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Abstract—There is a growing need to support reliable data com-
munications in sensor networks that are capable of supporting
new applications, such as, assured delivery of high-priority events
to sinks, reliable control and management of sensor networks,
and remotely programming/retasking sensor nodes over-the-air.
We present the design, implementation, and evaluation of pump
slowly, fetch quickly (PSFQ), a simple, scalable, and robust trans-
port protocol that is customizable to meet the needs of emerging
reliable data applications in sensor networks. PSFQ represents a
simple approach because it makes minimum assumptions about
the underlying routing infrastructure, it is scalable and energy-
efficient because it supports minimum signaling, thereby reducing
the communication cost for data reliability, and importantly, it
is robust because it is responsive to a wide range of operational
error conditions found in sensor network, allowing for the suc-
cessful operation of the protocol even under highly error-prone
conditions. The key idea that underpins the design of PSFQ is to
distribute data from a source node by pacing data at a relatively
slow speed (“pump slowly”), but allowing nodes that experience
data loss to fetch (i.e., recover) any missing segments from their
local immediate neighbors aggressively (“fetch quickly”). We
present the design and implementation of PSFQ, and evaluate the
protocol using the ns-2 simulator and an experimental wireless
sensor testbed based on Berkeley motes and the TinyOS operating
system. We show that PSFQ can outperform existing related
techniques and is highly responsive to the various error conditions
experienced in sensor networks. The source code for PSFQ is
freely available for experimentation.

Index Terms—Energy-efficient reliable transport protocols,
error control, rate control, sensor networks.

I. INTRODUCTION

THERE IS A considerable amount of research in the area of
wireless sensor networks ranging from real-time tracking

to ubiquitous computing, where users interact with potentially
large numbers of embedded devices. This paper addresses
the design of system support for a new class of applications
emerging in wireless sensor networks that require reliable data
delivery. One such application that is driving our research is the
reprogramming or “retasking” of groups of sensors over-the-air.
This is one new application in sensor networks that requires the
underlying transport protocol to support reliable data delivery.
Today, sensor networks tend to be application specific and are
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typically hard-wired to perform a specific task efficiently at
low cost. We believe that as the number of sensor network
applications grows, there will be a need to build more powerful
general-purpose hardware and software environments capable
of reprogramming or retasking sensors to do a variety of tasks.
These general-purpose sensors would be capable of servicing
new and evolving classes of applications. Such systems are
beginning to emerge. For example, the Berkeley motes [1], [2]
are capable of receiving code segments from the network and
assembling them into a completely new execution image in
EEPROM secondary store before retasking a sensor.

Unlike traditional networks [e.g., Internet protocol (IP) net-
works], reliable data delivery is still an open research question
in the context of wireless sensor networks. To our knowledge,
there has been little work on the design of reliable transport pro-
tocols for sensor networks. This is expected because the vast
majority of sensor network applications do not require reliable
data delivery. For example, in applications such as temperature
monitoring or animal location tracking, the occasional loss of
sensor readings is tolerable and, therefore, the complex protocol
machinery that would ensure the reliable delivery of data is not
needed. Directed diffusion [3] is one of a representative class of
data dissemination mechanisms, specifically designed for a gen-
eral class of applications in sensor networks. Directed diffusion
provides robust dissemination through the use of multipath data
forwarding, but the correct reception of all data messages is not
assured. We observed that in the context of sensor networks,
data that flows from sources to sinks is generally tolerable of
loss. On the other hand, data that flows from sinks to sources for
the purpose of control or management (e.g., retasking sensors,
actuation) is sensitive to message loss. For example, dissemi-
nating a program image to sensor nodes is problematic. Loss of
a single message associated with code segment or script would
render the image useless and the retasking operation a failure.

There are a number of challenges associated with the devel-
opment of a reliable transport protocol for sensor networks.
For example, in the case of a retasking application, there may
be a need to reprogram certain groups of sensors (e.g., within a
disaster recovery area). This would require addressing groups
of sensors, loading new binaries into them, and then, switching
over to the new retasked application in a controlled manner.
Another example of new reliable data requirements relates to
simply injecting scripts into sensors to customize them rather
than sending complete, and potentially bandwidth demanding,
code segments. Such retasking becomes increasingly chal-
lenging as the number of sensor nodes in the network grows.
How can a transport offer suitable support for such a retasking
application, where possibly hundreds or thousands of nodes
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need to be reprogrammed in a controlled, reliable, robust,
timely, and scalable manner? Such a reliable transport protocol
must be lightweight and energy-efficient to be realized on
low-end sensor nodes, such as, the Berkeley mote series of sen-
sors, and capable of isolating applications from the unreliable
nature of wireless sensor networks in an efficient and robust
manner. The error rates experienced by these wireless networks
can vary widely and, therefore, any reliable transport protocol
must be capable of delivering reliable data to potentially large
groups of sensors under such conditions.

In this paper, we propose pump slowly, fetch quickly (PSFQ),
a new reliable transport protocol for wireless sensor networks.
Due to the application-specific nature of sensor networks, it
is hard to generalize a specific scheme that can be optimized
for every application. Rather, the focus of this paper is the
design and evaluation of a new transport system that is simple,
robust, scalable, and customizable to different applications’
needs. PSFQ represents a simple approach with minimum
requirements on the routing infrastructure (as opposed to IP
multicast routing requirements), minimum signaling, thereby
reducing the communication cost for data reliability, and finally,
responsive to high error rates allowing successful operation
even under highly error-prone conditions.

This paper represents an extended version of the work that
first appeared in [19] and is organized as follows. Section II
presents the PSFQ model and discusses important design
choices. Section III details the design of the PSFQ pump, fetch,
and report mechanisms. Section IV presents an evaluation of
the protocol and comparison to existing related techniques
such as scalable reliable multicast (SRM) [4] using the ns-2
simulator. We show that PSFQ can outperform an idealized
SRM scheme and is highly responsive to the various error
conditions experienced in sensor networks. Section V discusses
experimental results from the implementation of PSFQ in a
wireless sensor testbed based on Berkeley motes. Section VI
discusses related work, and finally, we present some concluding
remarks in Section VII.

