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Abstract—This article considers spectrum-on-demand in a
cellular system. A communication system that wants to access
spectrum to which it does not own a license must perform
spectrum sensing to identify spectrum opportunities, and to
guarantee that it does not cause unacceptable interference to
the license owner.

Because a single sensor may be in a fading dip, cooperative
sensing among multiple sensors which experience uncorrelated
fading is required to guarantee reliable sensing performance. At
the same time, as few sensors as possible should be used to reduce
the battery consumption, while still employing enough many for
the sensing to be reliable. Since shadow fading is correlated for
closely spaced sensors, it is desired to select sensors which are
sufficiently spatially separated.

The present article addresses the problem of selecting appro-
priate sensors from a candidate set to engage in cooperative
sensing, using different degrees of knowledge about the sensor
positions. Three different algorithms for sensor selection are
presented and evaluated by means of simulation. It is shown
that all algorithms outperform random selection of the sensors.

I. INTRODUCTION

The usage of radio spectrum is being liberalized in the
sense that regulators get more and more favorable to the idea
of frequency bands not exclusively assigned to a particular
transmission system [1]. This development is largely based on
the observation that spectrum assigned to licensees is often
not fully utilized, see e.g., [2]. One approach pursued in
regulations is to license the spectrum to a licensee, or primary
user, while at the same time the frequency band may be used
by other users, secondary users, under the condition that they
do not cause harmful interference to the system operation of
the primary user. Another approach under discussion is to have
completely unlicensed spectrum, which has to be shared with
equal right among many users.

At the same time as some licensed frequency bands lie
underutilized, the increasing demand for broadband wireless
services has made part of the radio spectrum allocated to
mobile communications a scarce resource. One of the greatest
challenges faced by the wireless industry today is to devise
methods for inexpensive and efficient spectrum utilization. To
meet the demand, International Mobile Telephony Advanced
(IMT-Advanced) envisions peak data rates up to 100 Mbps for
high mobility, and 1 Gbps for low mobility, using up to 100
MHz bandwidth. Due to regulatory and practical issues, it is
highly unlikely that a 100 MHz bandwidth can be allocated
as a contiguous part of the spectrum. It will therefore be
necessary to allocate spectrum in a non-contiguous manner.

In future non-contiguous allocation, it is likely that different
parts of the spectrum are of different “quality”, e.g., primary
licensed spectrum and spectrum accessed opportunistically as
a secondary user.

In this work we study a spectrum-on-demand scenario
as a means to provide the peak data rates. We consider a
cellular system where a user has access to a certain amount
of primary, licensed spectrum and wants to utilize additional
secondary accessed spectrum to increase the instantaneous
bandwidth. Spectrum-on-demand is of interest to both the
user and the operator. For a user, the increased bandwidth
provides a better wireless experience, and an operator can
provide more advanced services and adapt the bandwidth to
the traffic dynamics.

As an example of the operation of a system that employs
the spectrum-on-demand approach, consider a system S1 (e.g.,
a TV broadcasting system) that has a license for the spectrum
band B1. Another system S2 (e.g., a cellular system) which
has a licensed, reliable spectrum band B2 wants to exploit
opportunities in the spectrum band B1 as a secondary user. As
long as the network load in S2 is low relative to the bandwidth
of B2, it is probably not necessary for S2 to use resources in
B1. However, when the network load becomes high, B1 can
be used by S2 for, e.g., non time-critical transmissions, such
as large file transfers.

A secondary user operating in B1 needs awareness of the
spectrum opportunities in B1, i.e., resources (time/frequency
resources or codes) in B1 which are currently not used by S1,
or by any other secondary system. In our scenario, S2 has to
detect the opportunities by spectrum sensing. If the system S2
is confident that there are resources in B1 which are not being
used, it may choose to use those resources for its own traffic.

Fig. 1 illustrates the idea of spectrum-on-demand. At time
t1 system S2 experiences an increased spectrum demand and
its band B1 becomes fully utilized. S2 starts to sense band B1
in search for spectrum opportunities, i.e., available spectrum.
At time t2 system S2 has detected a spectrum opportunity and
starts to use part of B1 in a secondary manner. At time t3 the
spectrum demand decreases but S2 still utilizes resources in
B1. At time t4 the spectrum demand decreases further and S2
abandons B1.

Secondary use of spectrum, in general, involves (i) identi-
fying spectrum opportunities, (ii) using the identified oppor-
tunities for communication, and (iii) vacating the spectrum
when the primary user starts transmitting or when the extra
bandwidth is no longer needed. As seen from the above
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Fig. 1. Illustration of spectrum-on-demand system operation.

example, a key element in opportunistic spectrum access is
to reliably detect secondary spectrum opportunities.

To enable spectrum-on-demand in a centralized network,
we consider distributed cooperative sensing of the spectrum
where the user equipments (UEs) in the system act as sensor
nodes1 in a collaborative cluster, and the sensing is coordinated
by the base station (BS), which acts as a main node for the
cluster. The sensor nodes receive a sensing request from the
BS, and decide whether they are willing to take part in a
collaborative sensing or not. This decision may, e.g., be based
on the capabilities of the node, the available battery, etc. The
nodes which take part in the sensing then each send a sensing
report to the base station. This report may contain, e.g., hard
decisions, statistics, or raw data. Based upon the received
sensing reports, the BS performs the required signal processing
to decide which secondary resources, if any, are available for
secondary usage.

In order to perform reliable spectrum sensing, several sen-
sors which experience (at least to some extent) uncorrelated
fading, with respect to the possible signals they are sensing
for, are required [3]. This is because a single sensor may be
in a deep fade which makes it virtually impossible to detect
usage of spectrum resources [4]. Further, a node performing
spectrum sensing will require power for its receiver and
baseband circuitry, which will reduce the battery life-time. It is
therefore desirable to use as few sensors as possible, while still
having enough for the sensing to be reliable. In this sense, the
number of sensors to use is a trade-off between having a high
reliability of the sensing and having a low battery consumption
of the partaking nodes.

