial

configuration of the machine. A transition table is con-

catenated to the initial state S1. Fig. 4D describes a sample

computation. Initial state S1 is annealed to its comple-

mentary counterpart in the rule S1!S2 of the transition

table and then extended by DNA polymerase to form a

DNA stretch for S2. After denaturation and another

annealing, the S2 stretch is annealed to its counterpart in

the rule S2!S3 and extended to S3 stretch. The whole

Fig. 4 A molecular state machine of Sakamoto et al.
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process is performed in the PCR-like manner, termed

‘‘Whiplash PCR’’ with cycles of denaturing, annealing,

and polymerase extension.

Shapiro[14,15] proposed a detailed logical design for

a molecular Turing machine, with an emphasis on a

general-purpose programmable computer that may op-

erate in vivo and interact with its biochemical envi-

ronment. The design was realized in a working

mechanical implementation.

The structural blocks of the design proposed by Sha-

piro are depicted in Fig. 5. The mechanical computer

employs a chain of basic building blocks (Fig. 5A), re-

ferred to as alphabet monomers, to represent the Turing

machine’s tape (Fig. 5B), and uses another set of building

blocks (Fig. 5C), referred to as transition molecules, to

encode the machine’s transition rules. The computer

operates on two polymers simultaneously: the tape poly-

mer, representing the Turing machine’s tape, and the trace

polymer, which is a byproduct of the computation con-

structed incrementally from displaced transition mole-

cules and displaced alphabet monomers and has no analog

in the theoretical Turing machine. A transition molecule

loaded with an alphabet monomer specifies a compu-

tational step of the computer similarly to the way an

aminoacyl-tRNA specifies a translation step of the ribo-

some.[23] The transition encoding is similar to a Wang tile

construction[10] which is also at the basis of DNA com-

puting via self-assembly.[6–9] The set of loaded transition

molecules constitutes the computer program (Fig. 1A). A

description of the design and mechanism of operation is

shown in Figs. 5 and 6. Fig. 5C shows the formation of a

transition molecule and Fig. 5D shows an active transition

molecule. An active transition molecule joins the two data

polymers. It is embedded in the tape polymer and repre-

sents the location of the Turing machine’s read/write head

as well as the machine’s internal state. At the same time,

the active transition molecule is the terminal molecule of

the trace polymer, representing the most recent transition

of the computation. Fig. 5E schematically depicts the

computer (hardware). The computer is made of two sub-

units, referred to as small and large, each with a tunnel

called the small tunnel and the large tunnel, respectively.

Fig. 5 Structural blocks of the Shapiro’s mechanical Turing machine.
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The small tunnel provides incoming loaded transition

molecules with access to the active transition molecule

and to its adjacent alphabet monomer. Access is con-

trolled by gating mechanisms that block transition mole-

cules that are ill-formed or do not match the current state

and current tape symbol. These mechanical analogs of

allosteric conformational changes open the channel only

when a valid incoming transition molecule approaches.

The large tunnel holds the active transition molecule and

the tail of the trace polymer being constructed.

The actual mechanical computer is 18�29�9cm as

shown in Fig. 5F. The small tunnel 1 is part of the small

subunit and is 2 units wide. The large tunnel 2 is part of

the large subunit and is 3 units wide, so that it can ac-

commodate the displaced transition molecule and the new

active transition molecules. The small and large subunits

can move one unit sideways relative to each other. Such

movement is necessary following a change of direction of

the computation. An incoming transition molecule 3 is

approaching the active transition molecule 4 and the al-

phabet molecule to its right. The tape polymer can move

left or right 1 unit, aligning the active transition molecule

to the left or to the right side of the large tunnel. Such

movement is necessary to accommodate consecutive

transitions in the same direction. The hardware as well as

the data tapes and the incoming transition molecule

are shown.

Fig. 5G shows the mechanical implementation of the

gating mechanisms, front (left) and back views. Five

mechanisms in the small tunnel prevent erroneous tran-

sitions from occurring. All mechanisms are based on a

spring-loaded bell crank/cam which is connected to a

linkage which, in its free state, blocks passage of the

approaching transition molecule. Each bell crank/cam

checks for a certain condition and, if the condition is met,

is rotated. The connected linkage then moves out of the

way of the approaching transition molecule, essentially

effecting a conformational change in the tunnel. Two

mechanisms 1 and 2 detect that the (left or right) transition

molecule is loaded with an alphabet molecule. Mechanism

3 detects that the recognition site of the incoming transi-

tion molecule matches the state side group of the active

transition molecule and the alphabet symbol to its right.