II. PROTOCOL DESIGN SPACE

The key idea that underpins the design of PSFQ is to dis-
tribute data from a source node by pacing data at a relatively
slow speed (“pump slowly”), but allowing nodes that experi-
ence data loss to fetch (i.e., recover) any missing segments from
immediate neighbors very aggressively (local recovery, “fetch
quickly”). Messages that are lost are detected when a higher se-
quence number than expected is received at a node triggering
the fetch operation, (i.e., an energy-efficient negative acknowl-
edgment system that PSFQ is based on). The motivation behind
our simple model is to achieve loose delay bounds, while mini-
mizing the lost recovery cost by using localized recovery of data
among immediate neighbors.

A. Hop-by-Hop Error Recovery

To achieve these goals, we have taken a different approach
in comparison to traditional end-to-end error recovery mecha-
nisms in which only the final destination node is responsible
for detecting loss and requesting retransmission. The biggest

Fig. 1. Probability of successful delivery of a message using an end-to-end
model across a multihop network.

problem with end-to-end recovery has to do with the physical
characteristic of the transport medium. Sensor networks usu-
ally operate in harsh radio environments, and rely on multihop
forwarding techniques to exchange messages. Error accumu-
lates exponentially over multihops, therefore, packet loss and
reordering is more likely. To simply illustrate this, assume that
the packet error rate of a wireless channel is , then the chances
of exchanging a message successfully across hops decreases
quickly to . Fig. 1 illustrates this problem numerically.
Fig. 1 plots the success rate as a function of the network size in
number of hops, and shows that for larger networks it is almost
impossible to deliver a single message using an end-to-end ap-
proach in a lossy link environment when the error rate is larger
than 10%. In [21] and [22], the authors show that it is not un-
usual to experience error rates of 10% or above in dense wireless
sensor networks. We believe that the error rate could be even
higher in many cases, such as, military applications, industrial
process monitoring, and disaster recovery activities. This ob-
servation suggests that end-to-end error recovery is not a good
candidate for reliable transport in wireless sensor networks.

We propose hop-by-hop error recovery in which intermediate
nodes also take responsibility for loss detection and recovery so
reliable data exchange is done on a hop-by-hop basis rather than
end-to-end. This approach essentially segments multihop for-
warding operations into a series of single-hop transmission pro-
cesses that eliminate error accumulation. The hop-by-hop ap-
proach, thus, scales better and is more tolerable to errors, while
reducing the likelihood of packet reordering in comparison to
end-to-end approaches.

B. Fetch/Pump Relationship

For a negative acknowledgment system, the data delivery la-
tency would be dependent on the expected number of retrans-
missions for successful delivery. To reduce the latency, it is es-
sential to maximize the probability of successful delivery of a
packet within a “controllable time frame.” An intuitive approach
to doing this would be to enable the possible multiple retrans-
missions of packet (therefore, increasing the chances of suc-
cessful delivery) before the next packet arrives; in other
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Fig. 2. Probability of successful delivery of a message over one hop when the
mechanism allows multiple retransmissions before the next packet arrival.

words, clear the queue at a receiver (e.g., an intermediate sensor)
before new packets arrive in order to keep the queue length small
and, hence, reduce the delay. However, it is nontrivial to deter-
mine the optimal number of retransmissions that tradeoff the
success rate (i.e., probability of successful delivery of a single
message within a time frame) against wasting too much energy
on retransmissions. In order to investigate and justify this de-
sign decision, we analyze a simple model, which approximates
this mechanism. Assume that the packet loss rate stays con-
stant during the controllable time frame, it can be shown that
in a negative acknowledgment system, the probability of a suc-
cessful delivery of a packet between two nodes that allows
retransmissions can be expressed recursively as

(1)

Where is the probability of a successful recovery of a
missing segment within retransmission, is the proba-
bility of a successful recovery of the missing segment at th
retransmission.

The above expressions are evaluated numerically against the
packet loss rate , as shown in Fig. 2, demonstrating the impact
of increasing the number of retransmissions up to equal to 7.
We can see that substantial improvements in the success rate
can be gained in the region where the channel error rate is be-
tween 0% and 60%. However, the additional benefit of allowing
more retransmissions diminishes quickly and becomes negli-
gible when is larger than 5. This simple analysis implies that
the optimal ratio between the timers associated with the pump
and fetch operations is approximately 5.

C. Multimodal Operations

In a negative acknowledgment system, a local loss event
could propagate to downstream nodes if higher sequence
number packets are continuously forwarded. The propagation
of a loss event could cause a serious waste of energy because

a loss event will trigger error recovery operations that attempt
to fetch the missing packet quickly from immediate neigh-
bors, whereas none of their (downstream nodes) neighbors
would have the missing packet. Therefore, the loss cannot be
recovered and the control messages associated with the fetch
operation are wasted. As a result, it is necessary to make sure
that intermediate nodes only relay messages with continuous
sequence numbers.

The use of a data cache is required to buffer messages to
ensure in-sequence data forwarding and the complete recovery
for any fetch operations from downstream nodes. Note that the
cache size effect is not investigated here, but for our reference
application (i.e., retasking) the cache keeps all code segments.
This pump mechanism not only prevents propagation of loss
events and the triggering of unnecessary fetch operations from
downstream nodes, but it also greatly contributes toward the
error tolerance of the protocol against channel conditions.
By localizing loss events and not relaying any higher se-
quence number messages until recovery has taken place, this
mechanism operates in a similar fashion to a store-and-forward
approach, where an intermediate node relays a file only after the
node has received the complete file. The store-and-forward ap-
proach is effective in highly error-prone environments because
it essentially segments the multihop forwarding operations into
a series of single-hop transmission processes.

