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Abstract-In cognitive radio networks, the first cognitive a filterbank for wid.eband, sensing [4], but this architecture
task preceding any form of dynamic spectrum management requires an increased, number of components and the filter
is the sensing and identification of spectrum holes in wireless range of each BPF is preset. In future networks where spec-
environments. This paper develops a wavelet approach to efficient
spectrum sensing of wideband channels. The signal spectrum trum utilization is high (above 20%), the significant spectrum
over a wide frequency band is decomposed into elementary scarcity would call for different spectrum sharing mechanisms
building blocks of subbands that are well characterized by local such as ultra-wideband cognitive radios [7], which in turn
irregularities in frequency. As a powerful mathematical tool entail different sensing tasks for spectrum overlay.
for analyzing singularities and edges, the wavelet transform is In this paper, we focus on the wideband spectrum sensing
employed to detect and estimate the local spectral irregular task without resoring to multiple narrowband BPFs. Our
structure, which carries important information on the frequency tas toidentify to

fe ultionsofbndoBPpinglocations and power spectral densities of the subbands. Along goal is to identify the frequency locations of non-overlapping
this line, a couple of wideband spectrum sensing techniques are spectrum bands and categorize these bands into black, gray
developed based on the local maxima of the wavelet transform or white spaces, corresponding to the power spectral density
modulus and the multi-scale wavelet products. The proposed (PSD) levels being high, medium or low [3]. In a peer-to-
sensing techniques provide an effective radio sensing architecture
to identify and locate spectrum holes in the signal spectrum. peer network adoptig the equal-sharing spectrum allLocation

paradigm, white spaces are treated as spectrum holes that can
I. INTRODUCTION be picked by the CR for opportunistic use. Evidently, the

Current wireless systems are characterized by wasteful cognitive network of interest concerns spectrum identification
static spectrum allocation, fixed rad.io functions, and limited, more than the detailed spectral shape over the entire wideband.
network coordination between mobile devices, resulting in a Thus, many trad.itional spectral estimation techniques become
surprisingly large portion of the radio spectrum goes unused. irrelevant or unnecessarily complicated [8]. Recognizing the
The emerging paradigm of Dynamic Spectrum Access shows distinct nature of CR sensing, we model the entire wideband
promise of alleviating today's spectrum scarcity problem by under scrutiny as a train of consecutive frequency subbands,
ushering in new forms of spectrum agile networks [1]. Key where the power spectral characteristic is smooth within each
to this new parad.igm are cognitive radios (CRs) that are subband but exhibits a discontinuous change between adjacent
aware of and can sense the environments, learn from the subbands. Such changes are in fact irregularities in PSD,
environments, and perform functions to best serve their users which carry key information on the locations and intensities of
without causing harmful interference to other authorized users spectrum holes. An attractive mathematical tool for analyzing
[2]. The cognitive process starts with the passive sensing of singularities and irregular structures is the wavelet transform,
RF stimuli [3]. As such, the first cognitive task preceding any which can characterize the local regularity of signals [9].
form of dynamic spectrum management is to develop wireless Thus, it is well motivated to investigate the wavelet transform
spectral detection and estimation techniques for sensing and approach to wideband spectrum sensing for CRs.
identification of spectrum holes. There has been considerable research on wavelet analysis

Depending on the regimes of spectrum utilization, the front- for time series and images [9]-[13]. Singularity detection and
end architecture of CRs can be quite different [4]. In early processing with wavelets have been applied, to filtering and
stage of CR network deployment, the spectrum utilization is denoising [9], [13], compression [10], and applications in
expected to be low (around 50 o) and there is little spectrum image processing and elsewhere. Targeting the CR sensing
scarcity. In this case, the radio front-end starts with a tun- task, this paper derives wavelet-based techniques for detecting
able narrowband bandpass filter (BPF) to search one narrow irregular edges in the signal PSD as opposed to irregularities
frequency band at a time. Focusing on each narrow band, in time series. A couple of dynamic sensing solutions are
existing spectrum sensing techniqgues are largely categorized formulated based on the maxima of waveform transform
into energy detection [5] anLd feature detection [6]. Wen modulus [9] and the peaks of multiscale products [13], which
the spectrum utilization is medium (below 200%o resulting in result in detection and estimation of the locations of spnectral
mediu:m spectrum scarcity, the radio front-tend shoulUd adopt a irregularities. We alLso estimate the average PSD level within
wideband arc:hitecture to search over mu:ltiple frequelncy band.s each idelntified. su.b'band, whic:h carries critica:l information oln
at a time. Mu.ltiple nlarrowband BPFs canl be employed to form spectrum holes available for oppotu.nistic sharing.
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II. PROBLEM FORMULATION FOR SPECTRUM SENSING where ca indicates the signal power density within the n-th
Suppose that a total ofB Hz in the frequency range [fo, fN] band. The corresponding time-domain signal is

