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Abstract—Molecular communication (MC) is a promising bio-
inspired paradigm, in which molecules are used to encode, transmit
and receive information at the nanoscale. Very limited research
has addressed the problem of modeling and analyzing the MC in
nanonetworks. One of the main challenges in MC is the proper
study and characterization of the noise sources. The objective of
this paper is the analysis of the noise sources in diffusion-based
MC using tools from signal processing, statistics and communi-
cation engineering. The reference diffusion-based MC system for
this analysis is the physical end-to-end model introduced in a pre-
vious work by the same authors. The particle sampling noise and
the particle counting noise are analyzed as the most relevant diffu-
sion-based noise sources. The analysis of each noise source results
in two types of models, namely, the physical model and the sto-
chastic model. The physical model mathematically expresses the
processes underlying the physics of the noise source. The stochastic
model captures the noise source behavior through statistical pa-
rameters. The physical model results in block schemes, while the
stochastic model results in the characterization of the noises using
random processes. Simulations are conducted to evaluate the capa-
bility of the stochastic model to express the diffusion-based noise
sources represented by the physical model.

Index Terms—Molecular communication, molecule counting
noise, nanonetworks, nanotechnology, particle diffusion, Poisson
noise.

I. INTRODUCTION

N ANOTECHNOLOGY is nowadays one of the most
promising emerging research fields, enabling devices

manufactured in a scale ranging from one to a hundred nanome-
ters. At this scale, a nanomachine is considered to be the most
basic structural and functional device, consisting of nanoscale
components, and able to perform tasks at the nano-level, such
as computing, data storing, sensing or actuation. Nanomachines
can be interconnected as a network, or nanonetwork [1], to exe-
cute more complex tasks and to expand their range of operation.
The characterization of communication mechanisms between
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nanomachines, the definition of channel models and the devel-
opment of architectures and protocols for nanonetworks are
new challenges that need to be addressed in the research world.

Molecular communication (MC) is a promising paradigm
for communication in nanonetworks. Unlike classical commu-
nication techniques, we believe that the integration process of
molecular transceivers in nanomachines is more feasible due
to their size and natural domain. MC follows a bio-inspired
approach, in which molecules are used to encode, transmit
and receive information at the nanoscale. Several techniques
to propagate information molecules have been proposed so
far [2], ranging from molecular motors [3], to bacteria [4] or
free diffusion [5]. We focus on the diffusion-based architecture,
as it represents the most general and widespread MC archi-
tecture found in nature. Pheromonal communication, when
pheromones are released into a fluidic medium [6], such as air
or water, is an example of diffusion-based architecture. An-
other example is calcium signaling among cells [7]. Different
mathematical models have been formulated for the diffusion of
molecules in a fluid. As an example, the theory of turbulent dif-
fusion [8] can be applied to the diffusion of pheromones, while
the theory of electro-diffusion [9] is applicable to the diffusion
of calcium ions in calcium signaling. The most general model
of molecular diffusion in fluids, which underlies all the other
models, is based on the Fick’s diffusion theory [10], [11]. In this
paper, we consider only Fick’s diffusion in order to maintain
the maximum possible generality for our diffusion-based MC
system. Further specifications of the system for the pheromonal
communication case or the calcium signaling case stem from
the general case treated in this work.

Up to date, very limited research has addressed the problem
of the analytical modeling of diffusion-based MC from an infor-
mation theoretical point of view. While in [12] some open ques-
tions about nanoscale information theory are outlined, concrete
mathematical solutions for specific diffusion-based MC archi-
tectures are not provided. Two main different diffusion-based
MC architectures have been studied by the research community
under an information theoretical point of view, on the basis on
how information is encoded in the diffusing molecules. In [13],
the information is encoded in the time of release of each mole-
cule in the diffusion channel, while in [14]–[17], the information
is encoded into variations in the concentration of molecules in
the space. The first type of architecture is theoretically analyzed
in [13], where the authors focused on the mathematical mod-
eling of the diffusion channel as a probabilistic contribution in
the time of arrival of molecules at the receiver. The model of
this system is focused on the diffusion channel, while the trans-
mitter is an ideal emitter of one or more molecules at precise
time instants, and the receiver ideally computes the molecule
time of arrival at its location. Moreover, a drift velocity is added
on top of the diffusion process. The results of simulations from
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[13] in terms of achievable information rate show that, due to
the high uncertainty in the propagation time, this architecture is
characterized by very low capacity. The work in [14] and [15]
is focused on developing an MC receiver model based on mol-
ecule concentration encoding, while the transmitter and the dif-
fusion-based propagation theory are not taken into account. In
[16], a simplified receiver model that receives one molecule at
a time is coupled with a diffusion-based channel model, while
the transmitter is an ideal molecule rate emitter. In [17], a phys-
ical model of the diffusion-based MC is developed in terms of
end-to-end information delivery at the nanoscale and models are
provided for the transmitter, the channel and the receiver. A third
possible diffusion-based MC architecture is proposed and ana-
lyzed in [18], where information is encoded in each single mol-
ecule and only the diffusion channel part is modeled, together
with other types of channels. As a consequence, the information
carried by a certain molecule is received only if that molecule
reaches the receiver location.

The proper study and characterization of the noise is one of
the main challenges in the information theoretical analysis of
diffusion-based MC. Most of the works from the literature do
not provide stochastic models for the noise sources in terms of
random processes. The results of these works are expressed in
terms of system capacity computed on numerical results from
large sets of simulations. A non-Gaussian noise is observed
through numerical results from simulations of the system
proposed in [16], even if it is not analytically modeled with a
closed-form expression of a random process. Also in [18], the
noise effects on the diffusion-based MC are resulting only from
simulations and there is no analytical model of diffusion-based
noise and no stochastic study of its underlying physical phe-
nomena. In [19], the noise analysis stems from a formulation
of the ligand-receptor reaction kinetics at the receiver side,
without accounting for diffusion. A numerical evaluation of
the system capacity is here provided in terms of probability
of having erroneous digital reception, but only under the as-
sumption of a binary squared pulse code modulation signal. In
[13], a mathematical equation for finding the system capacity
is provided and it is evaluated with numerical methods.

In this paper, we aim at the analysis of the most relevant
diffusion-based noise sources affecting MC. We use tools from
signal processing, statistics and communication engineering,
with the aim to obtain stochastic models of the sources in terms
of random processes. The reference diffusion-based MC system
for this analysis is the physical end-to-end model introduced in
[17].

