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Abstract—In many recent studies on cognitive radio (CR) net-
works, the primary user activity is assumed to follow the Poisson
traffic model with exponentially distributed interarrivals. The
Poisson modeling may lead to cases where primary user activities
are modeled as smooth and burst-free traffic. As a result, this may
cause the cognitive radio users to miss some available but unuti-
lized spectrum, leading to lower throughput and high false-alarm
probabilities. The main contribution of this paper is to propose
a novel model to parametrize the primary user traffic in a more
efficient and accurate way in order to overcome the drawbacks
of the Poisson modeling. The proposed model makes this possible
by arranging the first-difference filtered and correlated primary
user data into clusters. In this paper, a new metric called the
Primary User Activity Index, �, is introduced, which accounts
for the relation between the cluster filter output and correlation
statistics. The performance of the proposed model is evaluated
by means of traffic estimation accuracy, false-alarm probabilities
while keeping the detection probability of primary users at a
constant value. Simulation results show that the appropriate
selection of the Primary User Activity Index, higher primary-user
detection accuracy, reduced false-alarm probabilities, and higher
throughput can be achieved by the proposed model.

Index Terms—Clustering, cognitive radio (CR) networks, pri-
mary user activity modeling.

I. INTRODUCTION

I N COGNITIVE radio (CR) networks, primary users (PUs)
are defined as wireless devices that have the license to op-

erate in a specific spectrum band. Since PUs have priority to
utilize the licensed spectrum, their communication should not
be interrupted or interfered with any other users. However, CR
users are supposed to sense the spectrum and utilize the unused
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bands in an opportunistic manner. CR users may occupy avail-
able bands as long as the corresponding PU is active, but must
immediately evacuate the band as soon as the corresponding PU
appears [1].

CR users should intelligently determine the ongoing PU ac-
tivities in a licensed spectrum band to avoid interference with
the PUs [1]. Moreover, the PU activities need to be accurately
modeled so that CR users can evacuate the band without af-
fecting PU activities. CR users also need to detect spectrum
holes to identify transmission opportunities so that the spectrum
usage is maximized [2]. Hence, it could be stated that precise
estimations/modeling of PU activities leads to much more ef-
fective spectrum usage for CR users.

In recent studies, the PU activity is assumed to follow the
Poisson model [3]–[6]. However, the Poisson model fails in
capturing the bursty and spiky characteristics of the monitored
data [2], [7], [8]. As a result, the existing works based on the
Poisson model consider the PU activities as smooth and burst-
free, in which short-term fluctuations are neglected. Moreover,
some large-scale measurement-driven characterizations of the
PU activities in cellular networks are also carried out for dif-
ferent spectrum bands. In [9], the authors analyze the spec-
trum occupancy of PUs in GSM and UMTS bands. In [10], the
PU activities are analyzed in the New York cellular bands, i.e.,
CDMA and GSM. In [11], the authors analyze the call logs of a
switch of a cellular GSM provider in Qingdao, China. In [2], it
is pointed out that the PU activity durations are nonexponential
and changes in time scale violating the Poisson assumptions. It
was also pointed out that the spectrum usage of PUs fluctuates
significantly even with a few seconds, hence CR users must be
aware of these short-term fluctuations. Note that the PU activity
models in that work are based on long-term observations.

Overall, the Poisson model approximates the PU activities as
smooth and burst-free traffic. Though the PU activity exhibits
short-term temporal diversity, i.e., significant and spiky fluctua-
tions over time, these variations are not captured by the Poisson
model, as shown in Fig. 1. The model represents the ON period,
i.e., the active transmission duration of a PU, by the horizontal
level at constant amplitude of dBm. The OFF period, which
represents the absence of PU activity, is also given by the con-
stant amplitude of dBm. It could be observed that the actual
PU activity fluctuates during the ON period, which is not exactly
tracked by the Poisson model. Some of these fluctuations re-
sult in durations, where the PU is actually absent, shown by the
dashed lines. These durations, which are classified as a part of
the ON period by the Poisson model, cause missed transmission
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Fig. 1. Missed transmission opportunities caused by the Poisson modeling.

opportunities for the CR users. The Poisson model is incapable
of identifying fluctuations. This leads to fewer cases of correct
spectrum hole detection, thus causing a degradation in CR net-
work performance.

In this paper, we introduce a novel PU activity model ad-
dressing the potential drawbacks of the Poisson modeling with
the following contributions.

• A new PU activity detection technique based on the First-
Difference Clustering scheme is introduced.

• A new temporal correlation-based PU activity modeling
scheme in order to detect the spectrum holes in a band is
proposed.

• The PU activity detection and the spectrum hole detec-
tion schemes are combined to maximize the CR network
performance.

In this work, spiky and bursty PU activities are captured more
accurately. Moreover, a new parameter called the Primary User
Activity Index (the PU activity index), , is introduced to pa-
rametrize the PU activities as well as the spectrum holes. Fi-
nally, the overall CR network performance, in terms of estima-
tion accuracy, false-alarm probabilities, and throughput is eval-
uated under different -values.

The rest of the paper is organized as follows. In Section II,
the overview of the network architecture and the model we pro-
posed are described. In Section III, we explain the Clustering-
Modeling Module by giving details of the proposed PU activity
modeling. In Section IV, the performance of the proposed model
is evaluated in terms of traffic estimation, false-alarm probabil-
ities, and throughput. In Section V, we conclude the paper by
summarizing the achievements and giving future directions.

