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Preface

With the recent advances in telecommunications technologies, wireless networking has
become ubiquitous because of the great demand created by pervasive mobile appli-
cations. The convergence of computing, communications, and media will allow users
to communicate with each other and access any content at any time and at any place.
Future wireless networks are envisioned to support various services such as high-speed
access, telecommuting, interactive media, video conferencing, real-time Internet games,
e-business ecosystems, smart homes, automated highways, and disaster relief. Yet many
technical challenges remain to be addressed in order to make this wireless vision a real-
ity. A critical issue is devising distributed and dynamic algorithms for ensuring a robust
network operation in time-varying and heterogeneous environments. Therefore, in order
to support tomorrow’s wireless services, it is essential to develop efficient mechanisms
that provide an optimal cost-resource-performance tradeoff and that constitute the basis
for next-generation ubiquitous and autonomic wireless networks.

Game theory is a formal framework with a set of mathematical tools to study the com-
plex interactions among interdependent rational players. For more than half a century,
game theory has led to revolutionary changes in economics, and it has found a number of
important applications in politics, sociology, psychology, communication, control, com-
puting, and transportation, to list only a few.During the past decade, there has been a surge
in research activities that employ game theory to model and analyze modern communica-
tion systems. This is mainly due to (i) the emergence of the Internet as a global platform
for computation and communication, which has sparked the development of large-
scale, distributed, and heterogeneous communication systems; (ii) the deregulation of
the telecommunications industry, and the dramatic improvement in computation power,
which has made it possible for various network entities to make independent and selfish
decisions; and (iii) the need for robust designs against uncertainties, e.g., in security
situations that can sometimes be modeled as games of users with malicious intent.

Consequently, combining game theory with the design of efficient distributed algo-
rithms for wireless networks is desirable but at the same time challenging. On the one
hand, wireless network users are generally selfish in nature. For instance, distributed
mobile users tend to maximize their own performance, regardless of how this maximiza-
tion affects the other users in the network, subsequently giving rise to competitive scenar-
ios.On theother hand, in some scenarios, cooperation is required amongwireless network
users for performance enhancement. These situations recently motivated researchers
and engineers to adopt game-theoretic techniques for characterizing competition and
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cooperation in wireless networks. As a result, game theory has been applied to solve
many problems in wireless systems, e.g., those that arise in power control, network
formation, admission control, cognitive radio, and traffic relaying. In fact, game the-
ory provides solid mathematical tools for analyzing competition and cooperation in an
ensemble of multiple players having individual self-interests. Various solution concepts
from game theory are highly appropriate for communications and networking prob-
lems, such as equilibrium solutions that are desirable in competitive scenarios, since
they lead to designs that are robust to the deviations made by any player. There are
many popular wireless and communications applications that have recently explored
game-theoretic techniques, including, but not limited to, cognitive radio, heterogeneous
wireless networks, cellular networks, cooperative networks, and multi-hop networks. It
is now commonly acknowledged that within the rich landscape of game theory, new
aspects of network design (e.g., with cooperative and non-cooperative behaviors of the
wireless entities) can be investigated using appropriate solution concepts.

Although game theory has been applied to wireless communications and networking
for many years, there are only a few books that allow researchers, engineers, and grad-
uate/undergraduate students to study game theory from an engineering perspective. On
the one hand, most of the existing game theory books focus on the mathematical and eco-
nomical aspects, which are considerably different from the engineering (and particularly
the application-oriented) perspective. On the other hand, the wireless communications
and networking books focus mainly on system optimization or control techniques while
overlooking distributed algorithms. In addition, the cooperative and non-cooperative
behaviors of the network entities (e.g., users or service providers) cannot be modeled
and analyzed effectively using the techniques presented in these books. Therefore, there
is a need to develop a comprehensive and useful reference source that can provide
complete coverage on how to adequately apply game theory to the design of wireless
communications and networking.

In this regard, this book not only focuses on the description of the main aspects of
game theory in the context of wireless communications, but also provides an extensive
review of the applications of game theory in wireless communications and networking
problems. In a nutshell, it provides a comprehensive treatment of game theory in wireless
communications and networking. The topics range from the basic concepts of game
theory to the state of the art of analysis, design, and optimization of game-theoretic
techniques for wireless and communication networks. The three main objectives of this
book are as follows:

• This book introduces the basics of game theory fromanengineeringperspective. In par-
ticular, the basics of game theory are explained and discussed in the context of wireless
communications and networking. For example, the book provides a clear description
of the main game-theoretic entities in a communication environment (e.g., the players,
their strategies, utilities and payoffs, and the physical meaning, in a wireless network
environment, of the different game-theoretic concepts such as equilibria).

• This book provides an extensive review/survey of the applications of game theory to
wireless communications and networking. With this review/survey of applications,
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readers can understand how game theory can be applied in different wireless systems
and can acquire an in-depth knowledge of the recent developments in this area. In this
context, this book presents tutorial-like chapters that explain, clearly and concisely,
how game-theoretic techniques can be applied to solving state-of-the-art wireless
communications problems. In particular, the benefits of using game theory in wireless
communications environments are emphasized. The target audience of this book are
researchers, engineers, and undergraduate and graduate students who are looking for a
self-containedbook fromwhich to learn game theory and its application tomulti-player
decision-making problems in wireless and other engineering systems.

• Most of the research in this field has been focused on applying standard game-theoretic
models and techniques to several limited topics, such as power control in wireless net-
works and routing in wire-line networks. However, game theory is a very powerful
tool and can help us better understand many other aspects of communication net-
works. The goals of this book are to provide the fundamental concepts of game theory
and also to bring together the state-of-the-art research contributions that address the
major opportunities and challenges of applying game theory in wireless engineering
problems. The applications presented here are varied and cover a significant part of
the most recent challenges and problems in wireless communications and networking
systems. In this respect, we believe that this book will be useful to a variety of readers
from the wireless communications and networking fields. The material from this book
can be used to design and develop more efficient, scalable, and robust communication
protocols.

To summarize, the key features of this book are

• a unified view of game-theoretic approaches to wireless networks
• comprehensive treatment of state-of-the-art distributed techniques for wireless com-

munications problems
• coverage of a wide range of techniques for modeling, designing, and analyzing of

wireless networks using game theory
• an outline of the key research issues related to wireless applications of game theory.
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1 Introduction

1.1 Brief introduction to the history of game theory

Game theory can be viewed as a branch of applied mathematics as well as of applied
sciences. It has been used in the social sciences, most notably in economics, but has also
penetrated into a variety of other disciplines such as political science, biology, computer
science, philosophy, and, recently, wireless and communication networks. Even though
game theory is a relatively young discipline, the ideas underlying it have appeared in
various forms throughout history and in numerous sources, including the Bible, the
Talmud, the works of Descartes and Sun Tzu, and the writings of Charles Darwin, and
in the 1802 work Considérations sur la Théorie Mathématique du Jeu of André-Marie
Ampère, who was influenced by the 1777 Essai d’Arithmétique Morale of Georges Louis
Buffon. Nonetheless, the main basis of modern-day game theory can be considered an
outgrowth of three seminal works:

• Augustin Cournot’s Mathematical Principles of the Theory of Wealth in 1838, which
gives an intuitive explanation of what would, over a century later, be formalized
as the celebrated Nash equilibrium solution to non-cooperative games. Furthermore,
Cournot’s work provides an evolutionary or dynamic notion of the idea of a “best
response,” i.e., situations in which a player chooses the best action given the actions
of other players, this being so for all players.

• Francis Ysidro Edgeworth’s Mathematical Physics (1881), which demonstrated the
notion of competitive equilibria in a two-person (as well as two-type) economy, and
Emile Borel’s Algebre et Calcul des Probabilites (Comptes Rendus Academie des
Sciences, volume 184, 1927), which provided the first insight into mixed strategies,
i.e., that randomization may support a stable outcome.

• While many other contributors hold places in the history of game theory, it is
widely accepted that modern analysis started with John von Neumann and Oskar
Morgenstern’s 1944 book,Theory ofGames andEconomicBehavior, andwas given its
modern methodological framework by John Nash’s seminal work on non-cooperative
games and bargaining, which had von Neumann and Morgenstern’s results as a first
building block. It is worth mentioning that some two decades prior to this, in 1928,
John von Neumann himself had resolved completely an open fundamental problem
in zero-sum games, that every finite two-player zero-sum game admits a saddle point
in mixed strategies, which is known as the Minimax Theorem [492]—a result which
Emile Borel had conjectured to be false eight years earlier.



2 Introduction

Following the publication of von Neumann and Morgenstern’s book, and the seminal
work of John Nash, game theory has enjoyed over 65 years of scientific development, and
has experienced incessant growth in both the number of theoretical results and the scope
and variety of applications. As a recognition of the vitality of the field, a total of three
Nobel Prizes have been given in the economic sciences forwork primarily in game theory,
with the first such recognition given in 1994 to John Harsanyi, John Nash, and Rein-
hard Selten “for their pioneering analysis of equilibria in the theory of non-cooperative
games.” The second Nobel Prize went to RobertAumann and Thomas Schelling in 2005,
“for having enhanced our understanding of conflict and cooperation through game-theory
analysis.” And the most recent one was in 2007, recognizing Leonid Hurwicz, Eric
Maskin, and Roger Myerson, “for having laid the foundations of mechanism design the-
ory.” We should add to this list of highest-level awards in game theory the Crafoord Prize
(the highest prize in the biological sciences), which went to John Maynard Smith (along
with Ernst Mayr and G. Williams) in 1991 “for developing the concept of evolutionary
biology;” Smith’s recognized contributions had a strong game-theoretic underpinning,
through his work on evolutionary games and evolutionarily stable equilibrium.

One classical example of game theory is the so-called “Prisoner’s Dilemma.” This
game captures a scenario in which a conflict of interest arises because of the require-
ment of independent decision-making. The Prisoner’s Dilemma pertains to analyzing
the decision-making process in the following hypothetical setting. Two criminals are
arrested after being suspected of a crime in unison, but the police do not have enough
evidence to convict either. Thus, the police separate the two and offer them a deal: if one
testifies against the other, he will get a reduced sentence or go free. Here, the prisoners do
not have information about each other’s “moves,” as they would in some social games
such as chess. The payoff if they both say nothing (and thus cooperate with each other)
is somewhat favorable, since neither can be convicted of the real crime without further
proof (though they will be convicted of a lesser crime). If one of them betrays and the
other one does not, then the betrayer benefits because he goes free while the other one
is imprisoned, since there is now sufficient evidence to convict the silent one. If they
both confess, they both get reduced sentences, which can be viewed as a null result.
The obvious dilemma is the choice between two options, where a favorable decision,
acceptable to both, cannot be made without cooperation.

A representative Prisoner’s Dilemma is depicted in Table 1.1. One player acts as
the row player and the other the column player, and both have the action options of
cooperating (C ) or defecting (D). Thus, there are four possible outcomes to the game:
{(C ,C ), (D,D), (C ,D), (D,C )}. Undermutual cooperation,{(C ,C )}, both playerswill
receive a reward payoff of 3. Under mutual defection, {(D,D)}, both players receive
the punishment of defection, 1. When one player cooperates while the other one defects,
{(C ,D), (D,C )}, the cooperating player receives a payoff of, 0, and the defecting player
receives the temptation to defect, 5.

In The Prisoner’s Dilemma example, if one player cooperates, the other player will
have a better payoff (5 instead of 3) if he or she defects; if one player defects, the other
player will still have a better payoff (1 instead of 0) if he or she also defects. Regardless
of the other player’s strategy, a player in The Prisoner’s Dilemma has an incentive to
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Table 1.1 Prisoner’s Dilemma.

Cooperate Defect

Cooperate (3,3) (0,5)
Defect (5,0) (1,1)

always select defection, and {(D,D)} is an equilibrium.Although cooperation will give
each player a better payoff of 3, greediness and lack of trust leads to an inefficient
outcome. This simple example shows how the game-theoretic concept of an equilibrium
can provide a lot of insight into the outcome of decision-making in an adversarial or
conflicting situation.

1.2 Game theory in wireless and communication networks

Recent advances in technology and the ever-growing need for pervasive computing and
communication have led to an incessant need for novel analytical frameworks that can
be suited to tackle the numerous technical challenges accompanying current and future
wireless and communication networks. As a result, in recent years game theory has
emerged as a central tool for the design of future wireless and communication networks.
This ismainly due to theneed for incorporatingdecision-making rules and techniques into
next-generation wireless and communication nodes, to enable them to operate efficiently
and meet the users’needs in terms of communication services (e.g., video streaming over
mobile networks, ubiquitous Internet access, simultaneous use of multiple technologies,
peer-to-peer file sharing, etc.).

Oneof themost popular examples of game theory inwireless networks pertains tomod-
eling the problem of power control in cellular networks using non-cooperative games.
For example, in the uplink of a cellular system, researchers and engineers have been
concerned with the problem of designing a mechanism that allows the users (utilizing a
common frequency such as in a CDMA system) to regulate their transmit power, given
the interference that they cause (or that is caused by the other users) in the network. In
doing so, wireless researchers were able to draw a striking similarity between the prob-
lems of power control and non-cooperative game theory. In a non-cooperative game, a
number of players are involved in a competitive situation in which, whenever a player
makes a move (or chooses a strategy), this move has an impact (positive or negative) on
the utility (e.g., a measure of benefit or gain) of the other players. Similarly, in a power
control game, we have a competitive situation in which the transmit power level (strat-
egy) of a wireless user can impact positively or negatively (because of interference) on
the transmission rate and quality of service (QoS) of the other users.As a result, solving a
power control game has been shown to be equivalent to solving a non-cooperative game,
e.g., by finding a Nash equilibrium. Power control is only one example in which game
theory can be used to design next-generation wireless and communication networks. In
fact, following the early work on non-cooperative games in power control, a plethora of
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novel application areas for game theory have emerged in the wireless, communications,
and signal processing communities.

The key challenge in applying game theory in a communications context lies in the fact
that game theorywas essentially developed as a tool to beused in economics and the social
sciences. Hence, leveraging game theory for use in engineering applications is accompa-
nied by many difficulties. For instance, researchers interested in applying game-theoretic
models to problems in wireless and communication networks face many hurdles in find-
ing accurate models and solutions. This is due to the fact that existing game-theoretic
models are not tailored to cope with engineering-specific issues such as modeling time-
varying wireless channels, developing performance functions (i.e., utilities) that depend
on restrictive communication metrics (e.g., transmission rate, queueing delay, signal-
to-noise ratio), and conforming to certain standards (e.g., IEEE 802.16, LTE). This
has necessitated a timely, comprehensive reference source that can guide researchers
and communications engineers in their quest to find effective analytical models from
game theory that can be applied to the design of future wireless and communication
networks.

1.3 Organization and targeted audience

Our aim with this book is to provide researchers and engineers working in communica-
tions and networking with a comprehensive and detailed introduction to game theory, as
relevant to wireless and communication networks. After introducing some fundamen-
tals of wireless networks, the book starts, in Part I, with an in-depth study of important
game-theoretic frameworks. In this part of the book, we mainly focus on presenting
important classes of games that admit potential applications in wireless and communi-
cation networks. In essence, Part I provides a detailed study of a variety of games ranging
from classical non-cooperative games to more advanced games such as dynamic games,
coalitional games, network-formation games, Bayesian games, evolutionary games, and
auction theory. For each type of game, we focus on the fundamental notions, possi-
ble solutions, key objectives, and important properties, while highlighting potential
application scenarios in a game-theoretic as well as a communications and network-
ing environment. Thus, in each chapter of Part I we start with an overview of the studied
class of games, and then delve into key elements such as game components, solution
concepts, and mathematical properties of the studied game. In each chapter we provide
carefully selected examples from game theory and wireless networks to enable readers
to grasp the presented ideas and to start drawing some links between the problems solved
in game theory and their counterparts in the communications world. The objective of
Part I is, thus, to provide a thorough treatment of the key branches of game theory, while
starting to show that such game-theoretic concepts, originally rooted in economics, have
a lot to offer in addressing the problems that face researchers and engineers working in
wireless and communication networks.