Additional two mechanisms check for the blank transition.

The computer operates in cycles (Fig. 6), processing

one transition molecule per cycle. In each cycle, an in-

coming loaded transition molecule 2 that matches the

current state and its adjacent alphabet monomer of the

data polymer 1 becomes the new active transition mole-

cule and its accompanying alphabet monomer is incor-

porated into the tape polymer via the intermediate 3. This

is achieved by displacing the currently active transition

molecule and the matched alphabet monomer, effectively

editing the tape polymer, and elongating the trace polymer

by the displaced molecules to form the next configuration

4. Specifically, when processing a left transition molecule,

the computer moves left to accommodate the molecule,

if necessary, and displaces the currently active transition

molecule and the alphabet monomer to its left by the

new molecule. The computer processes a right transi-

tion molecule similarly by moving right and displacing

the alphabet monomer to the right of the active transi-

tion molecule.

The trace polymer created during the computation

represents past state changes and head movements, as well

as the symbols that were ‘‘erased’’ from the tape during

each transition, and as such has several important advan-

tages. First, the trace polymer renders the computer re-

versible. Because the trace polymer embodies a complete

Fig. 6 Operational cycle of the Shapiro’s mechanical Tu-

ring machine.
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record of the computation, a molecular implementation of

the computer will be subject to the speed/energy con-

sumption tradeoff of reversible devices. Second, compu-

tation traces, in general, and the trace polymer, in

particular, enable many ‘‘software’’ program analysis and

debugging tools,[24] which are critically needed for large-

scale applications. Third, the trace polymer enables

‘‘hardware’’ error detection and correction. One expects

that any biomolecular implementation of the computer

may exhibit nonnegligible error rate. Such errors can be

detected, and possibly also corrected, by cascading sev-

eral computers along the same trace polymer, each

detecting, and possibly also correcting, errors produced

by its predecessor.

The most important property of the mechanical com-

puter is that it is reactive:[25] it can have an ongoing,

program-controlled, interaction with its environment. This

capability is a result of the biologically inspired archi-

tecture of the computer rather than inherited from the

theoretical Turing machine, which was conceived as a

‘‘batch’’ computing device that receives its input at the

beginning of the computation and produces an output if

and when the computation ends. The ribosome, for ex-

ample, suspends the construction of a polypeptide chain

when a required amino acid is unavailable. Similarly, this

computer can be ‘‘programmed’’ to suspend until a spe-

cific molecule is available. The availability of such a

control molecule can be tied to other relevant environ-

mental conditions, thus triggering a computation only

when these conditions prevail.

The Turing machine is a nondeterministic computing

device in that it can make choices during a computation,

and so is the mechanical computer. In a biomolecular

implementation, this capability can be used to have the

environment affect the course of a computation, based on

the relative concentrations of molecules that enable one

computational step compared with molecules enabling a

different computational step. Using these two capabilities,

the computer can be programmed so that both the timing

and the course of a computation are affected and con-

trolled by the biochemical environment.

The computer is endowed with an output device as

follows. A simple extension to the Turing machine design

is an instruction that erases the tape segment to the right

of the read/write head. This instruction would mean in

this context: ‘‘cleave the tape polymer to the right of the

active transition molecule and release this tape polymer

segment to the environment.’’ With this instruction, the

computer can create and release any effectively com-

putable polymer of alphabet monomers, in any number of

copies, in the course of a computation. A cleaved tape

polymer segment released by one computer can serve

as the initial tape for the computation of another com-

puter, or it can be ligated under certain conditions to

the tape of another computer, thus enabling parallel

processing, communication, and synchronization among

multiply operating computers.

The computer design allows it to respond to the

availability and to the relative concentrations of specific

molecules in its environment and to construct program-

defined polymers and release them into the environment.

Hence if implemented using biomolecules, the computer

can be part of biochemical pathways. In particular, given a

biomolecular implementation of the computer that uses

ribonucleic acids as alphabet monomers, one can envision

how cleaved tape polymer segments can function as

messenger-RNA, effecting program-directed synthesis of

proteins in response to specific biochemical conditions

within the cell. Such an implementation can provide a

family of computing devices with broad biological and

pharmaceutical applications.