Contributions from the biochemistry literature provide de-
scriptions of some physical processes underlying the noise
sources in diffusion-based MC systems. Seminal works in
biochemistry, such as [20], analyzed how free space diffusion
of molecules impairs the proper measurement of the molecule
concentration. A more recent contribution to the physical
analysis of molecule diffusion and reception in biochemical
signaling can be found in [21]. However, these contributions
tend to focus on the explanation of natural phenomena and do
not provide suitable models for MC engineering. The work in
[22] stems, on the contrary, from the simulation of a biological
signal transduction mechanism and its associated noise using
tools from communication engineering. However, the analysis

of the system is limited to a numerical evaluation of the sim-
ulation results using communication engineering parameters
[e.g., the signal-to-noise ratio (SNR)]. No stochastic models are
provided in [22] for the noise sources, but the results are coming
from numerical simulations. In [23], the authors develop only a
preliminary information theoretic model applied to the study of
intracellular communication with the diffusion of calcium ions.

The noise sources considered in this paper are modeled in
a twofold fashion: the physical model provides a mathemat-
ical analysis of the physical processes which generate the noise,
while the stochastic model aims at capturing those physical pro-
cesses through statistical parameters. The physical model con-
tains all the physical variables which contribute to the gener-
ation of the noise. The stochastic model summarizes the noise
generation using random processes and their associated parame-
ters. While the physical model provides a means to simulate the
generation of noise in MC, the random nature of the diffusion
processes does not allow for a deterministic knowledge of the
noise signal. Noise impairments on MC can be studied only sta-
tistically through the parameters of the stochastic model. Sets of
noise data realizations are generated through simulation of the
physical model. The sets of noise data are then used to test the
stochastic model ability to capture the behavior of the physical
processes which generate the noise.

The remainder of the paper is organized as follows. In
Section II, some assumptions for the proposed noise analysis
are introduced, and the diffusion-based noise sources are
briefly defined with reference to the end-to-end model from
[17]. The first noise source, namely, the particle sampling noise,
is analyzed in Section III, whereas the second noise source,
namely, the particle counting noise, is treated in Section IV.
The physical models for the two noise sources are introduced
in Sections III-A and IV-A, while the stochastic models are
outlined in Sections III-B and IV-B, respectively. Simulations
are provided in Section V for each noise source with the objec-
tive to test the stochastic model ability to capture the behavior
of the physical models. Finally, in Section VI, we conclude the
paper and present some future open research problems.

II. THE DIFFUSION-BASED NOISE IN THE END-TO-END MODEL

The end-to-end (including channel) model from [17] de-
scribes the diffusion-based MC in terms of transmission,
propagation and reception of particles, as sketched in Fig. 1.
The three-dimensional space S is here indexed through the
Cartesian axes X, Y, and Z. The transmitter is placed at the
axes origin. The emission process modulates the particle con-
centration rate at the transmitter according to an input signal.
The modulation is achieved through the release/capture of
particles into/from the emission gaps. The modulated particle
concentration rate is the output of the transmitter and the input
of the propagation. The propagation relies on the diffusion
process of the particles in the space S to output the particle
concentration at the receiver. The receiver senses the variations
in the particle concentration at its location as input and it
recovers the output signal. The reception process generates the
output signal by means of chemical receptors. A mathematical
analysis of the communication channel of Fig. 1 is provided
in [17] by comparing the input and the output signals. The
normalized gain and delay between inputs and outputs are
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Fig. 1. Graphical representation of the end-to-end model.

Fig. 2. Block scheme of the end-to-end model and the diffusion-based noise
sources.

computed as functions of the frequency and the transmission
range for the three underlying physical processes, namely, the
particle emission, diffusion and reception, as well as for the
overall end-to-end model. However, the analysis from [17] does
not account for diffusion-based noise effects on the information
signal as it propagates through the end-to-end model. In this
paper, we complete the model introduced in [17] by providing
an analysis of the possible diffusion-based noise sources.

The analysis of the diffusion-based noise sources stems from
the assumptions defined for the end-to-end model in [17]:

• All the processes take place inside the space , with refer-
ence to Fig. 1, which contains a fluidic medium and it has
infinite extent in all three dimensions.

• A particle is an indivisible object that can be released into,
or collected from, the space .

• When a particle is not being released or collected, it is
subject to the diffusion process in the fluidic medium con-
tained in the space .

• The shape, size and mass of a particle are considered neg-
ligible.

Two type of noises are identified and studied in this paper,
namely, the particle sampling noise and the particle counting
noise. The particle sampling noise and the particle counting
noise are analyzed as the most relevant diffusion-based noise
sources affecting the physical end-to-end model in Sections III
and IV, respectively. In the following, we define each noise
source with reference to the block scheme in Fig. 2.

The “PARTICLE SAMPLING” is related to the Emission
Process at the transmitter. During the emission process, parti-
cles are emitted from the particle transmitter according to the
input signal , which modulates the particle concentration
rate at the transmitter location:

(1)

According to the transmitter model in [17], the modulation of
the particle concentration rate does not follow any specific dig-
ital modulation scheme. The signal can be in general any
continuous function of the time and the modulated particle
concentration rate , output of the transmitter, is a function
of . The particle sampling noise is expressed as . The
effect of is an unwanted perturbation on the output of the
emission process , which results in :

(2)

The particle sampling noise is generated by the “PARTICLE
SAMPLING,” which occurs when the particle concentration
rate is being modulated through the emission of the
particles. The noise effects arise from the discreteness of the
particles that compose the particle concentration rate . The
particle concentration rate in output from the emission
process is caused by a particle flux between the transmitter and
the external space. Given the discreteness of the particles, the
particle concentration rate is sampled by the particles
themselves, resulting in the particle concentration rate .
Further details on the analysis for this type of noise are provided
in Section III.

The “PARTICLE COUNTING” is related to the signal propa-
gation due to the Diffusion Process. The signal contained in the
particle concentration rate propagates due to the particle
diffusion from the transmitter location to the receiver location.
The particle concentration value , a measure of the particle
concentration at the receiver location, is the output of the diffu-
sion process:

(3)

According to the signal propagation model in [17], the modu-
lated particle concentration rate creates differences in par-
ticle concentration across the space . These differences cause
a nonhomogeneous particle concentration inside the space
which, due to the particle diffusion, causes variations in the par-
ticle concentration at the receiver location. The particle
counting noise is expressed as . The effect of is an
unwanted perturbation on the output of the diffusion process

, which results in :

(4)

The particle counting noise occurs when the particle con-
centration value is being measured at the receiver location
(“PARTICLE COUNTING”), and it is due to the randomness
in the movement and to the discreteness of the particles. The
particle concentration at the receiver location is computed
by counting the number of particles present in the reception
space. Fluctuations and imprecisions in counting the particles
impair the proper computation of the concentration . The
actual computed concentration differs from . The
analysis for this type of noise is provided in Section IV.

