
Autonomous Programmable Nanorobotic Devices Using
DNAzymes

John H. Reif and Sudheer Sahu

Department of Computer Science, Duke University
Box 90129, Durham, NC 27708-0129, USA

{reif,sudheer}@cs.duke.edu

Abstract. A major challenge in nanoscience is the design of synthetic mole-
cular devices that run autonomously and are programmable. DNA-based syn-
thetic molecular devices have the advantage of being relatively simple to design
and engineer, due to the predictable secondary structure of DNA nanostructures
and the well-established biochemistry used to manipulate DNA nanostructures.
We present the design of a class of DNAzyme based molecular devices that are
autonomous, programmable, and further require no protein enzymes. The basic
principle involved is inspired by a simple but ingenious molecular device due to
Mao et al [25]. Our DNAzyme based designs include (1) a finite state automata
device, DNAzyme FSA that executes finite state transitions using DNAzymes,
(2) extensions to it including probabilistic automata and non-deterministic au-
tomata, (3) its application as a DNAzyme router for programmable routing of
nanostructures on a 2D DNA addressable lattice, and (4) a medical-related ap-
plication, DNAzyme doctor that provide transduction of nucleic acid expression:
it can be programmed to respond to the underexpression or overexpression of
various strands of RNA, with a response by release of an RNA.

1 Introduction

1.1 Prior Autonomous Molecular Computing Devices

In the last few years the idea of constructing complex devices at the molecular scale
using synthetic materials such as DNA has gone from theoretical conception to experi-
mental reality.

(a) DNA Tiling Assemblies. One theoretical concept that had considerable impact
on experimental demonstrations was that of Wang Tiling. This is an abstract model
that allows for a finite set of 2D rectangles with labeled sides to assemble 2D lattices
by appending together tiles at their matching sides. Winfree first proposed the use of
DNA nanostructures known as DNA tiles to achieve universal computations. DNA tiles
self-assemble into 2D lattices as determined by the tiles’ pads (ssDNA on the sides
of the tiles that can hybridize to other tiles’ pads). The last decade has seen major
successes in experimental demonstrations of the use of such DNA tiling assemblies to
construct patterned lattices and tiling computations. DNA tiling assemblies have been
used effectively in construction of periodic two-dimensional lattices, such as those made
from double-crossover (DX) DNA tiles [29], rhombus tiles [12], triple-crossover (TX)

M.H. Garzon and H. Yan (Eds.): DNA 13, LNCS 4848, pp. 66–78, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Autonomous Programmable Nanorobotic Devices Using DNAzymes 67

tiles [9], and “4x4” tiles [31], as well as triangle lattices [11] and hexagonal lattices [5].
They have also been used for the construction of patterned lattices [30] by designing the
DNA tile pads to program computations. The use of DNA tiling assembly has two major
advantages over most other methods for molecular computation, since it: (i) operates
entirely autonomously, without outside mediated changes, and (ii) does not require the
use of protein enzymes.

DNA tiling assemblies do have limitations: in particular, in general as currently con-
ceived, they do not allow for the molecular devices (the tiles in their case) to transition
between multiple states (except of course for their free or assembled states). In contrast,
many complex molecular mechanisms found in the cell can transition into multiple
states, allowing far more flexibility of application.

(b) Autonomous Molecular Computing Devices that Execute Multiple State
Transitions. There are only two other known methods for DNA computation that oper-
ate autonomously. Both use ingenious constructions, but require the use of enzymes.

(i) The whiplash PCR machines of [14,15,19,28]. These however, can only execute a
small number of steps before they require changes in the environment to execute further
steps. Also, they require the use of polymerase enzyme.

(ii) The autonomous DNA machines of Shapiro[4,2,3], which execute finite tran-
sitions using restriction enzymes. The autonomous DNA machine [3] demonstrated
molecular sensing and finite state response capabilities for that could be used for med-
ical applications (though the demonstrations were made in test tubes only, rather than
in natural biological environments as would be required for their medical applications).
Their paper was important motivational factor in the work described here.

1.2 Our Main Contribution

This paper provides the first known design for a DNA-RNA based devices that (a)
operates autonomously, (b) do not require the use of protein enzymes, and (c) allow for
the execution of multiple state transitions. Our designs make use of certain prior DNA
nanomechanical devices, which will be discussed below.

1.3 DNA Nanomechanical Devices

Prior Nonautonoumous Nanomechanical DNA Devices. A variety of DNA nanome-
chanical devices have been constructed that exhibit motions such as open/close
[23,24,34], extension/contraction [1,8,10], and rotation [13,26,32]. The motion of these
devices is mediated by external environmental changes such as the addition and removal
of DNA fuel strands [1,8,10,23,24,26,32,34] or the change of ionic strength of the so-
lution [13]. For example, non-autonomous progressive walking devices, mediated by
the addition and removal of DNA strands, were constructed both by Seeman [21] and
Pierce [22]. Although in many cases ingeniously designed, these devices need external
(human or automation-based) intervention for each step of their motions. These syn-
thetic DNA devices are in sharp contrast with cellular protein motors and machines on
macroscale that operate autonomously, without requiring any interference.