After laying the foundations of game-theoretic techniques and drawing their connec-
tions to the wireless and communication worlds, in Part II of the book we start developing
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game-theoretic models in a wide range of wireless and communication applications such
as cellular and broadband networks, wireless local area networks, multi-hop networks,
cooperative networks, cognitive-radio networks, and Internet networks. Each chapter in
Part II constitutes a didactic study that explains how game theory can be applied to solve
key problems in a state-of-the-art field within wireless and communication networks.
In Part II, within every application area we enable readers to understand how, using
the game-theoretic techniques studied in Part I, one can solve challenging problems
such as resource allocation, MAC (medium access control) protocol design, random-
access control, network selection, cooperative routing and packet forwarding, spectrum
sensing in cognitive networks, dynamic spectrum access, flow control and routing in
Internet networks, a peer-to-peer incentive mechanisms. Within each chapter of Part II,
we start by identifying the main technical challenges and problems of the studied appli-
cation area. Then, after clearly determining the system model of interest, we highlight
the problem that needs to be treated, and we map it to a relevant, sufficiently rich class
of games as described in Part I. Once the game is formulated by identifying its com-
ponents, we apply suitable solution concepts and discuss the insights that they yield
within the context of the studied problem. We also shed light on potential extensions
and future uses of the developed game-theoretic techniques and communication models.
In particular, Part II shows how concepts such as the Nash equilibrium, the Stackel-
berg equilibrium, and evolutionarily stable strategies, can yield meaningful outcomes
and implications within a wireless and communication problem. Hence, the objective of
Part II is to demonstrate the usefulness of game theory in the design of future wireless
and communication networks as well as to provide readers with exhaustive guidelines to
enable them to develop networking-oriented game-theoretic approaches using Part I as
a basis.

In a nutshell, themain goal of the book is to formalize the use of game theory inwireless
and communication networks, by providing not only an introduction to the fundamental
branches of game theory but also a thorough and instructive treatment on developing
game-theoretic techniques for analyzing state-of-the-art and emerging communications
and networking applications. The main goal of the book can, thus, be summarized in the
following three objectives:

• The first objective is to provide a general introduction to wireless communications and
networking while pinpointing the most recent developments and challenges. These
aspects are discussed, in detail, throughout the book.

• The second objective is to introduce different game-theoretic techniques and their
applications for designing distributed and efficient solutions for a diverse number of
wireless communications and networking problems. This is mainly dealt with in Part I
of the book.

• The third objective is to provide a didactic study of how game theory can be leveraged
for use in state-of-the-art and emerging applications in wireless and communication
networks. This includes identifying key problems in a variety of communications
applications, linking them to game-theoretic frameworks, and studying the properties
and implications of the solutions and outcomes.
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By achieving these objectives, the book enables the reader to clearly identify the
links and connections between the technical challenges looming in future wireless
communication networks and the classical economics-oriented applications of game
theory. In particular, in recent years, engineers and researchers in the wireless communi-
cation community have been seeking a reference source, such as this book, that integrates
the notions of game theory and of wireless engineering, while emphasizing how game
theory can be applied in wireless networks from an engineering perspective. This book
serves this purpose, and is intended, primarily, for the following audience:

• communications engineers interested in studying the new tools of distributed opti-
mization and management in wireless networking systems

• researchers interested in state-of-the-art research on distributed algorithm design,
cooperation, and networking for a wide range of wireless communication applications

• graduate and undergraduate students interested in obtaining comprehensive informa-
tion on the design and evaluation of game-theoretic approaches to find suitable topics
for their dissertations.

1.3.1 Timeliness of the book

Because of the rapid growth in communication networks and its projected evolution, a
broad range of novel technical challenges are emerging daily. This requires solid and
robust analytical frameworks, such as game theory, that can enable researchers in the
wireless and communications industry to overcome these challenges. Hence, this book
constitutes a timely contribution, for the following reasons:

Promising distributed game-theoretic approaches for future wireless networks. In
recent years, there has been an unprecedented increase in consumer demand for wireless
services. This growing demand has led to the emergence of large-scale wireless networks
that cover huge areas and that are expected to meet stringent quality-of-service (QoS)
requirements. In this regard, wireless network entities such as base stations are unable to
cope with this growth, which requires such entities to gather a large amount of informa-
tion from the network (e.g., channel conditions, users’ actions, etc.), which in turn yields
extensive complexity, overhead, and signaling. Consequently, devising distributed solu-
tions and algorithms constitutes a promising direction for the efficient design of future
wireless networks. Nonetheless, deriving distributed algorithms for wireless networks
is accompanied by several challenging issues. On the one hand, wireless network users
are generally selfish. For instance, distributed mobile users tend to maximize their own
performance, regardless of how this maximization affects the other users in the network,
giving rise to competing scenarios. On the other hand, in some scenarios, cooperation
is required among wireless network users in order to achieve the best performance.
These situations recently motivated researchers and engineers to adopt game-theoretic
techniques for characterizing competition and cooperation in wireless networks. As an
example, distributed resource allocation can be modeled as a game that deals largely with
how rational and intelligent individuals interact with each other in an effort to achieve
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their own goals in terms of sharing the network resources. In this game, each mobile user
is self-interested and will attempt to optimize its own benefit. In brief, applying game
theory in future wireless networks presents many advantages:

• Local information-based decisions and distributed implementation: By using game-
theoretic approaches, individual mobile users optimize their performance by taking
individual decisions based on the local observation of a well-defined game’s outcome.
As a result, by adopting game-theoretic models, there is no need for collecting global
information and conducting optimization in a centralized manner.

• More robust outcomes: In large-scale wireless networks, adopting centralized solu-
tions for optimizing performance may yield inefficient results owing to errors
occurring during the complex information-gathering phase. In contrast, local informa-
tion is generally more reliable and accurate. Hence, in many situations, the outcome
of distributed game approaches is more robust than that of centralized solutions.

• Convenient approaches for solving problems of a combinatorial nature: Traditional
optimization techniques such as mathematical programming require handling com-
binatorial problems that are inherently hard to manipulate. In game theory, most
problems are naturally studied in a discrete form, which is relatively easy to ana-
lyze. For example, in a cognitive-radio network, analyzing the spectrum access
strategy of the unlicensed user using game theory is tractable, while solving this
problem in a centralized manner with reasonable complexity is not feasible in
many cases.

• Rich mathematical and analytical tools for optimization: Game theory provides a
variety of analytical and mathematical tools for adequately analyzing the outcome of
well-defined classes of games. For instance, in non-cooperative games, static games
(i.e., games in which decisions are made only once) can be solved using well-defined
notions such as the best-response function and the Nash equilibrium. Moreover,
in dynamic games (i.e., games in which decisions are made dynamically, evolving
with time), various concepts and solutions can be applied (e.g., behavioral equilib-
ria, repeated-game solutions). In addition, whenever cooperation between players is
required, cooperative game theory provides a rich framework suitable for such an anal-
ysis. Finally, auction theory as well as other game-theoretic concepts can be applied
for efficient and robust mechanism design in various situations (e.g., bidder/seller
games).

Most existing game theory books are oriented toward economic aspects, and most
existing network optimization books focus on centralized approaches. In the current
market, most books dealing with game theory and its applications draw their applica-
tions from economics. As a result, such books are difficult for engineers to understand
and use, because of unfamiliar terminology as well as a significant number of assump-
tions (e.g., demand/supply and transferable money) that are fundamentally different
from engineering problems. In addition, most existing books dealing with wireless
network optimization study centralized approaches such as constrained optimization.
Consequently, there is a gap between understanding game theory and applying it to
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the design of next-generation wireless networks. Moreover, designing game-theoretic
solutions for wireless networks requires interdisciplinary knowledge from multiple sci-
entific and engineering disciplines to achieve the desired design objectives. Therefore,
a unified treatment of this subject area is desirable. In this regard, this book aims to fill
this void in the literature by closely combining game-theoretic approaches with wireless
network design problems. Briefly, this book will provide a unified reference source on
the application of game theory to wireless networks, tailored to the technical needs of
engineers.

Emergence of new wireless applications and services. The emergence of a large class
of wireless applications requiring distributed solutions is a motivation for the application
of game theory. A few of these emerging wireless applications are as follows:

• Cognitive radios:The introduction of cognitive radios in futurewireless networks faces
several challenges that require a broad range of analytical tools from game theory such
as non-cooperative games and mechanism design. For example, the spectrum can be
accessed by non-cooperative multiple unlicensed users, or it can be traded among
licensed and unlicensed users.

• Cooperative communication: Recently, there has been a growing interest in studying
cooperative scenarios in wireless networks. It has been shown that, through coop-
eration, the wireless network performance can be significantly improved. Hence,
cooperative communication is rapidly emerging as a pillar technology in next-
generation wireless networks, and it has already been incorporated in various
standards, such as the IEEE 802.16 WirelessMAN (WiMAX) family of broadband
networks. The introduction of cooperative communication in wireless networks faces
several challenges (deriving autonomous and distributed cooperative strategies, ana-
lyzing users’ interactions, etc.) that can only be analyzed by solid and robust analytical
tools such as game theory.

• Autonomic communication in heterogeneous networks: Currently, a broad range of
wireless-network standards exists (UMTS, LTE, WiMAX, etc.), with each type of
network having its own characteristics. Consequently, there is a need to produce
wireless devices that can autonomously operate within heterogeneous environments,
allowing for interoperability between these wireless standards. Autonomic commu-
nications aims to: (i) provide distributed algorithms that can ease the burden of
managing complex and heterogeneous networks, and (ii) provide large-scale net-
works that are self-configuring, self-organizing, and able to learn and adapt to
their environments (changes in topology, technologies, service requirements, etc.).
Clearly, game theory is the natural tool for achieving these objectives of autonomic
communications.

• Wireless intelligent transportation system:Awireless intelligent transportation system
(ITS) refers to an integrated wireless communication and software system that facili-
tates information exchange and processing for improving the safety and the efficiency
of vehicle transportation. Since mobility is a key feature in such a communication
environment, a distributed and efficient wireless communication system can improve
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system performance. For example, the vehicular node can relay safety-related data
of other nodes, or the vehicular nodes can download data from a roadside unit. If
the vehicular nodes have self-interests, radio resource management based on a game
model would be required to obtain equilibrium solutions. Essentially, an equilibrium
solution must be obtained as quickly as possible because the connection duration of
vehicular nodes is very short, owing to the high mobility of the vehicles. In this case,
speed of convergence will be crucial for the rational vehicular node to access the radio
resources required for supporting wireless ITS services.

• Multi-hop communications: The service area and throughput of a wireless network can
be improved by using multi-hop communication (e.g., ad hoc and mesh network). Var-
ious wireless technologies will support multi-hop communication (e.g., IEEE 802.16).
In such a network, wireless nodes interact with one another to relay their data to the
destination. If these wireless nodes have self-interests, the data relaying behavior of
each node can be modeled using game theory. The equilibrium relaying strategy will
provide a stable solution for each wireless node in a multi-hop network. Moreover,
several other aspects of multi-hop communication can be modeled using game theory,
including distributed topology design and distributed relaying.

• Mobile wireless multimedia network: With the need to support multimedia applica-
tions, wireless networks have to be designed to provide QoS guarantee and reliable
multimedia communication. In this case, the multimedia users can have heteroge-
neous QoS requirements that the radio resource management algorithm is required to
handle adequately. In this context, game theory can be applied to wireless multimedia
networks to obtain a fair and efficient solution for radio resource sharing between the
mobile multimedia users.

Applications of game-theoretic concepts in traditional wireless systems. Game-
theoretic techniques canbe readily applied to traditionalwireless communication systems
to achieve a better flexibility of radio resource usage so that system performance can be
improved while the signaling overhead is reduced. For example, load balancing/dynamic
channel selection in traditional cellularwireless systems andWLANs, distributed subcar-
rier allocation in orthogonal frequency-division multiplexing (OFDM) systems, transmit
power control in ultra wideband (UWB) systems, and spectrum access for cognitive
radios can be achieved by using distributed game-theoretic techniques.

1.3.2 Outline of the book

To achieve the aforementioned objectives, the book is organized as follows.
In Chapter 2, we first study the basic characteristics of wireless channels. Then we

introduce differentwireless access technologies (e.g., cellularwireless,WLAN,WMAN,
WPAN, and WRAN technologies) and the related standards. Some typical wireless
networks such as ad hoc/sensor networks will also be presented. This includes the
basic components, features, and potential applications. Then, advanced wireless tech-
nologies such as OFDM, MIMO, and cognitive radio are discussed. For distributed
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implementation, the research challenges in the different layers of the protocol stack are
discussed.

Part I: Fundamentals of game theory
Before we discuss how to apply game theory in different wireless network problems, the
choice of a design technique is crucial and must be emphasized. In this context, this part
presents different game-theoretic techniques that can be applied to the design, analysis,
and optimization of wireless networks.

• In Chapter 3, the best-known type of games (i.e., non-cooperative games) is discussed.
Various non-cooperative static games, in which multiple users (or players) are selfish
and engage in a non-cooperative competition, are presented. We define and discuss
the celebrated Nash equilibrium concept. We also pursue our discussion by intro-
ducing and presenting dynamic and repeated games. Unlike static games in which
players are involved in the decision process once, dynamic games study the evolution
of the process of decision-making of the players, taking into account the presence or
lack of information. For instance, when the players are allowed to act multiple times,
the behavior of these players can be analyzed using various concepts from repeated
or dynamic games. The solution concept of subgame-perfect equilibrium is defined
for dynamic games. In addition, for repeated games, we present a number of differ-
ent strategies (e.g., trigger and punishment) that can be adopted by the users. Some
special game concepts are finally discussed, such as the potential game, the Stack-
elberg game, the correlated equilibrium, the supermodular game, and the Wardrop
equilibrium.

• In Chapter 4, game models (i.e., Bayesian and learning games) with incomplete infor-
mation are discussed. In general, Bayesian games are adequate for modeling scenarios
in which the players lack some necessary information when making their strategic
choices. Bayesian games can be used to capture this incompleteness of information.
With Bayesian games, a player can develop a belief about the payoffs and strategies
of other players. Alternatively, the player can implement learning algorithms to gain
knowledge of the game and the environment so that a suitable equilibrium solution
can be reached. Accordingly, we provide a clear introduction to Bayesian and learn-
ing games, while outlining their significance in wireless and engineering problems.
Finally, we provide several examples of Bayesian game approaches such as the packet-
forwarding game, theK -player Bayesianwater-filling game, the channel-access game,
the bandwidth auction game, and the network game.