II. NETWORK ARCHITECTURE AND PROPOSED MODEL

We consider an infrastructure-based CR network architecture
integrated in a PU network that has the license to operate in
a certain spectrum band [4]. Moreover, the CR network has a
centralized network entity such as a base station and associated
CR users. Each CR user monitors the spectrum band and sends
its local observations, i.e., the monitored PU activities, to the
base station, which broadcasts the PU activity model to the CR
users.

Fig. 2. Block diagram of the proposed model.

TABLE I
KEY NOTATIONS

The model we propose consists of two main modules: the
PU Activity Monitoring Module and the Clustering-Modeling
Module, which are illustrated in Fig. 2. The notations used are
listed in Table I.

The PU Activity Monitoring Module, which is implemented
in each CR user, monitors the spectrum band and samples the
PU activity. We use the following noncooperative spectrum
sensing scheme at each CR user [3], [12]:

(1)

where is the th sample of the monitored PU activity
vector , which is sampled at the sampling frequency and
defined as

(2)

where is the total number of PU monitored activity samples.
Moreover, and in (1) are the hypotheses that indicate ei-
ther the PU does not have an activity or does have an activity
in the spectrum band, respectively. In addition, in (1) rep-
resents the additive white Gaussian noise (AWGN) with zero
mean and variance , and is the primary
user’s unknown signal, which is an independent and identically
distributed (iid) random process with mean and variance

as in [13]. It is also assumed that and
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are independent. Thus, the signal-to-noise ratio (SNR) is
given by .

Once the monitoring is finished, the PU Activity Monitoring
Module gives the monitored PU activity vector for modeling
and analysis to the Clustering-Modeling Module, which is im-
plemented in the base station. The Clustering-Modeling Module
activates its Clustering Engine, where the monitored PU activity
samples are accumulated into clusters using a first-difference fil-
tering procedure enhanced with temporal correlation. As a re-
sult, a new PU activity vector with clusters is generated and
then input to the Modeling Engine as seen in Fig. 2. In this en-
gine, a correlation-based modeling scheme produces the new
modeled PU activity and parametrizes PU activity characteris-
tics, i.e., producing , the probability of PU absence, and

, the probability of PU presence. The details of the Clus-
tering-Modeling Module are given in Section III.

The newly generated PU activity characteristics and the mod-
eled PU activity vector are fed back to the CR user. Here, the
modeled PU activity is input to the energy detector to be used
for spectrum sensing. Since the energy detector gets samples of
size , it completes the operation in iterations. At the end
of the operation, the energy detector triggers the PU Activity
Monitoring Module using the local clock for a new analysis.

In the model, we use the maximum a posteriori (MAP) en-
ergy detection, i.e., the a posteriori PU activity probabilities,
which could be summarized as follows [3], [13]. The energy
detector consists of a bandpass filter, a squaring module, an in-
tegrator, and a decision maker. The energy of the received signal
is bandpassed by the filter with bandwidth . The output signal
of this bandpass filter is squared and integrated over the sensing
time . The output of the integrator is compared to a threshold

in the decision maker to decide whether the PU is present or
not.

The output of the integrator follows the chi-square distribu-
tion [13]. When the number of samples is large, the output can
be approximated by Gaussian distribution using central limit
theorem [14]. Therefore, the false-alarm probability and the
detection probability can be evaluated by considering PU ac-
tivity characteristics as [3]

(3)

(4)

where is the th sample of , which is the modeled PU ac-
tivity vector , which is smaller than or equal to gives the
number of samples; is the sensing time; is the complete
Gamma function; is the incomplete Gamma function;
and is the generalized Marcum Q-function.

Moreover, the proposed model calculates the maximum
achievable throughput of a CR user as in [15]

(5)

where is the total frame duration, and is the
throughput of a CR user without PU existence. is equal to

Fig. 3. Flowchart of the clustering engine.

, where is the received power of the CR user
and is the noise power.

III. CLUSTERING-MODELING MODULE

The Clustering-Modeling Module has two engines to process
the monitored PU activity: the Clustering Engine and the Mod-
eling Engine, as shown in Fig. 2. The details of the engines are
explained.

A. Clustering Engine

The Clustering Engine works based on the flow diagram
given in Fig. 3.

When the PU Activity Monitoring Module gives the moni-
tored PU activity vector to the Clustering-Modeling Module,
it activates its Clustering Engine. Here, the monitored PU ac-
tivity samples are accumulated into clusters. A cluster is a vector
where PU activity samples are accumulated according to some
hypothesis tests. We introduce the notation to express the

th cluster. In a cluster , the PU samples are assumed to be
homogeneous. We exploit this homogeneity for more accurate
detection of PU activities. Since all samples in the th cluster
have same power level, the energy detector, shown in Fig. 2,
results with the same decision for them, leading to a more accu-
rate detection as long as the samples within a cluster are highly
correlated.

In this engine, the monitored PU activity samples are clus-
tered using a first-difference filtering procedure enhanced with
temporal correlation. The details of the first-difference filtering
are given in Appendix A. As a result, a new PU activity vector
with clusters is generated and then input to the Modeling
Engine.