68 J.H. Reif and S. Sahu

Recent times have seen significant progress in con-

Fig. 1. Overview of Mao’s
crawler [25] constructed using
DNA enzyme

struction of DNA nanomechanical devices that exe-
cute autonomous, progressive motions. Reif [17] gave
two designs for autonomous DNA nanomechanical
devices that traverse bidirectionally along a DNA
nanostructure. Turberfield et al proposed using DNA
hybridization energy to fuel autonomous free-running
DNA machines [27]. Peng et al [33] was the first
to experimentally demonstrate an autonomous DNA
walker, which is an autonomous DNA device in which
a DNA fragment translocates unidirectionally along a
DNA nanostructure. It used DNA ligase and restric-
tion enzymes.

Recently Mao demonstrated two autonomous DNA
nanomechanical devices driven by DNA enzymes
(non-protein), namely (a) a tweezer [7,6] which is a DNA nanostructure that open and
closes autonomously and (b) a DNA crawler [25] using DNA enzyme (DNAzyme),
which traverses across a DNA nanostructure.

Their crawler device contains a DNAzyme that constantly extracts chemical energy
from its substrate molecules (RNA) and uses this energy to fuel the motion of the
DNA device. This DNAzyme-based crawler integrates DNAzyme activity and strand-
displacement reaction. They use 10-23 DNAzyme, which is a DNA molecule that can
cleave RNA with sequence specificity. The 10-23 DNAzyme contains a catalytic core
and two recognition arms that can bind to a RNA substrate. When the RNA substrate
is cleaved, the short fragment dissociate from the DNAzyme and that provides a toe-
hold for another RNA substrate to pair with short recognition arm of the DNAzyme.
The crawler device traverses on a series of RNA stators implanted on a nanostructure
as shown in Figure 1. Their crawler is the primary inspiration to our designs. While an
ingenious device, there are a number of limitations of Mao’s DNAzyme-based crawler:
(1) it did not demonstrate the loading and unloading of nanoparticles (2) it only tra-
verses along a one dimensional sequence of ssRNA strands (stators) dangling from a
DNA nanostructure, and its route is not programmable (3) it does not execute finite state
transitions beyond what are required to move (that is, it does not execute computations).

1.4 Overview of This Paper and Results

The goal of this paper is to address the above limitations, providing DNAzyme based
devices with substantially enhanced functionalities. We present the design of DNAzyme
FSA: a finite state machine based on the activity of DNAzyme and strand displacements
in Section 2. DNAzyme FSA can be easily extended to non-deterministic finite state au-
tomata and probabilistic automata as described in Section 2.6. In Section 3 we present
a medical related application of DNAzyme FSA referred to as DNAzyme doctor.
DNAzyme doctor is a molecular computer for logical control of RNA expression using
DNAzyme. Another application of DNAzyme FSA, DNAzyme router: a DNAzyme

Autonomous Programmable Nanorobotic Devices Using DNAzymes 69

based system for programmable routing of the walker on a 2D lattice is described in
Section 4. All the devices described in this paper are based on selective cleaving activity
of DNAzyme and strand displacement processes.

2 DNAzyme FSA: DNAzyme Based Finite State Automata

A finite state automata can be described as a 5-tuple (Σ, S, s0, δ, F), where Σ is a finite
non-empty set of symbols called input alphabet, S is a finite non-empty set of states,
s0 ∈ S is an initial state, δ is the state transition function (δ : S × Σ → S), and F ⊂ S
is the set of final states.

In this section, we describe a DNAzyme based finite state automata, referred to as
DNAzyme FSA. At any time an RNA sequence encoding an input symbol is examined
by the DNAzyme FSA, then an appropriate state transition takes place, and then the
RNA sequence encoding the next input symbol is examined. This process continues till
all the input symbols are scanned and the output of the DNAzyme FSA is its state at the
end of process.

x1a1a2 x2b2 x2 b1 x1

01
x1a1a2 x2

0
x

x1a1x2a2
b1b2a1a2

t1t2t1t2t1t2t1t2

x1x2x2 x1x

x

(a) (b)

Fig. 2. (a) Encoding of 0 and 1 in DNAzyme FSA. (b) Protector strand partially hybridizes with
the input strand to form bulge loops. The sticky end formed at the end of the input strand outside
of the bulge loops represents the active input symbol. This scheme protects the input symbols
other than the currently active symbol from becoming active.

2.1 Encoding the Input Symbols

First of all, we describe the way the input is encoded for the DNAzyme FSA. Input
symbols 0 and 1 are encoded as the RNA sequences x1 · a1 · x2 · a2 and x1 · b1 · x2 · b2,
respectively, where a1, a2, b1, b2, x1, and x2 are RNA sequences, and · represents
concatenation. Figure 2 (a) illustrates this encoding of the input symbols. It should be
noted that 0 and 1 share common subsequences x1 and x2. Also, there is a special
subsequence x at the end of the input subsequence. This is central to the working of the
DNAzyme FSA as will be explained later.