Molecular Finite Automata

Two programmable, autonomous finite automata made of

biomolecules were demonstrated by Benenson et al.[26,27]

Both use a DNA molecule as input, DNA molecules as

software, encoding the automaton transitions, and DNA-

manipulating enzymes as hardware. The differences be-

tween the two are the source of energy for the computa-

tion and the reuse of software molecules. The first

automaton relies on ATP as an energy source and con-

sumes its software molecules during computation, while

the second utilizes solely the energy stored in the chemical

bonds of its DNA input molecule and its software mole-

cules are reusable. While having similar logical structures,

these versions differ in the implementation details. The

design of the molecular finite automaton incorporates

ideas from designs for molecular Turing machines.[15,16]

The hardware of the first automaton consists of a mixture

of the class IIS restriction nuclease FokI, T4 DNA ligase,

and ATP, while the second automaton utilizes only FokI.

The structure of the latter automaton is shown in Fig. 7.

Fig. 7A shows the encoding of a, b, and terminator (sense

strands) and the <state, symbol> interpretation of exposed

4-nucleotide sticky ends, the leftmost representing the

current symbol and the state S1, similarly the rightmost

for S0. Fig. 7B shows the hardware: the FokI restriction

enzyme, which recognizes the sequence GGATG and

cleaves 9 and 13 nucleotides apart on the 5’!3’ and

3’!5’ strands, respectively. The software comprises eight

short double-stranded (ds) DNA molecules, the transition

molecules encoding the eight possible transition rules

(Fig. 7C). It consists of a <state, symbol> detector (light

gray), a FokI recognition site (dark gray), and a spacer

(intermediate gray) of variable length that determines the
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FokI cleavage site inside the next symbol, which, in turn,

defines the next state. Empty spacers effect S1 to S0

transition, single base-pair (bp) spacers maintain the cur-

rent state, and 2-bp spacers transfer S0 to S1.

A dsDNA molecule encodes the initial state of the

automaton and the input (Fig. 7D), with five to six base

pairs (bp) coding for one input symbol (Fig. 7A), with the

exposed sticky end at the 5’-terminus encoding the initial

state and the first symbol. The ligase-based system may

also contain ‘‘peripherals,’’ two output-detection mole-

cules of different lengths, each of which can ligate se-

lectively with a different output molecule to form an

output-reporting molecule that indicates a final state and

can be readily detected by gel electrophoresis. In the ATP-

free system, the output is detected by examining the

length of the remainder of a processed input molecule.

The computation starts when the hardware, software, and

input are all mixed together and runs autonomously, if

possible till termination. The automaton processes the

input as shown in Fig. 7E. The computation proceeds via

a cascade of transition cycles. In each cycle, the sticky

end of an applicable transition molecule may ligate to

Fig. 7 Design details and mechanism of operation of the molecular automata of Benenson et al. (From Ref. [27] # PNAS.)
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the sticky end of the input molecule, detecting the

current state and the current symbol. Alternatively, it

may hybridize noncovalently. In both cases, the product

is cleaved by FokI inside the next symbol encoding,

exposing a new four-nucleotide sticky end. The design

of the transition molecules ensures that the encodings of

the input symbols a and b are cleaved by FokI at on-

ly two different ‘‘frames’’,[16] the leftmost frame en-

coding the state S1 and the rightmost frame encoding

S0 (Fig. 7A). The exact next restriction site and thus

the next internal state are determined by the current

state and the size of the spacers (Fig. 7C, intermediate

gray) in an applicable transition molecule. The compu-

tation proceeds until no transition molecule matches the

exposed sticky end of the input or until the special

terminator symbol is cleaved, forming an output mole-

cule that has a sticky end encoding the final state. In a

step extraneous to the computation and analogous to a

‘‘print’’ instruction of a conventional computer, this

sticky end may ligate to one of two output detectors

and the resultant output reporter may be identified by

gel electrophoresis.

The ATP-free automaton has several advantages over

the ligase-based version. First, the software molecule used

in a transition is recycled because it undergoes no modi-

fication. Thus a finite number of software and hardware

molecules may, in principle, process an input of any

length. Second, much better performance characteristics

may be achieved with the ATP-free automaton because

the processing does not involve the usually slow ligation

step. Using stoichiometric amounts of the software and the

hardware molecules, it is possible to process a single

symbol in a few seconds. On the other hand, the ligase-

based automaton is less structurally restricted. It may

utilize different SII-type restriction enzymes as a hard-

ware, including those that require a covalently bonded

substrate. More importantly, it was found[27] that the

ability of FokI to cleave DNA with its recognition and

cleavage sites attached by sticky-end hybridization was

limited to specific hybridization complexes. Long spacers

and low GC content often resulted in cleaving only one of

the input strands, producing a computationally illegal

configuration. Correct performance was achieved with

short spacers and high GC content of the sticky ends. The

final design used the shortest possible spacers of 0, 1, and

2 bp (Fig. 7C), which dictated a particular symbol

encoding (Fig. 7A) and the introduction of spacers be-

tween the symbols (Fig. 7D). Using ligase may relax some

of these constraints.