Current research focus on detection methods, e.g. [5], and
not on sensor selection. To the best of our knowledge, there
has been very little work on how to distribute the sensing
between the different nodes in the network. If this aspect is

1We will use the terms “sensor nodes”, “sensors”, and “nodes” interchange-
ably throughout the article.

not treated properly, there is a risk that several sensors will
experience correlated fading, which will decrease the sensing
performance [5]. This means that; (i) the number of sensors
will either have to be increased, to maintain the confidence
in the sensing, or; (ii) that the sensing performance decreases
in the sense that the risk of missing a spectrum opportunity,
and/or the risk of causing interference to the primary system,
will increase. In case (i) above, the total power consumption of
the sensing goes up, which makes it less attractive for nodes
with limited power (such as nodes operating on battery) to
take part in a sensing. In the above case (ii), the throughput
of the secondary system decreases or, even more seriously,
the interference to the primary system becomes unacceptable
in which case secondary operation within the spectrum bands
may not be permitted at all.

In this article the selection of which sensors to use in a
cooperative sensing is considered. The goal is to find a set
of sensors which experience uncorrelated shadow fading, and
the underlying assumption is that such a set of sensors will
perform better in a subsequent sensing than a set of sensors
selected purely at random. Evaluation of the sensor selection
methods presented herein using actual spectrum opportunity
detection algorithms falls outside the scope of the present
article (although discussions on how the detection algorithms
will affect the sensor selection methods are included), but
will be investigated elsewhere. The article is organized as
follows; in Section II the system model considered in this
study is specified. In Section III the problem of selecting the
sensors to take part in the cooperative sensing is detailed and
three algorithms for sensor selection based on different amount
of information available to the deciding entity are presented.
Simulation results are presented in Section IV and the article
ends with conclusions in Section V.

II. SYSTEM MODEL

We consider cooperative spectrum sensing in a centralized
system. In the following we describe a cellular system but
the methods also apply to an ad hoc network with a master
node. In Figure 2, BS1 is the coordinating BS, BS2 is the BS
in a neighboring cell in the own system, UE1 and the other
shaded UEs are the UEs selected for sensing, UE2 and the
other clear UEs are UEs not selected for sensing, pTx1 is a
primary (incumbent) transmitter far away from the cell (e.g.,
a TV transmitter), pTx2 is a primary (incumbent) transmitter
within or close to the cell. Incumbent transmitters far away
are assumed to have comparably high output power (or the
transmitted signals will not reach the sensors) resulting in large
incumbent cells and effectively equal received power in a large
fraction of the cell. For incumbent transmitters in, or close to,
the cell, the assumption of equal received power does not hold.
This may result in a situation where parts of the spectrum
can be used in parts of the cell far away from the incumbent
transmitter. The relative cell size2 of the incumbent system
and the secondary system may thus implicitly affect our sensor
selection algorithms. This is further described in Section III.

2The term “cell size” will be used throughout to denote “the area covered
by a transmitter”. The discussion is therefore not limited to cellular systems.
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The sensor selection algorithms described in this article
depend on the assumption that the secondary system works on
a faster time scale than the primary system. This is necessary,
because the secondary system needs to collect the sensing data
and form a decision on which resources are available prior to
using them. During this timeframe, the resource allocation of
the primary system must not change.

BS1 BS2

pTx1

pTx2

UE1

UE2

Fig. 2. System Model

A. Channel Propagation Model

The radio propagation channel fundamentally limits the
performance of any sensing system. Knowledge of the channel
characteristics and a reasonable channel model are therefore
important in order to analyze and simulate the performance
of the primary and secondary communication systems and the
sensing system. Typically, the effects of a mobile commu-
nication radio channel can be divided into three parts; path
loss, large-scale fading (shadowing) and small-scale fading.
If the maximum sensor separation is small compared to the
distance to the primary transmitter, then the path loss will be
approximately the same for all sensors. Additionally, if the
location of the transmitter is unknown, no information on the
path loss is available. This makes it difficult to exploit any
path loss model in the sensor selection algorithms. However,
path loss models may affect the sensor selection implicitly
by influencing the targeted number of active sensors, see
Section III.

Small-scale fading causes rapid, random variations in signal
strength at the sensors which appear difficult, if not impossible,
to consider in sensor selection. It’s not unusual [6] to discard
the effect of small-scale fading when designing sensing sys-
tems based on energy detection [7].

Shadowing, or large-scale fading, is the slow variation of
received power (signal strength) as the receiver moves in and
out of radio propagation shadows behind mountains, buildings
and similar large structures. Shadow fading will affect the
sensor selection algorithms to be developed herein. Shadowing
is often modeled as a log-normal distributed random process
around a local mean. The path loss is often used as the local
mean and the standard deviation σdB in dB, which depends
on the environment, is commonly in the range 4-10 dB [8],
[9].

The shadowing fading is spatially correlated, which means
that we can exploit information about the sensor positions to
reduce the risk of correlated fading, as will be done in the
algorithms in Section III. The correlation as a function of
distance (e.g., between two sensors), R(d), can be modeled
by an exponential function [3]

R(d) = e−ad (1)

where d is the distance and a is an environment parameter.
In an urban non-line-of-sight environment, a ≈ 0.1204/m,
and in suburban environments a ≈ 0.002/m (assuming the
distance is given in meters) [3], [10]. Since the correlation is
modeled by an exponential function, it can not be negative
and it approaches zero in the limit.

From (1) we can establish the “decorrelation distance” d0,
i.e., the minimum separation between terminals required for
the shadowing correlation to fall below a determined threshold.
In the following we will use the term uncorrelated shadowing
for shadowing correlation that has fallen below this threshold.