2.2 Active Input Symbol

While encoding the input for DNAzyme FSA, it is essential to have a mechanism to
detect the current input symbol that is being scanned by DNAzyme FSA. We will refer
to this symbol as active input symbol. In order to implement this feature in DNAzyme
FSA only a small segment of the RNA strand encoding the input symbols is kept ac-
tive. Most part of it is kept protected by hybridization with a partially complementary
sequence, referred to as protecting sequence. It has not been shown in the figure but

70 J.H. Reif and S. Sahu

the protecting sequence should not be one continuous strand. Instead it should con-
tain nicks at various positions. This is necessary for the working of device and will be
explained later. The active input symbol is represented by the sticky end of the RNA
sequence encoding the input. We refer to this nanostructure as input nanostructure. Fig-
ure 2 (b) illustrates the idea. The input nanostructure encodes the input 010. The active
input symbol is rightmost 0 (in 010), and it is encoded by the sticky end of the input
nanostructure, and hence is active. However, the leftmost 0 and the 1 are encoded in the
protected portion of the input nanostructure. They have been protected by hybridization
with a protecting sequence. Since the protecting sequence is partially complementary to
the sequence encoding the input symbols, it results in the formation of bulge loops. In
the Figure 2 b) a2, a1, b2, and b1 contain a subsequence complementary to t2, while x2
and x1 contain subsequence complementary to t1. Since the RNA sequence encoding
input is partially complementary to the protecting sequence t2.t1.t2.t1... it forms the
bulge loop structure as shown in the Figure 2 (b). Each input symbol is hence repre-
sented by two bulge loops. It should be noted that the special sequence x at the end of
the input sequence and x̄ at the end of protecting sequence ensure that only the desired
alignment of protecting sequence with input sequence is favored. As a result, only the
desired input nanostructure as shown in Figure 2 (b) is formed.

2.3 States and Transitions

After the description of the input, next we describe the design of states and transitions
in finite state machine. In DNAzyme FSA, a network of DNAzymes is embedded on a
two-dimensional plane, and the input nanostructure is routed over it. The state of the
DNAzyme FSA at any time is indicated by the DNAzyme that holds the input nanos-
tructure at that time. During each state transition of DNAzyme FSA, the segment of
input nanostructure encoding the active input symbol is cleaved, the next bulge loop
opens up exposing the segment encoding next input symbol, thereby making it new
active input symbol, and the input nanostructure jumps to another DNAzyme that in-
dicates the new state of DNAzyme FSA. In subsequent paragraphs, we will explain in
details the complete process of state transition in DNAzyme FSA. As shown in Figure 3
(a), a state transition from one state to another is implemented as two evenly spaced
DNAzymes, referred to as transition machinery for that state transition. Each of these
DNAzymes is tethered to another DNA nanostructure, which forms part of the back-
bone of the DNAzyme FSA. DNAzyme D0,s1 and D′

0,s2
form the transition machinery

for state transition from state s1 to state s2 for input 0. Similarly, DNAzyme D1,s1 and
D′

1,s2
form the transition machinery for state transition from state s1 to state s2 for input

1. It should be noted that in our nomenclature the first subscript of the DNAzyme spec-
ifies the active input symbol and the second subscript specifies the states for a transition
machinery.

The foremost thing to ensure in DNAzyme FSA is that if the active input symbol
is 0, then the state transition for input 0 should be taken. Similarly, if the active input
symbol is 1, then the state transition for input 1 should be taken.

In the transition machinery for state transition for input 0, the DNAzymes D0,s1 and
D′

0,s2
contain DNA subsequences x2 · a1 · x1 and x1 · a2 · x2 respectively, at their free

ends. The DNA subsequences of D0,s1 is partially complementary to the RNA sequence

Autonomous Programmable Nanorobotic Devices Using DNAzymes 71

a1 a2 x2x1 x1x2

0

b1 b2 x2x1 x1x2

1

D0,s1 D'0,s2

D1,s1 D'1,s2

s1 s2

s1 s2

t1t2t1t2t1t2t1t2

x1a1x2a2

b1b2a1a2

t1t2t1t2t1t2t1t2

a1 a2 x2x1 x1x2

x1a1x2a2

b1b2a1a2

a2 x2x1

x1b1x2b2

b1b2a1a2

t1t2t1t2t1t2t1t2

b1 b2 x2x1 x1x2

x1b1x2b2

b1b2a1a2

b2 x2x1

D0,s1 D'0,s2

D0,s1 D'0,s2

D1,s1 D'1,s2

D1,s1
D'1,s2

x1x2x1x2 x1x2x1x2

t1t2t1t2t1t2t1t2 t1t2t1t2t1t2t1t2

x1x2x1x2 x1x2x1x2

(a) (b)

Fig. 3. (a) Figure illustrates the implementation of a state transition through DNAzymes. (b)
D0,s1 in the transition machinery for state transition at 0 combines with input nanostructure
when active input symbol encoded by the sticky end is 0. When the active input symbol encoded
by the sticky end is 1, D1,s1 in the transition machinery for state transition at 1 combines with
the input nanostructure.

that encode the symbol 0 (x1 ·a1 ·x2 ·a2). This ensures that only when the sticky end of
input nanostructure is x1 · a1 · x2 · a2, it can hybridize with the DNAzyme D0,s1 . Thus
a state transition for 0 is not taken in DNAzyme FSA, unless the active input symbol
is 0.