• Chapter 5 covers differential games which extend static non-cooperative game theory
by adopting the methods and models developed in optimal control. Differential-game
theory provides a means of obtaining the equilibrium solution for rational entities with
time-varying objectives or payoff functions and evolving states as well as informa-
tion. Two major approaches to optimal-control theory are the dynamic programming
introduced by Bellman and the maximum principle introduced by Pontryagin. These
approaches have been adopted in differential game theory in which the payoff for a
player depends on (i.e., is constrained by) the state, which evolves over time. The
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common solution concepts of a differential game are the Nash equilibrium and the
Stackelberg solution for non-hierarchical and hierarchical decision-making structures,
respectively. Using techniques from optimal-control theory, and beyond, not only can
these solutions be obtained but their stability can also be analyzed. A study of two
example games in ad hoc routing and dynamic spectrum allocation concludes the
chapter.

• InChapter 6, a special type of game, the evolutionary game, is presented.An evolution-
ary game can be used to analyze a situation in which the players gradually adapt their
strategies (i.e., over time), which could be due to irrational behavior. The dynamics of
the strategy adaptation can be modeled using a concept known as replicator dynam-
ics. At a steady state, a special type of equilibrium, the evolutionary equilibrium, is
considered to be the solution of the strategy adaptation process. Also, reinforcement
learning is investigated in this chapter for achieving the equilibrium. Hence, we delve
here into the details and applications of evolutionary games. Sample applications are
studied, such as congestion control, the Aloha protocol, WCDMA access, the routing
potential game, cooperative sensing for cognitive-radio networks, and user churning
behavior.

• In Chapter 7, having covered static and dynamic non-cooperative games, we introduce
cooperative game theory, which is used to analyze the situation in which players can
negotiate agreements and cooperate among themselves. In this context, in a cooper-
ative game scenario, the players are allowed to form agreements that can impact the
strategic choices of the players as well as their utilities. Cooperative games encompass
two main branches: bargaining theory and coalitional games. The former describes
the bargaining process between a set of players who need to agree on the terms of
cooperation, while the latter describes the formation of cooperating groups of players,
referred to as coalitions, that can strengthen the players’ positions in a game. Key
characteristics, properties, and solution concepts are examined for both branches of
cooperative games as well as sample applications within wireless and communication
networks.

• In Chapter 8, the use of game theory for an auction process to determine the price
of commodities and services is presented. Auction theory is widely used in trading if
the price of a commodity is undetermined, e.g., the commodity or service is rare and
has limited capacity. There are many possible designs (or sets of rules) for an auc-
tion, and typical issues studied by auction theorists include the efficiency of a given
auction design, optimal and equilibrium bidding strategies, and revenue compari-
son. Mechanism design is a subfield of game theory, which studies solution concepts
and designs for a class of private-information games. These games have two distin-
guishing features. First, a game “designer” chooses the game structure rather than
inheriting one. Thus, the mechanism design is often called “reverse game theory.”
Second, the designer is interested in the game’s outcome. Such a game is called a
“game of mechanism design” and is usually solved by motivating players to disclose
their private information. Some typical auctions such as the Vickrey–Clarke–Groves
(VCG) auction, the share auction, and the double auction are investigated, followed
by applications to cognitive-radio networks and physical-layer security.
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Part II: Applications of game theory in communications and networking
This part of the book deals with the modeling, design, and analysis of game-theoretic
schemes in communications and networking applications. Different game models that
have been applied to solve a diverse set of problems in wireless and communication
networks are discussed. The major research issues and challenges are also identified.

• In Chapter 9, we consider one of the most popular types of wireless networks,
the mobile cellular system. In this context, we present game-theoretic formulations
for various problems such as admission control, power control in a CDMA cellu-
lar network (e.g., 3G), and resource allocation for OFDMA-based wireless cellular
networks (e.g., IEEE 802.16). The range of applications covered by cellular and broad-
band wireless access networks is very wide and is evolving quickly. In this chapter,
using a variety of game-theoretic tools, we tackle the following key technical chal-
lenges in cellular and broadband networks: uplink power control in CDMAnetworks,
resource allocation in OFDMA networks, power control in femtocell networks, IEEE
802.16 broadband wireless access, and vertical handover in heterogeneous wireless
networks.

• In Chapter 10, we review the game models developed to analyze the performance,
with rational users and services providers, of wireless local area networks (WLANs),
which have been widely deployed in many places for both residential and commercial
usage. These models consider different aspects of WLAN, i.e., MAC protocol design,
power and rate control, access point selection, admission control, service pricing, and
heterogeneous wireless access.

• In Chapter 11, we review and discuss game models for multi-hop networks (e.g.,
ad hoc, mesh, sensor, and cooperative networks). In such networks, the optimization
of routing is a critical problem that involves many aspects such as link qualities,
energy efficiency, and security. First, we introduce important models and examples
of routing games. Then, we provide two detailed examples (repeated routing game
and hierarchical routing game) in which cooperation is enforced. Finally, we list some
other typical approaches in the literature, such as price-based routing,VCGauctioning,
and evolutionary-game approaches.

• In Chapter 12, we present the use of game theory in a cooperative network, which has
attracted significant recent attention as a transmission strategy for future wireless net-
works. This efficiently takes advantage of the broadcast nature of wireless networks
to allow network nodes to share their messages and transmit cooperatively as a vir-
tual antenna array, thus providing diversity that can significantly improve the system
performance. Several distributed resource-allocation examples for cooperative trans-
mission are analyzed, including a non-cooperative game for relay selection and power
control, auction theory-based resource allocation, cooperative transmission using a
cooperative game in MANET, and routing problems in general multi-hop networks.

• In Chapter 13, game theory–based models are presented for a number of challenging
problems in cognitive-radio networks, which is a paradigm for the design of wire-
less communication systems. Cognitive radio aims to enhance the utilization of the
radio-frequency spectrum. In this chapter, the following game models, developed to
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analyze the performance of cognitive-radio networks with rational primary and sec-
ondary users, are covered: cooperative spectrum sensing, power allocation/control,
medium access control, decentralized dynamic spectrum access, cheat-proof strate-
gies for open spectrum sharing, spectrum leasing and cooperation, service provider
competition for dynamic spectrum allocation, and price competition in spectrum
trading.

• Finally, in Chapter 14, we investigate the impact of game theory on Internet-scale
communicationnetworks.To efficiently analyze and study such Internet-like networks,
there is a need for rich analytical frameworks such as game theory that can provide
models and algorithms to capture the numerous challenges arising in the current and
emerging communication networks. This chapter will leverage the use of game theory
to tackle important challenges in Internet networks, such as routing and flow control,
congestion control and pricing, revenue sharing between Internet service providers,
incentivemechanisms in peer-to-peer communication networks, and cooperative peer-
to-peer file sharing.

In summary, the objective of this book is to provide a didactic approach to studying game
theory which is tailored for use by researchers and engineers working in wireless and
communication networks. Through the aforementioned organization, this book provides
an easy-to-follow structure that can enable readers to grasp the fundamental concepts
of game theory and their application, and constitutes a complete and comprehensive
reference for game theory as it applies to problems in wireless communications and
networking.



2 Wireless networks: an introduction

A wireless network refers to a telecommunications network whose interconnections
between nodes are implemented without the use of wires. Wireless networks have exper-
ienced unprecedented growth over the last few decades, and are expected to continue to
evolve in the future. Seamlessmobility and coverage ensure that various types ofwireless
connections can be made anytime, anywhere. In this chapter, we introduce some basic
types of wireless networks and provide the reader with some necessary background on
state-of-art development.

Wireless networks use electromagnetic waves, such as radio waves, for carrying infor-
mation. Therefore, their performance is greatly affected by the randomly fluctuating
wireless channels. To develop an understanding of channels, in Section 2.1 we will
study the radio frequency band first, then the existing wireless channel models used for
different network scenarios, and finally the interference channel.

There exist several wireless standards. We describe them according to the order of
coverage area, starting with cellular wireless networks. In Section 2.2.1 we provide an
overview of the key elements and technologies of the third-generation wireless cellular
network standards. In particular, we discuss WCDMA, CDMA2000, TD/S CDMA, and
4G and beyond. WiMax, based on the IEEE 802.16 standard for wireless metropolitan
area networks, is discussed in Section 2.2.2. A wireless local area network (WLAN)
is a network in which a mobile user can connect to a local area network through a
wireless connection. The IEEE 802.11 group of standards specify the technologies for
WLAN. WiFi, based on IEEE 802.11, is a brand originally licensed by the WiFiAlliance
to describe the WLAN technology. In Section 2.2.3, we study some specifications in
IEEE 802.11 standards. A wireless personal area network (WPAN) is a personal area
network for wireless interconnecting devices centered around an individual person’s
workspace. IEEE802.15 standards specify some technologies used inBluetooth, ZigBee,
and Ultra Wideband. We describe these technologies in Section 2.2.4. Networks without
any infrastructure, such as ad hoc and sensor networks, are discussed in Sections 2.2.5
and 2.2.6, respectively.

Finally, in Section 2.3 we discuss briefly various advanced wireless technolo-
gies such as OFDM, MIMO, space-time coding, beamforming, and cognitive radio.
The motivations for deploying such techniques, the design challenges to maintain
basic functionality, and recent developments in real implementation are explained in
detail.
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2.1 Wireless channel models

2.1.1 Radio propagation

Unlike wired channels that are stationary and predictable, wireless channels are
extremely random and hard to analyze. Modeling wireless channels is one of the most
challenging tasks encountered in wireless network design. Wireless channel models can
be classified as large-scale propagation models and small-scale propagation models,
relative to the wavelength.

Large-scale models predict behavior averaged over distances much longer than the
wavelength. The models are usually functions of distance and significant environmen-
tal features, and roughly frequency-independent. The large-scale models are useful for
modelling the range of a radio system and rough capacity planning. Some large-scale
theoretical models (the first four) and large-scale experimental models (the rest) are as
follows.

• Free-space model
Path loss is a measure of attenuation based only on the distance from the transmitter
to the receiver. The free-space model is only valid in the far field and only if there is
no interference or obstruction. The received power Pr (d) of the free-space model as
a function of distance d can be written as

Pr (d) =
PtGtGrλ

2

(4π)2d2L
, (2.1)

where Pt is the transmit power, Gt is the transmitter antenna gain, Gr is the receiver
antenna gain, λ is the wavelength, and L is the system loss factor not related to
propagation. Path-loss models typically define a “close-in” point d0 and reference
other points from this point. The received power in dB form can be written as

Pd(d) dBm = 10log10

[
Pr (d0)
0.001W

]
+20log10

(
d0

d

)
. (2.2)

• Reflection model
Reflection is the change in the direction of a wavefront at an interface between two
different media so that the wavefront returns to the medium from which it originated.
In the large-scale reflection model, the radio propagation wave impinges on an object
which is large compared to wavelength, e.g., the surface of the Earth, a building, or a
wall.

The two-ray model is one of the most important reflection models for wireless
channels. An example of a reflection in the two-ray model is shown in Fig. 2.1. In
the two-ray model the receiving antenna sees a direct-path signal as well as a signal
reflected off the ground. Specular reflection, much like light off a mirror, is assumed,
and is the case to a very close approximation. The specular reflection arrives with
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strength equal to that of the direct-path signal (i.e., without loss in strength by reflec-
tion). The reflected signal shows up with a delay relative to the direct-path signal and,
as a consequence, may add constructively (in phase) or destructively (out of phase).
The received power of the two-ray model can be written as

Pr = PtGtGr
h2

t h
2
r

d4 , (2.3)

where ht and hr are the transmitter height and receiver height, respectively, and d is
the distance between the two antennas.

• Diffraction model
Diffraction occurs when the radio path between transmitter and receiver is obstructed
by a surface with sharp, irregular edges. Radio waves bend around the obstacle, even
when a line of sight (LOS) does not exist. In Fig. 2.2, we show a knife-edge diffraction
model, where the radio wave of the diffraction path from the knife edge and the LOS
radio wave are combined at the receiver. As in the reflection model, the radio waves
might add constructively or destructively.

• Scattering model
Scattering is a general physical process whereby the radio waves are forced to deviate
from a straight trajectory by one or more localized non-uniformities in the medium
through which they pass. In conventional use, this also includes deviation of reflected
radiation from the angle predicted by the law of reflection. The obstructing objects
are smaller than the wavelength of the propagation wave, e.g., foliage, street signs, or
lamp posts. One scattering example is shown in Fig. 2.3.
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• Log-scale propagation model and log-normal shadowing model
From experimental measurement, the received signal power decreases logarithmi-
cally with distance. However, because of a variety of factors, the decrease in speed is
very random. To characterize the mean and variance of this randomness, the log-scale
propagation model and log-normal shadowing model are used, respectively.

The log-scale propagation model generalizes path loss to account for other environ-
mental factors. The model chooses a distance d0 in the far field and measures the path
lossPL(d0). The propagation path-loss factorα indicates the rate at which the path loss
increases with distance. The path-loss in the log-scale propagation model is given by

PL(d) (dB) = PL(d0)+10α log10

(
d
d0

)
. (2.4)

In the free-space propagation model, the path-loss factor α equals 2.
Shadowing occurs when objects block the LOS between transmitter and receiver.

A simple statistical model can account for unpredictable “shadowing” as

PL(d) (dB) = PL(d)+X0, (2.5)

where X0 is a 0-mean Gaussian random variable with variance typically from 3
to 12. The propagation factor and the variance of log-normal shadowing are usually
determined by experimental measurement.

• Outdoor-propagation models
In the outdoor models, the terrain profile of a particular area needs to be taken into
account in estimating the path loss. Most of the following models are based on a sys-
tematic interpretation of measurement data obtained in the service area. Some typical
outdoor-propagation models are the Longley–Rice model, the ITU terrain model, the
Durkin’s model, the Okumura model, the Hata’s model, the PCS extension of the Hata
model, the Walfisch and Bertoni model, and the wideband PCS microcell model [397].
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• Indoor-propagation models
For indoor applications, the distances are much shorter than those in the outdoor
models. The variability of the environment is much greater, and key variables are the
layout of the building, construction materials, building type, and antenna location. In
general, indoor channels may be classified either as LOS or obstruction with varying
degrees of clutter. The losses between floors of a building are determined by the exter-
nal dimensions and the materials of the building, as well as the type of construction
used to create the floors and the external surroundings. Some available indoor propa-
gation models are the Ericsson multiple breakpoint model, the ITU model for indoor
attenuation, the log distance path-loss model, the attenuation factor model, and the
Devasirvatham’s model.

Small-scale (fading) models describe signal variability on a scale of wavelengths. In
fading, multi-path and Doppler effects dominate. Fading is frequency-dependent and
time-variant. The focus is on modelling fading, the rapid change in signal strength over
a short distance or time.

Multi-path fading is caused by interference between two or more versions of the
transmitted signal, which arrive at slightly different times. Multi-path fading causes
rapid changes in signal strength over a small travel distance or time interval, random
frequency modulation due to varying Doppler shifts on different multi-path signals, and
time dispersion resulting from propagation delays.

To measure the time dispersion of multiple paths, the power delay profile and the
root mean square (RMS) are the most important parameters. Power delay profiles are
generally represented as plots of relative received power as a function of excess delay
with respect to a fixed time delay reference. The mean excess delay is the first moment

of the power delay profile and is defined as τ̄ =
∑

k a2
kτk∑

k a2
k

, where τk is the delay of the

kth multi-path and ak is its corresponding amplitude. The RMS is the square root of

the second central moment of the power delay profile, defined as στ =
√

τ̄ 2− (τ)2,

where τ̄ 2 =
∑

k a2
kτ 2

k∑
k a2

k
. Typical values of RMS delay spread are on the order of microsec-

onds in outdoor mobile radio channels and on the order of nanoseconds in indoor radio
channels.

