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Abstract

We introduce Xampling, a design methodology for analog compressed sens-
ing in which we sample analog bandlimited signals at rates far lower than
Nyquist, without loss of information. This allows compression together with
the sampling stage. The main principles underlying this framework are the
ability to capture a broad signal model, low sampling rate, efficient analog and
digital implementation and lowrate baseband processing. In order to break
through the Nyquist barrier so as to compress the signals in the sampling pro-
cess, one has to combine classic methods from sampling theory together with
recent developments in compressed sensing. We show that previous attempts at
sub-Nyquist sampling suffer from analog implementation issues, large computa-
tional loads, and have no baseband processing capabilities. We then introduce
the modulated wideband converter which can satisfy all the Xampling desider-
ata. We also demonstrate a board implementation of our converter which ex-
hibits sub-Nyquist sampling in practice.

1 Introduction

Signal processing methods have changed substantially over the last several decades.
The number of operations that are shifted from analog to digital is constantly in-
creasing, leaving amplifications and fine tunings to the traditional front-end. Analog
to digital convertors (ADC) serve as the gate to the digital domain. An ADC de-
vice outputs a stream of numbers, representing the signal amplitudes at the sampling
points. These pointwise samples of the input are typically acquired at a constant rate,
which traditionally is equal (or larger than) twice the highest frequency component
of the signal, termed the Nyquist rate.

Digital signal processing (DSP) is the crowning glory of the chain of blocks in
Fig. 1. The prime goal of the ADC is isolating the delicate interaction with the
continuous world, so that sophisticated algorithms can be developed in a flexible
software environment. Digital filtering, channel equalization, system identification,
and a rich variety of software algorithms – all lie under the DSP block of Fig. 1. Data
compression exploits redundancy in the input signal in order to reduce the storage
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Fig. 1: Conventional blocks in a DSP system.

volume of the signal. The vast majority of DSP algorithms require the uncompressed
version of the signal, namely at the Nyquist rate.

In the chain of sampling, processing and reconstruction, the conversion to digital
has become a serious bottleneck. While technology advances enable mass processing
of huge data streams, the acquisition capabilities do not scale sufficiently fast [1].
For some applications, the Nyquist rate already exceeds the possible rates achievable
with existing devices [2,3]. Another rate limitation stems from the digital processor,
whose clock frequency dictates the maximal input rate.

In this paper, we present Xampling – a methodology for sub-Nyquist signal ac-
quisition, which aims at breaking through the rate bottleneck in the ADC and DSP
blocks of Fig. 1. Xampling is a combination of compression and sampling: it results in
samples representing the signal at a compressed rate, namely, far below Nyquist. This
allows compression to be integrated into the sampling stage. Our framework consists
of four criteria: broad analog signal model, low sampling rate, efficient analog and
digital implementation and low-rate DSP capability. Fig. 2 visualizes the general
structure of a Xampling-compliant system. Two important ingredients are: (I) the
X-ADC converts the input at a sub-Nyquist rate, and in contrast to Fig. 1 does not
take pointwise samples of the input (which entailed analog bandwidth issues); (II)
the DSP device operates at the low rate and does not necessitate interpolation to
the Nyquist grid. Storage can also be implemented directly, without the need for
preceding digital compression.

Although this paradigm is applicable to a broad class of input signals (see for ex-
ample [4] which demonstrates an application to efficient time-delay estimation from
sub-Nyquist samples, or [5]), for concreteness, here we consider the case of multi-
ple narrowband transmissions located anywhere below a maximal frequency fmax. A
common approach to rate reduction in this setting is demodulation, a process which
isolates an individual narrowband transmission of interest by shifting the contents
from the high frequencies to the origin. Demodulation requires knowing the exact
carrier frequency. Nonuniform pointwise sampling as an alternative to demodulation
when the carrier frequencies are known was considered in [6,7], and recently utilized
even for the case of unknown transmission locations [8]. Unfortunately, pointwise
strategies can be almost as difficult to implement as Nyquist samplers due to analog
bandwidth limitations of existing ADC devices: in the sampling process the ADC
must be exposed to the entire wideband input; see [9] for a detailed discussion. Re-
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Fig. 2: The configuration of a Xampling signal processing system.

cently, the random demodulator (RD) [10] was suggested for sub-Nyquist systems
which is based on exploiting ideas from the field of compressed sensing (CS) [11,12].
Mainstream CS works study the problem of recovering a sparse vector from an un-
derdetermined linear system. The RD extends the CS ideas to sampling of signals
comprised of a discrete set of harmonics. Unfortunately, the RD relies on a sensitive
signal model when dealing with analog signals, the time-domain approach boils down
to difficult implementation requirements and the computational complexity is severe,
so that it does not satisfy the Xampling criteria.