is available for a wideband wireless network. Being cognitive, N
this network.-.suppor s heterogeneous wireless devices that may r(t) E cn(t + W( (3)
adopt different wireless technologies for transmissions over n=1
different bands in the frequency range. A CR at a particular where Sn(f) is the signal spectrum of pn(t) and w(t) denotes
place and, time needs to sense the wireless environment in the additive noise with PSD Sw(f). For example, the signal
order to identify spectrum holes for opportunistic use1. Sup- component occupying Bn can be a pulse train in the form
pose that the radio signal received by the CR occupies N pn(t) = E' _ bkh(t - kT,)ej27f,> .t where {bk} are digi-
spectrum bands, whose frequency locations and PSD levels tally modulated symbols, h(t) is a pulse shaper of bandwidth
are to be detected, and identified. These spectrum bands lie (fn-fn- 1), and fc n = (fn- I +fn) /2 is the center frequen cy
within [fo, fN] consecutively, with their frequency boundaries of this band. The spectral shape Sn(f) is thus proportional to
located at fo < fi < ffN. The n-th band is thus defined .F{h(t)} 2, with F{ } denoting Fourier Transform.
by Bn {f Bn fn K< f < fn}, n = 1, 2, . . ., N. The The wideband spectrum sensing problem of our interest is
PSD structure of a wideband signal is illustrated in Fig. 1. The formulated as follows:
following basic assumptions are adopted.

a]) The frequency houndaries fo and fN = fo + B are For a CR that receives r(t) with PSD Sr (f ) as in (2), how to

known to the CR. Even though the actual received signal estimnate thefollowing parameters characterizing the widebandKnown~~~~~~~~~~~~~~~peta enirnenotne w. fnetnugNneanduarescnl.,N 2 IN
may occupy a larger band, this CR regards [fo, fNJas s nN a { =,;
the wide band of interest and seeks white spaces only We seek answers to this problem without resorting to
within this spectrum range. multiple narrowband BPFs. The use of N BPFs not only

a2) The number of bands N and the locations fl, . . fN- 1 causes increased number of receiver components, but also
are unknown to the CR. They remain unchanged within faces challenges in tuning the local oscillator of each BPF
a time burst, but may vary from burst to burst in the in the absence of knowledge on N as well as the intended
presence of slow fading. passband range [fn-i f],1,f T=., N [4].

a3) The PSD within each band Bn is smooth and, almost flat,
but exhibits discontinuities from its neighboring bands c,
Bni1 and Bn+. As such, irregularities in PSD appear
at and only at the edges of the N hands2

a4) The amhient noise is additive and, white, with zero mean B
and. two-sided PSD S,,(f) =No/2, Vf.

In the absence of noise, the normalized (unknown) power
spectral shape within each band Bn is denoted, by Sn(f), f fi f2 fn-i n fn 4 ff
which satisfies the following conditionsn wide band of interest

Sn (f 0, VfV Bn; Fig. 1. N frequency bands with piecewise smooth PSD.

Sn(f)df = fn -fn-l
Sf(f)df - trumI. WAVELET APPROACH TO SPECTRUM SENSING

According to a3), we may approximate Sn(f) as: Based on a3) and with reference to Fig. 1, wideband spec-

I V/f c trum sensing can be viewed as an edge detection problem in an
Snif) I 4J< n ( image depicted by the PSD S (f) in frequency. Edges in this

image correspond to the locations of frequency discontinuities
With a3) and a4), the PSD of the observed signal r(t) at {f}/tj, which are to be identified. This section shows that

the CR front-end can he written as the wavelet transform can effectively characterize the edges
N exhibited, in the local singular structure of the PSD.