It should be noted that decorrelation distances are not
necessarily angle agnostic, e.g., if there is a line-of-sight path
between the primary transmitter and a sensor. In this case a
sensor which is directly behind another sensor relative to the
primary transmitter needs a larger decorrelation distance as
compared to another sensor that is perpendicular to the line-of-
sight line joining the primary transmitter with the first sensor.
Since the direction to the primary transmitter is unknown in
the current application this direction-dependent effect can not
be directly exploited. Instead, an average over all angles is
incorporated in the environment parameter a in (1).

B. Sensor Position Models

We consider two position models for the sensors: radius
information only (i.e., distance from the BS), and full position
information (with variable uncertainty). This is further detailed
in Sections III and IV.

III. SENSOR SELECTION

The basic idea in this work is to select appropriate sensors
to participate in cooperative sensing. The set of all nodes in a
geographical area is referred to as the total set. In a cellular
system the total set can be all nodes associated with a BS.
The candidate set is a subset of the total set and consists of
all nodes that can perform sensing. The reasons for why a node
is not a member of the candidate set can be due to permanent
factors, e.g., the node may lack the necessary functionalities,
and due to temporary factors, e.g., the battery level of the
node is too low. The sensor selection algorithms partition the
candidate set into two sets: one active set and one passive set.
The active set contains the sensors that will participate in the
cooperative sensing at this particular time, and the passive
set contains the sensors in the candidate set that will not
participate in the cooperative sensing at this particular time.
To reduce the power consumption in the individual nodes, the
partitioning of the candidate set into the active set and the
passive set is allowed to vary over time. Furthermore, if the
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spectrum range to sense is divided into sub-ranges, there can
be a separate active set for each frequency sub-range.

In [4] it is shown that the number of active sensors has a
large effect on the sensing performance if the sensors are few.
However, once the number of active sensors reaches a certain
number, the sensing performance is only marginally increased
if additional sensors are used. Hence, a suitable compromise
between sensing performance and battery consumption in the
sensors should give an active set consisting of N sensors,
where N is chosen such that the sensing performance is only
marginally improved when using N+1 sensors, but discernibly
worsened with N − 1 sensors. In [4], suitable sizes N of
the active set were 25 – 50, provided the sensors did not
experience correlated shadow fading.

The algorithms described herein aim at selecting N sensors
for the active set, N being a user parameter, which have
as little correlation as possible to one another. The choice
of N will depend on the sensing algorithms and detection
thresholds. Furthermore, the relative cell sizes of the primary
and secondary system can have an effect on the choice of
N : If N̄ uncorrelated sensors within the range of the primary
transmission are required by the detection algorithms, then
more than N̄ sensors may be requested if the cell size of the
primary system is on the same order as (or smaller than) that
of the secondary system. This is because N̄ sensors evenly
spread in the secondary cell will not all be within the primary
system’s transmission range. If, on the other hand, the primary
system has significantly larger cells than the secondary system,
then all sensors within a cell of the secondary system can be
assumed to be within the transmission range of the primary
system, and N := N̄ sensors will suffice. Since we aim at
describing a general methodology for sensor selection which
is not tied to any specific detection algorithms, thresholds and
systems, we will not further discuss the choice of N herein.

In the rest of this section we first derive approximations on
the possible number of sensors in a cell. We then propose three
different algorithms for partitioning the candidate set into an
active set and a passive set in such a way that the sensors in
the active set, i.e., the sensors that perform sensing, do not
experience correlated shadow fading.

A. Maximum and Minimum Numbers of Available Sensors

We establish two bounds which can be used for evaluating
the difficulty of a partitioning problem, or for evaluating the
quality of a sensor selection algorithm aiming at selecting
as many sensors as possible3. The upper bound is derived
using sphere packing. The lower bound is not a strict bound
but rather the expected number of uncorrelated sensors when
sensors are selected purely at random.

1) Sphere Packing Upper Bound: We use sphere packing
to establish an upper bound on the number of sensors that can
experience uncorrelated shadowing. Maximizing the number
of uncorrelated sensors is equivalent to packing of spheres
(or, rather, circles) with radius r0 = d0/2 centered around the

3The sensor selection algorithms we will present, however, aim at selecting
a given number of sensors. These sensors should have a low probability of
experiencing correlated shadow fading.

sensor, where d0 is the decorrelation distance i.e., the min-
imum distance between sensors that experience uncorrelated
shadow fading. The densest two-dimensional packing is the
hexagonal lattice A2, shown in Fig. 3 [11].

Fig. 3. Sphere packing on a hexagonal lattice. The fundamental region can
either be rhomboidal or hexagonal.

The fundamental region of the A2 lattice, which can be
either be a rhomboid or a hexagon, has area Ah =

√
3/2.

The area of a circle inscribed in a fundamental hexagon has
area Ac = π/4. Hence, the fraction of the area covered by
circles over the total area is ρ = Ac/Ah = π/(2

√
3). If

we ignore effects on the cell edges4, we get the maximum
number of uncorrelated sensors in a cell of area AC as
n∗ = �ρAC/(πr2

0)� where �·� denotes rounding down to the
nearest integer. For a circular cell of radius R we get

n∗ =
⌊

2π√
3

R2

d2
0

⌋
. (2)

2) Random Selection Lower Bound: We use the expected
number of uncorrelated, randomly placed sensors in a cell as
a lower “bound” on the minimum number of uncorrelated
sensors. Simulations suggest that for a cell of radius R, a
decorrelation distance d0 and uniform user distribution over
the cell, the number of uncorrelated sensors, n, is a random
variable (r.v.) with a Rayleigh probability density function
(pdf) with parameter R/d0. Note that this is not strictly a
bound, but rather a number which any sensible sensor selection
algorithm aiming at maximizing the number of uncorrelated
sensors should exceed.