To satisfy the Xampling properties, we introduce the modulated wideband con-
verter (MWC) of [9]. As we show, the MWC naturally fits analog models, the imple-
mentation [13] is based on the standard frequency-domain viewpoint and the required
computational complexity is by orders of magnitude smaller compared with the RD.
Furthermore, baseband DSP capabilities can easily be incorporated. We also demon-
strate a hardware implementation of the MWC, which exhibits sub-Nyquist sampling
in practice.

2 Xampling

The main theme of Xampling is that a sub-Nyquist system should satisfy all four
principles defined below in order to break through the Nyquist barrier.

Signal model (X1). The system should be able to handle a broad set of inputs
with different spectral contents without altering either the hardware or the digital
software. For communication signals, the goal should be treating analog signals with
arbitrary carrier positions fi until fmax.

Sampling rate (X2). The conversion rate should be as low as possible. This
criterion is violated if the X-ADC has practical limitations which prevents sampling
at the minimal theoretical rate.

Efficient implementation (X3). This criterion refers to the ability to realize
the X-ADC with a reasonable number of existing analog devices. It also refers to the
computational burden in the digital domain, which should be as light as possible.

Baseband processing (X4). A sub-Nyquist system should enable processing
of the information contents at a low rate. Baseband processing at the low rate is
perhaps the most practical property of sub-Nyquist systems to consider, since perfect
reconstruction of the original high-rate analog x(t) is often less useful.
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Exploiting sparsity for rate reduction has been explored in the context of CS,
which treats underdetermined sparse recovery. The signal model assumes a vector
x of finite length n, which has only a few nonzero entries. Sensing is carried out
by computing the linear projection y = Ax, with A having far fewer rows than
columns. Results from this field [11, 12] show that under suitable conditions, the
linear sensing is stably invertible, even when the length of y is proportional to the
number of nonzeros in x, rather than the ambient dimension n. However, it is not
straightforward to generalize the discrete CS formulation to analog signals. The
difficulty can be noticed immediately in the signal model. Sparsity is defined in CS
by counting the number of nonzeros in x, while analog sparsity of x(t) involves an
uncountable number of zeros and nonzeros. Näıve extensions of CS-type algorithms
for sparse recovery to infinite dimensions leads to undefined or difficult problems [14].
Discretization methods result in very large scale CS systems, which impose a severe
burden on the digital processing units.

The CS paradigm aims at avoiding high-rate redundant sampling. The discrete
CS framework [11,12] initiated a long line of highly influential works. However, it still
remains puzzling from the analog sampling viewpoint; sensing by y = Ax implicity
assumes that x is the Nyquist rate samples of some continuous signal x(t) on a specific
time-interval. We propose Xampling as a general framework within various solutions
for analog signals can be compared according to the four rules (X1)-(X4).

The nomenclature Xampling was chosen to highlight the important aspects of
our framework. Sub-Nyquist systems rely on the theory of sampling from a union of
subspaces [4, 5, 15, 16], whereas classic results were stated for single subspace mod-
els [17–19]. The X prefix therefore distinguishes analog sub-Nyquist systems from
classic results in the sampling literature, though Xampling still hints that our frame-
work is only a sub-field of generalized sampling theory [19]. The naming has a sym-
bolic interpretation as well. The X letter is widely used to denote compression, e.g.
the DivX format. Here, the compression is carried out during the conversion from
analog to digital, conceptually using analog means rather than by software algorithms.
Finally, as we observe in the sequel, breaking-through the Nyquist barrier necessitates
balancing between CS and sampling by combining traditional concepts from sampling
theory together with recent CS developments. Xampling is literally pronounced as
CS-Sampling (phonetically /k"sæmplIN/), so as to symbolize the necessity of this syn-
ergy in practice.

3 The Random Demodulator

Fig. 3(a) presents the RD of [10]. The input signal f(t) is mixed by a pseudorandom
sign waveform which alternates at rate W . The mixed output is then integrated and
dumped at a constant rate R, resulting in the sequence y[n], 1 ≤ n ≤ NR. The design
parameters are the rates W, R and the number of samples NR.

The authors [10] analyze the RD through the system of Fig. 3(b), which requires
certain assumptions to hold. It can be easily verified from the figure that if R di-
vides W , then every measurement y[n] corresponds to the sum over W/R consecutive
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Fig. 3: Block diagram of the random demodulator (a), and the equivalent system (b) for an
integer ratio W/R.

products x[k]pc[k], where x[k] is obtained by integrating f(t) over 1/W time periods.
To connect the input signal f(t) to x[k], a multitone model is assumed:

f(t) =
∑

ω∈Ω

aωe
j2πωt, (1)

where Ω is a finite set of K out of an even number Q of possible harmonics Ω ⊂
{0,±∆,±2∆, · · · ,±(0.5Q− 1)∆, 0.5Q∆}. The sparse tones model (1) is parameter-
ized by K, Q and the spacing ∆.