Similarly, in the transition machinery for state transition for input 1, the DNAzymes
D1,s1 and D′

1,s2
contain DNA subsequences x2 · b1 · x1 and x1 · b2 · x2 respectively, at

their free ends. These subsequences are partially complementary to the RNA sequence
that encode the symbol 1 (x1 · b1 · x2 · b2). As explained earlier, this ensures that a state
transition for 1 is not taken in the DNAzyme FSA, unless the active input symbol is 1.
Figure 3 (b) further illustrates the idea.

2.4 Description of State Transition

In this section, we will describe the movement of the input nanostructure over the
DNAzymes in a transition machinery to carry out the state transition in DNAzyme
FSA. Figure 4 (a) shows a transition machinery for input 0. Initially, the input nanos-
tructure is hybridized with the DNAzyme D0,s1 . The sticky end of the input nanostruc-
ture represents the active input symbol 0, and therefore, the transition at input 0 is to
be performed. First, the DNAzyme D0,s1 cleaves the input nanostructure as shown in
Figure 4 (a). Now the sticky end of input nanostructure has only x2 as complementary
subsequence to the subsequence x2 ·a1 ·x1 at the free end of DNAzyme D0,s1 . However,
the longer subsequence x2 ·a2 in its sticky end is complementary with the subsequence
a2 · x2 of DNAzyme D′

0,s2
. Therefore, a strand displacement process takes place with

the free ends of DNAzymes D0,s1 and D′
0,s2

competing against each other to hybridize
with sticky end (x2 · a2) of the input nanostructure. Since D′

0,s2
provides a longer com-

plementary subsequence, ultimately D0,s1 is displaced and the input nanostructure is
now hybridized with D′

0,s2
as shown in Figure 4 (a). It should be noted that the next

bulge loop gets opened in this process. An input symbol is encoded across two bulge

72 J.H. Reif and S. Sahu

x1a1x2
a2

b1

b2

a1

a2

t1
t2t1

t2
t1

t2
t1

t2

a2 x2x1

b1

b2

a1

a2

t2
t1

t2
t1

t2

a2 x2x1

x2
a2

b1

b2

a1

a2

t1

t2t1
t2

t1
t2

t1
t2

a2 x2x1

D
0,s1

D'
0,s2

s1 s2
0

D
0,s1

D'
0,s2

D
0,s1

D'
0,s2

x1

x1

x2

x2

x1

x1

x2

x2

x1

x2

x2

a2 x2x1

a1x2 x1

a1x2 x1

a1

a1 a2 x2x1 x1x2

t2
t1

t2
t1

t2

t2

a1

a2 x2

x1

x1

x2

b2

b1 x1

x2

x2

x1

a1

a2 x2

x1

x1

x2

t2
t1

t2
t1

t2

b1

a2 x2

x1

x1

x2

b2

b1 x1

x2

x2

x1

s1 s2

s3

s4

D

0

1

0 0,s1
D'

0,s2

D1,s2

D
0,s2

D'
0,s3

D'
1,s4

D
0,s1

D'
0,s2

D'
0,s2 D

0,s1

D
1,s2

D'
1,s4

D
0,s2

D'
0,s3

D
0,s2

D'
0,s3

D1,s2

D'1,s4

x2

b2
x1

a1

a2 x2x1

a2

a1 x1

x2

x2

x1

b1

b2 x2

x1

x1

x2a1 x1x2 a2 x2x1

x1b1x2
b2

x1

a1

x1
b1

x2

b2
x1

a1

(a) (b)

Fig. 4. (a) First half of a state transition by DNAzyme FSA from s1 to s2 at input 0 is illustrated.
Sequence encoding active input symbol 0 gets cleaved by DNAzyme D0,s1 , input nanostructure
moves to next DNAzyme D′

0,s2 by strand displacement, and the next bulge loop in the input
nanostructure opens up in the process. (b) Second half of a state transition by DNAzyme FSA
from s1 to s2 at input 0 is shown. The mechanism is similar to the first half. However, in this
part the next input symbol and next state transition of DNAzyme FSA is determined, and the
input nanostructure lands up on the appropriate transition machinery for the next state transition
to begin correctly.

loops in the input nanostructure. As the first half of the sticky end (x1 ·a1) encoding the
half of the active input symbol 0 got cleaved, the current sticky end is x2 · a2 · x1 · b1,
that contains half of the sequence encoding symbol 0 and half of the sequence encoding
the symbol 1. This completes the first half of the state transition by DNAzyme FSA.