In Table I we give the upper and lower estimates on
the number of sensors for different fractions R/d0, rounded
to the nearest lower integer. In the rest of this section we
will devise methods to select UEs for collaborative sensing.
However, in the following we use selection algorithms to
select a predetermined number of sensors while minimizing
the correlation probability. In this case we use Table I as an
indication of how difficult it will be to find the desired number
of uncorrelated sensors, or whether it is possible at all.

4The number of sensors is given by the number of lattice points in a cell
of area AC . If lattice points (sensors) are located close to the cell edge, then
a small change in cell radius R can result in inclusion/exclusion of a number
of sensors. However, since it is hard to determine the exact cell size and since
cells are not exactly circular, we argue that these edge effects can be ignored.
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TABLE I
COMPARISON OF UPPER BOUND AND MINIMUM EXPECTED NUMBER OF

SENSORS.

R/d0 Upper bound Minimum number
2 13 1
5 89 5
10 361 11
20 1450 24
50 9068 61

100 36275 124

B. Correlation Measure Based Sensor Selection Algorithm

1) Problem Formulation and Algorithm Description: This
sensor selection algorithm uses information on the location of
the sensors and the associated uncertainty to select the sensors
in the active set. The algorithm is based on the following
optimization problem:

min
∑M

i=1

∑M
j=1 aiajcij

subject to
∑M

i=1 ai = N
ai ∈ {0, 1}, i = 1, . . . , M

(3)

where ai represents activity of the sensor i: ai = 1 if the sensor
belongs to the active set and ai = 0 if the sensor belongs to
the passive set. M is the total number of sensors available for
sensing (i.e., the number of sensors in the candidate set) and
the user parameter N is the desired number of sensors to use
in the sensing. The term cij � 0 is a correlation measure5

between the sensors i and j. This correlation measure could,
e.g., be a correlation function based on the Euclidian distance
between the estimated positions of two sensors, such as
R(d) (see (1)). However, the correlation measure should be
a combination of a correlation function, the positions of the
sensor pair, and the associated positioning uncertainty.

Alternatively, cij can be seen as a cost measure describing
the cost of having sensor i and j active simultaneously. The
minimization problem is then concerned with finding the
combination of sensors which gives the lowest cost. Since the
correlation will generally be one (and perhaps the dominating)
component in this cost measure, the term correlation measure
will be used throughout this section.

The problem above is easily recognized as an integer
optimization problem and it can likely only be solved exactly
by an exhaustive search; i.e., by testing all possible values
of {ai}M

i=1 which fulfill the constraints. Such an exhaustive
search is, at least for large M , very time-consuming and
is not recommended for implementation in the current con-
text. Instead, we herein describe an algorithm which finds
an approximate solution to the above problem by a greedy
approach: The algorithm starts with all sensors active. Sensors
are then successively removed, one-by-one, from the active set
(the sensor which has the largest summed correlation measure
relative to the remaining sensors is removed) until the active
set contains the desired number of sensors

5Note the difference between correlation function and correlation measure.
The correlation function is a function describing the correlation between two
sensors given the (known) distance between them; see (1). The correlation
measure used in this algorithm is more general, and the correlation function
is only one possible component of it. Different suggestions for correlation
measures are described below, in Section III-B2.

The algorithm can run in one of two modes. The appropriate
mode should be selected based on the size of the candidate set,
on the processing power of the system running the algorithm,
and on how fast the solution needs to be obtained. E.g., the
slower Mode 1 can be used if the number of sensors available
for sensing is lower than a pre-determined number K (K may
be 0 or ∞, if one desires to always use one of the modes).
Otherwise, Mode 2 will be used. Other criteria for selecting
one of the two modes, or for combining them, are of course
perfectly possible.

a) Mode 1: In this mode, the estimated positions of the
sensors are used directly, which means that all the pair-wise
correlation measures between sensors have to be computed.
Assuming that M sensors are available in a cell, there will
be

∑M−1
i=1 i = M(M−1)

2 pair-wise correlation measures to
compute.

b) Mode 2: If Mode 1 is deemed too computationally
intensive (e.g., if there are too many sensors between which
the pair-wise correlation measures have to be computed), the
estimated sensor positions can be “rounded off” to the closest
(according to some distance measure) grid points in the cell.
The grid points are some pre-determined locations which are
stored in the coordinating node. In this manner, each sensor
becomes associated with one of the grid points. The coordinat-
ing node has the pre-computed pair-wise correlation measures
between all grid points stored in memory, and therefore no
computation of the pair-wise correlation measures is necessary.
Only the grid points which have sensors associated to them are
used, and they correspond to the candidate set. Thus, the pair-
wise correlation measures which are not between two active
grid points can be ignored. The grid points are assumed to lie
closely enough spaced, so that the positioning error introduced
by rounding off the sensor position has a relatively small effect
on the pair-wise correlation measure. This positioning error
should be included in the correlation measure.

Herein, we will only discuss and evaluate Mode 1 of the
algorithm.

A sensible correlation measure should be symmetric, so that
cij = cji. In this case, only one of these two correlation
measures needs to be stored in the memory. Also, usually
cii = cjj , which also reduces the memory requirements.
However, cii can be used to describe the attractiveness of
using sensor i as compared to the other sensors. E.g., if
sensor i is known to have larger battery and better sensing
performance than sensor j, then one could set cii < cjj .
Similarly, if the coordinating node has very good sensing
capabilities (e.g., the coordinating node is a BS in a cellular
system), the corresponding cii value can be set very low, even
cii = −∞ can be used to guarantee that the sensor will remain
active.

The correlation measure will be discussed in detail below.
Assuming values of the correlation measure have been ob-
tained, the algorithm runs as follows:

1) Set P equal to the number of candidate sensors. Number
those sensors from 1 up to P .

5



2) Let

i := arg max
i∈{1,...,P}

P∑
j=1

cij . (4)

3) Remove the sensor i from consideration, number the
remaining sensors from 1 up to P − 1, and then set
P := P − 1.