Analogous to the delay spread parameters in the time domain, coherent bandwidth
is used to characterize the channel in the frequency domain. Coherent bandwidth is the
range of frequencies over which two frequency components have a strong potential for
amplitude correlation. If the frequency correlation between two multi-paths is above
0.9, then the coherent bandwidth is Bc = 1

50σ [397]. If the correlation is above 0.5, the
coherent bandwidth is Bc = 1

5σ . Coherent bandwidth is a statistical measure of the range
of frequencies over which the channel can be considered flat.

Delay spread and coherent bandwidth describe the time-dispersive nature of the chan-
nel in a local area, but they do not offer information about the time-varying nature of the
channel caused by relative motion of transmitter and receiver. Next, we define Doppler
spread and coherence time, which describe the time-varying nature of the channel in a
small-scale region.
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Doppler frequency shift is caused by movement of the mobile users. The frequency
shift is positive when a mobile user moves toward the source; otherwise, the frequency
shift is negative. In a multi-path environment, the frequency shift for each ray may
be different, leading to a spread of received frequencies. Doppler spread is defined as
the maximum Doppler shift fm = v

λ , where v is the mobile user’s speed and λ is the
wavelength. If we assume that signals arrive from all angles in the horizontal plane, the
Doppler spectrum can be modelled as Clarke’s model [397].

Coherence time is the time duration over which the channel impulse response is
essentially invariant. Coherence time is defined as Tc = C

fm
, where C is a constant

[397]. This definition of coherence time implies that two signals arriving with a time
separation greater than Tc are affected differently by the channel. If the symbol period
of the baseband signal (the reciprocal of the baseband signal bandwidth) is greater than
the coherence time, then the signal will distort, since the channel will change during the
transmission of the signal.

Based on the transmit signal’s bandwidth and symbol period relative to the multi-
path RMS and coherent bandwidth, the small-scale fading can be classified as either
flat fading or frequency-selective fading. This classification means that the band-limited
transmit signal sees a flat-frequency channel or a frequency-selective channel. Based on
coherence time due to Doppler spread, the small-scale fading can be classified as fast
fading or slow fading. This classification is according to whether the channel changes
during each signal symbol. The details are shown in Fig. 2.4.

Multi-path and Doppler effects describe the time and frequency characteristics of
wireless channels. But further analysis is necessary for statistical characterization of
the amplitudes. Rayleigh distributions describe the received signal envelope distribution
for channels, where all the components are non-LOS. Ricean distributions describe the
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Fig. 2.4 Classification of small-scale fading.
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received signal envelope distribution for channels where one of the multi-path compo-
nents is the LOS component. Nakagami distributions are used to model dense scatterers,
and can be reduced to Rayleigh distributions. But they provide more control over the
extent of the fading.

2.1.2 Interference channel

Since networks accommodate an increasing number of users and bandwidth is limited,
radio frequencies are reused beyond a certain distance, which leads to co-channel inter-
ference. In this subsection, we study the interference channel. The system model for an
interference channel is shown in Fig. 2.5. The received signal vector y can be written as

y = Gx+ z, (2.6)

where x is the transmitted signal vector, z is the noise vector, and G is the channel gain
matrix with elements Gk,n. Here k is the transmitter index and n is the receiver index.

For an interference channel, the interference from other users is generally considered
as noise. This assumption leads to optimal rates for weak and medium interference. So
instead of simply using SNR (signal-to-noise ratio, given by PkGk,k

σ2 ), we consider the
SINR (signal-to-interference-and-noise ratio) to calculate the capacity of the network.
Therefore Rk , the capacity of user k , is given by

Rk = log2

⎛⎜⎜⎜⎜⎝1+
PkGk,k

n∑
i �=k

PiGi ,k +σ2

⎞⎟⎟⎟⎟⎠ , (2.7)

where Pk is the transmit power of the kth user, Gi ,k is the channel gain from user i
to base station k , and the term

∑
i �=k

PiGi ,k represents the interference caused by other

G2,2

G1,1

G 2,1

G
1,2

User1

User2 BS2
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Fig. 2.5 Two-user interference channel.
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users to user k . Without loss of generality, we consider the variance of additive Gaussian
noise as a constant σ2 for all subcarriers. The spectrum management problem defines the
objective of the network and the various constraints that are to be applied depending on
the network capabilities. One sample spectrum management problem has the following
objective and limitations:

• Objective: to maximize the overall rate of the network
• Constraints: limited transmit power to achieve the minimum data rate while causing

least interference to other users.

Mathematically, by defining wk as the weight factor, the problem can be expressed as

max
Pn

k ≥0,∀n,k

K∑
k=1

wk

N∑
n=1

log2

⎛⎜⎜⎝1+
Pn

k G n
k,k∑

i �=k

Pn
i G n

i ,k +σ2

⎞⎟⎟⎠ s.t.
∑

n

Pn
k ≤ Pmax

k . (2.8)

The capacity region of an interference channel is still an open problem. Once the goals
of the network have been tied down, there are various algorithms proposed in the lit-
erature (such as iterative water-filling [523], optimal spectral balancing [95], iterative
spectral balancing [94], SCALE [381], autonomous spectral balancing [93], and band
preference [509, 110]), which try to achieve the largest capacity region possible while
adhering to the constraints of maximum transmitter power and minimum target rate of
each user.

2.2 Categorization of wireless networks

We list various standards in Figs. 2.6 and 2.7 for different communication rates and
different communication ranges. These standards will fit the different needs of various
applications. We will discuss techniques that can utilize multiple standards in different
situations, so that connections can be made anytime and anywhere. In the following, we
categorize wireless networks and provide some specifics.

2.2.1 3G cellular networks and beyond

Third-generation (3G) mobile communication systems based on the wideband code-
division multiple-access (WCDMA) and CDMA2000 radio access technologies have
seen widespread deployment around the world. The applications supported by these
commercial systems range from circuit-switched services such as voice and video tele-
phony to packet-switched services such as video streaming, email, and file transfer. As
more packet-based applications are developed and put into service, the need increases
for better support for different quality-of-service (QoS) level, higher spectral efficiency,
and higher data rate for packet-switched services, in order to further enhance user expe-
rience while maintaining efficient use of system resources. This has resulted in the
evolution of 3G standards, as shown in Fig. 2.8. For 3G cellular systems, there are
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two camps: 3G Partnership Project (3GPP) [5] and 3G Partnership Project 2 (3GPP2)
[2], which are based on different 2G technologies.

The development of 3G will follow a few key trends, and the evolution following
these trends will continue as long as physical limitations or backward compatibility
requirements do not force the development to move from evolution to revolution. The
key trends include:

• Voice services will continue to be important in the foreseeable future, which means
that capacity optimization for voice services will continue.

• Along with increasing use of IP-based applications, the importance of data as well as
simultaneous voice and data will increase.

• Increased need for datameans that the efficiency of data services needs to be improved.
• When more and more attractive multimedia terminals emerge on the market, the use

of such terminals will spread from office, homes, and airports to roads, and finally
everywhere. This means that high-quality, high-data-rate applications will be needed
everywhere.

• When the volume of data increases, the cost per transmitted bit needs to decrease in
order to make new services and applications affordable for everybody.

• The other current trend is that in the 3G evolution path very high data rates are achieved
in hot spots with WLAN rather than cellular-based standards.
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CDMA2000
The CDMA(code-divison multiple-access) family of cellular networks grew out of work
undertaken by Qualcomm, a California-based company. Working on direct sequence
spread spectrum (DSSS) techniques, by using different spreading codes, a large number
of users could occupy the same channel at the same time, which could provide a multiple
access scheme for cellular telecommunications. The first standard was the IS-95 and the
first network was launched in Hong Kong in 1996 under the brand name CDMAOne.

The CDMA system has the following standards in its developmental stage, as shown
in Fig. 2.8: IS-95, IS-95A, IS-95B, CDMA2000 (1x/EV-DO, 1xEV-DV, 1xRTT, and
3xRTT). The first version of the system standard IS-95 was never launched for commer-
cial purposes because of its prematurity. IS-95A was applied for business since then and
is still used widely nowadays. IS-95B was a short version since the CDMA2000 standard
was announced six months after it came out. The original IS-95A standard only allowed
for circuit-switched data at 14.4 kbit s−1, and IS-95B provided up to 64 kbit s−1 data rates
as well as a number of additional services.Amajor step improvement came later with the
development of 3G services. The first 3G standard was known as CDMA2000 1x, which
initially provided data rates up to 144 kbit s−1. With further development, the systems
promise to allow a maximum data rate of 307 kbits s−1.

WCDMA/UMTS
WCDMA was developed by NTT DoCoMo as the air interface for their 3G network,
FOMA. Later NTT DoCoMo submitted the specification to the International Telecom-
munication Union (ITU) as a candidate for the international 3G standard known as
IMT-2000. The ITU eventually accepted WCDMAas part of the IMT-2000 family of 3G
standards, as an alternative to CDMA2000, EDGE, and the short-range DECT (digital
enhanced cordless telecommunications) system. Later, WCDMA was selected as the air
interface for Universal Mobile Telecommunications System (UMTS), the 3G successor
to GSM.

TD-SCDMA
Transmit diversity (TD) is one of the key contributing technologies to the ITU-endorsed
3G systems WCDMA and CDMA2000. Spatial diversity is introduced into the signal
by transmitting through multiple antennas. The antennas are spaced far enough apart1

that the signals emanating from them can be assumed to undergo independent fading. In
addition to diversity gain, antenna gain can also be incorporated through channel-state
feedback. This leads to the categorization of TD methods into open-loop and closed-
loop methods. Several methods of transmit diversity in the forward link have been either
under consideration or adopted for the various 3G standards.

4G and beyond
Looking at development in the Internet and applications, it is clear that the complexity of
transferred content is rapidly increasing and will increase further in the future. Generally,

1 A typical spacing is half the wavelength.



2.2 Categorization of wireless networks 25

Table 2.1 Comparison of 3G and 4G.

3G 4G

Major requirement Voice-driven Data/voice
driving architecture data add-on over IP

Network architecture Wide area cell–based Hybrid with WiFi and
WPAN

Speed 384 kbps–2 Mbps 20–10 Mbps
Frequency band 1.8–2.4 GHz 2–8 GHz
Bandwidth 1.25, 5, 20 MHz 100 MHz
Switching design Circuit and packet Packet
Access DS-CDMA OFDM/MC-CDMA
FEC Convolution/turbo code Concatenated coding
Component design Antenna, multi-band

adapter
Smart antennas,

software radios

it can be said that the more bandwidth is available, the more bandwidth applications will
consume. In order to justify a new air interface, goals need to be set high enough to ensure
that the system will be able to serve us long into the future.A reasonable approach would
be to aimat 100 Mb s−1 full-mobilitywide area coverage and1 Gb s−1 low-mobility local
area coverage with a next-generation cellular system.Also, future application and service
requirements will bring new requirements to the air interface and new emphasis on air
interface design. One such issue, which already strongly impacts the 3G revolution, is
the need to support IP and IP-based multimedia. If both the technology and the spectrum
to meet such requirements cannot be found, the whole discussion of 4G may become
obsolete. In Table 2.1, we compare key parameters of 4G and 3G. There are also some
pre-4G systems such as Long-term evolution (LTE), WiMAX, Ultra Mobile Broadband
(UMB, formerly EV-DO rev. C) and Flash-OFDM, as shown in Fig. 2.8.

2.2.2 WiMAX networks

Wireless metropolitan area network (WMAN) technology is a relatively new field that
was started in 1998. From that time a new standard has emerged to handle its implemen-
tation, IEEE 802.16. The equivalent of 802.16 in Europe is HIPERMAN. The WiMAX
Forum is working to ensure that 802.16 and HIPERMAN interoperate seamlessly. This
standard has helped to pave the way for WMAN technology globally and since its incep-
tion has received six expansions onto the standards. WMAN differs from other wireless
technologies in that it is designed for a broader audience, such as a large corporation or
an entire city.

The 802.16 MAC uses a scheduling algorithm for which the subscriber station need
compete only once (for initial entry into the network). After the competition, the sub-
scriber station is allocated an access slot by the base station. The time slot can enlarge
or contract, but remains assigned to the subscriber station, which means that other sub-
scribers cannot use it. The 802.16 scheduling algorithm is stable under overload and
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Table 2.2 Comparison of 802.16 standards.

802.16 802.16a/802.16d 802.16e

Date Dec. 2001 Jan. 2003/Q3, 2004 Q3, 2004
Spectrum 10–66 GHz <11 GHz <6 GHz
Channels Line-of-sight only Non-line-of-sight Non-line-of-sight
Modulation QPSK,16QAM,

64QAM
OFDM256, QPSK,

16QAM, 64QAM
Same as 802.11a

Mobility Fixed Fixed Pedestrian mobility
regional roaming

Bandwidth 20, 25, 28 MHz 1.25–20 MHz Same as 802.16a
Throughput Up to 75 Mbps Up to 75 Mbps Up to 30 Mbps
Cell radius 1–3 miles 3–5 miles 1–3 miles

over-subscription (unlike 802.11). It can also be more bandwidth-efficient. The schedul-
ing algorithm also allows the base station to control QoS parameters by balancing the
time-slot assignments among the application needs of the subscriber stations. Moreover,
the MAC layer is also in charge of protocol data unit (PDU) assembly and de-assembly.
A detailed illustration for different layers’ protocols of 802.16 is shown in Fig. 2.9.

The operation standards for WMANs are regulated under IEEE Standard 802.16 [10].
WMANs are allowed the operating frequency range 10–66 GHz. With such a broad
spectrum to work with, WMANs have the ability to transmit over previous wireless fre-
quencies such as IEEE 802.11b/g, causing less interference with other wireless products.
The only downside to using such high frequencies is that WMAN needs a line of sight
between transmitters and receivers, much like a directional antenna. Using line of sight,
however, will decrease multi-path distortion, allowing higher bandwidths to be achieved,
and can attain up to 75 Mbps for both uplink and downlink on a single channel [487].
Some extensions of 802.16 standards are listed below and in Table 2.2.

• IEEE802.16a:The IEEEhas developed 802.16a for use at licensed and license-exempt
frequencies from 2 to 11 GHz. Most commercial interest in IEEE 802.16 is in these
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lower frequency ranges. At the lower ranges, the signals can penetrate barriers and
thus do not require a line of sight between transceiver and antenna. This enables more
flexible WiMax implementation while maintaining the technology’s data rate and
transmission range. IEEE 802.16a supports mesh deployment, in which transceivers
can pass a single communication on to other transceivers, thereby extending the basic
802.16 transmission range.

• IEEE 802.16b: This extension increases the spectrum the technology can use in the 5
and 6 GHz frequency bands, and improves quality of service. WiMax provides QoS
to ensure priority transmission for real-time voice and video and offers differentiated
service levels for different traffic types.

• IEEE 802.16c: IEEE 802.16c represents a 10 to 66 GHz system profile that standard-
izes more details of the technology. This encourages more consistent implementation
and, therefore, interoperability.

• IEEE 802.16d: IEEE 802.16d includes minor improvements and fixes for 802.16a.
This extension also creates system profiles for compliance testing of 802.16a devices.

• IEEE 802.16e: This technology will standardize networking between carriers’ base
stations and mobile devices, rather than just between base stations and fixed recip-
ients. IEEE 802.16e would enable the high-speed signal handoffs necessary for
communication with users moving at vehicular speeds.