PSFQ benefits from the following tradeoff between
store-and-forward and packet switching. The pump opera-
tion operates in a multihop packet-switching mode during
periods of low errors when lost packets can be recovered
quickly, and behaves more like store-and-forwarding commu-
nications when the channel is highly error-prone. Therefore,
PSFQ exhibits a novel multimodal communications property
that provides a graceful tradeoff between the packet switching
and store-and-forward paradigms, depending on the channel
conditions encountered.

III. PROTOCOL DESCRIPTION

PSFQ comprises three protocol functions: message relaying
(pump operation), relay-initiated error recovery (fetch opera-
tion), and selective status reporting (report operation). A user
injects messages into the network and intermediate nodes buffer
and relay messages with the proper schedule to achieve loose
delay bounds. A relay node maintains a data cache and uses
cached information to detect data loss, initiating error recovery
operations if necessary. It is important for the user to obtain sta-
tistics about the dissemination status in the network as a basis for
subsequent decision-making, such as the correct time to switch
over to the new task in the case of retasking/ programming sen-
sors over-the-air. Therefore, it is necessary to incorporate a feed-
back and reporting mechanism into PSFQ that is flexible (i.e.,
adaptive to the environment) and scalable (i.e., minimizes the
overhead).

In what follows, we describe the main PSFQ operations (viz.
pump, fetch, and report) with specific reference to a retasking
application—one in which a user needs to retask a set of sensor
nodes by distributing control scripts or binary code segments
into the targeted sensor nodes.
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A. Pump Operation

Recall that PSFQ is not a routing solution but a transport
scheme. In a case where a specific node needs to be addressed
directly, instead of a whole group of sensors, which is the norm,
then PSFQ can operate on top of existing routing schemes (e.g.,
DSDV [17]) to support reliable data transport.1 A user node
can use time-to-live (TTL)-based, as well as group address fil-
tering [5] methods to control the scope of its retasking operation.
Note however, that this method does not provide accurate scope
control because in many cases the intended receivers cannot be
neatly defined by a limit of TTL. To enable local loss recovery
and in-sequence data delivery, a data cache is created and main-
tained at intermediate nodes.

The pump operation is important in controlling the timely dis-
semination of code segments to all target nodes, and providing
basic flow control so that the retasking operation does not over-
whelm the regular operations of the sensor network. This re-
quires proper scheduling for data forwarding. We adopt a simple
scheduling scheme, which uses two timers and for
scheduling purposes.

1) Pump Timers: A user node broadcasts a packet to its
neighbors every until all the data fragments have been sent
out. Neighbors that receive this packet will check against their
local data cache discarding any duplicates. If this is a new mes-
sage, PSFQ will buffer the packet and decrease the TTL by 1.
If the TTL value is not zero and there is no gap in the sequence
number, then PSFQ sets a schedule to forward the message.
The packet will be delayed for a random period between
and , and then relayed to its neighbors that are one or
more hops away from the source. In this specific reference case,
PSFQ simply rebroadcasts the packet. A packet propagates
outward from the source node up to TTL hops away in this
mode. The random delay before forwarding a message is nec-
essary to avoid collisions because ready-to-send/clear-to-send
(RTS/CTS) dialogues are inappropriate in broadcasting opera-
tions when the timing of rebroadcasts among interfering nodes
can be highly correlated.

has several considerations. First, there is a need to pro-
vide a time-buffer for local packet recovery. One of the main
motivations behind the PSFQ paradigm is to recover lost packets
quickly among immediate neighboring nodes within a control-
lable time frame. serves such a purpose in the sense that a
node has an opportunity to recover any missing segment before
the next segment comes from its upstream neighbors, since a
node must wait at least before forwarding a packet as part
of the pump operation. Next, there is a need to reduce redundant
broadcasts. In a densely deployed network, it is not unusual to
have multiple immediate neighbors within radio transmission
range. In [6], the authors show that a rebroadcast system can
provide only 0%–61% additional coverage over what already
covered by the previous transmissions. Furthermore, it is shown

1To support reliable transport for any-to-any communication scenarios, PSFQ
is layered upon a routing scheme and uses the unicast address of the destina-
tion node instead of a broadcast address in data packets. In order to support
hop-by-hop error recovery, a “snoop” component is needed to copy packets from
the routing agent to the PSFQ agent. In this case, only nodes en-route to the des-
tination node, as determined by the routing algorithm, participate in the PSFQ
operations.

that if a message has been heard more than four times the addi-
tional coverage is below 0.05%. associated with the pump
operation provides an opportunity for a node to hear the same
message from other rebroadcasting nodes before it would actu-
ally have started to transmit the message. A counter is used to
keep track of the number of times the same broadcast message is
heard. If the counter reaches 4 before the scheduled rebroadcast
of a message, then the transmission is cancelled and the node
will not relay the specific message because the expected ben-
efit (additional coverage) is very limited in comparison to the
cost of transmission. can be used to provide a loose sta-
tistical delay bound for the last hop to successfully receive the
last segment of a complete file (e.g., a program image or script).
Assuming that any missing data is recovered within one
interval using the aggressive fetch operation described in next
section, then the relationship between delay bound and

is as follows:
Number of hops , where is the

number of fragments of a file.

B. Fetch Operation

A node goes into the PSFQ fetch mode once a sequence
number gap in a file’s fragments is detected. A fetch opera-
tion is the proactive act of requesting a retransmission from
neighboring nodes once loss is detected at a receiving node.
PSFQ uses the concept of “loss aggregation” whenever loss is
detected; that is, it attempts to batch up all message losses in a
single fetch operation whenever possible.