The second half of the transition in DNAzyme FSA takes place in exactly similar
manner. Half of the sticky end (x2 · a2) of the input nanostructure that encodes the
remaining half of the active input symbol 0 gets cleaved, thus leaving only x1 as com-
plementary to free end of DNAzyme D′

0,s2
(x1 · a2 · x2). At this point the sticky end of

the input nanostructure is x1 · b1 which is half of the sequence that encodes the input
symbol 1. It indicates that the next active input symbol is 1 and therefore, the next state
transition should be from state s2 at input 1. This is ensured by the DNAzyme FSA
in the following way. Since the sticky end of the input nanostructure is (x1 · b1), the
DNAzyme D1,s2 that has the sequence x2 · b1 · x1 at its free end gets involved in strand
displacement with D′

0,s2
to hybridize with the sticky end (x1 · b1) of input nanostruc-

ture. Because of the longer complementary sequence D1,s2 ultimately displaces D′
0,s2

and hybridizes with the sticky end of nanostructure. This results in the opening of next
bulge loop in input nanostructure as shown in Figure 4 (b).

It should be noted that D0,s2 (with sequence x1 · b2 · x2 at its free end) does not
have sequences complementary to the sticky end (x1 · b1) of input nanostructure, so it
can not get involved in any strand displacement. Therefore, the input nanostructure is
guaranteed to move to the DNAzyme D1,s2 . After the opening of the next bulge loop,

Autonomous Programmable Nanorobotic Devices Using DNAzymes 73

the new sticky end (x1 · b1 · x2 · b2) of input nanostructure encodes the input symbol 1.
Thus, the input nanostructure lands up in the appropriate transition machinery for the
next state transition, and the next state transition at input 1 can begin correctly.

It can be argued in a similar manner that during the second half of the transition, if
the next active input symbol was to be 0, the input structure would have moved from
DNAzyme D′

0,s2
to D0,s2 instead of moving to D1,s2 . We omit the explanation here for

the sake of brevity.
Figure 4 (b) illustrates the second half of the state transition of DNAzyme FSA.
It should be noted that the strand displacement of the protector strand also takes

place during the process. But since it contains nicks, its fragments just wash away in
the solution when they get completely displaced.

2.5 Complete State Machine

The components described above can be integrated to implement the complete finite
state automata. Any state transition in the DNAzyme FSA can be implemented by two
DNAzymes as described earlier. These DNAzymes are embedded on a nanostructure
that forms the backbone of the DNAzyme FSA. The addressable nanostructures formed
by DNA origami [20] or fully-addressable DNA tile lattices [16] might provide use-
ful nanostructures for this backbone. Hence, the state machine can be laid out on this
nanostructure by implanting a network of DNAzymes on it. The input nanostructure
traverses over them in a programmable way and keeps getting cleaved in the process.

s1

s2 s3

0
0

1

0

1

1

x2
a1

x1 x1 a2 x2

x2
x1x1

b2
x2x2 b1

b1

x1

x2

a1

x1

x1

a2

x2

x1

b2

x2
x2

b1

x1

x1

b2

x2
x2

a1

x1

x1

a2

x2
D

D'

0,s1

0,s2 D'1,s1

D1,s2

D0,s2 D'0,s3

D'1,s3

D0,s3

D'0,s1
D1,s1

D1,s3

D'1,s2

Input 0110100

0
1

1

1

1

1

1

1

1

0000

0000

00

00

0000

1

1

1

1

1

1
000

1 1

1

1

1

1

(a) (b)

Fig. 5. (a) The DNAzyme implementation of the finite state machine shown on left. (b) Illustration
of programmable routing in two dimensions.

Figure 5 (a) shows an implementation of a DNAzyme FSA (at the right) for the finite
state automata (at the left). It should be noted that the DNAzymes shown in the Figure 5
(a) are actually implanted on a backbone nanostructure. The dashed lines represent the
sides of these DNAzymes that are embedded in the backbone nanostructure.

The output of the DNAzyme FSA is detected using insitu hybridization techniques.
The details of the protocol are described in [18].

74 J.H. Reif and S. Sahu

2.6 Non-deterministic and Probabilistic DNAzyme FSA

A nondeterministic finite state automata is a 5-tuple (Σ, S, s0, δ, F), where Σ is a finite
set of input symbols, S is a finite set of states, δ is a state transition function (δ :
S × (Σ

⋃
{ε}) → P (S) where P (S) is the power set of S), ε is the empty string,

s0 ⊂ S is a set of initial states, and F ⊂ S is a set of final states.
A probabilistic finite state automata is a finite state automata in which the state

transitions are probabilistic in nature. It can be described as a 5-tuple (Σ, S, s0, δ, F),
where Σ is a finite set of input symbols, S is a finite set of states, δ is a state transition
function (δ : S × Σ × S → [0, 1]), s0 ⊂ S is a set of initial states, and F ⊂ S is a set
of final states.