In addition to IEEE 802.16, the Mobile BroadbandWirelessAccess (MBWA) working
group aims to prepare a formal specification for a packet-based air interface designed for
IP-based services. The goal is to create an interface that will allow the creation of low-
cost, always-on, and truly mobile broadband wireless networks, nicknamed “Mobile-Fi”.
IEEE 802.20 will be specified according to a layered architecture, which is consistent
with other IEEE 802 specifications. The scope of the working group consists of the
physical (PHY), medium access control (MAC), and logical link control (LLC) layers.
The air interface will operate in bands below 3.5 GHz and with a peak data rate of
over 1 Mbit s−1. The goals of 802.20 and 802.16e, the so-called “mobile WiMAX,” are
similar.

WiMAX can be viewed as “last mile” connectivity at high data rates. This could result
in lower pricing for both home and business customers as competition lowers prices.
In areas without pre-existing physical cable or telephone networks, WiMAX may be a
viable alternative for broadband access that has been economically unavailable. Prior
to WiMAX, many operators used proprietary fixed wireless technologies for broadband
services. For this reason, WiMAX has significant market in rural areas and developing
countries.

2.2.3 WiFi networks

IEEE 802.11 denotes a set of Wireless Local Area Network (WLAN) standards devel-
oped by working group 11 of the IEEE LAN/MAN Standards Committee (IEEE 802).
WiFi is a brand originally licensed by the WiFiAlliance to describe the underlying tech-
nology of WLAN based on IEEE 802.11 specifications. It was developed for mobile
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computing devices such as laptops in LANs, but is now increasingly used for other
services, including Internet and voice over IP (VoIP) phone access, gaming, and basic
connectivity of consumer electronics such as televisions, DVD players, and digital
cameras.

In the physical layer, 802.11b operates within the 2.4 GHz industrial, scientific, and
medical (ISM) band. The original 802.11b defines data rates of 1 Mbps and 2 Mbps via
radio waves using frequency-hopping spread spectrum (FHSS) or direct sequence spread
spectrum (DSSS). For FHSS, 2.4 GHz band is divided into 75 1-MHz subchannels. The
sender and receiver agree on a hopping pattern, and data is sent over a sequence of
the subchannels. Each conversation within the 802.11 network occurs over a different
hopping pattern. Because of Federal Communications Commission (FCC) regulations
that restrict subchannel bandwidth to 1 MHz, FHSS techniques are limited to speeds
of no higher than 2 Mbps. DSSS divides the 2.4 GHz band into 14 22-MHz channels.
Adjacent channels overlap one another partially, with 3 of the 14 being completely non-
overlapping. The spreading code is an 11-bit Barker sequence. Binary phase shift keying
(BPSK) and quadrature phase shift keying (QPSK) are used to provide different rates.

To increase the data rate to 5.5 Mbps and 11 Mpbs in the 802.11b standard,
an advanced coding technique, complementary code keying (CCK) is employed.Acom-
plementary code contains a pair of finite bit sequences of equal length, such that the
number of pairs of identical elements (1 or 0) with any given separation in one sequence
is equal to the number of pairs of unlike elements having the same separation in the other
sequence. A network using CCK can transfer more data per unit time for a given signal
bandwidth than a network using the Barker code, because CCK makes more efficient
use of the bit sequences. CCK consists of a set of 64 8-bit code words. The 5.5 Mbps
rate uses CCK to encode 4 bits per carrier, while the 11 Mbps rate encodes 8 bits per
carrier. Both speeds use QPSK as the modulation technique and signal at 1.375 MSps.
Table 2.3 shows the differences rates for 802.11b.

Standard 802.11a adopts orthogonal frequency-division multiplexing (OFDM) at
5.15–5.25 GHz, 5.25–5.35 GHz, and 5.725–5.825 GHz to support multiple data rates
up to 54 Mbps. 802.11g utilizes the 2.4 GHz band with OFDM modulation and is also
backward-compatible with 802.11b. For OFDM, the FFT (fast Fourier transform) has
64 subcarriers. There are 48 data subcarriers and 4 carrier pilot subcarriers for a total of
52 nonzero subcarriers defined in IEEE 802.11a, plus 12 guard subcarriers. The IEEE
802.11a/g physical layer provides eight PHY modes with different modulation schemes
and different convolutional coding rates, and can offer various data rates.

To achieve higher data rates in the PHY layer, in January 2004 IEEE announced that it
had formed a new 802.11 task group (TGn) to develop an amendment to the 802.11 stan-
dard for wireless local area networks. 802.11n builds upon previous 802.11 standards
by adding MIMO (multiple-input multiple-output). MIMO uses multiple transmitter
and receiver antennas to allow for increased data throughput through spatial multiplex-
ing and increased range by exploiting the spatial diversity. There are several proposal
groups, referred to as TGnSync, WWiSE (short for “World-Wide Spectrum Efficiency”),
and MITMOT (“Mac and mImo Technologies for MOre Throughput”). All proposals
occupy the frequency band 2.5 GHz with 20 MHz or 40 MHz bandwidth so as to support
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Table 2.3 802.11b rates.

Data rate Code length Modulation Symbol rate Bits/symbol

1 Mbps 11 (DSSS) BPSK 1 MSps 1
2 Mbps 11 (DSSS) QPSK 1 MSps 2
5.5 Mbps 8 (CCK) QPSK 1.375 MSps 4
11 Mbps 8 (CCK) QPSK 1.375 MSps 8

Table 2.4 Comparison of 802.11 standards.

802.11b 802.11a/g 802.11n

Air rate 11 Mbps 54 Mbps 200+ Mbps
MAC SAP rate 5 Mbps 25 Mbps 100 Mbps
Range 30 m 30 m 50 m
Frequency 2.4G 5.25,5.6,5.8G/2.4G 2.4G
Bandwidth 20M 20M 20M or 40M
Modulation DSSS/CCK DSSS/CCK/OFDM DSSS/CCK/OFDM with MIMO
Special streams 1 1 1,2,3,4

the communication speed, more than 200 Mbps. 802.11n is backward-compatible with
802.11b and 802.11g. In Table 2.4, we compare various parameters of the three 802.11
standards.

The IEEE 802.11 MAC protocol supports two kinds of access methods, namely, dis-
tributed coordination function (DCF) and point coordination function (PCF). In both
mechanisms, only one user occupies all the bandwidth at each time slot. PCF is based on
polling, controlled by a point coordinator likeAccess Point, to communicate with a node
listening and to see if the airwaves are free. PCF seems to be implemented only in very
few hardware devices as it is not part of the WiFi Alliance’s interoperability standard.

In contrast, DCF is an access mechanism using carrier-sense multiple-access with
collision avoidance (CSMA/CA). DCF mandates that a station wishing to transmit must
listen for the channel status for a DCF interframe space (DIFS) interval. If the channel is
found to be busy during the DIFS interval, the station defers its transmission or proceeds
otherwise. In a network where a number of stations contend for the multi-access channel,
if multiple stations sense that the channel is busy and defer their access, they will find
that the channel is released virtually simultaneously and will then try to seize the channel
again at the same time.As a result, collisions may occur. In order to avoid such collisions,
DCF also specifies random backoff, which forces a station to defer its access to the
channel for an extra period. DCF also has an optional virtual carrier-sense mechanism
that exchanges short request-to-send (RTS) and clear-to-send (CTS) frames between the
source and destination stations before the long data frame is transmitted. The details of
RTS/CTS will be presented in later chapters.
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In order to take full advantage of the future market opportunity for WiFi, several key
challenges must be overcome. In the following, we list some near-future design topics
and their possible solutions.

• Security. The greatest concentration of WiFi is on free public access. However, eaves-
droppers andhackers can take full advantageof theWiFi system.Currently, all 802.11a,
b, and g devices support WEP (Wired Equivalent privacy) encryption, which has had
flaws.

IEEE 802.11i, also known as WiFi Protected Access 2 (WPA2), is an amendment
to the 802.11 standard specifying security mechanisms for wireless networks. The
802.11i specification defines two classes of security algorithms: Robust Security Net-
work Association (RSNA) and Pre-RSNA. Pre-RSNA security consists of WEP and
802.11 entity authentication. RSNAprovides two data confidentiality protocols, called
the Temporal Key Integrity Protocol (TKIP) and the Counter-mode/CBC-MAC Proto-
col (CCMP). The RSNAestablishment procedure includes 802.1X authentication and
key management protocols. Beyond IEEE 802.11i, it is worth mentioning that WAPI
(WLAN Authentication and Privacy Infrastructure) is a Chinese National Standard
for wireless LAN (GB 15629.11-2003).

• Mobility. Mobility is an important attribute of wireless networks. Current wire-
less LAN standards provide mobility through roaming capabilities. IEEE 802.11p,
also referred to as Wireless Access for the Vehicular Environment (WAVE), defines
enhancements to 802.11 required to support Intelligent Transportation Systems (ITS)
applications. This includes data exchange between high-speed vehicles and between
vehicles and roadside infrastructure in the licensed ITS band of 5.9 GHz (5.85–5.925
GHz). 802.11p will be used as the groundwork for DSRC (Dedicated Short Range
Communications), a US Department of Transportation project – which will be emu-
lated elsewhere, looking at vehicle-based communication networks, particularly for
applications such as toll collection, vehicle safety services, and commerce transactions
via cars. The ultimate vision is a nationwide network that enables communications
between vehicles and roadside access points or other vehicles.

• QoS support. 802.11e is the first wireless standard that spans home and business
environments. It adds quality-of-service (QoS) features and multimedia support to
the existing 802.11 wireless standards, while maintaining full backward compatibility
with these standards. QoS and multimedia support are critical to wireless home net-
works where voice, video, and audio will be delivered. Broadband service providers
view QoS and multimedia-capable home networks as essential ingredients in offer-
ing residential customers video on demand, audio on demand, VoIP, and high-speed
Internet access.

802.11e introduces two enhancements, Enhanced DCF (EDCF) and Hybrid Coor-
dination Function (HCF). In EDCF, a station with high-priority traffic waits a little
less, on average, before it sends its packet than a station with low-priority traffic, so
that high-priority traffic has a higher chance of being sent than low-priority traffic. In
addition, each priority level is assigned a Transmit Opportunity (TXOP), which is a
bounded time interval during which a station can send as many frames as possible.
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HCF works more like PCF. With the PCF, QoS can be configured with great preci-
sion. QoS-enabled stations have the ability to request specific transmission parameters
(data rate, jitter, etc.) which should allow advanced applications like VoIP and video
streaming to work more effectively on a WiFi network.

• Integration of 3GandWLAN.The third-generation cellular networks and 802.11 local
area wireless networks possess complementary characteristics. 3G cellular networks
promise to offer always-on, ubiquitous connectivity and mobility with relatively low
data rates. 802.11 offers much higher data rates, comparable to the cellular networks,
but can cover only smaller areas without mobility, suitable for hot-spot applications
in hotels and airports. The performance and flexibility of wireless data services would
be dramatically improved if users could seamlessly roam across the two networks.
By offering integrated 802.11/3G services, 3G operators and wireless Internet service
providers (WISPs) can attract a wider user base and ultimately facilitate the ubiquitous
introduction of high-speed wireless services. Users can also benefit from the enhanced
performance and lower overall cost of such a combined service. For a network node
changing the type of connectivity between 3G cellular phone and WLAN, the concept
of vertical handoff will be discussed in later chapters.

2.2.4 Wireless personal area networks

Awireless personal area network (WPAN) is a computer network used for wireless com-
munication among devices (including telephones and personal digital assistants) close to
a person. The reach of a WPAN is typically a few meters. WPANs can be used for com-
munication among the personal devices themselves (intrapersonal communication), or
for connecting to a higher-level network or the Internet (an uplink). 802.15 is a communi-
cations specification that was approved in early 2002 by the IEEE StandardsAssociation
(IEEE-SA) for WPANs. Specifically, we list the following three sub-standards:

• The IEEE Standard 802.15.1 was approved as a new standard for Bluetooth by the
IEEE-SA Standards Board on 15 April 2002. The Bluetooth standard enables wire-
less communication between multiple electronic devices within 10 m of each other.
Bluetooth devices are organized in piconets, which include one master device and
up to seven slave devices. Bluetooth devices communicate in the 2.4 GHz radio fre-
quency band, enabling devices to communicate without line-of-sight spacing, such
as through walls or through a person’s body. Bluetooth piconets utilize frequency-
hopping spread spectrum in 79 1-MHz bands, reducing the likelihood of interference
with other Bluetooth piconets.

• 802.15.3 is the IEEE standard for high-data-rate WPAN designed to provide quality of
service (QoS) for real-time distribution of multimedia content, like video and music.
It is ideally suited for a home multimedia wireless network. The original standard uses
a “traditional” carrier-based 2.4 GHz radio as the physical layer (PHY). A follow-on
standard, 802.15.3a, defines an alternative PHY, based on UWB, that will provide
in excess of 110 Mbps at 10 m and 480 Mbps at 2 m. This will allow applications
requiring streaming of high-definition video between media servers and flat-screen
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HD monitors, and extremely fast transfer of media files between media servers and
portable media devices.

• IEEE802.15.4-2003 (Low-RateWPAN) dealswith lowdata rates but very long battery
life (months or even years) and very low complexity. The first edition of the 802.15.4
standard was released in May 2003. In March 2004, after forming task group 4b,
task group 4 put itself in hibernation. The ZigBee set of high-level communication
protocols is based upon the specification produced by the IEEE 802.15.4 task group.

Bluetooth/ZigBee
Bluetooth is a standard for wireless communications that use short-range radio frequen-
cies to enable communications among multiple electronic devices. Bluetooth technology
is envisioned as a replacement for the interconnection cables between personal devices
such as notebook computers, cellular phones, personal digital assistants, and digital cam-
eras. If widely adopted, Bluetooth would enable a uniform interface for accessing data
services. Thus, calendars, address books, and business cards stored in personal devices
could be automatically synchronized using push-button synchronization and proximity
operation.

The Bluetooth Special Interest Group (SIG) was founded by Ericsson, IBM, Intel,
Nokia, and Toshiba in February 1998 (and later joined by many other companies as
Associate orAdopter Members) to develop an open specification for short-range wireless
connectivity. The SIG offered all of the intellectual property explicitly included in the
Bluetooth specification royalty-free to adopter members, to facilitate the widespread
acceptance of the technology. The SIG now includes thousands of companies. To use the
intellectual property in the Bluetooth specification, Adopter Members must qualify any
Bluetooth products they intend to bring to market through the Bluetooth qualification
program. The Bluetooth qualification program includes radio and protocol conformance
testing, profile conformance testing, and interoperability testing. Bluetooth is also known
as IEEE 802.15.1.

Bluetooth is a radio frequency technology utilizing the unlicensed 2.4 GHz ISM band.
Bluetooth enables wireless connections up to 10 m under standard transmitter power,
and owing to the use of radio frequencies, devices need not be within line of sight of
each other and may connect through walls or other non-metal objects. In active mode,
Bluetooth devices typically consume 0.1W of active power for class 1 with range of
100 m, 2.5 mW for class 2 with range 10 m, and 1 mW for class 3 with range 1 m. The
modulation technique utilized in Bluetooth technology is binary Gaussian frequency
shift keying, and the baud rate is 1 Msymbol s−1. Thus, the bit time is 1 μs and the raw
transmission speed is 1 Mb s−1.