1) Loss Aggregation: Data loss is often correlated in time
because of fading conditions and other channel impairments.
As a result, loss usually occurs in batches (bursty loss). PSFQ
aggregates loss such that the fetch operation deals with a
“window” of lost packets instead of a single-packet loss. In
a dense network where a node usually has more than one
neighbor, it is possible that each of its neighbors only obtains
or retains part of the missing segments in the loss window.
PSFQ allows different segments of the loss window to be re-
covered from different neighbors. In order to reduce redundant
retransmissions of the same segment, each neighbor waits
for a random time before transmitting segments. Other nodes
that have the data and scheduled retransmissions will cancel
their timers if they hear the same “repair” from a neighboring
node. In poor radio environments, successive loss could occur
including loss of retransmissions and fetch control messages.
Therefore, it is not unusual to have multiple gaps in the se-
quence number of messages received by a node after several
such failures. Aggregating multiple loss windows in the fetch
operation increases the likelihood of successful recovery in the
sense that as long as one fetch control message is heard by one
neighbor, then all the missing segments could be resent by this
neighbor.

2) Fetch Timer: In fetch mode, a node aggressively sends
out negative acknowledgment (NACK) messages to its imme-
diate neighbors to request missing segments. If no reply is heard
or only a partial set of missing segments are recovered within
a period ( , this timer defines the ratio between
pump and fetch, as discussed earlier), then the node will resend
the NACK every interval (with slight randomization to avoid
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synchronization between neighbors) until all the missing seg-
ments are recovered or the number of retries exceed a preset
threshold thereby ending the fetch operation. The first NACK is
scheduled to be sent out within a short delay that is randomly
computed between 0 and ( ). The first NACK is can-
celled (to keep the number of duplicates low) in the case where
a NACK for the same missing segments is overheard from an-
other node before the NACK is sent. Since is small the chance
of this happening is relatively small. In general, retransmissions
in response to a NACK coming from other nodes are not guaran-
teed to be overheard by the node that cancelled its first NACK.
In [6], the authors show that at most there is a 40% chance that
the canceling node receives the retransmitted data under such
conditions. Note however, that a node that cancels its NACK
will eventually resend a NACK within if the missing seg-
ments are not recovered, therefore, such an approach is safe and
beneficial given the tradeoffs.

To avoid the message implosion problem NACK messages
never propagate; that is, neighbors do not relay NACK messages
unless the number of times the same NACK is heard exceeds
a predefined threshold, while the missing segments requested
by the NACK message are no longer retained in a node’s data
cache. In this case, the NACK is relayed once, which in ef-
fect broadens the NACK scope to one more hop to increase the
chances of recovery.

Each neighbor that receives a NACK message checks the
loss window field. If the missing segment is found in its data
cache, the neighboring node schedules a reply event (sending
the missing segment) at a random time between ( and

). Neighbors will cancel this event whenever a reply to
the same NACK for the same segment is overheard. In the case
where the loss window in a NACK message contains more than
one segment to be resent, or more than one loss window exists
in the NACK message, then neighboring nodes that are capable
of recovering missing segments will schedule their reply events
such that packets are sent in-sequence at a speed that is not faster
than once every .

3) Proactive Fetch: As in many NACK systems, the fetch
operation described previously is a reactive loss recovery
scheme in the sense that a loss is detected only when a packet
with a higher sequence number is received. This could cause
problems on rare occasions; for example, if the last segment
of a file is lost there is no way for the receiving node to detect
this loss since no packet with a higher sequence number will
be sent. In addition, if the file to be injected into the network is
small (e.g., a script instead of binary code), it is not unusual to
lose all subsequent segments up to the last segment following
bursty loss. In this case, the loss is also undetectable and, thus,
nonrecoverable with such a reactive loss detection scheme. In
order to cope with these problems, PSFQ supports a timer-based
“proactive fetch” operation such that a node can also enter the
fetch mode proactively and send a NACK message for the next
segment or the remaining segments if the last segment has not
been received and no new packet is delivered after a period of
time .

The proactive fetch mechanism is designed to automatically
trigger the fetch mode at the proper time. If the fetch mode is
triggered too early, then the extra control messaging might be

wasted since upstream nodes may still be relaying messages or
they may not have received the necessary segments. In contrast,
if the fetch mode is triggered too late, then the target node might
waste too much time waiting for the last segment of a file, signif-
icantly increasing the overall delivery latency of a file transfer.
The correct choice of must consider these two cases. In our
reference application, where each segment of a file needs to be
kept in a data cache or external storage for the retasking oper-
ation, the proactive fetch mechanism will “NACK” for all the
remaining segments up to the last segment if the last segment
has not been received and no new packet arrives after a period
of time . should be proportional to the difference be-
tween last highest sequence number ( ) packet received and
the largest sequence number ( ) of the file (the difference is
equal to the number of remaining segments associated with the
file), i.e., ( ). is a scaling
factor to adjust the delay in triggering the proactive fetch and
should be set to 1 for most operational cases.

This definition of guarantees that a node will wait long
enough until all upstream nodes have received all segments be-
fore a node moves into the proactive fetch mode. This enables
a node to start the proactive fetch earlier when it is closer to the
end of a file, and wait longer when it is further from comple-
tion. Such an approach adapts nicely to the quality of the radio
environment. If the channel is in a good condition, then it is un-
likely to experience successive packet loss; therefore, the reason
for the reception of no new messages prior to the anticipated last
segment is most likely due to the loss of the last segment, hence,
it is wise to start the proactive fetch promptly. In contrast, a node
is likely to suffer from successive packet loss when the channel
is error-prone; therefore, it makes sense to wait longer before
pumping more control messages into the channel. If the sensor
network is known to be deployed in a harsh radio environment
then should be set larger than 1 so that a node waits longer
before starting the proactive fetch operation.