At the beginning of the clustering process, the Clustering En-
gine receives the monitored PU activity vector from the PU
Activity Monitoring Module and sets , indicating the
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start index of the monitored PU activity vector; the cluster index
, representing the first cluster; and the randomly predeter-

mined parameters , the clustering parameter (detailed in
Appendix A), and , the correlation parameter (detailed in
Appendix B), for . Since the monitored PU activity
is input to the Clustering Engine Module, we may assume that
the modeled PU activity vector is identical to the monitored
PU activity vector input to the Clustering Engine, i.e., .
Then, all the consecutive samples (the current sample and
the last sample ) are passed through the first-difference
finite-impulse response (FIR) filter [detailed in Appendix A and
calculated in (38)]. In the next step, the filter output is
checked with a -test (detailed in Appendix A). If the -test is
successful, the -test (detailed in Appendix B) is applied. Con-
sequently, the modeled PU activity sample is placed in the
existing cluster with its predecessor if both
tests are successful, whereas any fail from these two tests leads
the sample to form a new cluster . This process
is repeated until all the samples in the monitored PU activity
vector are analyzed. Then, the clustered PU activity vector of
size is formed by mean values of each cluster.

As a result, only the modeled PU activity sample , which
is close to its predecessor (successful in -test) and
highly correlated with the last two samples ,
(successful in -test), is placed in the same cluster with its pre-
decessor . By using clustering, groups of first-differ-
ence filtered PU activity samples that have different correlation
statistics are separated. In other words, spiky and bursty char-
acteristics of the modeled PU activity are more accurately dis-
tinguished by employing clustering, which leads the CR user to
detect the PU activity fluctuations more precisely, hence causing
less interference.

B. Modeling Engine

The Modeling Engine produces a correlation-based modeling
scheme in order to parametrize the PU activity characteristics.
The operations performed in this engine have a flow diagram
shown in Fig. 4.

At the Modeling Engine, and are set to 1 and the is
randomly predetermined for . After this preprocessing,
the Modeling Engine enters the loop until all samples are ex-
ecuted. At each run, the engine determines a decision region
using Table III for the pair of clusters among
four regions. Decision regions are defined for a pair of clusters

, and each pair can reach only one of the re-
gions at the end of the Modeling Engine. Moreover, the regions
are expressed by different combinations of the two binary vari-
ables and , which are defined in Table II. The two binary
variables and are employed to mathematically express the

-test [detailed in Appendix A and given in (47)] and the corre-
lation slope test [detailed in Appendix B and given in (50)], re-
spectively. More precisely, the variables and take the value
1 under a certain hypothesis, and 0 if the hypothesis is not true.
These variables and their hypotheses are expressed in Table II.
As seen in Table II, the variable represents that the -test
in (47), which is realized in the Modeling Engine, is successful

. The , which is the complement
of , represents that the -test in (47) failed. Moreover, the

Fig. 4. Flowchart of the modeling engine.

TABLE II
VARIABLES �, � AND THEIR HYPOTHESES

variable in Table II is used when the correlation slope
test, calculated in the Modeling Engine using (50), is positive

. The , which is the complementary

of , shows that the result of (50) is negative.
At each decision region, there are two possible decisions that

the clusters and can take. These are and
. means that the clusters are modeled as the ab-

sence of PU activity, whereas indicates that the clus-
ters are modeled as the existence of PU activity. The regions,
their mathematical expressions, and the decisions for the cluster
pair at each region are shown in Table III.
In addition, the interpretation of each decision region for the
cluster pair is illustrated in Fig. 5. Note that
the threshold value in Fig. 5 is selected as the mean power of
the monitored PU activity, and is the cluster index.
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Fig. 5. Interpretation of decision regions.

TABLE III
DECISION REGIONS

Each region, which indicates the decision of being BUSY and
IDLE for a pair of clusters , is described using
Table III and Fig. 5 as follows.

• Region 1: Since the pair has a decreasing
slope , has a higher power amplitude than

. Moreover, they are not highly correlated , thus they
are not close to each other, indicating that they have dif-
ferent decisions. Consequently, merging the two results

, we state that is BUSY because of its higher
power level, and is IDLE because it is not close
to .

• Region 2: Since the pair has a decreasing
slope , has a higher power amplitude than

. Moreover, they are highly correlated , thus they
are close enough to each other, indicating that they have
identical decisions. Consequently, merging the two results

, we state that is IDLE because of its higher
power level, and is IDLE as well because it is
close to .

• Region 3: Since the pair has an increasing
slope , has a higher power amplitude than

. Moreover, they are not highly correlated , thus
they are not close to each other, indicating that they have
different decisions. Consequently, merging the two results

, we state that is BUSY because of its higher
power level, and is IDLE because it is not close to

.
• Region 4: Since the pair has an increasing

slope , has a higher power amplitude than
. Moreover, they are highly correlated , thus they

are close enough to each other, indicating that they have
identical decisions. Consequently, merging the two results

, we state that is BUSY because of its higher
power level, and is BUSY as well because it is close
to .

As the output of the Modeling Engine, the total number of
IDLE clusters , the total number of BUSY clusters ,
the modeled PU activity vector , PU activity characteristics

and , as well as the calculated values of and
are input to the PU Activity Monitoring Module as seen in

Fig. 2.
Using the Modeling Engine, we analyze each cluster pair

independently, thus the fluctuations in PU ac-
tivity are better classified. This leads to more accurate detection
of the transmission opportunities and an increase in the CR net-
work performance.

The calculations performed at the end of the Modeling Engine
are explained as follows.