The baseband signals used in Bluetooth devices, which are typically 1 MHz in band-
width, cannot be transmitted directly on the wireless medium. Modulation of the 1 MHz
baseband signals into the 2.4 GHz band is difficult to achieve in one step because CMOS
transistors do not operate at these frequencies. Bluetooth radio devices solve this prob-
lem by modulating the baseband signal onto an intermediate frequency, such as 3 MHz,
and then using a frequency mixer to increase the frequency of the signal to the 2.4 GHz
band.
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Because the unlicensed ISM band in which Bluetooth operates is often cluttered with
signals from other devices, such as garage-door openers, baby monitors, cordless phones,
andmicrowaveovens,Bluetooth utilizes frequency-hopping spread spectrum for security
and to avoid interference with the signals from other devices. Frequency hopping also
allows multiple piconets to exist within range of each other with minimal interference.
Frequency hopping typically involves generating a frequency shift keyed signal, and then
shifting the frequency of the frequency shift keyed signal by an amount determined by a
pseudonoise code. The pseudonoise code is random in that it appears to be unpredictable
to an outsider, but it is generated by deterministic means. The pseudonoise code is unique
to the piconet, and is determined by the master device.

Bluetooth utilizes a slow hopping scheme, hopping in a pseudo-random fashion
through 79 1-MHz channels. The frequency channels are located at (2402+k) MHz,
with k = 0,1, ... ,78. A Bluetooth piconet hops through 1600 different frequencies per
second. Each frequency hop corresponds to one slot, with each slot lasting 1/1600 s =
625 μs. Each packet may be one, three, or five slots long.Aframe consists of two packets,
one packet being a transmitted packet and the other a received packet.

Apacket consists of an access code, a header, and a payload. The access code is 72 bits
long and is used for clock synchronization, DC offset compensation, identification, and
signaling. The header is 54 bits long and is used for addressing, identifying the packet
type, controlling flow, sequencing to filter retransmitted packets, and verifying header
integrity (ensuring that the header was not altered by another source). The payload is
between zero and 2744 bits, depending on the type of packet. In packets that are one slot
long, the payload is 240 bits long. In three-slot-long packets, the payload is 1500 bits
long. In packets that are five slots long, the payload is 2744 bits long.

Each Bluetooth device includes a unique IEEE-type 48-bit address, called a Bluetooth
device address, assigned to it at manufacture, and a 28-bit clock. The clock ticks once
every 312.5 μs, which corresponds to half the residence time in a frequency band when
the radio hops at the rate of 1600 hops per second.

Bluetooth devices in communication with each other are organized into groups of
two to eight devices called piconets, as shown in Fig. 2.10. A piconet consists of a
single master device and between one and seven slave devices. A device may belong
to more than one piconet, but may be the master in no more than one piconet; thus, a
device may be a slave in two piconets or a master in one piconet and a slave in another
piconet.

The slaves utilize the Bluetooth clock of the master to maintain time synchronization.
The pseudo-random hopping sequence is determined by the 48-bit Bluetooth device
address of the master. The Bluetooth clock of the master clock determines the phase in the
hopping pattern, thereby determining the particular frequency to be used at a particular
time slot. Thus, the communication channel in a particular piconet is fully identified
by the master, and this communication channel serves to distinguish one piconet from
another.

The master and the slaves alternate transmit opportunities according to a time-division
duplexing scheme. According to this scheme, the master transmits on even-numbered
time slots, as defined by the master’s Bluetooth clock, while the slaves transmit on
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odd-numbered slots. A given slave may transmit only if the master has just transmitted
to this slave.

In order to determine the presence and identities of other Bluetooth devices, Bluetooth
devices engage in inquiry and page processes. The inquiry process is performed without
knowledge of the identity or presence of other Bluetooth devices, whereas the paging
process is performed with knowledge of the identity and presence of other Bluetooth
devices.

During an inquiry process, a prospective master device makes its presence known by
transmitting inquiry messages. Devices that are searching for inquiry messages respond
with inquiry messages that contain their Bluetooth device addresses. After the master
has acquired knowledge of the Bluetooth device address and presence of other Bluetooth
devices within range, the master explicitly pages the other Bluetooth devices to join its
piconet. Devices responding to the page will provide additional information, such as
their clock phases, to the master.

Bluetooth devices have three low-power modes in which they reside when they are
not in active communication. In sniff mode, a slave agrees with its master to listen for
master transmissions periodically. In hold mode, a device agrees with another device in
the piconet to remain silent for a given amount of time. A device that has gone into hold
mode does not relinquish its temporarymember addresswithin the piconet. In parkmode,
a slave agrees with its master to park until further notice. In park mode, the slave device
relinquishes its temporary member address within the piconet, and periodically listens to
transmissions from the master. The slave may be invited back to active communications
by the master, or may send a request to the master to be unparked.

Bluetooth devices typically provide link layer security between any two Bluetooth
radios.A challenge/response system, such as an E1 algorithm [1], is used for authentica-
tion. The authentication is based on a link key, which is a 128-bit shared secret between
the twoBluetooth devices. The link key is generated by a challenge-and-response process
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between the two Bluetooth devices. Data sent between two Bluetooth devices may also
be encrypted, and may be ciphered with an E0 algorithm [1]. An encryption key may
be between 8 and 128 bits long, and may be derived from the link key. The Bluetooth
devicesmay use a configuration encryption key zero to 16 bytes in length for keymanage-
ment and usage. The authentication and encryption keys may be generated with E2-E3
algorithms [1].

For WPANs, besides Bluetooth technology, ZigBee is a specification for a suite of
high-level communication protocols using small, low-power digital radios based on the
IEEE 802.15.4 standard for WPANs. ZigBee operates in the ISM radio bands: 868 MHz
in Europe, 915 MHz in the USA and 2.4 GHz in most jurisdictions worldwide. The
technology is intended to be simpler and cheaper than other WPANs such as Bluetooth.
The specification supports data transmission rates of up to 250 kbps at a range of up to
30 m. ZigBee’s technology is slower than 802.11b (11 Mbps) and Bluetooth (1 Mbps)
but it consumes significantly less power.

Ultra wideband
Ultra wideband (UWB) is a technology for transmitting information spread over a large
bandwidth (>500 MHz) that is able to share spectrum with other users. In 2002, the
FCC authorized the unlicensed use of UWB in the 3.1–10.6 GHz band. The intention
is to provide an efficient use of scarce radio bandwidth while enabling high-data-rate
personal area network (PAN) wireless connectivity. Deliberations in the International
Telecommunication Union Radiocommunication Sector (ITU-R) resulted in a Report
and Recommendation on UWB in November of 2005.

The FCC power spectral density emission limit for UWB emitters operating in the
UWB band is −41.3 dBm MHz−1. This is the same limit that applies to unintentional
emitters in the UWB band, the so-called Part 15 Limit [12]. However, the emission
limit for UWB emitters can be significantly lower (as low as−75 dBm MHz−1) in other
segments of the spectrum, to prevent interference with other applications such as GPS.
The FCC UWB spectrum mask is shown in Fig. 2.11.

The ability of UWB technology to provide significantly high data rates within short
ranges has made it an excellent alternative to Bluetooth for the physical layer of the
IEEE 802.15.3a standard for WPANs. However, like 802.11 standards, two opposing
groups of UWB developers are competing over the IEEE standard. The two competing
technologies are single-band UWB and multi-band UWB. The single-band technique,
backed by Motorola/XtremeSpectrum, supports the idea of impulse radio that occupies a
wide spectrum.Themulti-band approach divides the availableUWB frequency spectrum
into multiple smaller and non-overlapping bands with bandwidths greater than 500 MHz
to obey the FCC’s definition of UWB signals. The multi-band approach is supported
by several companies, including Staccato Communications, Intel, Texas Instruments,
General Atomics, and Time Domain Corporation.

For single-band UWB, the most popular proposal, Direct Sequence (DS)-UWB, uses
a combination of a single-carrier spread-spectrum design and wide coherent bandwidth.
Unlike conventional wireless systems, which use narrow-band modulated carrier waves
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to transmit information, DS-UWB transmits data using pulses of energy generated at
very high rates (in excess of 1 billion pulses per second) providing support for data rates
of 28, 55, 110, 220, 500, 660, and 1320 Mbit s−1. A fixed UWB chip rate in conjunction
with variable-length spreading code words enables this scalable support.

For multi-band UWB, as shown in Fig. 2.12, the available UWB spectrum, from
3.1 GHz to 10.6 GHz, is divided into S = 14 subbands. Each subband occupies a band-
width of at least 500 MHz, in compliance with FCC regulations. The UWB system
employs OFDM with N = 128 subcarriers, which are modulated using quadrature phase
shift keying (QPSK). At each OFDM symbol period, the modulated symbol is transmit-
ted over one of the S subbands. These symbols are time-interleaved across subbands.
Different bit rates are achieved by using different channel coding, frequency spreading,
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or time spreading rates. Frequency-domain spreading is obtained by choosing conjugate
symmetric inputs to the IFFT, while time-domain spreading is achieved by repeating
the same information in an OFDM symbol on two different subbands [64]. The receiver
combines the information transmitted via different times or frequencies to increase the
signal-to-noise ratio (SNR) of received data.

Owing to the extremely low emission levels currently allowed by regulatory agen-
cies, UWB systems tend to be short-range and high-speed. High-data-rate UWB can
enable wireless monitors, the efficient transfer of data from digital camcorders, wireless
printing of digital pictures from a camera without the need for an intervening personal
computer, and the transfer of files among cellphone handsets and other handheld devices
like personal digital audio and video players. UWB is also used in “see-through-the-
wall” precision radar imaging technology, precision positioning and tracking (using
distance measurements between radios), and precision time-of-arrival-based localization
approaches.

2.2.5 Wireless ad hoc networks

An ad hoc network is an autonomous collection of mobile users that communicate over
bandwidth-constrained wireless links. The network is decentralized, so all network activ-
ity including discovering the topology and delivering messages must be executed by the
nodes themselves. Ad hoc networks need efficient distributed algorithms to determine
network organization, link scheduling, and routing. For a special case of an ad hoc net-
work, Mobile Ad Hoc Networks (MANETs), because the nodes are mobile the network
topology may change rapidly and unpredictably over time.

The first generation of ad hoc networks was initiated in the early 1970s, when Packet
Radio Networks (PRNET) was proposed by the Defense Advanced Research Projects
Agency (DARPA) for multi-hop networks in a combat environment, andAreal Locations
of Hazardous Atmospheres (Aloha) was proposed in Hawaii for distributed channel
access management. The second generation of ad hoc networks emerged in the 1980s,
when the ad hoc network systems were further enhanced and implemented as a part of the
Survivable Adaptive Radio Networks (SURAN) program. SURAN provided a packet-
switched network for the mobile battlefield, in an environment without infrastructure,
to improve the performance of radios by making them smaller, cheaper, and resilient to
electronic attacks. In the 1990s, the concept of commercial ad hoc networks arrived with
notebook computers and other viable communications equipment. At this time the IEEE
802.11 subcommittee adopted the term “ad hoc networks.”

The advantages of ad hoc networks are their ease and speed of deployment, impor-
tant requirements for military applications. For civil applications, ad hoc networks
decrease dependence on expensive infrastructure. The set of applications for ad hoc
networks is diverse, ranging from small, static networks that are constrained by
power sources, to large-scale, mobile, highly dynamic networks. Some typical appli-
cations are in personal area networking, emergency operations such as policing and
fire fighting, civilian environments such as taxi networks, and military use on the
battlefield.
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In contrast to the traditional wireless network with infrastructure, an ad hoc net-
work needs its own design requirements so as to be functional. We list some important
aspects:

• Distributed operation and self-organization. No node in the ad hoc network can
depend on a network in the background to support basic functions like routing. Instead,
these functions must be implemented and operated efficiently in a distributed manner.
Moreover, in events such as topology changes due to mobility, the network must be
self-organized to adapt to the changes.

In addition, the ad hoc nodes might belong to different authorities, who might not
be willing to cooperate to fulfil network functions. However, this non-cooperation
can cause severe network breakdown. To motivate distributed autonomous users to
cooperate is an important research and design topic. Traditionally, pricing anarchy is
employed using the distributed control theory. Later in this book, we explore other
methods such as game theory to motivate users’ cooperative behavior.

• Dynamic routing. For MANET, the routing problem between any pair of nodes is
challenging because of the mobility of nodes. The optimal source-to-destination route
is time-variant. Moreover, compared to traditional networks in which the routing
protocols are proactive, the ad hoc dynamic routing protocols are reactive. The routes
are determined only when the source requests a transmission to the destination. There
are two types of ad hoc dynamic routing protocols: table-driven routing protocols and
source-initiated on-demand routing protocols.

Table-driven routing protocols require each node to maintain one or more tables to
store routing information. The protocols rely on an underlying routing-table update
mechanism that involves the constant propagation of routing information. Packets
can be forwarded immediately since the routes are always available. However, this
type of protocol causes substantial signaling traffic and power-consumption problems.
Protocols include in the literature destination-sequenced distance-vector routing [387],
clusterhead gateway switch routing [105], and wireless routing [343].

Source-initiated on-demand routing creates routing only when desired by the
source node. A disadvantage is that the packet at the source node must wait until
a route can be discovered. But an advantage is that periodic route updates are not
required. Routing protocols available in the literature include ad hoc on-demand
distance vector routing [388], dynamic source routing [236], temporally ordered
routing [386], associativity-based routing [476], and signal stability-based adaptive
routing [135].

• Connectivity. To achieve a connected ad hoc network, for any node there must be a
multi-hop path to any other node. There are many types of connectivity definitions. In
an undirected graph G , two vertices u and v are called connected if G contains a path
from u to v . Otherwise, they are called disconnected. A graph is called connected if
every pair of vertices in the graph is connected.

One of the most frequently adopted definitions is k-connectivity, which states that
each node can still connect to the rest of its network if k−1 of its neighbor nodes are
destroyed.
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definition 2.1 A graph G with edge set V (G ) is said to be k-connected if G\Y is
connected for all Y ⊆ V (G ) with |Y |< k . In other words, a graph is k-connected if
the graph remains connected when fewer than k vertices are deleted from the graph.

If a graph G is k-connected, and k < |V (G )|, then k ≤ Δ(G ), where Δ(G ) is the
minimum degree of any vertex v ∈ V (G ).

The following theorem due to Menger [329], a special case of the Max-Cut Min-
Flow Theorem, indicates how to calculate k for k-connectivity:

theorem 2.1 Let G be a finite undirected graph and i and j be two non-adjacent
vertices. Then the size of the minimum vertex cut for i and j (the minimum number
of vertices whose removal disconnects i and j) is equal to the maximum number of
pair-wise vertex-independent paths from i to j .

• Mobility. To test a new protocol for MANET, it is important to use a mobility model
that accurately represents the mobile users using the protocol, so that practical imple-
mentation matches the simulation. There are two types of mobility models: traces
and synthetic models. For traces, the mobility patterns are observed in real-life sys-
tems, so that accurate information is provided. However, traces are limited to existing
environments. For unknown environments, accurate synthetic models are necessary.