During the Reception Process, the particle concentration
at the receiver location is sensed by means of chemical

receptors and an output signal is generated accordingly:

(5)
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According to the analysis presented in this paper, the particle
reception process at the receiver is not associated to diffusion-
based noise sources. Other types of physical phenomena, which
stem from the ligand-receptor kinetics of the chemical receptors,
contribute as noise at the receiver. Due to the complexity of
these phenomena and to their heterogeneity with respect to the
present work, a thorough analysis of the noise sources in the
reception process will be presented in a separate future work.

The analysis of the noise sources results both in physical
models and stochastic models. With the former we aim at the
mathematical expression of the physical processes underlying
the noise sources (Sections III-A and IV-A), while with the latter
we model the noise source behaviors through the use of statis-
tical parameters (Sections III-B and IV-B).

The physical models are expressed through the block schemes
in Figs. 5 and 10, which expand in detail the blocks and

from Fig. 2, respectively. The particle sampling noise
physical model is further detailed through (9), (10), (12), (13),
(15), and (16), while the particle sampling noise physical model
is detailed in (34), (35), (37), (38), (39), (40), (41), and (42).

The stochastic models are analyzed in terms of random
processes, such as in (22) and (49), and their effects on the
end-to-end model are expressed in terms of root mean square
(RMS) perturbation of the noise on the signal, as in (31)
and (65). The RMS of the perturbation on the
signal (which is or , respectively) corresponds
to the square root of the average of the squared noise process

:

(6)

where corresponds to or , respectively, and denotes
the ensemble average operator. The stochastic noise modeling
for the aforementioned noise sources is therefore focused on the
proper determination of the statistical parameters of their per-
turbations in relation to the processes expressed by the physical
models.

III. THE PARTICLE SAMPLING NOISE

A. The Physical Model

The particle sampling noise affects the physical end-to-end
model from [17] at the transmitter. When a signal has to be
delivered through the physical end-to-end model, the transmitter
modulates the particle concentration rate at the transmitter
location according to the value of itself. The modulation
of the particle concentration rate is achieved by means of the
particle emission process, sketched in Fig. 3, which is based on
the following assumptions:

• The transmitter has a spherical boundary that divides the
space in proximity of the transmitter into two areas: the
inner area and the outer area.

• The inner concentration is the concentration of par-
ticles lying in the inner area, whereas the outer concentra-
tion is the concentration of particles lying in the outer
area.

• The inner area and the outer area are spatially connected
by means of emission gaps. An emission gap is an opening
in the spherical boundary which allows particles to move
through due to their diffusion. The size of an emission gap
allows only one particle to pass through at each time in-

Fig. 3. Graphical sketch of the emission process.

stant. Whenever a particle is traversing the emission gap,
its movement has only components along the radius of the
spherical boundary. As a consequence, the movement of
a particle through the emission gap can only be outward
(from the inner area to the outer area) or inward (from the
outer area to the inner area). The emission gaps are many
and homogeneously distributed on the surface of the spher-
ical boundary. The present noise analysis does not depend
on their precise number. We believe it will be important to
discuss the impact of the number of emission gaps on the
end-to-end model in our future work.

• Whenever there is a difference between the inner concen-
tration and the outer concentration , a move-
ment of particles is stimulated between the inner area and
the outer area through the emission gaps.

• The movement of particles between the inner area and the
outer area causes a variation in the outer concentration,
whose first time derivative is the particle concentration rate
at the transmitter location .

• Particles can be created/destroyed in the inner area in order
to reach a desired inner concentration , with refer-
ence to the model of the particle emission process from
[17]. The creation/destruction of particles in the inner area
is supposed to be ideally perfect and instantaneous. As a
consequence, we do not account for the randomness that
can derive from the creation/destruction of particles. We
believe that this is a reasonable approximation that allows
us to analyze the noise contributions coming only from
the emission process. Further analysis can be conducted by
specifying the processes involved in the creation/destruc-
tion of particles. As an example, the creation/destruction of
particles could be realized through a cascade of chemical
reactions or by the emptying/filling of particle reservoirs
located in the inner area.

• The transmitter is supposed to be able to adjust the inner
concentration in order to obtain a particle concentra-
tion rate proportional to the signal (modulation
of according to ).

Those assumptions are inspired by biochemistry principles
related to the living cells and to the mechanisms in cell biosig-
naling [24]. According to this, the spherical boundary is a sim-
plification of the cell plasma membrane, which separates the
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interior of a cell from the outside environment. The emission
gaps are inspired by the channels that permit the selective pas-
sage of molecules through the plasma membrane of a cell. As
an example, the gated ion channels in the plasma membrane are
openings that allow the passage of specific ion molecules be-
tween the interior of a cell and the outside environment and,
amongst others, they serve for cell-to-cell communication pur-
poses. As stated in [24], those ion molecules, while traversing
the gated ion channels, are driven by a force that is a sum of two
terms. The first term of the force is a function of the difference
between the inside and the outside concentration of the same
molecules and it depends on the diffusion. The second term of
the force is a function of an electrical potential and it is related
to the electrostatic charge carried by the ion molecules. Since,
according to our assumption, the particles in our system do not
carry any electrostatic charge, when they traverse an emission
gap they are driven only by the first term of the force. For this,
the difference in the concentration of particles between the inner
area and the outer area stimulates the driving force that permits
their movement through the emission gaps either outward or in-
ward, as explained above.

The model of the emission process provided in [17] does not
take into account the discrete nature of the particles when there
is a flux between the inner area and the outer area of the spher-
ical boundary. As a consequence, the relation between the input
signal and the resulting particle concentration rate is
a continuous function:

(7)

where expresses the Emission Process block shown in Fig. 2.
We have the additional following assumption for the particle
emission process:

• The particle flux between the inner area and the outer area
of the spherical boundary is composed of discrete particles.

As a result, the relation between the input signal and the
resulting particle concentration rate, denoted by , is no
longer a continuous function. The overall process that takes
the input signal as input and returns as output is
called “PARTICLE SAMPLING” and it is graphically sketched
in Fig. 4. The “PARTICLE SAMPLING” is composed of the
Emission Process block and the particle sampling noise block

, as shown in Fig. 2. During the “PARTICLE SAM-
PLING,” single particles flowing between the inner area and
the outer area contribute to the concentration rate with a
value at discrete time instants . These discrete
time instants are not equally spaced, due to the random nature
of the particle movements between the inner area and the outer
area. As a consequence, the resulting particle concentration
rate is nonuniformly sampled at randomly spaced time
instants , where it assumes values equal to , and it is zero
for any other time instant:

(8)

where is a Dirac delta function. According to the Nyquist
theorem [25], since the time instants are randomly spaced,
the continuous particle concentration rate can be recon-
structed from the nonuniform sampled particle concentration
rate if the bandwidth of is limited up to frequency

Fig. 4. Graphical sketch of the “PARTICLE SAMPLING”: Emission process
and particle sampling noise contribution.