In other applications where the data cache size is small and
nodes only can keep a portion of the segments that have been
received, the proactive fetch mechanism will “NACK” for the
same amount of segments (or less) that the data cache can main-
tain. In this case, should be proportional to the size of the
data cache. If the data cache keeps segments, then

( ). As discussed previously, should be set
to 1 in low error environments and to a larger value in harsher
radio environments. This approach keeps the sequence number
gap at any node smaller than , i.e., it makes sure that a node
will fetch proactively after successive missing segments. Re-
call that a node waits at most before relaying a message
in the pump operation so that the probability of finding missing
segments in the data cache of upstream nodes is maximized.

The proactive fetch operation would ensure all intended re-
ceivers eventually receive all of the data, but like any proto-
cols that try to a maximum number before giving up, PSFQ
proactive fetch could stop after reaching a threshold, which is
an application-specific choice.

4) Signal Strength-Based Fetch: Recent studies [21]–[23]
show that in sensor networks that use low-power radios without
frequency diversity, there exists very high variability in the
packet delivery performance that is both spatial and temporal
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dependent. Because of intermittent packet reception from nodes
that are more than a single-hop away (however weak the signal
is) can cause nodes to send unnecessary NACK messages
and retransmissions, PSFQ also takes into consideration the
received signal strength of a packet during the fetch and repair
operations. A node maintains a table of parent nodes (i.e., nodes
from which it receives messages) with their associated average
signal quality measurements. When a node detects a gap in the
sequence number upon receiving a packet, it only responds and
sends out a NACK if this packet comes from a parent with the
strongest average signal quality measurement. This effectively
suppresses unnecessary NACK messages triggered by the
reception of packets that come from nodes that are multiple
hops away.

Similarly, when a node transmits a NACK message it in-
cludes the preferred parent with the strongest average signal in
the message. Nodes that receive this NACK will determine if
they are the preferred parent/neighbor. All nonpreferred neigh-
bors double their response time delay in sending repair packets
so that they have a greater chance of hearing the repair packet
from a better candidate node (i.e., preferred parent/neighbor),
allowing the node to cancel a repair whenever a response is
heard before sending. This approach prevents nodes sending re-
dundant retransmissions when they do not have a good chance
of delivering theses message to a fetching node.

C. Report Operation

PSFQ supports an optional report operation designed specif-
ically to feedback data delivery status to users in a simple and
scalable manner. In wireless communication, it is well known
that the communication cost of sending a long message is less
than sending the same amount of data using many shorter mes-
sages [12]. Given the potential large number of target nodes in
a sensor network in addition to potential long paths (i.e., longer
paths through multihops greatly increases the delivery cost of
data), the network would become overwhelmed if each node
sent feedback in the form of report messages. Therefore, there
is a need to minimize the number of messages used for feedback
purposes.

A node enters the report mode when it receives a data message
with the “report bit” set in the message header. The user node
sets the report bit in its injected message whenever it needs to
know the latest status of the surrounding nodes. To reduce the
number of report messages and to avoid report implosion only
the last hop nodes, (i.e., ) will respond immediately
by initiating a report message by sending it to its parent node,
where the previous segment came from, at a random time be-
tween (0, ). Each node along the path towards the source node
will piggyback their report message by adding their own status
information into the report, and then propagate the aggregated
report toward the user node. Each node will ignore the report if
it found its own ID in the report to avoid looping. Nodes that are
not last hop nodes but are in report mode will wait for a period
of time ( ) sufficient to receive a re-
port message from a last hop node, enabling it to piggyback its
state information. A node that has not received a report message

after in the report mode will initiate its own report mes-
sage and send it to its parent node. If the network is very large,
then it is possible for a node to receive a report message that has
no space to append more state information. In this case, a node
will create a new report message and send it prior to relaying
the previously received report that had no space remaining to
piggyback its state information. This ensures that other nodes
en-route toward the user node will use the newer report mes-
sage rather than creating new reports because they themselves
received the original report with no space for piggybacking ad-
ditional status.

D. Single-Packet Message Delivery

There is need to support the reliable deliver of single-shot
atomic messages in sensor networks, for example, in support of
reliable control and management of sensors. For messages that
fit into a single packet (e.g., smaller than the network MTU),
delivery failure is undetectable using PSFQ’s NACK-based pro-
tocol without the addition of explicit signaling. This is because
PSFQ detects loss by observing sequence number gaps or time-
outs. To address this service need, PSFQ makes use of its re-
porting primitive to acquire application-specific feedback at the
sink. PSFQ sets the report bit at the sink in every single-packet
message that requires reliable delivery. Based on the feedback
status, the sink resends the packet until all receivers confirm
reception. This essentially turns PSFQ into a positive aggre-
gated-ACK protocol used in an on-demand manner by the sink
for these special case messages. The use of the report mecha-
nism to support reliable data delivery of single-shot atomic mes-
sages highlights the flexible use of PSFQ mechanisms to meet
application specific needs.

IV. PERFORMANCE EVALUATION

We use packet-level simulation to study the performance of
PSFQ in relation to several evaluation metrics and discuss the
benefits of some of our design choices. Simulation results indi-
cate that PSFQ is capable of delivering reliable data in wireless
sensor networks even under highly error prone conditions.

A. Simulation Approach

We implemented PSFQ as part of our reference retasking ap-
plication using the ns-2 network simulator [11]. In order to high-
light the different design choices made, we compare the perfor-
mance of PSFQ to an idealized version of SRM [4], which has
some similar properties to PSFQ, but is designed to support reli-
able multicast services in IP networks. While there is a growing
body of work in multicast [7], [8] in mobile ad hoc networks and
some initial work on reliable multicast support [9], [10], we have
chosen SRM as the best possible candidate that is well under-
stood in the literature. SRM supports reliable multicast on top
of IP and uses three control messages for reliable delivery, in-
cluding session, request and repair messaging. Because SRM is
designed to operate on top of an IP multicasting substrate, it as-
sumes an environment where there is a single path from a source
to an individual receiver, and each node receives each multicast
packet at most once. SRM is also intended for a topology where
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routers are not active members of the group and do not maintain
state, except for that needed for multicast routing. SRM repre-
sents a scheme that uses explicit signaling for reliable data de-
livery, while PSFQ is a more minimalist transport that can be
unicast (on top of routing) or broadcast, and does not require
periodic signaling.