These molecular automata may be viewed from two

perspectives. On one hand, the computations were per-

formed with bulk amounts of the input molecules. Each

molecule was processed independently and in parallel,

thus the inputs could potentially be distinct. The parallel

character of the computation could be employed in a hy-

pothetical process of screening of DNA libraries. Large

libraries of molecules could be filtered through the same

software, for a search of certain sequence feature. Tra-

ditional approach to the same problem would require

(nonparallel) sequencing of the whole library and then

running nonparallel computer algorithms on the se-

quences. To analyze parallel performance of our system,

the cumulative number of unit operations in a unit time

per unit volume was measured. This would represent an

upper limit on the complexity of the libraries that could be

analyzed. The parallel performance of the ligase-based

version was in the order of 8.3�106 operations/sec/mL,

while in the ATP-free case, the performance was im-

proved almost 8000-fold and reached 6.6�1010 opera-

tions/sec/mL.

Another approach is to try and scale down the system

to run it in a very small compartment such as living cell.

Then the question is what are the minimal requirements

from the operational system. It is not unfeasible that a

mixture of a single input molecule, four software mole-

cules, and one or two FokI molecules could form a

functioning computer while placed in a sufficiently small

volume (to avoid dilution). While such possibility still

requires experimental demonstration, it is possible to es-

timate its characteristics from the process performed in the

bulk. Scaling down the concentrations, such a ‘‘minimal

computer’’ would fit in a cube with a side length of

100 nm. The size of each component is in the range of

several nanometers, with long inputs being tens of nano-

meters long. Such a computer would be a truly nanoscale

computer. A computation on a single input molecule

would proceed at a rate of 1000 sec per step in the ligase-

based version and about 20 sec in the ATP-free version.

While such rates seem slow compared with the electronic

computers, they reflect the properties of biological sys-

tems. Once these computers would be able to operate in a

cell, their performance would be competitive with respect

to other cellular processes.

CONCLUSION

The notion of a biomolecular computing machine has

evolved gradually over the past decades. Theoretical

designs proposed for such machines eventually led to

simple molecular computing machines functioning in the

test tube. The field may develop in several directions.

First, more complex computing machines could be

designed and built. This includes general finite automata,

string transducers, stack automata, and, ultimately, the

Turing machine. Currently, progress in this direction
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seems to be hampered by the lack of DNA- and RNA-

manipulating enzymes; we hope that an eventual progress

in enzyme engineering may supply the tools required to

develop more complex machines. Another important is-

sue relevant to many machine designs is symbol encod-

ing. Current experimental realizations utilize artificial

alphabet of predesigned DNA sequences. However, the

computer should ‘‘understand’’ natural alphabets of ei-

ther single nucleotides or amino acid codons to be bio-

logically relevant. Designing even the simplest finite

automaton that would operate on an arbitrary DNA

sequence remains a major challenge. A third future di-

rection is a search for application that would clearly

demonstrate qualitative edge of a molecular computer

over competing technologies.

We believe that the application potential of autono-

mous biomolecular computers is not to surpass electronic

computers with performance; in fact, it is hard to believe

they ever will. The advantage is that biomolecular com-

puters process information encoded in molecules rather

than in electric signals. Any direct computing over bio-

molecular inputs could only be performed by the com-

puters of the same format, i.e., made of biomolecules. As

we already mentioned, running sequence analysis algo-

rithms on DNA libraries without actually sequencing all

library members could be conveniently performed by a

molecular state machine whose alphabet is composed of

single nucleotides or codons. Another broad range of ap-

plication may emerge once the molecular computer is

successfully ‘‘plugged into’’ cellular molecular environ-

ment. By ‘‘plugging into’’ we mean that some of the

computer components would be able to respond to certain

changes in the environment, affecting the result of the

computation. While the most obvious component to

communicate with the environment seems to be the soft-

ware, both the hardware and input could be affected as

well. Once the communication between the intracellular

compounds and the computer is established, the computer

may, in principle, perform complex analysis of the envi-

ronmental conditions. The complexity of such analysis

would increase with the complexity of the computing

machine and the sensitivity of the communication chan-

nels. However, even the simplest finite automata seem to

provide enough computational power to make rather

complex diagnostics.
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