Fig. 5. Block scheme of the particle sampling noise physical model when
� � � � � .

, where is the average interval
between two consecutive samples of . As a consequence,
given a fixed bandwidth for the system, the degradation caused
by the particle sampling noise on the particle concentration rate,
output from the transmitter depends on the average rate of the
events of single particles flowing between the inner area and
the outer area. This event rate corresponds to the particle con-
centration rate and the system bandwidth depends on the
parameters defined in [17]. This result is confirmed through
the stochastic model of the particle sampling noise, outlined in
Section III-B.

The “PARTICLE SAMPLING” physical model is repre-
sented though the block scheme shown in Fig. 5. The signal

is the input of the Emission Process block, whose output
is the particle concentration rate . The physical model
of the particle sampling noise takes as input the particle
concentration rate that the emission process would pro-
duce in output in the absence of noise. The particle sampling
noise is composed of a decision block and a nonuniform
sampler, which have as input the transmitter kinetic state ,
and a divisor. The output of the particle sampling noise is
the particle concentration rate affected by noise, namely, .

The transmitter kinetic state , as shown in Fig. 6, is
a set composed by the location and the net velocity
of each particle at time present in the surrounding of the
transmitter spherical boundary

(9)

where is the number of particles in the system and varies
as a function of the time . The net velocity is here defined
as the nonisotropic component of a particle speed, in contrast
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to the Brownian motion in free space which has isotropic com-
ponents. In order to realistically simulate the transmitter kinetic
state , we consider two different contributions to the par-
ticle displacement, namely, the Brownian motion and the time
integral of the particle net velocity from time instant to time
instant . The time instant corresponds to the beginning of the
emission process. The expression of the particle location
is written as follows:

(10)

where the Brownian motion components, namely, ,
and , are random variables with normal distribution, zero
mean value and variance equal to , according to the ex-
pression of the Wiener process [26]:

(11)

along the versors of the Cartesian axes, namely, , and .
is the diffusion coefficient and is the simulation time step
and it depends on how the transmitter kinetic state is sampled
during the physical model simulation. The smaller is the time
step , the closer is the simulation to the real physical phe-
nomenon of particle diffusion. The value of the time step
defines the time resolution with which we model events con-
cerning particles changing their space area. According to the
Nyquist theorem [25], if the value of the time step is smaller
than , where is the bandwidth of the particle con-
centration rate , then we can have a perfect simulation of
the sampling noise generation as it happens in reality. When the
particle is located inside the inner area or the outer area, it is
only subject to the Brownian motion. In these cases, the particle
speed has only the isotropic components due to the Brownian
motion in free space, and its net velocity is equal to zero.
When the particle is traversing an emission gap, its movement
can only be outward incase of positive rate or
inward in case of negative rate along the radius
of the spherical boundary. In order to quantify the particle net
velocity , we consider that the particle concentration rate

is given only by the contribution of the particles traversing
the emission gaps. Given a particle concentration rate ,
the number of particles traversing the emission gaps in a unit
time is given by the transmitter inner concentration in
case of positive rate and by the transmitter outer
concentration in case of negative rate , mul-
tiplied by their average velocity. When they traverse the emis-
sion gap, the particle average velocity corresponds to the net
velocity . As a consequence, the particle net velocity
is proportional to the particle concentration rate , divided
by the transmitter inner concentration in case of positive
rate , or divided by the transmitter outer concentra-
tion in case of negative rate :

if in inner or outer
if in emission gap

(12)

where is equal to 1 when condition is true and 0
otherwise. is the versor along the radius of the transmitter
spherical boundary.

Fig. 6. Graphical sketch of the transmitter kinetic state �� ��� at time �. �� ���
depends on the particle concentration rate � ��� in input through the expressions
in (9) and (10).

The decision block assigns the value of according to the
transmitter kinetic state . is assigned a positive value
or a negative value according whether there is an event in
the kinetic state concerning a particle changing its space
area, e.g., from the inner to the outer area, with contribution
to the rate, or from the outer to the inner area, with contribution

:

if from inner to outer
if from outer to inner

(13)

The value of k equals a contribution of one particle to the con-
centration at the transmitter location or, in other words, it is the
constant difference in the particle concentration from con-
secutive time instants :

(14)

The nonuniform sampler block samples at time instants ,
which are functions of the transmitter kinetic state . If,
at time instant , there is an event in the kinetic state
concerning a particle changing its space area, the nonuniform
sampler block produces a Dirac impulse at , with amplitude
equal to the current value of , which is the output from the
decision block:

changes space area (15)

The divisor block divides the output of the sampler by the
time interval between the previous sample at and the cur-
rent sample, which is at . As a consequence, the output of the
divisor block for the time interval , which
corresponds to the particle concentration rate affected by
noise, is

for (16)

For a time interval spanning from to , the result is
the expression introduced in (8).
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Fig. 7. Block scheme of the particle sampling noise stochastic model.

Since it is not possible to always have the knowledge of the
kinetic state of the system due to the huge amount of
information and to the randomness in the particle motion, we
cannot analytically compute the value of as function of

from the physical model of the particle sampling noise.
Using the physical model provided here, we can only simulate
the behavior of the particle sampling noise .

B. The Stochastic Model

The particle sampling noise can also have another formula-
tion, through statistical parameters, which is suitable when the-
oretical studies require an analytical expression of the noise. For
this, the particle sampling noise is generated by a random
process , whose contribution corresponds to the difference
between the particle concentration rate affected by noise
and the expected particle concentration rate , where
denotes the ensemble average operator

(17)

The expected particle concentration rate corresponds to
the time-continuous particle concentration rate that we would
expect in the absence of the particle sampling noise:

(18)

In other words, is an unwanted perturbation on the
particle concentration rate around its expected value
due to the particle sampling noise. In Fig. 7, we show the
main block scheme of “PARTICLE SAMPLING” when the
stochastic model is applied for the particle sampling noise. The
random process , as it is proved in the following, depends
on the value of the particle concentration rate , output
from the Emission Process block which receives the signal to
be transmitted as input. The sum of the random process

and the particle concentration rate is the particle
concentration rate affected by the particle sampling noise,
namely, .

In order to properly model the random process , we con-
sider the following assumptions:

• The outer particle concentration at the transmitter
increments/decrements its value whenever a single event
concerning a particle changing its space area occurs.