4) If P ≤ N , terminate. Otherwise, go to 2.
After termination of the algorithm, N sensors remain and
constitute the active set.

The sensor i which maximizes the equation in Step 2 is the
sensor which has the greatest summed correlation measure to
the remaining sensors. Therefore, if the goal is to minimize
the total correlation between the remaining sensors, sensor i
should be removed.

It is straightforward to derive other, but similar, versions
of algorithm described herein. E.g., the algorithm could start
with a single active sensor (e.g., the sensor of the coordinating
node) and the other sensors passive. The passive sensors are
then turned active in a one-by-one fashion, where the passive
sensor is activated which has the minimum value of the
summed correlation to the already active sensors. Similarly,
one could start with N active, randomly selected, sensors and
then take turns to add and remove (or vice versa) a number
of sensors for a number of iterations until a stopping criterion
is reached. E.g., one can stop after a fixed number of sensor
additions or removals, or when the algorithm reaches a local
minimum, such that the same sensor(s) that where added are
then directly removed (or vice versa).

In the above algorithm the aim is to find the N sensors
which have as small summed correlation measure as possible.
Also other stopping criteria are perfectly viable. Such stopping
criteria may be based, e.g., on the number of remaining sen-
sors, the respective correlation of those, the mean correlation
value of the remaining sensors, etc.

The above algorithm assumes that M > N . If this is not
the case, the solution to the sensor selection problem is trivial:
All M available sensors should be used. However, the sensing
system then needs to take a decision on whether M sensors
are enough to obtain the required sensing accuracy. Possibly,
the detection thresholds have to be increased, or spectrum
opportunities have to be ignored completely.

2) The Correlation Measure: The algorithm itself does not
require any specific form of the correlation measure. However,
to illustrate what types of correlation measures can be used,
and how to combine positioning uncertainty and correlation
function, some examples of correlation measures are given
below.

Assume that the position of sensor i is a stochastic variable
xi and that the position of sensor j is a stochastic variable xj .
The distance vector between xi and xj is then a stochastic
variable dij = xi − xj with the pdf p(dij). The correla-
tion function, which can be different for different types of
environment (urban, suburban, etc), is generally a function
of the (scalar) distance d between two locations, R(d), see
(1). A vector-valued distance, d, can be mapped to a scalar
distance by taking an appropriate norm: d := ‖d‖. Since
the sensor distance dij is a stochastic variable one can use,

as correlation measure, the expected value of the correlation
function conditioned on the distribution of dij :

cij |p(dij) := E{R(‖dij‖)|p(dij)} =
∫

R(‖dij‖)p(dij)ddij .

(5)
If the algorithm above runs in Mode 2 with fixed locations
(i.e., the grid points), the above equation can be pre-computed
for all location pairs. However, it appears intractable for Mode
1 to compute (5) on-line for all sensor pairs.

Under the following simplifying assumption and methodol-
ogy the above expression can be pre-computed and tabulated
over a grid of distance values, which facilitates a (fast)
table-lookup mapping between sensor distance and correlation
measure. This mapping can be used for both algorithm modes.
The required assumption is that the pdfs {p(dij)} are, for
all sensor pairs, circularly symmetric around their means,
independent and identically distributed with exception of the
mean values. This assumption holds if the same assumption is
made on the pdfs describing the sensor locations in the cell.

Let mij denote the mean value of p(dij). Then, by using
the notation Rv(d) for the vector input version of R(d) (i.e.,
Rv(d) := R(‖d‖)), the correlation measure (5) gets the form

cij |p(dij) := E{Rv(dij)|p(dij)}
= E{Rv(dij)|p0(dij − mij)}
=

∫
Rv(dij)p0(mij − dij)ddij

(6)

where p0(·) is the distribution obtained by shifting p(·) to zero
mean. The argument of p0(·) has been multiplied by “−1”
after the second equality, which is allowed because p0(·) is
circularly symmetric around 0. The above equation is easily
recognized as a convolution, and since both Rv(·) and p0(·)
are circularly symmetric around 0 and since {p(dij)} are
identically distributed, except for their mean values, for all
sensor pairs, the above equation will be equal for all distri-
butions p(dij) for which mij has identical norm m = ‖m‖.
The equation (6) can thus be pre-computed over a fine grid
of K values of m, {c(mk)}K

k=1, and stored in the memory.
Then, assuming two sensors i and j are located at a distance
dij = ‖dij‖ from one another, one can use

cij := c(ml), ml = arg min
m∈{mk}K

k=1

|dij − m|. (7)

In this manner, only a table lookup (i.e., no on-line computa-
tion) is necessary to obtain the cij-values in (4).

As mentioned earlier, cij can be viewed as a cost measure.
Then, R(d) can be a function which does not directly describe
the correlation, but rather gives a notion of how the sensing
performance is hurt by sensor distance. E.g., R(d) can be
much larger and more slowly decaying within the decorrelation
distance d0 than what is suggested by the exponential decay
in Section II-A.

Finally, it should be noted that there can be a rather large
uncertainty inherent in the correlation model R(d) and other
factors. Therefore, approximations of the above correlation
measures, or ad hoc solutions, may also perform well.
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C. Iterative Partitioning Based on Estimates of the Sensor
Positions

Another algorithm for partitioning the sensors such that,
with high probability, N uncorrelated sensors are obtained
is based on estimates of the positions of the sensor nodes
available for sensing and on the decorrelation distance d0.

This algorithm iteratively partitions the sensors into the two
subsets; the active set and the passive set. The algorithm starts
with the active set containing only the BS. Then the algorithm
investigates, sensor by sensor, whether or not the sensor is
spatially separated by more than d0 from all the present
sensors in the active set. Also an extra margin for positioning
uncertainty may be added. If the sensor is uncorrelated in
this sense with all the nodes in the active set, it is added
to the active set. Otherwise it is added to the passive set. This
procedure iteratively increases the size of the active set until
it has reached a predefined target number, or until all sensor
positions have been investigated and no further sensors are
available for consideration. If a predefined target number of
sensors exists and is reached before all the sensor positions
have been compared to the active set, the remaining sensors
are added to the passive set.