1) We first define the Primary User Activity Index . This
metric is defined to parametrize the relation between the
vector of the clustering parameters defined in (41) and the
vector of the correlation parameters defined in (46). It is
expressed as follows:

(6)

By substituting (41) and (46) into (6), the Primary User
Activity Index can be calculated as follows:

(7)

By substituting (40) and (45) into (7), we obtain as

(8)

Therefore, the PU Activity Index vector is generated
using (44) as follows:

(9)

where is the number of monitored PU activity
samples. The first term
in (8) indicates that represents the
clustering effect, whereas the second term

shows that also accounts for the correlation
effect. Therefore, captures both the clustering and
correlation effects. In the evaluations, we analyze the
clustering and correlation effects of the PU activity index
separately. More detailed explanation about separate
analysis of clustering and correlation effects using the PU
activity index is provided in Section IV. The sampling
errors will affect our PU activity index calculation and
the Poisson assumption similarly, thus we can assume the
same sampling errors for both cases.

2) The number of clusters considered as BUSY at any th
run, , is calculated using the decision regions in
Table III as

(10)
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where is the number of monitored PU activity samples.
This three-term equation can be retrieved from the flow di-
agram given in Fig. 4 by following logical paths to reach
regions 4, 1, and 3, which are defined in Table III, respec-
tively. They are combined by the logical expression
since a pair of clusters can reside only
in one of the three available regions. in the first term
of (10) shows that . Besides,
and are highly correlated because of . Since these
two variables are highly correlated in an increasing rela-
tionship, they are both considered as BUSY at region 4
(the number 2 in the first term). Therefore, the result is

. Looking at the second term of (10), one can
see that and are in a decreasing trend ,
and they are not highly correlated , hence
is IDLE whereas is BUSY at region 1. Therefore,
the result is . The third term of (10) indi-
cates that and are in an increasing rela-
tionship and they are not highly correlated , thus

is BUSY and is IDLE at region 3. As a re-
sult, .

3) The number of clusters considered as IDLE at any th
run, , is calculated using the decision regions in
Table III as

(11)

This three-term equation can also be retrieved from the
flow diagram given in Fig. 4 by following the logical paths
to reach regions 2, 1, and 3, which are defined in Table III,
respectively. Using the decision regions in Table III, we see
that in regions 1 and 3, whereas in
region 2.

4) Using (10) and (11), we derive a mathematical expression
for the modeled PU activity at , in terms of
and as follows. In (10), we observe that the first term
represents that both clusters are BUSY. Similarly, in (11),
the first term strictly indicates that both clusters are IDLE.
Therefore, these first terms of (10) and (11) are used to
express the cases where both clusters have identical char-
acteristics. The second and the third terms in (10) and (11)
identify that the two clusters have opposite characteristics,
thus they are utilized to express the cases where one cluster
is BUSY and the other one is IDLE. After neglecting con-
stant values in the first term of (10) and (11), the modeled
PU activity is defined as

(12)

where is the number of monitored PU activity samples.
5) The modeled PU activity is calculated using (12) as

(13)

6) The calculated in (12) shows the behavior of the clus-
ters. In other words, indicates what characteristics

(IDLE or BUSY) the two clusters have. By considering
only two clusters, the model achieves more accurate de-
tection of the PU activity, thus possible fluctuations and
missed transmission opportunities are better captured. As
an example, consider the case when the two clusters have
an increasing slope ( as seen in Table II) but they
are not highly correlated ( as seen in Table II).
By replacing and in (12), we obtain

. After some Boolean al-
gebra calculation steps, and in (12)
is expressed in terms of , which is calculated in (12)
as

(14)

and

(15)

Therefore, The total number of clusters considered as
IDLE is calculated using (14) as

(16)

Similarly, the total number of clusters considered as BUSY
is expressed using (15) as

(17)

7) Furthermore, we define the modeled PU activity charac-
teristics, i.e., the probability of IDLE and BUSY periods,

and as

(18)

and

(19)

The total number of IDLE and BUSY periods is
, hence in (18) and

in (19) become

(20)

and

(21)
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8) Using (20) and (21), the modeled PU activity characteris-
tics and are expressed as

(22)

and

(23)

9) After obtaining the PU activity characteristics, i.e.,
in (22) and in (23), we can reformulate the CR-spe-
cific parameters, i.e., the probability of false alarm in
(3) and the CR user’s achievable throughput in (5) as
follows.
By substituting defined in (22) into (3), we obtain

as

(24)

Similarly, by substituting defined in (22) into (5),
we define the CR user’s achievable throughput as in [15]

(25)
where in (24) and (25) is the number of monitored PU
activity samples.

IV. PERFORMANCE EVALUATION

The performance of the proposed PU activity model is com-
pared to the Poisson PU activity model under different condi-
tions, estimation accuracy, false alarm probabilities, and CR
User achievable throughput. The simulation environment and
these different evaluations are presented.

A. Simulation Environment

Both system modules are implemented in MATLAB environ-
ment. In the evaluations, we use a network topology shown in
Fig. 6, where we consider a centralized PU network operating
in a licensed spectrum band with a bandwidth of MHz
[15]. This PU network consists of one PU and one primary base
station. The primary base station has a PU transmission range
of m [16] as shown in Fig. 6. The PU, which has an un-
known traffic pattern, communicates with the primary base sta-
tion in this range [13]. Moreover, we consider a CR network that
operates within the PU transmission range in an opportunistic

Fig. 6. Network topology.

manner. This CR network has one CR base station and 20 CR
users that are spread out within the PU transmission range as
shown in Fig. 6. The reason to select 20 CR users is explained
as follows. In our simulations, we adopt a noncooperative spec-
trum sensing scheme at each CR user, as defined in Section II.
The CR users only send their monitored data to the base sta-
tion, and they do not exchange their monitored PU activity data
with each other. Therefore, we analyze that the increase of the
CR users within the PU transmission range does not have a sig-
nificant effect on the PU activity monitored by each CR user.
Consequently, we evaluate the system performance with a fixed
number of CR users, which is selected as 20.