• The probability of having two simultaneous events con-
cerning particles changing their space area is zero. In other
words, it is unlikely to have two particles crossing the
spherical boundary of the transmitter at the same exact time
instant. With reference to the physical model of the particle

sampling noise from Section III-A, this assumption trans-
lates into the statement: the probability of having two sam-
ples from the nonhomogeneous sampler at the same time
instant is zero. In the equation, it becomes

(19)

This assumption is justified by the independency of the
Brownian components in the movement of different par-
ticles in the space. This assumption directly translates into
the property of orderliness for the outer particle concen-
tration increments/decrements. The property of or-
derliness states that the probability that the difference be-
tween outer particle concentrations time apart from each
other is higher than the contribution from a single par-
ticle, tends to zero as tends to zero:

(20)

where is defined through (14).
• An event concerning a particle changing its space area

(passing through an emission gap) occurring after time
is independent of any event of the same kind occurring be-
fore time . This assumption is justified by the property
of the Wiener process underlying the particle Brownian
motion of having independent increments. As stated in
Section III, particles are subject only to the contribution
of the Brownian motion when they are located inside the
inner area or the outer area. An event concerning a par-
ticle passing through an emission gap takes place when-
ever a particle, due to the Brownian motion, reaches the
location of an emission gap: If there is a nonzero particle
concentration rate in the outer area, the particle traverses
the emission gap with net velocity , given by (12).
In other words, given a particle concentration rate in the
outer area, which controls the average rate of occurrence
of an event of this kind, the statistics of the event is solely
dependent on the Brownian motion of the particles. As a
consequence, the distribution of the time interval between
an event at time and another event at time is inde-
pendent from the distribution of the time interval between
an event at time and an event at time . The two
distributions have the same expression from (11):

(21)

where is the motion component along the versor
at time is the diffusion coefficient and is positive.
Equation (21) is valid also for the motion components
and along the versors and , respectively. This im-
plies that a particle motion from time is independent from
any motion of the particle occurred before time . Being all
the particles independent among each other, events con-
cerning a change in the particle space area show the same
independence. As a consequence, the events concerning
particles changing their space area have the property of
memorylessness.

• The occurrence rate of events concerning particles
changing their space area is proportional to the flux
of the particles between the inner area and the outer area.
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The flux of the particles is proportional to the expected
particle concentration rate at the transmitter location

.
Under these assumptions [26], the resulting outer particle con-
centration at the transmitter is a double nonhomogeneous
Poisson counting process, whose rate of occurrence corresponds
to the expected particle concentration rate . The distribu-
tion of the outer particle concentration corresponds to a
Poisson counting process with rate of occurrence when-
ever the particle concentration rate is positive. Whenever
the particle concentration rate is negative, is the
negative of a Poisson counting process with rate of occurrence

:

Poiss
Poiss

(22)

When the emission process is subject to the particle sampling
noise, the particle concentration rate at the transmitter location

corresponds to the first finite time difference of the par-
ticle concentration , which is step-wise and, therefore, not
derivable:

(23)

Since the particle concentration is a double nonhomoge-
neous Poisson counting process, the particle concentration rate
at the transmitter location is the first finite time difference
of a double nonhomogeneous Poisson counting process, whose
average value , where denotes the ensemble average
operator, has the same value as the rate of occurrence of the orig-
inating double Poisson counting process:

(24)

and whose autocorrelation is the expected squared particle con-
centration rate added to the expected particle concentra-
tion rate itself only for correlation lag equal to 0:

(25)

where is a Dirac delta. Given (17) and (18), the random
process has zero average value and its autocorrelation

is equal to the expected particle concentration rate
for correlation lag equal to 0:

(26)

Therefore, the random process is white [26], and its mean
squared value is the expected particle concentration rate :

(27)

Taking into account (6), then the RMS of the perturbation
on the expected particle concentration rate

is equal to the square root of the expected particle concentration
rate :

(28)

According to [17], the relation between the input signal
and the particle concentration rate is expressed in the fre-
quency domain as

(29)

where and are the Fourier transforms [27] of
the system input signal and the particle concentration
rate at the transmitter location, respectively. is
the transfer function Fourier transform [27] (TFFT) of the
transmitter module. The same relation in the time domain
becomes

(30)

where denotes the convolution operator [27], is the
impulse response of the transmitter module and is the
input signal. The formula for the RMS of the perturbation

on the signal becomes

(31)

IV. THE PARTICLE COUNTING NOISE

A. The Physical Model

The particle counting noise affects the physical end-to-end
model from [17] at the signal propagation. When the particle
concentration rate is being modulated at the transmitter
location , the signal propagates until
reaching the receiver location , where the particle
concentration value is measured through the
quantity . The propagation of the signal is achieved by
means of the particle diffusion process, sketched in Fig. 8, which
is based on the following assumptions:

• The linear size of the transmitter (radius of the spherical
boundary) is considered negligible with respect to the dis-
tance between the transmitter and the receiver. Therefore,
the transmitter is approximated as a point-wise concentra-
tion rate source at the location .

• Particles are propagating from the transmitter loca-
tion to the receiver location

solely by means of the laws of free diffusion
in a fluidic medium.

• The measure of the particle concentration takes place in-
side the receptor space. The receptor space has a spherical
shape of radius .

• The particle concentration is considered ho-
mogeneous inside the receptor space and equal to the par-
ticle concentration value at the receiver location, namely,

.

The model of the particle diffusion process provided in [17]
does not take into account the discrete nature of the particles
and the randomness of their movements when the concentration

inside the receptor space is measured. There-
fore, the measured particle concentration is considered
equal to the true particle concentration at the receiver location

:

(32)
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Fig. 8. Graphical sketch of the diffusion process.

In the present analysis, we introduce the following assumptions:
• The receptor space contains a discrete number of particles.
• Particles may enter/leave the receptor space due to

the diffusion process, even when the concentration
at the receiver location is maintained at a

constant value.
As a result, the measured particle concentration suffers
from two effects. The first effect is given by the quantization
of the concentration measure due to a discrete number of
particles inside the receptor space. The second effect is given
by fluctuations in the concentration measure due to single
events of particles entering/leaving the receptor space. The
overall process that takes the particle concentration rate
as input and returns as output is called “PARTICLE
COUNTING” and it is graphically sketched in Fig. 9. The
“PARTICLE COUNTING” is composed of the Diffusion
Process block and the particle counting noise block ,
as shown in Fig. 2. During the “PARTICLE COUNTING”
particles present inside the receptor space at time instant are
counted, and their number is divided by the size of the
receptor space :

(33)

where is a discrete integer number.
The “PARTICLE COUNTING” physical model is repre-

sented though the block scheme shown in Fig. 10. The particle
concentration rate is the input of the Diffusion Process
block, whose output is the true particle concentration .
The physical model of the particle counting noise takes
as input the true particle concentration that the diffusion
process would produce in output in the absence of noise. The
particle counting noise is composed of two branches, as
shown in Fig. 10. The upper branch has a decision block and a
nonuniform sampler, which have as input the receiver kinetic
state , while the lower branch has a multiplier and rounder
block and it takes as input the true particle concentration .
The two branches are then added and the result is followed by

Fig. 9. Graphical sketch of the “PARTICLE COUNTING”: diffusion process
and particle counting noise contribution.