The idea extends to the non-deterministic automata directly. Different DNAzyme-
FSA described above will work in parallel inside a test-tube. Therefore, the above de-
scribed scheme will work for non-deterministic automata as well. In case there are
more than one transitions possible for one input from one state, each of them will be
taken in one DNAzyme-FSA or the other inside the solution, and thus exhibiting non-
deterministic nature of the automata. Regarding the output, if the output state in any
of the DNAzyme-FSA in solution is an accepting state (or final state), it implies the
acceptance of the input by the overall non-deterministic finite state automata.

In case the sequences of all the DNAzymes are identical, then the DNAzyme-FSA
described above becomes a probabilistic automata having equal probabilities of transi-
tions from any state to any other state. However, to construct an arbitrary probabilistic
finite state automata, the probabilistic transitions can be implemented by using par-
tially complementary sequences in the designs. The sequences of the DNAzymes for
transition are chosen in a way so that the ratios of probability of hybridization are in
accordance with the transition probabilities.

3 DNAzyme Doctor: A Molecular Computer for Logical Control
of RNA Expression Using DNAzyme

The finite state automaton described in Section 2 can be used in various computational
and routing applications. In this section we describe DNAzyme doctor, an application
related to medical field. It is an autonomous molecular computer for control of RNA
expression based on the overexpression and underexpression of other RNAs. Earlier
Shapiro[3] had constructed a molecular computer using protein enzymes for logical
control of RNA expression. DNAzyme doctor performs the same function, while com-
pletely eliminating the use of protein enzymes in the design. For the ease of illustration
let us consider a similar example as given in [3]. Suppose a disease is diagnosed posi-
tive if RNAs R1 is underexpressed, R2 is underexpressed, R3 is overexpressed, and R4
is overexpressed. Thus, the detection of the disease can be done by computing logical
AND of the above mentioned four RNA expression tests. In case it is established that
the disease exists, a curing drug should be released. While in any other case, the drug
should not be released. Figure 6 (a) illustrates the aforementioned logic in the form of
a state diagram.

The sequencesy1, y2, y3 and y4 are characteristic sequences of RNAs R1, R2, R3, and
R4 respectively. If R1 is overexpressed then y1 is in excess, and if R2 is overexpressed

Autonomous Programmable Nanorobotic Devices Using DNAzymes 75

R1 R2 R3 R4
Yes

Disease diagnosed
Release Drug

Negative Diagnosis
Stop the process

No

underexpressionoverexpression

NoNoNo

YesYesYes

R1 excess of y1
R3 R4

excess of y3 excess of y4
R2 excess of y2

y2y1 y3 y4

D1 D2 D3 D4

lack of y3 lack of y4

y1 y2 y3 y4

underexpressionoverexpression

(a) (b)

Fig. 6. (a)A state diagram for DNAzyme doctor that controls the release of a drug RNA on the
basis of the RNA expression tests for the a disease (b) The figure shows the consequences of
overexpression and underexpression of different RNAs on the concentrations of the respective
characteristic sequences. The overexpression of R1 and R2 results in excess of y1 and y2 respec-
tively, and they block the path of input nanostructure by hybridizing with D1 and D2. Similarly
underexpression of R3 and R4 results in excess of y3 and y4 respectively, to block the path of
input nanostructure.

then y2 is in excess. However, if R3 is underexpressed, then lack of y3 and if R4 is un-
derexpressed, then lack of y4. But a threshold concentration of y1, y2, y3, y4 is thrown
into the solution, therefore lack of y3 causes excess of y3, and lack of y4 causes excess
of y4.

Since the DNAzyme doctor only needs to perform a logical AND, it can be imple-
mented in a simple way. We make the input nanostructure walk over four DNAzyme
stators implanted on a nanostructure in a straight path (more details in [18]). Each
DNAzyme stator represents one of the RNA expression test. In case the test is posi-
tive, the input nanostructure moves to next DNAzyme stator, otherwise it gets stuck
and ultimately floats away in the solution. Therefore, the successful traversal of input
nanostructure over all these DNAzyme stators implies that all tests are positive, and
hence positive diagnosis of the disease.

In case the first test is negative (ie. overexpression of R1), then excessively floating
y1 can bind to y1 part of the DNAzyme D1. Similarly if second, third, or fourth tests
are negative (ie.. overexpression of R2, underexpression of R3 or underexpression of
R4), then excessively floating y2, y3, or y4 can bind to y2, y3, y4 portions of DNAzyme
D2, D3, or D4, respectively. The principle idea is illustrated in Figure 6. More details
of DNAzyme doctor are presented in [18].