The equivalence between the left and right panes of Fig. 3 requires that W = Q∆.
Another requirement, which will turn out to be more essential, is that

Q = NR
W

R
= NR

Q∆

R
→ ∆ =

R

NR

. (2)

Under these selections, the NR samples can be collected to a vector y, which obeys
y = Φ s. The vector s is a one-to-one mapping of the unknown coefficients aω from
(1), thus may have K nonzero entries at the most. The matrix Φ is defined by the
pseudo-random sequence p(t) [10].

Due to space limitation, we investigate the RD in the light of efficient imple-
mentation (X3), and refer the reader to the technical report [20] for further details
regarding the other Xampling criteria. The finite parameterization (1) of K out of
Q possible harmonics exhibits an inherent sensitivity; the requirement (2) forces a
strict match between the (unknown) tone spacing of the input to the rates R,W ,
which are presumably set in advance. Clock circuitries may vary the basis frequency
with voltage, temperature, humidity, aging and other factors, which can wreck (2).
As a toy-example suppose W = 1 kHz, NR = R = 100 Hz and consider the signal
f(t) = 3 cos(2π 120t) + 4 cos(2π 350t), t ∈ [0, 1). Applying an `1 minimization [11]
reconstructs f̂(t) = f(t) exactly. However, with 0.5% inaccuracy, so that R′ = 100.5
Hz and W ′ = 1.005 kHz, the reconstructed f̂(t) of Fig. 4(a) has normalized squared-
error ‖f − f̂‖2/‖f‖2 = 1.7. The frequency contents are compared in Fig. 4(b).

In practice, signals such as narrowband transmissions contain infinitely many har-
monics. In order to approximate analog multiband signals using the model (1), K
must be of the order the occupied spectrum bandwidth, and W = Q shall be the
Nyquist rate fNYQ = 2fmax, both in Hz units due to the tone spacing ∆ = 1 Hz.
Higher spacing ∆ deteriorates the representation of the analog input. Consider a
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Fig. 4: Recovery of a multitone signal from RD samples under design imperfections. The
original and reconstructed signal are plotted in (a) on a short time interval. The frequency
transforms (b) reveal many spurious tones due to the clock shift.

wideband scenario with N = 6 bands of width B = 50 MHz and fNYQ = 10 GHz,
which boils down to K = NB = 300 · 106 tones. In this setting W = 1010 and Φ
has about R = NR = 2.6 · 109 rows, resulting in a huge-scale sparse recovery sys-
tem. Solving a CS system with huge-scale dimensions, imposes severe computational
loads. The hardware synchronization and the severe computational loads, which are
associated with the huge-scale dimensions of Φ, stand against the Xampling criterion
(X3).

4 The Modulated Wideband Converter

The MWC system overcomes the previous limitations by sticking to the traditional
frequency-domain analysis, and in the same time employing CS algorithms where
beneficial. This balanced combination of CS and sampling leads to an X-ADC system
which satisfies (X1)-(X4).

The MWC consists of an analog front-end with m channels. In the ith channel,
the input signal x(t) is multiplied by a periodic waveform pi(t), lowpass filtered,
and then sampled at rate 1/T . In this paper, we study a simplified version of the
converter, as depicted in Fig. 5, in which the sampling interval T equals the period
of the waveforms pi(t). This basic configuration has three parameters: number of
channels m, periodic waveforms pi(t) and sampling rate 1/T . Other configurations
with practical advantages are detailed in [9].

The MWC sensing relies on the following key observation. The mixing operation
scrambles the spectrum of x(t) such that the baseband frequencies that reside below
the filter cutoff 1/2T , contain a mixture of the spectral contents from the entire
Nyquist range. The periodicity of each waveform pi(t) ensures that the mixture has a
specific nature – aliases at 1/T frequency spacing. Whilst aliasing is often considered
as an undesired effect, here it is deliberately utilized to shift various frequency regions
to baseband, simultaneously. In the basic configuration, we choose the rate 1/T ≥ B.
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Fig. 7: The lowrate sequences zl[n] correspond to equal-width spectrum slices from the
Fourier transform of the input multiband signal.