Sr(f) = cr2Sn(f) +Sw(f)Lf C [fO, fN] (2) In adopting the wavelet approach to spectrum sensing,
n=1 we note at the outset that the wavelet transform in existing

appliLcatiLons lLS applied. in lieu of7 FouriLer tranasform (FT) to
'Dynamic spectrum sharing not only concerns the identification of spectrum applcationsi appied inieu Fr trnfr(T to

holes but also the detection of primary license-holders whenl a primary- chrceieatm eisschat,o pta ie
secondary network (as oppose to a peer-to-peer network) is of interest. The graphg such1 as in imaging [9 In our prohlem, thge domain
llatter task is a binlar-hypothesis signal detection probllem, while this paper of interest is f:requency f, which is in fact the dualit of time
foueonU3vl th fomesensivZin;ig) task reIvlevant to both ne[t;twork paJradk igms. t after FT. As such, the noise component dealt in our prohblem

2\Spectre al spike may a3rise in commu1niton31a, sigalse.g du to sina ha diffren chrctrstc frm ha n oneninawvee
cyclostationari t), but are not treated as PSD discolntinuities. The treatment ra .teen nrceltc rmtrtl ovnloaaee
oln this issue Will be discussedI i1n Section 111E, analysis.



A. Wavelet Transform of Signal PSD Similar to (5) and (7), the computation of W,S (f) and
Let (:(f) be a wavelet smlnoothing function with a compact W,"S(f) each has two equivalent expressions.

suppot n vanishing moments and r times continuously It is shown in [9] that the local extrema of the first derivative
differet T hev sticl positiv integermt ims scte de-ousl and the zero-crossings of the second. derivative characterizependifgorn Lipschitz exponent, which is a measure for the the signal irregularities. In particular, the local maxima of
local regularity of the signal of interest a9]. Widely-used the wavelet modulus are sharp variation points, which tend
examples for (f) include the Gaussian function and the to be more accurate than local minima points (corresponding
perfect reconstruction filter bank (PFB) [12]f The dilation to slow variation points) for spectrum sensing purposes. The
of rc(f)by a scale factor s is given by identification of {A}ff=1 can thus be realized based on the

following proposition.
0)S(Y) I=-) (J) (4) Proposition 1. Boundaries {fn} of consecutive frequency

bands {Bn4 with piecewise smooth PSD can be acquired
For dyadic scales, s takes values from powers of 2, i.e., s = 2-, from r(t) by picking the local maxima of the wavelet modulus
j 1,2, ..., J. Letting * denote convolution, the continuous WS/ (f) in (8) withrespectto f as
wavelet transform (CWT) of Sr(f) is given by

llv s,(f) = Sf * M(f). tmaximaf { W S f(f)} C (fo, fN) (10)
or from the zero-crossing points of )l/'Q7Sr(f) inl (9) azs

We note that the CWT in (5) is carried, out in the frequency
domain, while the function of interest Sr(f) itself relates to fn = zerosf {W7S,(f)} st. W7Sr(fn) 0. (11)
the received time-domain function r(t) via the FT. A direct
way to compute )/V,SSf ) is to first perform the FT on the De

autocrreltionuncton R 7) E (t)rt T) suchthat tecting the zero-crossings of )WV2S. (f) or the lLocalautocorrelatin(f)nction R,(T) : = E (t)r (t + T I such thatextrema of WsSr(f) are similar procedures. When searchingSr(f) = j{Rr(T)}, followed, by the convolution operation in
(5). for fn via either procedure, the scale factor s can be set to

Equivalently, WVS (f) can be computed from r(t) in an the dyadic scales s = 2, j = 1, . . ., J. Only those modulus
: L= I IfOS_f =

- 1 *<,]maxima or zero crossings that propagate to coarser (i.e., larger)alternative way. Let Qs() T{ JS(-f)J} _[1 { ? scales are retained, while others are removed as noise [9].
((ST) represent the inverse FT of the wavelet function.
The inverse FT of WsS (f) is given by WsS, (T) C. Spectrum Sensing via Multiscale Wavelet Products
.T 1{1/Ws S, (f) }, which is related to (Ds (T) and R, (T) via

In Proposition 1, the desired local maxima of wavelet
WsS,(T) = R(T) ?(ST). (6) modulus are tracked by their propagation to multiple coarser

scales, with the goal of denoising. Such an idea of exploiting
Therefor, analtrnative o (5) isgiven bythe mnultiscale correlation can be carried, out in a direct (albeit

Ws4Sr (f) =F{Wsr (T)} = F{Rr (T) .I (S)}T (7) nonlinear) way, giving rise to multiscale analysis techniques.
In [13], edge detection and estimation is analyzed based on