We compare PSFQ with the loss detection/recovery approach
of SRM but extract out the IP multicast substrate and replace
it with an idealized omniscient multicast routing scheme. We,
therefore, only compare the reliable delivery portions of the
SRM and PSFQ protocols. Since PSFQ uses a simple broadcast
mechanism as a means for routing in our reference application,
it makes sense to layer SRM over an ideal omniscient multicast
routing layer for simulation purposes. Using omniscient multi-
cast, the source transmits its data along the shortest-path multi-
cast tree to all intended receivers in which the shortest-path com-
putation and the tree construction to every destination is free in
term of communication cost.

The major purpose of our comparison is to highlight the im-
pact of different design choices made. SRM represents a tradi-
tional receiver-based reliable transport solution and is designed
to be highly scalable for Internet applications. The SRM service
model has the closest resemblance to our reference application
in sensor networks. However, SRM is designed to operate in the
wired Internet in which the transport medium is highly reliable
and does not suffer from the unique problems found in wireless
sensor networks, such as, hidden terminal and interference. To
make a fair comparison, we try to idealize the lower layer to
minimize the differences of the transport medium (which SRM
is designed for) for simulation purposes, and, solely focus on the
reliable data delivery mechanism—we term this idealized SRM
scheme as SRM-I.

The goal of our evaluation is also to justify the design choices
of PSFQ. We choose three metrics that underpin the major mo-
tivation behind the design of PSFQ.

• Average Delivery Ratio, which measures the ratio of the
number of messages a target node received to the number
of messages a user node injects into the network. This
metric indicates the error tolerance of a scheme at the
point where a scheme fails to deliver 100% of the mes-
sages injected by a user node within certain time limits.

• Average Latency, which measures the average time
elapsed between the transmission of the first data packet
from the user node until the reception of the last packet
by the last target node in the sensor network. This metric
examines the delay bound performance of a scheme.

• Average Delivery Overhead, which measures the total
number of messages sent per data message received by
a target node. This metric examines the communication
cost to achieve reliable delivery over the network.

We study these metrics as a function of the channel error rate,
as well as the network size.

To evaluate PSFQ in a realistic scenario, we simulate the re-
tasking of a simple sensor network in a disaster recovery sce-
nario where the sensor nodes are deployed along the hallway on
each floor of a building. Fig. 3 shows such a simple sensor net-
work in a space of dimensions 100 m 100 m. Each sensor node

Fig. 3. Sensor network in a building. A user node at location 0 injects 50
packets into the network within 0.5 s.

Fig. 4. Error tolerance comparison—average delivery ratio as a function of the
number of hops under various channel condition for different packet error rates.

is located 20 m from each other. Nodes use radios with 2 Mb/s
bandwidth with nominal radio range of 25 m. The channel ac-
cess is the simple carrier sense multiple access/collision avoid-
ance (CSMA/CA), and we use a uniformly distributed channel
error model. A user node at location 0 attempts to inject a pro-
gram image file of size equal to 2.5 kB into every node on the
floor for the purposes of retasking. The packet size is 50 bytes.
Packets are generated from the user node and transmitted at a
rate of one packet every 10 ms. For PSFQ, the timer parame-
ters are set conservatively to follow the PSFQ paradigm:
is 100 ms, is 50 ms, and is 20 ms. Therefore, the fetch
operation is five times faster than pump operation. Each exper-
iment is run ten times and the results shown are an average of
these runs.

B. Simulation Results

One of the major goals of PSFQ is to be able to work correctly
under a wide variety of wireless channel conditions. The first
experiment examines the “error tolerance” of PSFQ and SRM-I,
and compares their results.

In Fig. 4, we present the results for PSFQ and SRM-I under
various channel error conditions as we increase the network size
in terms of the number of hops. As one might expect, the av-
erage delivery ratio of both schemes decreases as the channel
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error rate increases. For larger error rates, the delivery ratio de-
creases rapidly when the network size increases. Notice that the
user node starts sending data packets into the network at a con-
stant rate of one packet every 10 ms at 2 s into the simulation
trace and finishes sending all 50 packets within 0.5 s. The sim-
ulation ran for 100 s after the user node stopped sending data
packets. Observe from Fig. 4, SRM-I (dotted line) can achieve
100% delivery up to 13 hops away from the source node only
when the channel error rate is smaller than 30%. For 50% error
rate, the 100% delivery point decreases to within five hops; and
for larger error rates, SRM-I is only able to deliver a portion of
the file up to two hops away from the user node. In contrast,
PSFQ (solid line) achieves a much higher delivery ratio for all
cases under consideration for a wide range of channel error con-
ditions. PSFQ achieves 100% delivery up to ten hops away from
the user node even at 50% error rate and delivers more than
90% of the packet up to 13 hops away. Even under extremely
error-prone conditions of 70% channel error rate, PSFQ is still
able to deliver 100% data up to four hops away and 70% of the
packets up to 13 hops, while SRM-I can only deliver less than
30% of data up to two hops.