To understand the act of the MWC on multiband signals, we consider the equiv-
alent system that is depicted in Fig. 6. The signal x(t) enters M = 2L+ 1 channels,
where L is the smallest integer such that M ≥ TfNYQ. Since 1/T ≈ B, M represents
the compression ratio, that is the quotient of the Nyquist rate fNYQ by the rate 1/T
of a single channel. In the lth channel, x(t) is frequency-shifted (hence modulated in
time) by l/T Hz, −L ≤ l ≤ L. Then, the baseband region [−1/2T, 1/2T ] is filtered
and sampled every T seconds, giving the (complex-valued) sequence zl[n]; see the
illustration in Fig. 7. Clearly, if x(t) contains only a few transmissions, then most
of the time sequences zl[n] will be identically zero. This is where CS comes into
play. For each time-point, the vector z[n] = [z−L[n], . . . , zL[n]]T is compressed into
the output vector y = [y1[n], . . . , ym[n]]T using the linear projection y[n] = Cz[n].
The equivalence to Fig. 5 holds due to the periodicity of the waveforms pi(t). Since
pi(t) = pi(t+ T ) for all t ∈ R, we have the Fourier expansion

pi(t) =
∞∑

l=−∞

cile
j 2π
T
lt. (3)

Choosing the matrix C of Fig. 6 such that its ilth entry is equal to the Fourier
coefficient cil results in the desired equivalence

yi[n]
Fig. 5
== (x(t)pi(t)) ? h(t)

∣∣∣
t=nT

Fig. 6
==

L∑

l=−L

cil

(
(x(t)e−j2πlt/T ) ? h(t)

∣∣∣
t=nT

)
.

Conceptually, the MWC shifts the mixing matrix C = {cil} into the analog domain,
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(a) (b) (c)

Fig. 8: The spectral contents of a single sign-alternating periodic waveform (a). A high-rate
frequency-modulated input with carrier fc = 629 MHz in (b) is down-converter to 4.81 MHz in
(c). Note that the signal structure is unaltered, which enables processing of the signal directly
from low rate samples [20].

such that each channel realizes a single row of C in analog hardware. The periodicity
of pi(t) is the only essential requirement for the equivalence to hold.

Recovery of x(t) from the sample sequences y[n] consists of two steps. First,
recovering the frequency support at the resolution of a single slice. This step involves
sparse recovery from the linear system, V = CU, where V is a matrix calculated from
the a short-length set of consecutive samples y[n]. The index set S of the nonzero
rows in the sparsest matrix solution U indicates the indices l ∈ S of the slices zl[n]
which contain signal energy. The second step is applied once the support S is found,
in which the pseudo-inverse C†S is computed and is then used to recover z[n]. The
notation CS means the column subset of C indicated by S. In contrast to the huge
dimensions of the RD matrix Φ, the MWC recovery involves the matrix C of size
m×M which is typically small, and thus the digital computations, such as the sparse
recovery system V = CU or the inversion C†S, are not an issue.

As with the RD, we shall focus on the implementation aspects; further details and
comparisons can be found in [20]. To begin with, note that the model underlying the
MWC is an analog multiband model with N bands of width B. As in conventional
sampling, the analog signal is converted into sequences of digital samples. No finite
parametrization is used.

The parameter choice of the MWC, 1/T ≥ B,M ≥ TfNYQ, involves only in-
equalities. Therefore setting T,M with small safeguards allows to apply the MWC
to multiband signals, even if the actual width B or the frequency fmax are higher
to some extent than what assumed in design. The approach underlying the MWC
favors the classic frequency-domain viewpoint; the aliasing due to (3), the equiva-
lence between Figs. 5,6, and the spectrum slices 7. We have recently design a circuit
which implements the MWC [13]. In our hardware realization, we took advantage
of the frequency viewpoint to solve several circuit challenges, of which the design of
pi(t) is relevant to the current scope. Our board uses pi(t) with sign alternations at
2 GHz speed. Maintaining nice rectangular sign shapes at this rate is impossible.
Fortunately, only the periodicity is required to ensure (3). Fig. 8(a) demonstrates the
frequency response of one mixing waveform, and affirms the periodicity. As a proof
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of concept, Figs. 8(b)-(c) demonstrate how a 2 GHz Nyquist input, is converted to a
very low rate region, without knowledge of the location of the transmission.

(a) (b)

Fig. 9: The prototype board of the MWC samples 2 GHz Nyquist-rate inputs, with only 240
MHz sampling rate.

From a computational aspect, the dominating cost is dictated by the size of the
matrix C. In the MWC, C has m rows, as the number of sampling channels, and M
columns as the number of sign alternations per period. In the board realization [13],
C is 12 × 200. In fact, using several ideas from [9], we managed to achieve m = 12
sampling sequences from only 4 analog channels, as noticed from the board photos
in Fig. 9. Since the dimensions of C are relatively small (by orders of magnitude
compared with the RD sensing matrix Φ), solving this CS system can be performed
quite fast.
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