In the CR network, each CR user monitors the PU’s spectrum
band for 10 s and takes samples of PU activity with
a sampling frequency MHz [15]. We prefer taking 10 s of
spectrum monitoring in order to capture PU activity’s short-term
temporal variations and fluctuations [2]. Since the CR network
has 20 CR users, the simulation is run with 20 replications (local
clock triggers the PU activity Monitoring Module 20 times as
seen in Fig. 2), and the confidence intervals are shown in the
figures whenever they are not negligible. In addition, the frame
duration in the CR network is fixed at ms, and the
energy detector exploits a maximum vector size of ,
where ms ms. Besides, the SNR value for the
hypothesis in (1) is assumed to be dB since low-SNR
regime is considered for CR network. The fading effects will be
the same for both the Poisson model and our proposed model
because CR users are stable. In addition, the PU is protected
with a given target probability of detection 0.9, and the CR user
transmission under hypothesis is constant with dB.
The detection threshold in (4) is regulated according to the
target detection probability in (4), i.e., the energy detector is
trained with from 0 to while calculating the threshold

in (4), to reach the target probability of detection [15].
In order to evaluate the effects of the clustering and the cor-

relation parameters on the proposed model separately, two dif-
ferent PU activity indexes are introduced using (7). More pre-
cisely, the clustering effect is analyzed by the PU activity index

, whereas the correlation effect is observed using .
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and , which are both derived from (7), are ex-
plained in detail as follows.

• In the case of the clustering effect , the correlation
parameter in (7) is selected by trial as 0.5 for all

. The performance of the proposed model
is evaluated by varying the clustering parameter for
all in (7). Thus, (7) becomes

(26)

By substituting (40) into (26), we express as
follows:

(27)

Therefore, the vector is defined using (27) as

(28)

where is the number of monitored PU ac-
tivity samples. The reason to select in (7)
is explained as follows. 0.5 is the median of the corre-
lation values that can take within the range

for all . Therefore, by se-
lecting for all , we obtain
an equal amount of PU activity samples that pass and fail
the -test defined in (44). As seen in (26), which is de-
rived from (7), the correlation parameter for
all does not have an additional effect
to since is kept constant at 0.5 during the
evaluations provided by for all .
As a result, in (26) only represents the effects of
clustering parameter for all on
the proposed model. In addition, the special case where

for all represents the Poisson
traffic model where all samples reside in one cluster.

• In the case of the correlation effect , the clus-
tering parameter in (7) is selected as 0.45 for all

because, in the simulations, gets
a maximum accuracy at 0.45. Therefore, in (7) is
kept fixed at the value 0.45 while varying the correlation
parameter for all . Thus, (7)
becomes

(29)

By substituting (45) into (29), we express as

(30)

Therefore, the vector is defined using (30) as

(31)

As seen in (29) derived by (7), the clustering parameter
for all does not have an additional

effect to since is kept constant at 0.45 in (7)
during the evaluations provided by for all

. Consequently, in (29) only represents
the effects of correlation parameter for all

on the proposed model.
In the evaluations, we apply the Min–Max normalization

method [17] on in (27), in (30), and the mean
square error in order to obtain more accurate compar-
isons. More precisely, the normalized is denoted as

, and it is calculated using (27) and (28) as

(32)
Therefore, the normalized clustering effect is defined
using (32) as

(33)

In the evaluations, we use the notation to represent the
elements of the vector in (33). In addition, the special case
where represents the Poisson traffic model because
of for all , which indicates the
Poisson traffic model where all PU activity samples reside in
one cluster.

Similarly, the normalized is denoted as , and
it is calculated using (30) and (31) as

(34)
Therefore, the normalized correlation effect, , is expressed
using (34) as

(35)

In the evaluations, we use the notation to represent the
elements of the vector in (35).

The normalized vector is denoted as , and it is
defined as

(36)

In (36), is the monitored PU activity in (2), and is the mod-
eled PU activity calculated using (13). In the evaluations, we
use the notation to represent the elements of the vector

in (36).
Overall, we see that in (33) and in (35) are de-

fined using (32) and (34), respectively. Moreover, in
(32)) and in (34) are expressed using (26) and (29), re-
spectively. Furthermore, (26) and (29) are derived from ,
which is calculated in (7). As seen in (8), which is derived from
(7), is a function of . Consequently, the equations
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Fig. 7. Performance of the proposed model under various �-values. (a) � �

����. (b) � � ����. (c) � � ����. (d) � � ����.

TABLE IV
EQUATIONS EVALUATED BY � AND �

that are calculated using can be evaluated by and
. More specifically, Table IV summarizes the equations

that are evaluated by and instead of .

B. Overall Performance Comparison for Various -Values

Before giving the detailed results of the evaluations, in this
section, we give an overall performance evaluation of the PU
activity index defined in (8) using Fig. 7. This figure shows
how accurate the PU activity model becomes while changing
the . As seen in Fig. 7(a), between 0 and 100 ms, the PU
activity (the solid line) fluctuates around 0 and 8 dBm, and
when , the PU activity model
(the dashed lines) simply approximates all these PU activity
fluctuations to a constant value of 5 dBm. Therefore, we can
state that the PU activity model when

cannot accurately estimate the PU activity. How-
ever, when increases, i.e., it becomes
0.25 [Fig. 7(b)] and 0.45 [Fig. 7(c)], the PU activity model starts
estimating the PU activity more accurately. This can be stated
because when the PU activity fluctuates within 0 and 100 ms,
the proposed model fluctuates as well. This leads to more ac-
curately capture the spiky characteristics of PU activity. More
specifically, when , the pro-
posed model (the dashed line) fluctuates very accurately when-
ever the PU activity (the solid line) fluctuates. When we keep
increasing the , i.e., becomes 0.65 [Fig. 7(d)], the model
starts to inaccurately estimate the PU activity. Consequently, we

can state that the PU activity model can accurately capture spiky
PU activity characteristics when is between 0 and 0.45.