Fig. 10. Block scheme of the particle counting noise physical model.

a divisor. The output of the particle counting noise is the
particle concentration affected by noise, namely, .

The receiver kinetic state , as shown in Fig. 11, is a
set composed by the location of each particle at time
present in the surrounding of the receptor space:

(34)

where is the number of particles in the system and varies
as a function of the time . In order to realistically simulate the
receiver kinetic state , we consider the Brownian motion
contribution at every time instant . The expression of the par-
ticle location is written as follows:

(35)

where the Brownian motion velocity components, namely,
and , are random variables with normal distri-

bution, zero mean value and variance equal to , according
to the expression of the Wiener process [26]:

(36)

along the versors of the Cartesian axes, namely, , and . is
the diffusion coefficient and is the simulation time step and
it depends on how the receiver kinetic state is sampled during
the physical model simulation. The smaller is the time step ,
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Fig. 11. Graphical sketch of the receiver kinetic state �� ��� at time �. �� ���
depends on the particle concentration � ��� in input through the expressions in
(34) and (35).

the closer is the simulation to the real physical phenomenon of
particle diffusion. The particle number is proportional to
the particle concentration multiplied by the size
of the simulation space , shown in Fig. 11, which includes the
receptor space

size (37)

The decision block assigns the value of according to the re-
ceiver kinetic state . can assume either value 1 or de-
pending whether the kinetic state has an event concerning
a particle that is entering or leaving the receptor space, respec-
tively:

if enters the receptor space
if leaves the receptor space

(38)

The nonuniform sampler block samples at time instants ,
which are functions of the receiver kinetic state . If, at
time instant , there is an event in the kinetic state
concerning a particle entering/leaving the receptor space, the
nonuniform sampler block produces a Dirac impulse at , with
amplitude equal to the current value of , in the output
from the decision block:

ent./ leav.rec.space (39)

The integration block integrates the output from the nonuni-
form sampler for a time interval equal to in the past up to time
, namely, :

(40)

corresponds to the time interval in which we expect a
quasi-constant particle concentration and its effect on the par-
ticle counting noise is further discussed in Section IV-B. The
result of the integration block is the perturbation at
time in the number of particles inside the receptor space.

The multiplier and rounder block rounds the particle con-
centration multiplied by the size of the receptor space

. The output of this block corresponds to the expected
number of particles contained in the receptor space at
time instant :

round (41)

The divisor block divides the sum of the output coming from
the two branches, namely, and , by the size of the
receptor space . As a consequence, the output of the
divisor block corresponds to the particle concentration at
the receiver affected by noise:

(42)

Since it is not possible to always have knowledge of the ki-
netic state of the system due to the huge amount of infor-
mation and to the randomness in the particle motion, we cannot
analytically compute the value of as function of
from the physical model of the particle counting noise. Using
the physical model provided here, we can only simulate numer-
ically the behavior of the particle counting noise .

B. The Stochastic Model

The particle counting noise, similarly to the particle sampling
noise, can also have another formulation, through statistical pa-
rameters, which is suitable when theoretical studies require an
analytical expression of the noise. Statistical parameters for the
particle counting noise, such as the RMS value, are provided
in [21] without the definition of a complete stochastic model
in terms of random processes. The derivation of these statis-
tical parameters in [21] stems from a formulation of the particle
counting noise in terms of macroscopic thermodynamic fluctu-
ations in the system, without accounting for a particle-by-par-
ticle analysis. In this paper, we detail the knowledge of the par-
ticle counting noise by providing a stochastic model of the noise
source. This model is obtained by stemming from the phys-
ical model outlined in Section IV-A, where the system is mod-
eled in a particle-by-particle fashion. As will be proved in the
following, the statistical parameters computed through the sto-
chastic model provided here are in agreement with those from
[21].

The particle counting noise is generated by a random
process , whose contribution corresponds to the difference
between the measured particle concentration and the ex-
pected particle concentration , where denotes the en-
semble average operator:

(43)

The expected particle concentration corresponds to the
true particle concentration that we would measure at the
receiver in the absence of the particle counting noise:

(44)

In other words, is an unwanted perturbation on the par-
ticle concentration measured at the receiver location around
its expected value due to the particle counting noise. In
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Fig. 12 we show the main block scheme of the “PARTICLE
COUNTING” when the stochastic model is applied for the
particle counting noise. The random process , as it is
proved in the following, depends on the value of the particle
concentration at the receiver , output from the diffusion
process, which receives the transmitted particle concentration
rate as input. The sum of the random process
and the true particle concentration at the receiver is the
particle concentration affected by the particle counting noise,
namely, . In order to properly model the random process

we consider the following assumptions:
• The actual number of particles inside the receptor

space at time is a random process whose average value is
the true particle concentration at the receiver multiplied by
the size of the receptor space:

(45)

• It is unlikely to have two particles occupying the same lo-
cation in space at the same time instant . In other words,
the probability of having a distance equal to zero between
two particles at the time instant is zero:

(46)

where is given by (37), is the Euclidian distance
operator and and are two particles present in the simu-
lation space defined in Section IV-A. This assumption
is justified by the independence of the Brownian compo-
nents in the movement of different particles in the space.
This assumption directly translates into the property of or-
derliness for the counting process of the number of parti-
cles at a location in the space

(47)

where is a movement in the three directions of the space
from to .

• An event concerning a particle which occupies a location in
space is independent of any event of the same kind oc-
curring at another space location . This assumption
is justified by the property of the Wiener process under-
lying the particle Brownian motion of having independent
realizations. In other words, the distribution of the distance
between the location of a particle in and another par-
ticle in is independent from the distribution of
the distance between the same particle at and another
particle present at location , where .
The two distributions have the same expression from (36):

(48)

This implies that the location of a particle is independent
from the location of any other particle. As a consequence,
the events concerning the location of particles in the space
have the property of memorylessness.

Fig. 12. Block scheme of the particle counting noise stochastic model.

• The occurrence rate of particle location in the space is pro-
portional to the particle concentration at the receiver lo-
cation , equal to the expected true particle
concentration .