4 DNAzyme Router

For any arbitrary path along the network of DNAzymes in a given DNAzyme FSA, an
input nanostructure can be designed to traverse along that path. This principle can be
used for the design of a programmable routing system. The input nanostructure that
moves over the DNAzyme FSA is referred to as walker and the complete system as
DNAzyme router. The path of the walker is programmed through the state transitions
of the automata and the input symbols encoded in the walker. As an example, we can
create a state machine on a rectangular grid (Figure 5 (b)), in which you move right if
the input is 0, and towards bottom if the input is 1. Then an input nanostructure that

76 J.H. Reif and S. Sahu

represents the input 0110100 can be made to walk through the path shown by dashed
lines in Figure 5 (b).

It should be noted that in a DNAzyme router the path does not get destroyed as a
result of the motion of the walker. It is the input nanostructure (walker) that gets cleaved
in the process, which is equivalent to exhaustion of fuel as a result of motion. Most
remarkable feature of DNAzyme router is that we can have multiple walkers moving on
the grid independently, each having its own programmed path.

5 Conclusion

We have described the construction of various devices based on the DNAzymes.
DNAzymes evolve through invitro selection procedures, and these processes can be
designed to generate DNAzymes that cut distinct sequences. In the DNAzyme FSA,
the number of DNAzymes required is proportional to the number of transitions in the
automata. For binary-coded inputs the number of transitions is proportional to number
of states. It should be noted that each of the devices described in the paper need the
DNAzymes to be mounted on an addressable two-dimensional nanostructure such as
the ones constructed by Rothemund [20] or Park et al [16], which themselves are float-
ing in the solution. The molecular computer for logical control of RNA expression can
be useful in medical field if it can be used inside a cell, and the programmable walk-
ers can be a really useful tool in nanopartical transportation systems at nanoscale. In
conclusion, the designs provided in this paper might provide useful insight for research
into many interesting problems in nanotechnology.

Acknowledgement. The work is supported by NSF EMT Grants CCF-0523555 and
CCF-0432038.

References

1. Alberti, P., Mergny, J.: DNA duplex-quadruplex exchange as the basis for a nanomolecular
machine. Proc. Natl. Acad. Sci. USA 100, 1569–1573 (2003)

2. Benenson, Y., Adar, R., Paz-Elizur, T., Livneh, Z., Shapiro, E.: DNA molecule provides a
computing machine with both data and fuel. Proc. Natl. Acad. Sci. USA 100, 2191–2196
(2003)

3. Benenson, Y., Gil, B., Ben-Dor, U., Adar, R., Shapiro, E.: An autonomous molecular com-
puter for logical control of gene expression. Nature 429, 423–429 (2004)

4. Benenson, Y., Paz-Elizur, T., Adar, R., Keinan, E., Livneh, Z., Shapiro, E.: Programmable
and autonomous computing machine made of biomolecules. Nature 414, 430–434 (2001)

5. Chelyapov, N., Brun, Y., Gopalkrishnan, M., Reishus, D., Shaw, B., Adleman, L.: DNA tri-
angles and self-assembled hexagonal tilings. J. Am. Chem. Soc. 126, 13924–13925 (2004)

6. Chen, Y., Mao, C.: Putting a brake on an autonomous DNA nanomotor. J. Am. Chem.
Soc. 126, 8626–8627 (2004)

7. Chen, Y., Wang, M., Mao, C.: An autonomous DNA nanomotor powered by a DNA enzyme.
Angew. Chem. Int. Ed. 43, 3554–3557 (2004)

8. Feng, L., Park, S., Reif, J., Yan, H.: A two-state DNA lattice switched by DNA nanoactuator.
Angew. Chem. Int. Ed. 42, 4342–4346 (2003)

Autonomous Programmable Nanorobotic Devices Using DNAzymes 77

9. LaBean, T., Yan, H., Kopatsch, J., Liu, F., Winfree, E., Reif, J., Seeman, N.: The construc-
tion, analysis, ligation and self-assembly of DNA triple crossover complexes. J. Am. Chem.
Soc. 122, 1848–1860 (2000)

10. Li, J., Tan, W.: A single DNA molecule nanomotor. Nano Lett. 2, 315–318 (2002)
11. Liu, D., Wang, M., Deng, Z., Walulu, R., Mao, C.: Tensegrity: Construction of rigid DNA

triangles with flexible four-arm dna junctions. J. Am. Chem. Soc. 126, 2324–2325 (2004)
12. Mao, C., Sun, W., Seeman, N.: Designed two-dimensional DNA holliday junction arrays

visualized by atomic force microscopy. J. Am. Chem. Soc. 121, 5437–5443 (1999)
13. Mao, C., Sun, W., Shen, Z., Seeman, N.: A DNA nanomechanical device based on the B-Z

transition. Nature 397, 144–146 (1999)
14. Matsuda, D., Yamamura, M.: Cascading whiplash pcr with a nicking enzyme. In: Hagiya,

M., Ohuchi, A. (eds.) DNA Computing. LNCS, vol. 2568, pp. 38–46. Springer, Heidelberg
(2003)