C. Estimation Accuracy

The normalized effects of clustering and correlation on the
estimation accuracy are evaluated in two steps. First, we calcu-
late and using (16) and (17), respectively. Then,
we analyze the normalized mean squared error in (36).

1) Normalized Effects of Clustering and Correlation
on and : In Fig. 8(a), we show

and (calculated in (16) and (17), respectively) plotted
against , which indicates the normalized clustering ef-
fect and is calculated by (33). Here, decreases within

and increases within . We
explain this so-called first-decrease–then-increase phenomena
as follows. When , the number of clusters increases
because of the augmentation on the amount of the PU activity
samples that fail the -test given in (37). Since the detection
of PU activity variations is more accurate using clusters, the
number of periods is increased, leading to a decrease
in periods. However, when , there is an in-
crease in the number of the PU activity samples that pass in
the -test given in (37). Therefore, the number of clusters de-
creases, which leads to a more smooth and burst-free approxi-
mation of the PU activity. Consequently, the PU activity fluc-
tuations are mistakenly determined, leading to an increase in

periods (or a decrease in periods). Additionally,
and [calculated in (16) and (17)] are shown as a

function of the normalized correlation effect [ , calculated
in (35)] in Fig. 8(b), where we observe a direct proportion be-
tween and , explained as follows. The rise of
means an increase in as seen in (34). Since the increase
of indicates that the correlation parameter is also
increased, as observed in (29), the PU activities samples become
successful in the -test given in (44). Therefore, the successful
samples can reside in the same cluster, leading to an inaccurate
detection of PU activity fluctuations. As a result, this unaware-
ness of the PU activities raises the number of IDLE periods (or
lowers the number of BUSY periods).

2) Normalized Effects of Clustering and Correla-
tion on the : Fig. 9 shows the variations of

[calculated in (36)] in y-axis along [the nor-
malized clustering effect that is calculated in (33)] and
[the normalized correlation effect that is calculated in (35)] in
x-axis. Here, we analyze the first-decrease–then-increase phe-
nomena for in the case of , which is described as
follows. Within , the number of clusters in-
creases because of the augmentation on the amount of the sam-
ples that fail the -test in (37). Since the PU activity fluctuations
are more precisely distinguished using clusters, the proposed
model achieves more accurate PU activity estimation. More pre-
cisely, when , the normalized MSE is 0.62, whereas it
becomes 0.32 when , as shown in Fig. 9. However,
within , there is an increase in the number of
the PU activity samples that are successful in the -test. There-
fore, the number of clusters decreases, thereby leading to more
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Fig. 8. Normalized clustering effect �� � and normalized correlation effect �� � on parameters � and � .

Fig. 9. Normalized clustering and correlation effects (� and � ) on
��� .

smooth and burst-free identification of the PU activity. Conse-
quently, the PU activity fluctuations are inaccurately estimated,
i.e., increases within .

In the evaluation provided by the normalized correlation ef-
fect , we observe a direct proportion between
[calculated in (36)] and [calculated in (35)], as shown in
Fig. 9. The explanation is as follows. The rise of means
an increase in as seen in (34). The increase of in-
dicates that the correlation parameter is also increased,
as observed in (29), thereby showing that the correlation level
to be successful in the -test, given in (44) is augmented. In
other words, the PU activity samples are successful in the -test
when the correlation parameter is increased since they are
highly correlated. Therefore, PU activities samples that are suc-
cessful in the -test, given in (44), are accumulated into the same
cluster, leading to an inaccurate detection of PU activity fluctu-
ations. Consequently, the estimation becomes inaccurate while
raising .

Additionally, the case of gives more accurate MSE
estimation than the Poisson model , as seen in
Fig. 9. More precisely, in the case of , the normalized
MSE is 0.65, whereas for , it is 0.33. This difference
is because of the -values that and have in the
evaluations. We see that when , is 1, whereas
is 0 for . Therefore, in the case of , the
PU activity samples are less successful in the -test than they

Fig. 10. Normalized effects of (a) clustering �� � and (b) correlation
�� � on PU activity parameters � and � .

are in the case of , because of is lower than
of . Consequently, less PU activity samples can be ac-

cumulated into the same cluster when compared to
, leading to more accurate detection of PU activity.

D. False-Alarm Probability

The normalized effects of clustering and correlation
on the false-alarm probability are evaluated in two

steps. First, we calculate the PU activity characteristics
and using (22) and (23), respectively. Then, we analyze
the in (24) using .