Under these assumptions, the resulting actual number of parti-
cles inside the receptor space is a volume nonhomoge-
neous Poisson counting process, whose rate of occurrence cor-
responds to the expected particle concentration :

Poiss (49)

According to the Poisson process [26] in (49), the expected
number of particles contained in the receptor space can
be computed by multiplying the volume Poisson process rate,
which is the concentration , by the size of the receptor
space and it is in agreement with the assumption made
in (45). The variance in the number of particles contained in the
receptor space has the same value as [26]:

(50)

The actual measured particle concentration corre-
sponds to the actual number of particles divided by the
size of the receptor space

(51)

Therefore, the average of the actual measured particle
concentration is equal to the expected particle concentration

:

(52)

The variance of the actual measured particle concentration is
equal to the expected particle concentration divided by
the size of the receptor space:

(53)

Given (43), (44), and (6), the random process has zero
average value and the RMS of the perturbation on the
actual measured particle concentration is

(54)
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It is possible to reduce the value of by averaging
in time a number of measures of the particle concentration

:

(55)

The best results in terms of noise are obtained when the mea-
sures are statistically independent. For this, we assume indepen-
dent measures when they are taken at time instants spaced by an
interval , as defined in [20]. If we assume to have a quasi-con-
stant expected concentration in a time interval (which means
that the bandwidth of the signal is less than [27]), the
maximum value of is equal to the time interval divided by

:

(56)

thus, reducing the RMS of the perturbation by a
factor

(57)

The waiting time corresponds to the average time required
for a particle to leave the reception space. is equal to the av-
erage distance to the spherical boundary, divided by the velocity
of a particle . The average distance corresponds to the receptor
space radius :

(58)

The velocity of a particle comes from the first Fick’s law
of diffusion [10], [11]. For this, the particle concentration flux

at time instant and location , is equal to the spatial
gradient (operator ) of the particle concentration mul-
tiplied by the diffusion coefficient :

(59)

When we have homogeneous concentration inside the re-
ceptor space and zero concentration outside the receptor space,

is equal to the opposite of the concentration di-
vided by the radius of the receptor space. Further, the particle
concentration flux is equal, by definition, to the particle
concentration multiplied by the particle velocity . If we
solve (59) for the particle velocity, we obtain

(60)

The average time is therefore equal to the radius squared
and divided by the diffusion coefficient

(61)

which is in agreement with the results from [20], [21]. The final
expression for the RMS of the perturbation be-
comes

(62)

where is the expected measured particle concentration,
is the diffusion coefficient, is the radius of the receptor space
and is the time interval in which we expect a quasi-constant
particle concentration. The validity of (62) is confirmed by the
results from [21], where the authors reach the same expression
for the RMS of the particle counting noise by applying a dif-
ferent approach, as explained above.

According to [17], the relation between the input particle con-
centration rate and the measured particle concentration

at the receiver location is expressed in the frequency
domain as

(63)

where and are the Fourier transforms [27] of the
particle concentration rate and the particle concentration

, respectively. is the TFFT [27] of the propagation
module. The same relation in the time domain becomes

(64)

where denotes the convolution operator [27], is the im-
pulse response of the propagation module and is the input
particle concentration rate. The formula for the RMS of the per-
turbation on the signal becomes

(65)

where is the diffusion coefficient, is the radius of the spher-
ical receptor space, and is the time in which we expect a
quasi-constant particle concentration.

V. SIMULATIONS

In this section, we present a numerical analysis of the dif-
fusion-based noise models. Sets of noise data realizations are
generated through simulation of the physical model. These sets
of noise data are then used to test the stochastic model ability to
capture the behavior of the physical processes which generate
the noise.

A. The Particle Sampling

The simulations of the physical model for the particle sam-
pling noise are computed by applying to the scheme in Fig. 5 a
sinusoidal signal in the particle concentration rate :

(66)

where is the frequency of the sinusoid in hertz, is the
value of the maximum particle concentration rate in particles

m s , and is the simulation time index in milliseconds.
The input of the physical model simulation is a sinusoidal

particle concentration rate with frequency equal to
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Fig. 13. The particle sampling noise physical model simulation input.

Fig. 14. The particle sampling noise physical model simulation output.

4 Hz and maximum particle concentration rate of 10 particles
m s , as shown in Fig. 13. The radius of the transmitter

spherical boundary is 1 m. The simulation runs for 1 s by
steps of 1 ms. The output noisy particle concentration rate

of the physical model simulation is shown in Fig. 14.
During the simulation, particles are generated inside the

transmitter spherical boundary at random locations whenever
the particle concentration rate is positive. Particle dele-
tion is randomly performed inside the transmitter spherical
boundary whenever is negative. Through particle gener-
ation and particle deletion we control the number of particles
in the system , which is a parameter of the transmitter
kinetic state shown in (9). The Brownian motion of the
particles is modeled according to (10) and having the diffusion
coefficient cm s of calcium molecules diffusing
in a biological environment (cellular cytoplasm, [28]). Samples
contributing to the value of are generated by applying
(13) and (15) to the transmitter kinetic state . The final
results in terms of particle concentration rate is achieved
by applying (16).

Fig. 15. The particle sampling stochastic model likelihood.

The particle sampling noise has two different effects on the
sinusoidal signal, namely, signal sampling and signal amplitude
distortion. Signal sampling is given by the nonhomogeneous
sampling of the particle concentration rate in time, as
shown in Fig. 14. In nonhomogeneous sampling, samples are
separated by a nonconstant time interval. Since in the simula-
tions we apply a constant time step , for each time steps the
contributions of samples which occur within are added. The
signal amplitude distortion is given by the constant contribution
that each particle gives to the concentration at the transmitter lo-
cation, (14), whenever a sample is generated by the nonhomo-
geneous sampling. Constant contributions in nonhomogeneous
sampling cause sudden changes in the particle concentration
rate value, which result in distortions of its amplitude.

The statistical likelihood test is applied in order to assess the
stochastic model ability to capture the behavior of the phys-
ical processes which generate the noise. For this, we compute
the likelihood, that is, the probability of the noisy data coming
from the physical model simulation given the stochastic
model of the particle sampling noise, as defined in Section III-B.
In order to evaluate the reliability of the particle sampling sto-
chastic model parameters in (25) and (27), the likelihood prob-
ability is evaluated for a range of different values for the param-
eter of the Poisson processes in (22):

likelihood

Part.Sampl.stor (67)

where ranges from 0.1 to 10 particles m s for every
time instant . The results are shown in Fig. 15, where it is
clearly visible that the highest likelihood value corresponds, for
every time instant , to the value of from (66), thus con-
firming that the best particle concentration rate, parameter of the
model, is actually the particle concentration rate in input to the
physical model of the particle sampling noise.