The better error tolerance exhibited by PSFQ in comparison
to SRM-I justifies the design paradigm of pump slowly and
fetch quickly for wireless sensor networks. The in-sequence
data pump operation prevents the propagation of loss events, as
discussed in Section II-C. SRM-I does not attempt to provide or-
dered delivery of data and loss events are propagated along the
multicast tree. In contrast, PSFQ’s aggressive fetch operation
and loss aggregation techniques support multiple loss windows
in a single control message. One high-level design lesson here
is the ineffectiveness of control messages under high-loss rate
scenarios. SRM relies on the underlying medium access con-
trol (MAC) layer to reliably deliver explicit and periodic control
messages between members of a multicast group. The failure of
the virtual carrier sense in IEEE 802.11 MAC under high-loss
rate environments cause SRM-I to fail, whereas PSFQ’s mini-
malist approach enables it to do efficient control broadcasting,
even under high-loss conditions.

Our second experiment examines the data delivery latency
of both schemes under various channel conditions. The results
are shown in Fig. 5. The delivery latency is determined only
when all the intended target nodes have received all of the
data packets before the simulation terminates. For SRM-I, we
know that 100% delivery can be achieved only within a limited
number of hops when the error rate is high. In this experiment,
we compare the two schemes using a three-hop network and
investigate PSFQ’s performance with a larger number of hops
since PSFQ has better error tolerance properties. Fig. 5 shows
that SRM-I has a smaller delay than PSFQ when the error rate
is smaller than 40%, but its delay grows exponentially as the
error rate increases, while PSFQ grows more slowly until it
hits its error tolerance barrier at 70% error rate. The reason
that SRM-I performs better than PSFQ in terms of delay in the
lower error rate region is due to the “pump slowly” mechanism,
where each node delays a random period of time between
and before forwarding packets. Despite this small penalty
in the lower error rate region the coupling of this mechanism
with the “fetch quickly” operation proves to be very effective.

Fig. 5. Comparison of average latency as a function of channel error rate.

Fig. 6. Average delivery overhead as a function of channel error rate.

As shown in Fig. 5, PSFQ can provide delay assurances even at
very high error rates.

In the next experiment, we study the communication cost
for reliability in both schemes under various channel condi-
tions using a three-hop network, including a 16-node (4 4)
three-hop grid network to explore PSFQ performance in a dense
network where nodes can have up to four neighbors. Communi-
cation cost is measured as the average number of transmissions
per data packet (i.e., average delivery overhead). For SRM-I, we
separate the communication cost of the SRM-specific loss re-
covery mechanisms from the total communication cost, which
includes the cost associated with the link-layer loss recovery
mechanisms (RTS/CTS/ACK). Fig. 6 shows that the cost for
PSFQ is consistently smaller than SRM-I by an order of mag-
nitude even after excluding the link-layer cost of SRM-I. We
can observe from Fig. 6 that the communication cost in a denser
grid network closely matches but is lower than its chain-net-
work counterpart, indicating that PSFQ can exploit neighbor re-
dundancy, while suppressing unnecessary redundant transmis-
sions. Fig. 6 also illustrates the 100% delivery barrier of both
schemes (the two vertical lines). The 52% error rate mark shows
the limit for SRM-I, while the 70% error rate mark shows the
operational boundary for PSFQ. The different performance ob-
served under simulation is rooted in the distinct design choices
made for each protocol. PSFQ utilize a passive, on-demand loss



870 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 4, APRIL 2005

recovery mechanism, whereas SRM employ periodic exchange
of session messages for loss detection/recovery.

V. EXPERIMENTAL TEST BED RESULTS

In what follows, we discuss experiences implementing
PSFQ in an experimental wireless sensor testbed using the
TinyOS platform [1], [5] and Rene2 motes [1]. The Rene2
sensor device has an ATMEL 4 MHz, low power, 8-bit mi-
crocontroller with 16 kB of program memory and 1 kB of
data memory, 32 kB EEPROM serves as secondary storage.
The radio is a single-channel radio frequency (RF) transceiver
operating at 916 MHz and capable of transmitting at 10 kb/s
using on–off-keying encoding. TinyOS [5] is an event-based
operating system employing a CSMA MAC. The packet size is
36 bytes. With a link speed of 10 kb/s, the channel can delivers
at most 16 packets/s. Tuning the transmission power can change
the radio transmission range of the motes.

We implemented the PSFQ pump, fetch, and report opera-
tions as a component of TinyOS that interfaces with the lower
layer radio components. In the implementation, every data frag-
ment that is received correctly is stored in the external EEPROM
at a predefined location based on its sequence number. The se-
quence number is used as an index to locate and retrieve data
segments when a node receives a NACK from its neighbors.

A. PSFQ Parameter Space and Timer Bounds

Among the various PSFQ operations, the most aggressive
timer is the fetch timer, as defined in Section III-B2. A suc-
cessful recovery after a sequence number gap has been detected
relies on two successful packet receptions being accomplished
within , (i.e., one for receiving the NACK at the neighbors
and another for receiving the repair packet at the fetching node).
Since the transmission time of a single packet is nonnegligible
in low bandwidth environments (i.e., approximately 67 ms for
Rene2 mote), should be long enough to accommodate at least
two packet transmissions. There exists a lower bound for
that is defined at the granularity of the transmission time of a
single packet; assume this is . Recall that upon receiving a
NACK, a node schedules a repair to be sent at a random time

. Therefore, must be long enough to wait
for the largest delayed repair from the neighborhood to avoid
unnecessary retransmission of NACK messages, (i.e.,

). Therefore, . In reality, to avoid
using up all the available channel bandwidth during fetch oper-
ations, we increase the lower bound by one or two times
to allow at least one packet transmission for other operations
or applications, and to accommodate other possible processing
delays. For example, a reasonable bound is and

. These values are used in all of our
testbed experiments discussed in the remainder of this section.

B. Messaging Overhead

In our experiments, we manipulate the radio transmission
power of the motes to create multihop networks such that motes
that are separated by 5 inches can maintain recep-
tion rate, while motes that are separated by 10 inches can hardly
hear each other, (i.e., the reception rate is between ).