1) Normalized Effects of Clustering and Correla-
tion on and : In Fig. 10(a) and (b), we
show the variations of the PU activity characteristics in y-axis
along the normalized effects of clustering [ , calculated in
(33)] and correlation [ , calculated in (35)] in x-axis, re-
spectively. Recall that the PU activity characteristics and

are obtained by and using (22) and (23),
respectively.

and are inversely proportional since
. More specifically, in Fig. 10(a), we

observe the first-decrease–then-increase phenomenon for
and the first-increase–then-decrease phenomenon for
. The explanation of these two opposite phenomena is



180 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 19, NO. 1, FEBRUARY 2011

Fig. 11. Normalized effects of clustering �� � and correlation �� � on
the false-alarm probability � .

as follows. Within , the number of clusters,
created by the PU activity samples, increases because of the
increase in the amount of the samples that failed the -test in
(44). Since the detection of PU activity fluctuations becomes
more accurate using clusters, the number of captured BUSY
periods is increased (or the number of IDLE periods is de-
creased), leading to an increase in (or to a decrease
in ). However, within , the number
of the PU activity samples that are successful in the -test, is
increased, thereby decreasing the number of clusters, which
leads to more smooth and burst-free approximation of the
PU activity. Consequently, the spiky characteristics of the PU
activity are mistakenly determined, leading to an increase in

(or to an decrease in ). In the case of as
shown in Fig. 10(b), we observe a direct proportion between

and (and an inverse proportion between
and ). The rise of means an increase in as
seen in (34). Since the increase of indicates that the
correlation parameter is also increased, as observed
in (29), PU activities samples become successful in the -test
given in (44). Therefore, they can reside in the same cluster
leading to an inaccurate detection of PU activity fluctuations.
As a result, increases (or decreases) because of
the unawareness of the PU activities, as long as increases.

2) Normalized Effects of Clustering and Correlation
on : The normalized effects of clustering

and correlation on the false-alarm probability are
obtained by (24) and demonstrated in Fig. 11, where the
in y-axis is plotted as functions of [calculated in (33)]
and [calculated in (35)] in x-axis. As shown in Fig. 11,

presents the first-decrease–then-increase phenomena in the
case of . When , the number of clusters in-
creases because of the increase in the number of the samples
that fail the -test, given in (37). Since the PU activity fluc-
tuations are more accurately identified using clusters,
is decreased, which leads to a decrease in the in (24). As
a result, the is 0.6 when , whereas it becomes
0.38 when , as shown in Fig. 11. However, when

, there is an augmentation in the number of the PU
activity samples that are successful in the -test. Therefore, the
number of clusters decreases, which leads to more smooth and
burst-free characterization of the PU activity. Consequently, the
PU activity fluctuations are inaccurately estimated. Moreover,

is directly proportional to , as shown in Fig. 11. Since
the rise of means an increase in the correlation parameter

, as we observe in (29), PU activity samples are successful
in the -test, given in (44), hence they can be accumulated into
the same cluster. Therefore, increases because of the un-
awareness of the PU activities, leading to an increase of in
(24). However, in the case of , our proposed model
provides , which is 25% less than the provided by
Poisson model , which is 0.67, as seen in Fig. 11.

E. CR User Achievable Throughput

The performance of the proposed model is also evaluated in
terms of the CR user’s achievable throughput. Fig. 12(a) and
(b) represent the CR user’s throughput [calculated in (25)] as
functions of the [given in (33)] and [given in (35)],
respectively.

In Fig. 12(a), within , we observe an
increase in the throughput from to b/s/Hz. The reason
for this increase is expressed as follows. As ,
the number of PU samples that fail the -test given in (37)
also increases, thereby raising the number of clusters. Since
the PU activity fluctuations are more accurately captured
using clusters, there is a reduction of , which is calculated
in (24). Therefore, the last term in (25) increases,
which leads to an augmentation in throughput. However, within

, the last term in (25) decreases due to
the higher , caused by the inaccurate PU activity detection,
thereby degrading the throughput from to b/s/Hz. In
the case of , we observe a continuous reduction in the
CR user’s throughput as shown in Fig. 12(b). Since
and are directly proportional as demonstrated in Fig. 11,
the last term in (25) decreases continuously while increasing

, which results in throughput degradation. Although the
throughput decreases with , in the case of , our
proposed model provides a throughput of b/s/Hz, which
is 26% higher than the one provided by the Poisson model

, which is b/s/Hz, as seen in Fig. 12(b).
Overall, the key results are summarized in Table V, where

the proposed model outperforms the Poisson model, giving sig-
nificant improvements in the normalized PU activity estima-
tion error , the false-alarm probability , and CR user’s
throughput .

V. CONCLUSION

In this paper, a novel PU activity model based on the first-dif-
ference filter clustering and enhanced with temporal correlation
statistics is introduced. The scheme, which has the capability of
clustering and modeling the PU activity fluctuations, addresses
the potential drawbacks of Poisson model in the sense of more
accurate PU detection and more effective usage of transmission
opportunities. The proposed model is evaluated by simulations
using the normalized clustering and correlation
effects. The comprehensive performance evaluation shows that
the model gives more accurate estimation, less false-alarm
probabilities, and higher throughput than the Poisson modeling
within an interval of and for .
It is planned to apply the proposed PU activity model into
experimental scenarios by employing a test bed, where CR
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Fig. 12. Normalized effect of clustering �� � and correlation �� � on achievable throughput � .

TABLE V
KEY RESULTS

users are mobile and adopt the cooperative spectrum sensing.
Moreover, the PU mobility issues will be added to the model,
and the performance of and will be evaluated.