Once the wavelet 0,(f) and its FT pair ((ST) are d.eter- forming multiscale point-wise products of smoothed gradient
mined, the computation of the CWT WVsSr(f) involves either estimators. This approach is intended to enhance multiscale
convolution and FT (on Rr (T)) operations as in (5), or product peaks du.e to edges, while suppressing noise. Adopting this
and FT (on the product) operations as in (7). technique to our spectrum sensing problem and restricting to

B.SpectrumSenWavelet Modulus Maxima dyadic scales, we construct the multiscale product of J CWTB. Spectrum Sensing via WaveletModulus MaDcimagradients as
For the PSD Sr(f) of interest, edges and irregularities at J

the scale s are defined as local sharp variation points ofS, (f .( f (12)
smoothed by 8,(f ). As we know, the edges of a function are
often signified in the shapes of its derivatives. With the CWT,

=

the first-order and second-order derivatives of S (f) smoothed where the derivative of the smoothed PSD Sr(f) is given by
by the scaled wavelet 8(f) can be expressed respectively by (8).

d Based on Proposition 1, it is evident that the frequency
Ws Sr (f) = s-(Sr * MY9)() (8) edges {fn} of interest (which are local maxima of Wl Sr (f )df ~~~~~~~~~~forall s.< 2J) show up as the local maxima of l,ljS,(f)~.db,8

=Sr * (sdf ) =SF{TRr(7)@ sr)}; On thle othler halnd, noilse-ilnduced spurious local maxima ofdDf Y~~~~~~~1VsSr (f) are rand.om at each scale anld. tend. not to propagate

WA75/ ($'0) 2 d2 (Sr A 0)(f (9) thlroughz al J scales; hence, thley do not shzow up as thze localdf2 maximra of the plroduct lbSr().
____...2 2Summing up, we reach the followilng proposition as an

*- <( . ...,.d2- 2{ r2R(> (T} alentv men of spetru sensing.



Proposition 2. Boundaries {fn} of consecutive frequency degrading effect of these sources on spectrum sharing. The
bands {B } with piecewise smooth PSD can be acquiredfrom following remarks are in due.
r(t) by picking the local maxima of the multiscale product . Isolated, impulses/spikes and, vNBIs appear as narrow
lJS,(f) in (12) with respect to f as peaks in an otherwise white or gray space. For wideband

*: ( }3 f
i

(f fN). (3 receivers with built-in capability to handle vNBI, it isfn=maximaf f ~UjS,(f)~J, f C (fO, fN) (13) preferred not to identify these peaks during spectrum
sensing, su.ch that the entire white/gray space is treated as
being opportunistically available for sharing. In this case,

D. Spectratl Densi l Estimattionz results based on multiscale products are preferred for the
After {fr}fnIN1 have been d.etected and estimated via Propo- inherent ability to suppress isolated impulses, depending

sition I or 2, the remaining task of spectrum sensing is to on the amount of smoothing utilized [13]. On the other
estimate the PSD levels {cvna, . To this end, we compute hand, for narrowband. receivers that rely on channelized
the average PSD within the band Bn, n = 1, , N, in the spectrum allocation, the information on vNBIs is useful
form to acqu.ire during sensing.

On = / Sr(f)df. (14) Regarding the ambience noise, it is interesting to ob-
fn-fn-I Jfn- serve that the noise effect in our wavelet approach to

the spectrum sensing problem is not as harmful as in
Basedon thePSDshassumptions ae)va4)andthet asroatiton () conventional wavelet applications. In the latter case, the

o s t is e re d to th wavelet transform is imposed on a time series or an imageunknown an~by /3n cK.n NO2. The noise PSD No/2 can whose noise component is random (e.g. the Gaussianbe measured offline, or deduced from an empty band., say the . g . .uis
n=-th one, that satisfies L. 0 and N/2 for f - nos w) in (, c n a lg n sprISuch¾anemptybanaMstalwaysexists,sincethespectrum local extrema at finer scales. In contrast, in our problemSuch an empty band almost always exists,since thespectrum the CWT is applied to the PSD Sr(f) in (2), whose
utilization in current wireless systems is rather low (below addi .Tnoise coponenth PS( wiefl.Thus, thoer
20%). Apparently, 3n, = NO/2 is the smallest possible value additive noise component Sw(f) IS white/flat. Thus, there
for all {/On. Summing up, we present a simple estimator for is few spurious edges incurred by S)(f
a2 as follows. IV. SIMULATIONS

Proposition 3. For each frequency band Bn with piecewise- We consider a wide band of interest in the range of [50, 250]
fiat PSD as in (1), its spectral density a 2 can be estimated MHz. Fig. 2(a) illustrates the PSD Sr(f) observed by a CR.
from Sr(f) als The noise floor in the PSD is quite large at Sw(f) = 200.