The steps of the algorithm are outlined below:
1) Obtain, by some means, estimates of the decorrelation

distance d0 and of the positions of the sensors ri, i =
1, . . . , M , where M is the total number of sensors in
the candidate set.

2) Add the BS to the active set, if it is to take part in the
sensing.

3) Organize the remaining sensors in a candidate set.
4) Choose one sensor from the candidate set at random and

remove the chosen sensor from the set.
5) Let i′ be the index of the selected sensor. If

‖ri′ − rj‖ > d0, ∀j ∈ A,

where A is the set of indices of the sensors in the active
set, the selected sensor (with index i′) is added to the
active set. Otherwise, the sensor is added to the passive
set.

6) Repeat Steps 4 and 5 until the target number of sensors
to be selected has been added to the active set or the
candidate set is empty, so that there are no more sensors
to choose from.

The sensors in the passive set may be used as input to the same
algorithm if more than one frequency band is to be sensed and
the sensing load must be spread over many sensors.

D. Sensor Selection Based on Radius Information

In this section we assume that only radius information
is available, i.e., the distances from the coordinating node
to the other available sensors. Distance information can be
obtained from propagation times6, timing advance or similar

6This gives the distance the electromagnetic waves have traveled, not the
physical distance between units, and is an upper bound on the separation
between the base station and the UE. However, the difference between the
two distances is usually small and the propagation distance can thus be used
to determine whether units experience uncorrelated shadowing or not. It is
more likely that insufficient timing resolution in the receiver will cause larger
errors than the difference between propagation distance and physical distance.

features. We further implicitly assume that the sensor angles
are uniformly distributed over the interval [0, 2π) radians.

To ensure uncorrelated shadowing we should pick sensors
with a radial separation of at least d0, and ideally the sensor
radii should be integer multiples of d0. The maximum number
of sensors is then � �R/d0�+1 with equality only if there ex-
ists a sensor at each integer multiple of d0. As R/d0 increases
this selection method becomes increasingly inefficient as we
can accommodate multiple sensors at equal or approximately
equal radii towards the cell edge (provided the sensors are well
spread in angle). In the following we derive a probabilistic
model of correlated shadowing when only radius information
is available and use this to devise an algorithm to partition the
candidate set into an active and a passive set.

We establish the probability that two sensors at distances
r1 and r2 from the coordinating node experience correlated
shadowing. Without loss of generality, we assume r2 � r1. For
the sensors to experience uncorrelated shadowing the distance
between them must be at least d0, as indicated in Fig. 4.

r1

r2 d0

s
(x, y)

Fig. 4. Visualization of the decorrelation length d0. The figure shows a
schematic of two sensors at radii r1 and r2 from the BS in the center, and
the radius (around the UE at radius r2) within which the correlation is non-
negligible.

We have three cases depending on the values of r1, r2 and
d0. If d0 < r2 − r1, then probability of correlated shadowing
is zero. If d0 > r1 + r2, then the probability of correlated
shadowing is 1. In other cases, the probability of correlation
is given by the length of the circle segment s divided by the
circumference of the circle with radius r1. To find s we note
that the circles of radii r1 and d0 intersect in the upper half
plane at the point (x, y), and we get

r2
1 = x2 + y2

d2
0 = (r2 − x)2 + y2.

(8)

Solving for x yields

x =
r2
1 + r2

2 − d2
0

2r2
(9)

and the angle θ

θ = cos−1

(
r2
1 + r2

2 − d2
0

2r1r2

)
. (10)
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The length of s is

s = 2r1 cos−1

(
r2
1 + r2

2 − d2
0

2r1r2

)
(11)

and hence

P[corr] =
s

2πr1
=

1
π

cos−1

(
r2
1 + r2

2 − d2
0

2r1r2

)
. (12)

If we assume that both sensor 1 and sensor 2 are located
at (approximately) equal radii r1 ≈ r2, then the probability of
correlated shadowing can be simplified to

P[corr] ≈ d0

πr1
. (13)

So far we have discussed the probability of correlated
shadowing between two sensors. With multiple sensors we
can extend the geometrical argument and find the probability
of K uncorrelated sensors at a given radius r1. Using a Union
Bound argument, we approximate the probability that the k-th
user is correlated to any of previous k − 1 by

P[k-th user correlated] = (k − 1)
s

2πr1
≈ (k − 1)

d0

πr1
. (14)

The number of uncorrelated sensors that can be accommodated
at (approximately) equal radius r1 from the coordinating node
is the largest integer K such that the probability does not fall
below a particular design threshold T. We find K by solving

P[K uncorrelated users] =
K∏

k=1

[
1 − (k − 1)

s

2πr1

]
� T.

(15)

Using (15) we compute the number of sensors, including
the coordinating BS, that can be accommodated in circular
cells of different sizes with certain probabilities of being
uncorrelated. The results are given in Table II. We note that
as R/d0 increases the number of possible sensors increases
significantly if we allow the same probability of uncorrelated
shadowing.

TABLE II
NUMBER OF USERS, INCLUDING THE BS, THAT CAN BE ACCOMMODATED

IN CELLS OF DIFFERENT SIZES FOR DIFFERENT PROBABILITIES OF

UNCORRELATED SHADOWING.