A synthetic model tries to simulate the real movement of mobile users. In [90],
several mobility models are discussed and explained. If the different mobile users are
moving randomly relative to each other, mobility models include:

• Random walk: a simple model based on random directions and speeds.
• Random waypoint: a model including pause times between changes in direction

and speed.
• Random direction: a model forcing mobile users to travel to the edge of the

simulation area before changing direction or speed.
• Boundless simulation area: a model converting a 2D rectangular simulation area

into a torus-shaped simulation area.
• Gauss–Markov: a model using a set of parameters to change the degree of

randomness in mobility patterns.
• Probabilistic version of random walk: a model specifying probabilities of the next

positions of mobile users.
• City section: a model in which movement is on the streets of a city.
• Random trip [79]: a model that contains, as special cases, random waypoint on

convex or non-convex domains, random walk, billiards, city section, space graph,
and other models.

If the mobile users are moving in groups, mobility models include:

• Exponential correlated random: a model using a motion function to create
movement.
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• Column: a model in which mobile users form a line and are uniformly moving
forward in a certain direction.

• Nomadic community: a model in which mobile users move together from one
position to another.

• Pursue: a model in which mobile users follow a given target.
• Reference point group: a model in which group movements are based on the path

travelled by a logical center.

• Other issues such as lower power, security, and localization will be discussed in the
next section, together with sensor networks.

Finally, we discuss two ad hoc standards in 802.11 for wireless local networks and in
802.15 for wireless personal area networks. One future design goal of ad hoc networks
is to let mobile users form connections and perform basic functions. These mobile users
belong to different types of networks such as cellular, WiFi, and WPAN.

Most installed wireless LANs today utilize an “infrastructure” mode that requires the
use of one or more access points. With this configuration, the access point provides an
interface to a distribution system (e.g., Ethernet), which enables wireless users to use
corporate servers and Internet applications. As an option, the 802.11 standard specifies
“ad hoc” mode, which allows the radio network interface card (NIC) to operate in what
the standard refers to as an Independent Basic Service Set (IBSS) network configuration.
With an IBSS, there are no access points. User devices communicate directly with each
other in a peer-to-peer manner.

For WPAN applications such as Bluetooth, the ad hoc network is set up by forming
piconets. Within each piconet, only one master device and possibly several slave devices
form connections. A slave device can belong to different piconets and serve as a con-
nection between piconets. The major functions of the piconets are piconet forming and
maintenance, packet forwarding, and intra-piconet/inter-piconet scheduling.

2.2.6 Wireless sensor networks

Awireless sensor network (WSN) is a wireless network consisting of spatially distributed
autonomous devices using sensors to cooperatively monitor physical or environmental
conditions such as temperature, sound, vibration, pressure, motion, or pollutants, at dif-
ferent locations. The goals and tasks of sensor networks are to determine the value of
some parameter at a given location, to detect the occurrence of events of interest and
estimate parameters of the detected events, to classify a detected object, or to track an
object. The development of wireless sensor networks was originally motivated by mili-
tary applications such as battlefield surveillance. However, wireless sensor networks are
now used in many civilian application areas, including environment and habitat mon-
itoring, healthcare applications, home automation, and traffic control. Some examples
are as follows:

• Military sensor networks to detect and gain as much information as possible about
enemy movements, explosions, and other phenomena of interest
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• Sensor networks to detect and monitor environmental changes such as in plains,
forests, and oceans

• Wireless traffic sensor networks to monitor vehicle traffic on highways or in congested
parts of a city

• Wireless surveillance sensor networks to provide security in shopping malls, parking
garages, and other civil facilities

• Manufacturing sensors to facilitate the monitoring and control process, which can
reduce cost, improve flexibility, and enhance accuracy

• Sensors for supermarkets to speed products to shelves and provide customers with
better-quality products

• Medical sensors, especially implanted sensors, to constantly monitor patients; these
must have sufficient battery life and be able to transmit the sensed information out of
the body via wireless channels.

In Fig. 2.13 we show the typical structure of one unit of a sensor network. In addi-
tion to one or more sensors, each node in a sensor network is typically equipped with
a radio transceiver or other wireless communications device, a small microprocessor,
some memory, and an energy source, usually a battery. Sensing applications can include
temperature, light, humidity, pressure, acceleration, magnetic fields, chemical proper-
ties, acoustics, and images/videos. The microprocessor has significant constraint on its
computational power. Currently, devices typically have a component-based, embedded
operating system. Available memory is also very limited. Current radio transceivers for
sensor networks are low-rate and short-range. Some sensors can be powered by a wired
power source, while most widely deployed sensors are powered by battery. Exchanging
the energy-depleting sensors is a challenging job, so power saving is critical in the design
of such wireless sensor networks.

The size of a single sensor node can vary from shoe-box size down to devices the
size of a grain of dust. The cost of sensor nodes is similarly variable, ranging from

Sensors

Microprocessor

Radio Transceiver

Power Source/Battery

Memory

Fig. 2.13 Sensor network structure.
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hundreds of dollars to a few cents, depending on the size of the sensor network and the
complexity required of individual sensor nodes. Size and cost constraints on sensor nodes
result in corresponding constraints on resources such as energy, memory, computational
speed, and bandwidth. Basically, to design a wireless sensor network, the following
requirements should be considered [6]:

• Large number of (mostly stationary) sensors
• Low energy use to extend network lifetime
• Self-organization
• Collaborative signal processing
• Querying ability.

In practice, there are other design issues [257], including how to deploy the sensor
networks, how to locate a specific sensor, how to shut down and reactivate a sen-
sor to save energy, how to route information back to data-collection points, how to
reduce packet-forwarding loads by data fusion, and finally how to have secure sensor
networks.

• Sensor network deployment. The problem is to select the locations to place the sensor
networks, give a particular application context, an operational region, and a set of
wireless sensor devices. The sensors can be deployed in a structured sense or in a
randomly scattered manner. The density of sensors is determined by the robustness
and cost of the networks.

Most sensor networks have two types of sensors: a low-capability sensor that is
in charge of collecting data, and a cluster head or data sink that is more powerful in
computation and data transmission. The network topology between these two types
of sensors can be star-connected single-hop, multi-hop mesh/grid, or multiple-tier
hierarchical cluster.

Because transmit power is bounded, a sensor can reach other sensors only within
a limited distance, giving rise to connectivity problems for sensor networks. The
sensing range is also restrained. The sensing area is a function of the density of the
sensors.There are different types of coveragemetrics, including k-coverage,minimum
coverage, and maximal breach distance [326].

• Localization. This refers to the determination of the location of a sensed event. This
information can be used to provide a location stamp over the event, track the moni-
tored object, determine the coverage, form the cluster, facilitate routing, and perform
efficient querying. Even though such information can be obtained using GPS, cost and
indoor environments prohibit sensors from being equipped with GPS.

Nevertheless, the task of localization captures multiple aspects of sensor networks.
Physical layer imposes measurement challenges, due to multi-path, shadowing, sen-
sor imperfections, and changes in propagation properties. Extensive computation
is necessary for many formulations of localization problems. Moreover, problems
must sometimes be solved in a distributed manner or on a memory-constrained
processor. Furthermore, for networking and coordination issues, sensor nodes have
to collaborate and communicate with each other to know the topology of the
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whole network. Finally, it is challenging to integrate location services with other
applications.

There are several types of localization mechanisms. An active localization system
sends signals to localize a target. Examples include RADAR and LIDAR (LADAR).
In cooperative localization, the target cooperates with the system. For example, the
target emits a signal with known characteristics, and the system deduces its location
by detecting a signal.Apassive localization system deduces location from observation
of signals that are “already present.” An example is the use of geometric methods to
calculate location by measuring signal strength at receivers in different locations. A
blind localization system deduces the location of a target without a-priori knowledge
of its characteristics.

• Time synchronization. While localization provides the sensor networks with spatial
information, accurate time synchronization is also essential. Since the time delay for
the information to the sink is unpredictable, each sensor needs to have a consistent time
stamp for the message. This is very important for some types of data such as tsunami
alarming, since the time information provides many scientific clues. For localization,
the transmitter and receiver need to have synchronized time so that time-of-flight canbe
calculated. For multiple access, such as TDMA(time-division multiple-access)-based
schemes, each sensor needs to transmit at exact time slots. For sleeping scheduling,
energy is saved by turning sensors on and off at certain time.

Accurate time can be obtained from a GPS signal, but this approach is very
expensive. Quartz-crystal oscillators can provide an accuracy of a few μs. For bet-
ter accuracy, techniques such as phase-locked loops need to be implemented to
synchronize the clocks.

• Sleeping mechanism. In most sensors, the primary power consumption is by the radio
used for transmitting, receiving, and listening. If the sensors only wake up when the
radio is active and sleep during the remaining time, energy can be conserved and the
lifetime of the sensor network can be prolonged.

However, the sleep-and-wake-up mechanism causes other design problems. First,
there is a tradeoff between the delay of information and energy consumption. More-
over, the design of the MAC-layer multiple-access protocol needs to consider the
wake-up time. Furthermore, the transmitter and receiver should be synchronized to
wake up at the same time. Finally, the fairness issue needs to be considered so that
some sensors are not overloaded, leading to early energy depletion.

• Energy-efficient routing. Since energy is a major concern in the design of wireless
sensor networks, energy-efficient routes from the sensors to the data sink can signifi-
cantly improve the network lifetime. In addition, when multiple routes are considered,
individually energy-efficient routes are not optimal, in the sense that some sensors on
critical paths might be depleted early. So joint optimization is necessary.

In addition to energy concerns, routing protocols also should take account of latency
arising from the sleeping mechanism of sensors. Routing protocols should also con-
sider data fusion/aggregation. Finally, for large sensor networks, scalability is an
important issue. For situations in which the sensors are mobile or can join/leave the
network frequently, adaptive ability is also a design challenge.
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• Fusion/aggregation. Fusion/aggregation is a process of association, correlation, and
combination of data and information from single and multiple sources to achieve
refined position and identity estimates for observed entities, and to achieve complete
and timely assessments of situations and threats, and their significance. In wireless
sensor networks, especially large ones, it can be difficult and energy-inefficient to
gather the information to make such a decision. Instead, along the path to the data
sink, a data-fusion node can collect the results from multiple nodes, fuse the results
with its own based on a decision criterion, and then send the fused data to another
node/base station. By doing this, the traffic load can be greatly reduced and energy
can be conserved.

There are two types of data fusion/aggregation. In the first, data from different node
measurements are combined to form larger packets. It is simple to implement, but
requires a higher computational burden, higher communication burden, and larger
training data. The second type is decision fusion, in which decisions (hard or soft)
based on node measurements are combined. Decision fusion solves the problems
of the first type of fusion/aggregation. The decision can be made by mechanisms
such as voting. For example, a fusion node may arrive at a consensus by a vot-
ing scheme: majority voting, complete agreement, or weighted voting. Other fusion
decision algorithms include a probability-based Bayesian model [101] and stacked
generalization [378].

For sensor networks, there are various fusion architectures from the sensors to the
data sink. In a centralized architecture, a central processor fuses the reports collected
by all other sensing nodes. The centralized one has the advantages that erroneous
reports can be easily detected and that it is simple to implement. On the other hand,
it has the disadvantages that it is inflexible to sensor changes and that the workload
is concentrated at a single point. In a decentralized architecture, data fusion occurs
locally at each node on the basis of local observations and the information obtained
from neighboring nodes. There is no central processor node. Advantages are that it
is scalable and tolerant to the addition or loss of sensing nodes or dynamic changes
in the network. In a hierarchical architecture, nodes are partitioned into hierarchical
levels. The sensing nodes are at level 0 and the data sink at the highest level. Reports
move from the lower levels to higher ones. This architecture has the advantage that
workload is balanced among nodes.

• Security. Because sensor networks may interact with sensitive data and/or operate in
hostile, unattended environments (e.g., military sensors), it is important for security
to be addressed in system design. Moreover, because of inherent resource and com-
puting constraints, security in sensor networks poses more challenges than traditional
network/computer security. Possible security attacks include denial-of-service attack,
Sybil attack, traffic-analysis attack, node-replica attack, privacy attack, physical attack,
and collusion attack. In the literature, there are some defensive mechanisms such as
key cryptography and trust management. The security issue is beyond the scope of
this book. A good survey of security issues in wireless sensor networks can be found
in [493].
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2.3 Advanced wireless technology

2.3.1 OFDM technology

Orthogonal frequency-division multiplexing (OFDM) is a technique for transmitting
multiple digital signals simultaneously over a large number of orthogonal subcarriers.
Based on the fast Fourier transform algorithm to generate and detect the signal, data
transmission can be performed over a large number of carriers that are spaced at precise
frequencies. The frequencies (or tones) are orthogonal to each other. Therefore, the
spacing between the subcarriers can be reduced and high spectral efficiency can be
achieved. OFDM transmission is also resilient to interference and multi-path distortion,
which causes inter-symbol interference (ISI).

OFDM transmitter and receiver block diagrams are shown in Figs. 2.14 and 2.15,
respectively; s[n] is a serial stream of binary digits to transmit. After serial-to-parallel
conversion, the data is split into N streams. Each stream is then coded to X0, ...XN−1

with possible different modulation methods, such as PSK (phase shift keying) or
QAM (quadrature amplitude modulation), depending on the subchannel condition. An
inverse FFT is computed on each set of symbols, giving a set of complex time-domain
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samples. These samples are then quadrature-mixed to passband in the standard way:
the real and imaginary components are first converted to the analogue domain using
digital-to-analogue converters (DACs); the analogue signals are then used to modulate
cosine and sine waves, respectively, at the carrier frequency, fc . These signals are then
summed to yield the transmission signal, s(t). The OFDM receiver picks up the signal
r(t), which is s(t) transmitted through radio channels and contaminated by noise. Then
r(t) is quadrature-mixed down to baseband using cosine and sine waves at the carrier
frequency.The baseband signals are then sampled and digitized using analogue-to-digital
converters (ADCs), and a forward FFT is used to convert back to the frequency domain.
This returns N parallel streams, each of which is converted to a binary stream using an
appropriate symbol detector. These streams are then recombined into a serial stream,
ŝ[n], which is an estimate of the original binary stream at the transmitter.

Mathematically, the low-pass equivalent OFDM signal is expressed as

V (t) =
N−1∑
k=0

Xke j2πkt/T , 0≤ t < T , (2.9)

where Xk is the modulated data symbol for the kth data stream, and T is the OFDM
symbol time.

To avoid inter-symbol interference inmulti-path fading channels, a guard intervalTg is
inserted prior to the OFDM block. During this interval, a cyclic prefix is transmitted such
that the signal in the interval −Tg ≤ t < 0 equals the signal in the interval (T −Tg )≤
t < T . A cyclic prefix is often used in conjunction with modulation in order to retain
sinusoids’ properties in multi-path channels. It is well known that sinusoidal signals
are eigenfunctions of linear and time-invariant systems. Therefore, if the channel is
assumed to be linear and time-invariant, then a sinusoid of infinite duration would be an
eigenfunction. However, in practice, this cannot be achieved, as real signals are always
time-limited. So, to mimic the infinite behavior, prefixing the end of the symbol to the
beginning makes the linear convolution of the channel appear as though it were a circular
convolution, and thus preserves this property in the part of the symbol after the cyclic
prefix.

Orthogonal frequency-divisionmultiple access (OFDMA) is amultiple-access scheme
based on OFDM. In OFDMA, different users are allocated with different subcarri-
ers, and hence multiple users can transmit their data simultaneously. QoS can be
achieved in OFDMA by allocating different numbers of subcarriers to users with differ-
ent QoS requirements. In OFDMA, different users can occupy different time-frequency
slots so as to fully utilize the diversity. OFDM can be combined with the CDMA
scheme (i.e., multi-carrier code-division multiple-access (MC-CDMA) or OFDM-
CDMA). In this case, different codes are assigned to different users for concurrent
transmissions.