During the observed burst of transmissions in the network,
2 =/3n%-min,3n', n=l ,N (15) there are a total of N 6 bands {Bn}, with frequency

boundaries at {f}fnI [50,120,170,200,220,224,250]
where {fn usedfor computing {A3 n 14) can be replaced MHz. Among these bands (marked, on Fig. 2(a)), B1, B3 and
by their estimates obtainedfrom the wavelet approach. B5 have relatively high signal PSD at levels 24, 30, and 36,

The spectral density estimator in Proposition 3 is quite respectively, while B2 has low signal PSD at a level of 3, all
simple, while more elaborated methods are possible to estimate with reference to Sw (f) = 200. The rest two bands, B4 and
both {a2} and, {Sn(f)}, even when the signal PSD is not B6 are not occupied and are thus spectrum holes.
piecewise flat. Such solutions can take advantage of the In all tests, we use the Gaussian wavelet along with four
attractive properties of the wavelet transform in providing dyadic scales s = 2, j 1, 2,3,24. Fig. 2(b) depicts
'complete' reconstructions of functions with local structures the wavelet modulus computed from (8), while Fig. 2(c)
[9]. Details are omitted here for space limit. plots the multiscale products of wavelets expressed in (12).

Albeit simple, the estimator in (15) is adequate for solving Edges in the PSD Sr(f) are clearly captured by the wavelet
the sensing problem of our interest. The primary goal of our transform in all curves. As the scale factor si increases, the
sensing problem is to identify the frequency locations of bands wavelet transform becomes smoother within each frequ.ency
{Bn } and categorize them into black, gray, or white spaces band, retaining the lower-variation contour of the noisy PSD.
[3], corresponding to PSD levels (X2 being high, medium or In particular, the multiscale product method in 2(c) is very
low. Therefore, coarse estimation of cv2 suiffices for frequ.ency effective in suppressing the spurious local extrema caused by
space categorization, noise, resulting in better d.etection and, estimation performance.

The simple spectral density estimation scheme in Proposi-
F. loise Characteristic in the Wavelet Approacrh tion 3 is used to estimate the noise and signal PSD levels, The

In our wavelLet approach, lLocalL maxima of the wavelLet estimated values are
transform modulus may arise not only due to the frequency {,&2} =[24.3566, 4.1266, 29,469r, 0, 38.3268, 0.7608]
edges {frl} of interest, but alLso due to additionalL sources: iSO- 7
lated impulses, spikes, yery-narrow-balnd ilnterferelnce (vNBI:), correspondi;ng to the tru.e signal VPS:D valu.es [24, 3, 30, 0, 36, 0]
and addi.tive whi1te noise. It iS of interest to investigate th1e ...respectively, and



S,,(f) = 199.4313 250

corresponding to the true noise PSD value 200. Such esti- B B 5
mation accuracy is adequate in classif ing the corresponding 240

frequency band into the coarse categories of white, gray and A

black spaces. The sensing capacity of the wavelet approach is 230
evident even when the signal to noise ratio is quite low.

220

V. SUMMARY
This paper formulates the cognitive spectrum identification 210

task as an spectral edge detection problem and exploits the
wavelet approach for spectrum sensing of wideband channels. L
Solutions based on the local maxima of both gradient wavelet
modulus and multiscale wavelet products are derived andv
tested. The proposed schemes are able to scan over a wide 190 BB
bandwidth to simultaneously identify all piecewise smooth
subbands, without prior knowledge on the number of subbands 18(50 200 250
within the frequency range of interest. The wavelet approach f

offers evident advantages over the conventional use of multiple (a)
narrowband BPFs, in terms of both implementation costs and 0015

0.01fiexibiliti in adapting to dynamic PSD structures.

Since the wavelet approach targets wideband spectrum sens- 0
5 10 5 0 5ing, it may require high sampling rates in order to characterize 5x10-3 100 150 200 2!

the entire wide bandwidth. Nevertheless, the requirements 2

on sampling rates can be reduced when the sensing task
primarily concerns a relaxed spectral estimation problem of [ _ _ _ _ _ _ _ _ _ _
identification of band, types and, spectrum holes, or when guard, 50 10-4 100 150 200 250
bands are inserted during CR transmissions such that it suffices 4

to obtain rough location estimates of spectrum holes. 2
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