This statistical likelihood test results shown in Fig. 15 are
compared to the results obtained through the use of a Gaussian
model in place of the particle sampling noise stochastic model.
The Gaussian model, denoted by has the same



PIEROBON AND AKYILDIZ: DIFFUSION-BASED NOISE ANALYSIS FOR MOLECULAR COMMUNICATION IN NANONETWORKS 2545

Fig. 16. The Gaussian model likelihood for the particle sampling noise.

expected value and the same variance as the particle sampling
noise stochastic model. The likelihood formula is

likelihood (68)

where ranges from 0.1 to 10 particles m s for every
time instant . The results in terms of Gaussian model likeli-
hood are shown in Fig. 16. When the Gaussian model is applied,
the likelihood shows higher values than when using the particle
sampling stochastic model, but only at specific time instants. On
average, the likelihood values shown in Fig. 16 are much lower
than the values in Fig. 15 and this proves that the particle sam-
pling stochastic model performs better than the Gaussian model.
This preliminary result confirms the validity of the particle sam-
pling stochastic model presented in this paper.

B. The Particle Counting

The simulations of the physical model for the particle
counting noise are computed by applying to the scheme in
Fig. 10 a sinusoidal signal in the true particle concentration at
the receiver :

(69)

where is the frequency of the sinusoid in Hz, is the max-
imum value of the expected particle concentration in particles

m , and is the simulation time index in milliseconds.
The input of the physical model simulation is a sinusoidal

particle concentration with frequency equal to 4 Hz and
maximum particle concentration of 2000 particles m , as
shown in Fig. 17. The radius of the spherical receptor space is

1 m. The simulation runs for 1 s by steps of 1 ms.
The output noisy particle concentration of the physical
model simulation is shown in Fig. 18.

A number of particles are deployed according to (37)
for each time at random locations inside the simulation space

, shown in Fig. 11, which includes the receptor space. The
receptor kinetic state is maintained according to (34) and
(35), where the Brownian motion of the particles is modeled
according to (36). The diffusion coefficient cm s

Fig. 17. The particle counting noise physical model simulation input.

Fig. 18. The particle counting noise physical model simulation output.

corresponds to the of calcium molecules diffusing in a
biological environment (cellular cytoplasm, [28]). The upper
branch of Fig. 10, which generates the contribution to
the final result, is computed by applying (38) and (39) to the
transmitter kinetic state . Equation (40) is applied with a
value 1 ms, equal to a simulation step. The lower branch
of Fig. 10 gives the second contribution to the final result and
includes the computation of through (41). The final
results in terms of particle concentration is achieved by
applying (42) to the sum of the outputs from the upper branch
and the lower branch.

The particle counting noise is visible through two effects, as
shown in Fig. 18. The first effect is given by the quantization
of the concentration measure by a discrete number of particles
inside the receptor space. The second effect is given by fluc-
tuations in the concentration measure due to single events of
particles entering/leaving the receptor space. The latter is more
accentuated for high values of the particle concentration. This
behavior is a confirmation of the fact that the RMS value of the
particle counting noise is proportional to the square root of the
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Fig. 19. The particle counting stochastic model likelihood.

true particle concentration , as shown in (54), (57), and
(62).

The statistical likelihood test is applied in order to assess the
stochastic model ability to capture the behavior of the phys-
ical processes which generate the noise. For this, we compute
the likelihood, that is, the probability of the noisy data coming
from the physical model simulation given the stochastic
model of the particle counting noise, as defined in Section IV-B.
In order to evaluate the reliability of the particle counting sto-
chastic model parameters in (52) and (53), the likelihood prob-
ability is evaluated for a range of different values for the param-
eter of the Poisson processes in (49):

likelihood

Part.Count.sto (70)

where ranges from 1 to 2000 particles m for every
time instant . The results are shown in Fig. 19, where it is
clearly visible that the highest likelihood value corresponds, for
every time instant , to the value of from (69), thus con-
firming that the best particle concentration model parameter is
actually the particle concentration in input to the physical model
of the particle counting noise.

This statistical likelihood test results shown in Fig. 19 are
compared to the results obtained through the use of a Gaussian
model in place of the particle counting noise stochastic model.
The Gaussian model, denoted has
the same expected value and the same variance as the particle
sampling noise stochastic model. The likelihood formula is

likelihood

(71)
where ranges from 1 to 2000 particles m for every
time instant and 1 m. The comparison between the
Gaussian model likelihood and the particle counting stochastic
model drives us to the same conclusions we had for the particle
sampling noise. At specific time instants, the Gaussian model
likelihood shows higher values than when using the particle

Fig. 20. The Gaussian model likelihood for the particle counting noise.

counting stochastic model but, on average, the likelihood values
shown in Fig. 20 are much lower than the values in Fig. 19.
This proves that the particle counting stochastic model performs
better than the Gaussian model and it confirms the stochastic
model ability to express the behavior of the physical processes
underlying the particle counting noise.

VI. CONCLUSION

In this paper we analyze the most relevant diffusion-based
noise sources affecting MC. To date, little effort has been made
to model the diffusion-based noise sources from the commu-
nication engineering perspective, while contributions from the
biochemistry literature provide descriptions of some underlying
physical processes. However, these contributions tend to focus
on the explanation of natural phenomena and do not provide
suitable models for MC engineering. The objective of this work
is the analysis of the noise sources in diffusion-based MC using
tools from signal processing, statistics and communication en-
gineering, with reference to the diffusion-based MC system in-
troduced in [17].

The particle sampling noise and the particle counting noise
are identified in this paper as the most relevant diffusion-based
noise sources affecting the MC physical end-to-end model from
[17]. The analysis of the noise sources results both in phys-
ical models and stochastic models. With the former we aim
at the mathematical expression of the physical processes un-
derlying the noise sources, while with the latter we model the
noise source behaviors through the use of statistical parame-
ters. For both the two noise sources, the results of the physical
models are summarized through block schemes, which expand
the end-to-end physical model from [17]. The stochastic models
of both the two noise sources result in their characterization in
terms of random processes and in the analytical expression of
the RMS perturbation of the noise on the information signal.

Simulations are shown to evaluate the capability of the sto-
chastic models to express the diffusion-based noise sources rep-
resented by means of the physical models.

The results coming from this work will be used to have a
better insight into the end-to-end diffusion-based MC, espe-
cially in terms of capacity and throughput. We believe that this
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paper provides a preliminary study on the noise affecting the
end-to-end diffusion-based MC, and that further investigation
on this topic is necessary.
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