Fig. 7. Four-hop network physically arranged in a string/chain topology.

Fig. 8. Breakdown of PSFQ messages. Average delivery overhead is 1:2 �

0:13.

Fig. 7 shows a four-hop network in a string/chain topology in
which each node is separated by 5 inches. Here, we refer to a
“hop distance” as the distance between nodes that can maintain
excellent communication, (i.e., more than a 90% packet recep-
tion rate). Our test scenario sends a new execution image (i.e.,
image file of the TinyOS BLINK [5] application segmented into
70 over-the-air packets) from the base station (BS) connected
to a PC to all the sensor nodes using PSFQ. When the BS con-
firms the 100% reception of the image by all sensors (using the
PSFQ report operation), then it sends a single control message
that propagates to all the sensor nodes to initiate the process of
transferring the new image from external EEPROM to the in-
ternal flash to complete the reprogramming of the application.
Note that we use PSFQ’s single-packet reliable service to do
this controlled application switchover at sensors, as discussed
in Section III-D.

Fig. 8 shows the result of our experiments in terms of commu-
nication overhead with the breakdown of the PSFQ messages.
Each data point in the figure is an average of ten independent ex-
periments and the 95% confidence intervals are all within 10%
of the average value. The overall average delivery overhead is
1.2 transmissions per received packet.

C. Network Size Versus Network Density

In what follows, we examine the impact of the network den-
sity and the network size on the performance of PSFQ in terms
of delivery latency and average delivery overhead.

Using the same test scenario described in Section V-B, we
measure both the communication cost and delivery latency of
PSFQ with various network sizes, as well as various node den-
sities in our Rene2 testbed, in which motes are arranged in
string/chain topology. Figs. 9 and 10 present the results of these
experiments. Each data point is an average of ten independent
experiments and the corresponding 95% confidence intervals
are plotted as axis error bars in the figures, respectively.

Fig. 9 shows that the communication cost for reliable de-
livery increases rapidly when the network size increases from
one-hop to multiple hops, but it also levels off and stabilizes
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Fig. 9. Average delivery overhead as a function of network size and density.

Fig. 10. Average delivery latency as a function of network size and density.

quickly for a network size of four to five hops. The reason for the
rapid rise of the communication cost is due to the well-known
hidden terminals problem in CSMA networks, which becomes
evident only in multihop environments and creates collisions
that force packet drops. Nevertheless, PSFQ’s pump/fetch op-
erations can effectively prevent loss propagation along the dis-
tribution chain and, therefore, is able to maintain relatively low
overhead ( ) as the network size increases. Interestingly, we
can observe from Fig. 9 that as we increase the network density
the communication cost actually decreases. This indicates that
PSFQ effectively suppress redundant transmissions and takes
advantage of overhearing transmissions from a dense neighbor-
hood to reduce a node’s transmissions and, hence, reduces the
overall delivery overhead. Fig. 10 shows that the delivery laten-
cies of PSFQ increase almost linearly with the network size but
they are rather independent of the network density, which indi-
cates that PSFQ can adapt well in a high-density environment.

VI. RELATED WORK

To our best knowledge PSFQ represents the first reliable
transport for sensor networks [19]. In what follows, we contrast

more recent contributions [13], [15], [16] for reliable data
delivery in sensor networks that followed the initial publication
of PSFQ [19].

Reliable multisegment transport (RMST) [13] is a transport
layer paradigm for sensor networks that is closest to our work.
RMST is designed to complement directed diffusion [3] by
adding a reliable data transport service on top of it. RMST is
a NACK-based protocol like PSFQ, which has primarily timer
driven loss detection and repair mechanisms. The authors ana-
lyze the tradeoff between hop-by-hop versus end-to-end repair
and conclude the importance of hop-by-hop recovery, which is
consistent with our analysis and simulation results. In contrast
to PSFQ, which provides reliability purely at the transport
layer, RMST involves both the transport and MAC layers [14]
to provide reliable delivery. In ESRT [15], the authors propose
using an event-to-sink reliability model in providing reliable
event detection that embeds a congestion control component.
In contrast to PSFQ, ESRT does not deal with data flows that
require strict delivery guarantees; rather, the authors define
the “desired event reliability” as the number of data packets
required for reliable event detection that is determined by the
application. A sink-to-sensor reliability solution is presented
in [16] that focus on communication reliability from the sink
to the sensors in a static network. The authors propose using
a two-radio approach where each node is equipped with a low
frequency “busy-tone” radio in addition to the default radio that
is used for data transmission and reception. The “busy-tone”
radio is used to ensure delivery of single-packet messages or
the first packet of a longer message. A NACK-based recovery
core is constructed from the minimum dominating set of the
underlying graph.

VII. CONCLUSION

We have presented PSFQ, a reliable transport protocol for
wireless sensor networks. Based on our reference application
for remotely programming sensors over-the-air, we have dis-
cussed a number of important design goals that underpin the
protocol’s development, including the correct and efficient
operation under high packet error rate conditions and support
for loose delay bounds for reliable data delivery. We evaluated
PSFQ using simulation and through implementation in an
experimental motes testbed. We found that PSFQ outperforms
SRM-I in terms of error tolerance, communication overhead
and delivery latency. Nevertheless, there remain a number of
open questions concerning the cost (e.g., data cache) and limits
(e.g., mobility) of PSFQ. A more comprehensive discussion of
PSFQ and set of results can be found in [24]. Our ongoing work
in the Armstrong Project [20] at Columbia University, which is
more broadly investigating the development of energy-efficient
control and transport mechanisms for resilient sensor networks,
is focused toward the design of suitable energy-efficient conges-
tion control and load balancing mechanisms. Our initial results
in this area include CODA [18] and support for dual radio
“virtual sinks” [20]. Finally, the PSFQ source code for TinyOS
implementations is freely available [20] for experimentation.
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