APPENDIX A
CLUSTERING PARAMETER AND -TEST

The clustering parameter is a value to form clusters using
the first-difference filtering procedure called -test, which is re-
alized as follows:

otherwise
(37)

where is the th sample of , which is the modeled PU
activity vector; is the cluster index with , and is
the th output of the first-difference FIR filter with input .

is defined as

(38)

Using and , the first-difference output
of the filter becomes

(39)

We may assume that the modeled PU activity vector is iden-
tical to the monitored PU activity vector in the Clustering-
Modeling Module. However, at the output of the Clustering-
Modeling Module, the new modeled PU vector will be formed,
thus is not identical to the monitored PU activity vector . In

(37), represents the th clustering parameter to be used
for the -test. The output of the hypothesis test defined in (37) is
interpreted as successful if , whereas the output
is interpreted as fail if otherwise. More specifically, assuming

is a sample of the cluster , the test indicates that
and belong to the same cluster if the difference

of the power levels between and is below .
In this case, the -test defined in (37) is successful. On the other
hand, the test is fail if the difference between the powers of
and exceeds , which shows that they are not lo-
cated within the same cluster. Besides, in cases where the test
results in fail, a new cluster is generated, and
becomes the first sample of the .

The -test explained is directly affected by the variations of
. Furthermore, the overall performance of the system in

terms of PU activity detection is also influenced. This effect is
explained as follows. When , meaning that
in (37), it implies that the -test is successful as long as

. This indicates that each modeled PU activity sample is
located in a different cluster unless the sample is identical to its
predecessor. In such cases, since the number of the modeled PU
activity samples in a cluster is one, the Clustering Engine func-
tion is bypassed. Moreover, if is selected as ,
-test in (37) is successful for most of the modeled PU activity

samples since the difference between any two consecutive sam-
ples’ power levels is lower than . Therefore, all modeled
PU activity samples residing in one cluster imply that the PU ac-
tivity is becoming smooth. Consequently, when we accumulate
the PU activity samples into clusters, we exploit the similarities
and correlations within these samples.

As explained, the -test in (37) indicates that the output of
the first-difference filter in (39) is directly affected by
the cluster parameter . Hence, using (39), we approximate

as follows:

(40)

where shows the effect of the clustering parameter on the
modeled PU activity sample . Consequently, a vector of
clustering parameters is generated using (40) as follows:

(41)
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In the evaluations, we use the notation to represent the ele-
ments of the vector in (41).

APPENDIX B
CORRELATION PARAMETER, -TEST, AND CORRELATION SLOPE

The correlation parameter is a value that indicates the
temporal correlation level that the consecutive PU activity sam-
ples need to achieve to reside in the same cluster. This correla-
tion level is calculated by the Linear Pearson Product-Moment
Correlation,1 , [18] which is expressed as

(42)

where represents the sample index vector, is the mod-
eled PU activity sample vector, is the mean, and is the
standard deviation. By substituting in (42), we calculate
the correlation level for the last three PU activity samples by

(43)

where , and is a subvector that has the last
three samples of the modeled PU activity , expressed as

Consequently, a correlation calculation procedure called
-test is realized using 43 as follows:

otherwise
(44)

where represents the correlation parameter to be used
for the -est of the th modeled PU activity sample . The
reason to take the last three values is as follows. It is empirically
found that taking the last three samples will give sufficient infor-
mation about the correlation level of the monitored PU activity
vector. Since we use a linear correlation, taking two samples will
not give us a precise idea to decide whether is correlated
with its predecessors or not. If we take more than three samples
for the linear correlation, we observed that the correlation level
cannot accurately capture the spiky characteristics of the sam-
ples. Therefore, we use an optimum value of three samples to
take for correlation calculations. In addition, the absolute value
of is preferred because the proposed system fo-
cuses on the amount of correlation and its slope separately.

The output of the hypothesis test in (44) is interpreted as suc-
cessful if , and as fail if otherwise.
More precisely, the test is successful when the correlation level

1
� indicates the notation of a vector � with � elements

within the last three consecutive samples of the modeled PU ac-
tivity exceeds . Therefore, we state that these three sam-
ples are highly correlated, hence they have similar characteris-
tics. On the contrary, the last three samples are not highly corre-
lated as long as the correlation level is below . Moreover,
in both cases, we observe by trial that the correlation level cal-
culated in (43) used in this test is directly affected by .
Then, we map the correlation level, calculated in (43), to the
correlation parameter and express as follows:

(45)

where is the total number of PU monitored activity samples.
Accordingly, a vector of correlation parameters is gener-
ated as follows:

(46)

In the evaluations, we use the notation to represent the ele-
ments of the vector in (46).

The -test in (44) is applied in the Clustering Engine to in-
dicate the correlation level for the modeled PU activity sam-
ples in order to be located within a cluster. Moreover, the use
of the -test in the Clustering Engine can be interpreted as a
cross-check; i.e., even though the -test defined in (37) is passed,
if the modeled PU activity samples are not highly correlated,
they are prohibited to be in the same cluster. This is important
because when the number of modeled PU activity samples in
a cluster increases, some of them can be less correlated. As a
result, this cross-check avoids such misleading results and puts
uncorrelated samples in different clusters.

The -test is also utilized in the Modeling Engine, as given in
Fig. 2, to decide whether the last three clusters, ,

and with cluster index , are highly correlated or not.
Recall that any th cluster is represented by . Accordingly,
the -test in the Modeling Engine is defined as

(47)

In (47), is calculated by substituting and
in (42) as

(48)

where is the triple of clusters defined as

(49)
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The correlation slope test that is realized in the Modeling En-
gine in Fig. 2 is defined as

(50)

where is defined by substituting and
in (42) as

(51)

In (51), is the pair of clusters defined as
and . The correlation

slope test defined in (50) is used in order to indicate that con-
secutive clusters and show similar or opposite
linear trend. More specifically, the slope of is
positive, if and are in an increasing linear rela-
tionship that also indicates that . Furthermore,
the slope becomes negative if they are in a decreasing linear
relationship that shows that .
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