Design R/d0

prob. 2 5 10 20 50 100
1.0 3 6 11 21 51 101

0.99 3 6 11 21 70 175
0.95 3 6 15 37 140 385
0.90 3 8 19 51 196 547

1) Algorithm to Select Sensors Based on Radius Informa-
tion: The algorithm takes as its input the candidate set of
sensors, where the distances (radii) from the central node to
each candidate node is known, and a given design probability
of correlation, and returns as its ouput an active and a passive
set of sensors. The algorithm is initialized by setting the “next
radius” r := 0, and the “number of sensors to pick” (at next
radius r) k := 1. The coordinating node (BS in a cellular
system or master node in an ad hoc network) is then selected
as the first node in the active set.

Given r and a desired maximum value of the correlation
probability P[corrdesign], which we for simplicity can set equal
to T , the next minimum radius r′ is computed by solving (12)
for r2 given r1 := r. The value r′ is then checked against some
constraints. One example of such constraints is a minimum
increase in radius between r and r′, r′ � r + c, where c can
be related to the decorrelation distance d0. Another example
of constraints is that for certain values of the correlation
probability P[corrdesign], radii r and r′, and decorrelation
distance d0, there exist no real solutions to (12), in which case
some parameter, e.g., the design P[corrdesign], must be adjusted.
When a valid value for r′ has been found, the algorithm
sets r := r′. The algorithm then computes the number of
sensors k that can be accommodated at the radius r without
the probability of correlation exceeding the design threshold
by solving (15).

Given updated values of r and k, the algorithm proceeds
to selecting the k sensors with smallest radii still greater than
r. If k such sensors exist they are selected to the active set
and the algorithm returns to the step of updating r and k as
described above. If less than k sensors with radii greater or
equal to r exist in the candidate set, we have now exhausted
the candidate sets and no more sensors remain to explore.
These remaining sensors are added to the active set and the
algorithm terminates.

This algorithm may optionally terminate when a specified
value of active sensors has been reached. If no such value is
specified then the algorithm below runs without modification.
Another option is to run the algorithm without limitation on the
number of active sensors and, if the number of selected sensors
exceeds the desired number, purge the active set, e.g. by
removing the sensor(s) with the smallest radial difference(s).

The algorithm is summarized in the steps below:

1) The candidate set and design correlation probability
P[corrdesign] are inputs to the algorithm.

2) Set r := 0.
3) Compute the next radius r′ by solving (12) for r2 given

r1 := r and P[corrdesign].
4) If r′ meets all constraints then continue to next step. If

not, adjust P[corrdesign] and return to Step 3.
5) Set r := r′

6) Determine the number of sensors k at radius r us-
ing (15).

7) Add the k sensors with smallest radii � r to the active
set if they exist, and return to Step 4. If less than k
sensors exist, add these to the active set and stop as we
now have no further sensors to explore in the candidate
set.

If it is desirable from a computational complexity standpoint
we can pre-compute the next radius r′ given r and the number
of sensors at r, given the maximum allowed probability of
correlation.

E. Information Exploited by the Algorithms

For clarity of exposition, the amount of positioning infor-
mation exploited by the presented selection algorithms is listed
in Table III.
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TABLE III
AMOUNT OF POSITIONING INFORMATION EXPLOITED BY THE

ALGORITHMS.

Position information Position uncertainty
Correlation III-B Full position Yes

Iter part III-C Full position No
Radius based III-D Radius only No

IV. SIMULATION RESULTS

This section contains a simulation study of the partitioning
algorithms for three different scenarios. We consider circular
cells having a radius of R = 250 m (all positioning units are
given in meters) with the BS (also containing a sensor) placed
in the center of the circle. The cells are assumed flat: no height
information is used. The considered scenarios are:

1) Many uniformly distributed sensors: In this scenario the
total number of sensors in the candidate set is M = 501.
The sensors are randomly uniformly distributed over the
cell (except for the BS-sensor located in the origin).

2) Few uniformly distributed sensors: This scenario is the
same as the above, except that the number of sensors in
the candidate set is M = 101.

3) Few sensors clustered in two regions: Here, the total
number of sensors in the candidate set is M = 101.
The BS-sensor is placed in the origin, 20 sensor posi-
tions are independently drawn from a circular Gaussian
distribution with mean (x, y) = (R/2, 0) and a standard
deviation of 71 meters, and 80 sensor positions are
uniformly distributed within a circle of radius R/6
positioned at (x, y) = (−R/2,−R/2).

The true positions of the sensors are unknown to the partition-
ing algorithms, except for the position of the BS-sensor. In-
stead, the algorithms are given position estimates, modeled by
adding independent random variables generated from a circular
Gaussian distribution with standard deviation varying from 0
up to 1.5

√
2d0 to all true sensor positions. The decay factor of

the correlation function is a = 0.1204/m (corresponding to the
environment parameter in an urban scenario; see Section II),
and a correlation of 0.2 is assumed “small enough”, such that
the decorrelation distance becomes d0 = − log(0.2)/a ≈ 13 m
(the distance above which the correlation becomes smaller
than 0.2). The choice of the correlation value 0.2 is ad hoc,
but it can be motivated by the fact that the measurements
which are the base for the correlation model (1) fit well for
correlations > 0.2, but less so for smaller correlation values
[3]. Also, for the values of the decay factor a considered here,
the decrease of R(d) becomes small with increasing distance
for correlations > 0.2, so the “distance penalty” for using
lower correlation values would be large. The target number of
active sensors is set to N = 30, which is consistent with [4].
The fraction R/d0 ≈ 20, and from Table I we see that the
upper bound of uncorrelated sensors is 1450, whereas purely
random locations of the sensors would give 24 uncorrelated
sensors on average. This means that random sensor selection
will likely not fulfill the target of N = 30 uncorrelated sensors.
Note that the upper bound in Table I assumes that the sensors
can be positioned arbitrarily, which is not the case here.
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Fig. 5. Correlation measure, used by the method described in Section III-B,
for a few positioning error standard deviations.