15. Nishikawa, A., Hagiya, M.: Towards a system for simulating DNA computing with whiplash
PCR. In: Angeline, P.J., Michalewicz, Z., Schoenauer, M., Yao, X., Zalzala, A. (eds.) Pro-
ceedings of the Congress on Evolutionary Computation, vol. 2, pp. 960–966, 6–9. IEEE
Press, Washington (1999)

16. Park, S.H., Pistol, C., Ahn, S.J., Reif, J.H., Lebeck, A.R., Dwyer, C., LaBean, T.H.: Finite-
size, fully addressable dna tile lattices formed by hierarchical assembly procedures. Angew.
Chem. Int. Ed. 45, 735–739 (2006)

17. Reif, J.: The design of autonomous DNA nanomechanical devices: Walking and rolling DNA.
In: Hagiya, M., Ohuchi, A. (eds.) DNA Computing. LNCS, vol. 2568, pp. 22–37. Springer,
Heidelberg (2003), Published in Natural Computing, DNA8 special issue, vol. 2, pp. 439–461
(2003)

18. Reif, J.H., Sahu, S.: Autonomous programmable dna nanorobotic devices using dnazymes.
Technical Report CS-2007-06, Duke University, Computer Science Department (2007)

19. Rose, J.A., Deaton, R.J., Hagiya, M., Suyama, A.: Pna-mediated whiplash pcr. In: Jonoska,
N., Seeman, N.C. (eds.) DNA Computing. LNCS, vol. 2340, pp. 104–116. Springer, Heidel-
berg (2002)

20. Rothemund, P.: Generation of arbitrary nanoscale shapes and patterns by scaffolded DNA
origami. Nature (2005)

21. Sherman, W., Seeman, N.: A precisely controlled DNA biped walking device. Nano Lett. 4,
1203–1207 (2004)

22. Shin, J., Pierce, N.: A synthetic DNA walker for molecular transport. J. Am. Chem. Soc. 126,
10834–10835 (2004)

23. Simmel, F., Yurke, B.: Using DNA to construct and power a nanoactuator. Phys. Rev. E 63,
41913 (2001)

24. Simmel, F., Yurke, B.: A DNA-based molecular device switchable between three distinct
mechanical states. Appl. Phys. Lett. 80, 883–885 (2002)

25. Tian, Y., He, Y., Chen, Y., Yin, P., Mao, C.: Molecular devices - a DNAzyme that walks
processively and autonomously along a one-dimensional track. Angew. Chem. Intl. Ed. 44,
4355–4358 (2005)

26. Tian, Y., Mao, C.: Molecular gears: A pair of DNA circles continously rolls against each
other. J. Am. Chem. Soc. 126, 11410–11411 (2004)

27. Turberfield, A., Mitchell, J., Yurke, B., Mills, J.A.P., Blakey, M., Simmel, F.: DNA fuel for
free-running nanomachines. Phys. Rev. Lett. 90, 118102 (2003)

28. Winfree, E.: Whiplash pcr for o(1) computing. Technical Report 1998.23, Caltech (1998)
29. Winfree, E., Liu, F., Wenzler, L., Seeman, N.: Design and self-assembly of two-dimensional

DNA crystals. Nature 394(6693), 539–544 (1998)
30. Yan, H., LaBean, T., Feng, L., Reif, J.: Directed nucleation assembly of DNA tile complexes

for barcode patterned DNA lattices. Proc. Natl. Acad. Sci. USA 100(14), 8103–8108 (2003)

78 J.H. Reif and S. Sahu

31. Yan, H., Park, S., Finkelstein, G., Reif, J., LaBean, T.: DNA-templated self-assembly of
protein arrays and highly conductive nanowires. Science 301(5641), 1882–1884 (2003)

32. Yan, H., Zhang, X., Shen, Z., Seeman, N.: A robust DNA mechanical device controlled by
hybridization topology. Nature 415, 62–65 (2002)

33. Yin, P., Yan, H., Daniell, X., Turberfield, A., Reif, J.: A unidirectional DNA walker moving
autonomously along a linear track. Angew. Chem. Int. Ed. 43, 4906–4911 (2004)

34. Yurke, B., Turberfield, A., Mills, J.A.P., Simmel, F., Neumann, J.: A DNA-fuelled molecular
machine made of DNA. Nature 406, 605–608 (2000)

	Autonomous Programmable Nanorobotic Devices Using DNAzymes
	Introduction
	Prior Autonomous Molecular Computing Devices
	Our Main Contribution
	DNA Nanomechanical Devices
	Overview of This Paper and Results

	DNAzyme FSA: DNAzyme Based Finite State Automata
	Encoding the Input Symbols
	Active Input Symbol
	States and Transitions
	Description of State Transition
	Complete State Machine
	Non-deterministic and Probabilistic DNAzyme FSA

	DNAzyme Doctor: A Molecular Computer for Logical Control of RNA Expression Using DNAzyme
	DNAzyme Router
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