The simulations are run for 40 different position estimation
error variances. For each such variance, 500 different sensor
distributions are generated for each of the above scenarios.
The following measures are used to evaluate the partitioning
methods:

a) Mean number of uncorrelated sensors: After the
methods have selected the sensors in the active set based on the
estimated positions, the true positions of the selected sensors
are used to compute the number of sensors in the active set for
which all other active sensors are further away than d0. This
is then averaged over the 500 sensor distribution realizations.

b) Mean correlation to other active sensors: Similar to
the above measure, but here the function R(d) is computed and
averaged over all sensor pairs (using their true positions) in
the active set for each iteration. The average of these averages
is then computed over the 500 sensor distribution realizations.

In all the Figures 6–11 the following abbreviations are
used: “Corr Meas” refers to the correlation measure based
algorithm described in Section III-B, “Iter Part” is the iterative
partitioning algorithm described in Section III-C, “Radius
based” is the algorithm to select sensors based on radius
information in Section III-D1 and “Random” refers to random
selection of 30 sensors, which is considered as a reference
case. The correlation measure based algorithm described in
Section III-B runs with a correlation measure computed by
numerically convolving (over a fine grid) the vector-input
version of R(d) with a Gaussian pdf of the distance vector
d using the true positioning error variance, according to (6).
Correlation measures for a few positioning error standard
deviations are shown in Figure 5, where it can be clearly
seen how the positioning uncertainty smears the correlation
function. Also, in the correlation measure based algorithm,
the BS-sensor is given a weight cii = −∞ (assuming the BS-
sensor is the i-th sensor), so that it will always remain in the
active set.

The results for Scenario 1 are shown in Figures 6–7. In
Figures 8–9, the results for Scenario 2 are shown. Figures
10–11 show the results for Scenario 3.
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Fig. 6. The mean number of uncorrelated sensors for Scenario 1: many
uniformly distributed sensors.
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Fig. 7. The mean correlation for Scenario 1: many uniformly distributed
sensors.
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Fig. 8. The mean number of uncorrelated sensors for Scenario 2: few
uniformly distributed sensors.
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Fig. 9. The mean correlation for Scenario 2: few uniformly distributed
sensors.
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Fig. 10. The mean number of uncorrelated sensors for Scenario 3: few
sensors clustered in two regions.
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Fig. 11. The mean correlation for Scenario 3: few sensors clustered in two
regions.
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TABLE IV
AVERAGE RUNTIMES (IN SECONDS) OF THE ALGORITHMS FOR THE

DIFFERENT SCENARIOS.

Corr Meas Iter Part Radius Based Random
Scenario 1 2.853 0.3619 0.0317 2.25 · 10−4

Scenario 2 0.0215 0.0529 0.0171 8.32 · 10−5

Scenario 3 0.0210 0.0532 0.0190 8.14 · 10−5

The figures immediately reveal that the three algorithms that
take into account some level of positioning of the sensors out-
perform the random selection algorithm. The only exception
is for Scenario 1, where random selection performs better than
the radius based method for large positioning errors. This is
likely due to mismodeling; the radius based method does not
consider the positioning uncertainty, which dominates over the
decorrelation distance d0 for the cases where random selection
performs better. The plots further reveal that the correlation
measure based algorithm performs very well, especially in the
scenarios with uniform distribution of the sensors.

It can be seen in Figures 6-9 that the correlation measure
based algorithm performs very well even when the uncertainty
in the sensor positions are as large as the decorrelation
length. Only when the uncertainty is increased beyond the
decorrelation distance it becomes more difficult to obtain a
decent sensor selection. But for these cases the correlation
measure based algorithm still clearly outperforms the other
algorithms.

Scenario 3 presents the most difficult task for the algorithms,
as seen in Figures 10-11, since the sensors are clustered in
two different regions of the cell. The algorithm based on only
radius information has difficulties to return a good selection,
even when there is no uncertainty in the sensor positions
at all (note that this algorithm implicitly assumes an even
angular distribution of the sensors; see Section III-D). The
sensor selection performed by the iterative partitioning and
the correlation measure based algorithms are of good quality
when the positioning errors are small, but the quality of the
selections decreases faster than for the scenarios with uniform
sensor distribution.

In Table IV, the average runtimes (in seconds) of the differ-
ent algorithms are shown. The algorithms were implemented
in Matlab v7.3 and run on an Intel Pentium 4 2.80 GHz
processor with 3 Gb RAM. The runtimes where averaged over
5000 iterations (the positioning error did not affect any of the
runtimes of the algorithms). The algorithms have not been
optimized for speed, but Table IV at least gives an indication
of the relative runtimes of the algorithms. In particular, the
correlation measure based algorithm described in Section III-B
becomes slow when the number of sensors becomes large.
The incremental version of this algorithm, where sensors are
added one-by-one starting with the BS runs faster at similar
performance. Also, as already stated in Section III-B, Mode 2
of the algorithm should be preferred if the number of sensors
is large. If the sensors do not move at high velocities, a
partitioning runtime of a few seconds may not be a problem.
Completely random selection is, of course, the fastest way
of selecting sensors, but the risk of selecting sensors which
experience correlated shadow fading is much larger than for

the other methods.

V. CONCLUSIONS

In this article the sensor selection problem has been em-
phasized and three algorithms have been evaluated. Each of
the three outperforms the random sensor selection method
and all produce good distributions of the selected sensors in
the case when the sensors are uniformly distributed over a
cell. For scenarios when the sensors are clustered in limited
regions of a cell, the two selection algorithms that are based
on the estimated position of the sensors perform well while the
algorithm that only assumes knowledge of the sensor distances
to the base station has problems to obtain a good selection.

Extensions to this work could be, e.g., to address the prob-
lem of sensor selection when no centralized coordination is
assumed, i.e., the nodes make their own decisions on whether
to participate in the sensing or not. Further, to distribute the
sensing load fairly over the sensors when repeated sensing is
demanded while maintaining reliability of the sensing outcome
would also be an interesting problem to address.
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