Dynamic spectral management for OFDMAcan be categorized into two groups based
on the network control architecture.

• Centralized control: A spectral management center (SMC) monitors and controls the
transmit spectra of all the users in the system. It needs a lot of coordination and
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communication between the users and the SMC. This greatly increases the control
signaling overhead but leads to better performance when compared to distributed
control. Centralized control can be further categorized as follows [245, 509]:

• Level 1: The data rate and transmit power of the user are reported to a central
controller and corresponding control signals are generated to control the rate and
transmit power.

• Level 2: The noise spectra and the received signal spectra are monitored and the
transmit power is controlled by the central controller.

• Level 3: This allows complete coordination in real-time control of transmit power
while monitoring the signals and noise spectra.

• Distributed control: Users have the capability to sense the channel conditions and
adjust their transmit spectra accordingly. This may be efficient from the perspective
of signaling and coordination but has the drawback of converging to a suboptimal
point. It is also referred to as Level 0 [509, 245], where there is no dynamic spectrum
management (DSM) involved and control is fully distributed.

The control exhibited by the SMC over the users determines the computational com-
plexity of the overall system. A centralized control is efficient but consumes a lot of
bandwidth in control messaging between the users and the base station. On the other
hand, distributed algorithms increase the complexity of the user’s receiver. The resource
allocation of OFDMA can be broadly categorized into three areas:

• Subcarrier assignment: The subcarriers with the best channel gains as seen by the user
are allocated to the particular user.

• Rate allocation: The data rate is allocated depending on user application requirements.
• Power control: Optimal transmit power is to be allocated to the user in order to meet

its rate requirements while not interfering with other users.

OFDM and OFDMA are used in emerging standards including IEEE 802.11a/WiFi,
IEEE 802.15/WiPAN, IEEE 802.16/WiMAX, IEEE 802.20/MobileFi, IEEE 802.22/
WiRAN, digital audio broadcasting (DAB), terrestrial broadcasting of digital televi-
sion (DVB-T, DVB-H), Flash-OFDM (fast low-latency access with seamless handoff
orthogonal frequency-division multiplexing), SDARS for satellite radio, G.DMT (ITU
G.992.1) for ADSL, and ITU-T G.hn for power line communication.

2.3.2 Multiple-antenna systems

For spatial diversity, transceivers employ antenna arrays and adjust their beam pat-
terns so that they have good channel gain in the desired directions, while aggregate
interference power is minimized at their output. Antenna array processing techniques
such as beamforming, MIMO technology, and space-time coding can be applied to
receive and transmit multiple signals that are separated in space. Hence, multiple co-
channel users can be supported in each cell to increase the capacity by exploring
the spatial diversity. In this subsection, we briefly discuss various multiple antenna
technologies.
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Beamforming
Beamforming is a technique in signal processing used for directional data transmission
and reception. Using beamforming, the signal is received/transmitted in a particular
direction to improve the receive/transmit gain.When transmitting, a beamformer controls
the phase and amplitude of the signal to create a pattern of constructive and destructive
interference in the wavefront. When receiving, these signals are combined in such a way
that the expected pattern of radiation is preferentially observed. Different weights can be
assigned to the different signals so that the decoded information has the smallest error
probability. In a conventional beamforming system, these weights are fixed and can be
obtained according to the location of the receiving antenna and the direction of the signal.
Alternatively, the weights can be adaptively adjusted by considering the characteristics
of the received signal to mitigate the interference from unwanted sources. In Fig. 2.16,
we show an illustration of beamforming technology.

MIMO technology and space-time coding
To enhance the performance of wireless transmission, multiple-input multiple-output
(MIMO) or multiple antennas can be used to transmit and receive the radio signals. Data
transmitted from multiple antennas will experience different multi-path fading, and at
the receiver these different multi-path signals are received by multiple antennas. By
using advanced signal processing techniques, multi-path signals at the receiver can be
combined to reconstruct original data. MIMO systems take advantage of this spatial
diversity to achieve higher data rates or lower bit error rates (BER). There are two basic
types of MIMO systems, space-time coding MIMO (for diversity maximization) and
spatial multiplexing MIMO (for data rate maximization).
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In a space-time coding MIMO system, a single data stream is redundantly transmitted
over multiple antennas by using suitably designed transmit signals. At the receiver,
multiple copies of the signal are received and used to reconstruct the original data.
Space-time coding can be categorized into space-time trellis coding (STTC), in which
trellis code is transmitted over multiple antennas and multiple time-slots, and space-time
block coding (STBC) in which a block of data is transmitted over multiple antennas.
Both STTC and STBC can achieve diversity gain which improves the error performance.
While STTC can also achieve coding gain (i.e., results with a lower error rate), STBC
can be implemented with less complexity.

Instead of transmitting the same data over multiple antennas, a spatial multiplexing
MIMO system transmits different data streams over multiple antennas. In this case, the
number of transmitting antennas is equal to or larger than that of the receiving antennas
and the data rate can increase by a factor of the number of transmitting antennas [479].
There is a fundamental tradeoff between diversity gain and multiplexing gain. In simple
terms, the diversity gain improves the BER performance, while multiplexing gain will
increase the rate but the BER performance may be reduced. Detailed analysis can be
found in the literature [535].

One simple example of an STBC is the Alamouti code [19], which was designed for
a two-transmitting antenna system and has the coding matrix:

C =
[

s1 s2
−s∗

2 s∗
1

]
, (2.10)

where s1 and s2 are two symbols, ∗ denotes complex conjugation, and components of
the matrix are sent on two antennas and two time slots, respectively. The coding rate is
1, and using the optimal linear decoding scheme the BER of this STBC is equivalent to
maximal ratio combining (MRC).

Multi-user MIMO (MU-MIMO) was proposed to support data transmission from
multiple users simultaneously. In this case, data from different users can be transmitted
over different antennas. In this MU-MIMO, MIMO broadcast channels and MIMO
multiple-access channels are used for downlink and uplink transmissions, respectively.
Alternatively, space-division multiple-access (SDMA) can exploit information about
users’ locations to adjust the transmission and reception parameters to achieve the best
path gain in the direction of each user. Phased-array antenna techniques are generally
used for SDMA. MIMO is an optional feature in the IEEE 802.16/WiMAX standard,
while it is be part of the IEEE 802.11n standard.

2.3.3 Cognitive radio

The FCC Federal Radio Act allows predetermined users the right to transmit at given
frequencies. Unlicensed users are regarded as “harmful interference,” and in most cases
sidebands were implemented to ensure that interference is not an issue. As technology
advanced, higher frequency bands were sold at auction, bringing considerable revenue to
the government. For example since the 1994 PCS auction, over US$30 billion has been
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generated. As demands for wireless communication become more and more pervasive,
wireless devices must find a way to transmit at frequencies in the limited radio band.
However, there exists a large number of frequency bands that have considerable, and
sometimes periodic, dormant time intervals. For example, TV stations often do not work
at night. There exist some spectrum holes at given times over different spectrum bands.
So there is a dilemma, in that on the one hand mobile users have no spectrum to transmit,
while on the other hand some spectra are not fully utilized.

In order to cope with the dilemma, cognitive radio is a paradigm for wireless com-
munication in which either a network or a wireless node changes its transmission or
reception parameters to communicate efficiently without interfering with licensed users.
This alteration of parameters is based on active monitoring of several factors in the exter-
nal and internal radio environment, such as radio-frequency spectra, user behaviors, and
network states.

Depending on the parameters taken into account in deciding on transmission and recep-
tion changes, and for historical reasons, we can distinguish several types of cognitive
radio:

• Full cognitive radio (“Mitola radio”), in which every possible parameter observable
by a wireless node or network is taken into account.

• Spectrum-sensing cognitive radio, in which only the radio-frequency spectrum is
considered.

• Licensed-band cognitive radio, which is capable of using bands assigned to licensed
users.

• Unlicensed-band cognitive radio, which can only utilize unlicensed parts of the radio-
frequency spectrum.

Cognitive radio can be designed as an enhancement layer on top of the software-
defined radio (SDR) concept. An SDR system is a radio communication system which
can tune to any frequency band and receive any modulation across a large frequency
spectrum by means of programmable hardware which is controlled by software.

An SDR performs significant amounts of signal processing in a general-purpose com-
puter, or a reconfigurable piece of digital electronics. The goal of this design is to produce
a radio that can receive and transmit a new form of radio protocol just by running
new software. The hardware of a software-defined radio typically consists of a super-
heterodyne RF front end which converts RF signals from (and to) analogue IF signals,
and analogue-to-digital converter and digital-to-analogue converters which convert a
digitized IF signal from and to analogue form, respectively.

Software radios have significant utility for the military and cellphone services,
both of which must serve a wide variety of changing radio protocols in real time.
Software-defined radio can currently be used to implement simple radio modem tech-
nologies. In the long run, software-defined radio is expected by its proponents to
become the dominant technology in radio communications. It is the enabler of cognitive
radio.

The cognitive transmitter and receiver can adapt to 3G, WiFi, and WPAN networks.
By sensing the available spectrum, the cognitive radio can adapt to the most suitable
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available communication links. For example, a user at home can communicate via Blue-
tooth; if the user travels to the airport, WiFi communication can be available; if the user
drives on the highway, the cellular phone system can provide reliable communication
links. Another analogy for cognitive radio is as follows. Licensed users are legally used
to spectrum, like high-occupancy vehicles (HOV) which can drive in HOV designated
lanes. However, the HOV lanes are not always occupied. Aside from during rush hour,
other vehicles can also drive in the HOV lanes. In this sense, cognitive radios are like
non-HOV vehicles.

Two major objectives of cognitive radio are to reliably communicate anywhere and at
any time, and to efficiently utilize the radio spectrum. To achieve these objectives, three
fundamental cognitive tasks [201] for cognitive radio must be fulfilled:

• Radio-scene sensing, which analyzes interferences and detects spectrum holes.
• Spectrum analysis, such as channel-state estimation and predictions of channel

capacity.
• Transmit-power control and dynamic spectrum management.

In Fig. 2.17 we show the cognitive cycle, in which these three tasks interact to handle
the outside world so that the best strategy can be calculated and implemented.

The IEEE 802.22 Working Group on Wireless Regional Area Networks (WRAN)
is a group of the IEEE 802 LAN/MAN Standards Committee. Standards for WRAN
Part 22 (Cognitive Wireless RAN Medium Access Control (MAC) and Physical Layer
(PHY) Specifications) regulate policies and procedures for operation in the TV bands.
The standard focuses on constructing a consistent, fixed point-to-multipoint WRAN that
will utilize UHF/VHF TV bands between 54 and 862 MHz. Specific TV channels as well
as the guard bands of these channels are to be used for communication in IEEE 802.22.

The IEEE, together with the FCC, is pursuing a centralized approach to available
spectrum discovery. Specifically, each access point (AP) would be armed with a GPS
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Table 2.5 WRAN coverage and capacity.

RF channel bandwidth 6 MHz
Average spectrum efficiency 3 bit s−1 Hz−1

Downlink user capacity 1.5 Mbit s−1

Uplink user capacity 384 kbit s−1

Over-subscription ratio 50
Number of users per downlink 600
Minimum number of users 90
Assumed early take-up rate 3 bit s−1 Hz−1

Potential number of users 1800
Number of users per household 2.5
Number of users per coverage area 4500
WRAN base station power 98.3W
Coverage 30.7 km
Minimum population density 1.5 km−2

receiver which would allow its position to be reported. This information would be sent
back to centralized servers (in the USA these would be managed by the FCC), which
would respond with information about available free TV channels and guard bands in the
area of theAP. Other proposals would allow local spectrum sensing only, in which theAP
would decide by itself which channels are available for communication. A combination
of these two approaches is also envisioned. Table 2.5 describes the coverage and capacity
of IEEE 802.22 WRAN.

Overall, cognitive radio can bring in a variety of benefits. For a regulator, it can lead
to a significant increase in spectrum availability for new and existing applications. For a
license holder, it can reduce the complexity of frequency planning, facilitate secondary-
spectrum market agreements, increase system capacity through access to more spectrum,
and avoid interference. For the equipment manufacturer, it can increase demand for
wireless devices. Finally, for the user, cognitive radio can provide a higher level of
capacity per user, enhance interoperability and bandwidth-on-demand for public-safety
and emergency-response operations, and provide ubiquitous mobility with a single user
device across disparate spectrum-access environments.
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3 Non-cooperative games

Non-cooperative game theory is one of the most important branches of game theory,
focusing on the study and analysis of competitive decision-making involving several
players. It provides an analytical framework suited for characterizing the interactions and
decision-making process involving several players with partially or totally conflicting
interests over the outcome of a decision process which is affected by their actions.
Examples of non-cooperative games are ubiquitous. In economics, firms operating in the
same market compete over pricing strategies, market control, trading of goods, and the
like. In wireless and communication networks, wireless nodes are involved in numerous
non-cooperative scenarios such as allocation of resources, choices of frequencies or
transmit power, packet forwarding, and interference management. Beyond economics
and networking, non-cooperative game theory has made its impact over a broad range
of disciplines such as biology, political science, sociology, and military tactics. In this
chapter, we introduce non-cooperative game theory along with different types of games,
while presenting underlying fundamental notions and key solution concepts.

3.1 Non-cooperative games: preliminaries

In this section, we introduce some preliminary concepts and terminology that pertain to
non-cooperative game theory.

3.1.1 Introduction

A non-cooperative game involves a number of players having totally or partially con-
flicting interests in the outcome of a decision process. For example, consider a number
of wireless nodes attempting to control their transmit power, given the interference gen-
erated by other nodes. In such a situation, while all the nodes have an incentive to
transmit, the presence of interference presents a conflict, coupling the decisions of the
nodes: Every node wants to transmit at its maximal power level, to improve its perfor-
mance; however, doing so increases the overall interference in the system, which, in
turn, adversely impacts the performance of all the involved wireless nodes.

Anon-cooperative game is a game reflecting a competitive situation where each player
needs to take its decision independently of the other players, given the possible choices of
the other players and their effect on the player’s objectives or utilities. Note that the term
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non-cooperative does not always imply that the players do not cooperate, but it means
that any cooperation that might arise must be self-enforcing with no communication or
coordination of strategic choices among the players.

A game is said to be static if the players take their actions only once, independently
of each other. In some sense, a static game is a game without any notion of time, where
no player has any knowledge of the decisions taken by the other players. Even though,
in practice, the players may have made their strategic choices at different points in
time, a game would still be considered static if no player has any information on the
decisions of others. Thus, such a game can still be analyzed as if the decisions were
made simultaneously. In contrast, a dynamic game is one where the players have some
information about each others’ choices and can act more than once, and where time has
a central role in the decision-making. Although these definitions of static and dynamic
games are themostwidely accepted ones in the game-theory literature, static anddynamic
games have no universally acknowledged definitions (see [58] for more details on this
issue).

3.1.2 Basics of non-cooperative games

In describing a static or dynamic non-cooperative game, the notion of a strategic (or
normal) form proves to be one of the most popular representations. In this regard, a
non-cooperative game in strategic (or normal) form has three components: the set of
players, their strategies, and the payoffs or utilities. More formally, a strategic game is
defined as follows:

definition 3.1 A non-cooperative game in strategic (or normal) form is a triplet
G = (N , (Si )i∈N , (ui )i∈N ), where:

• N is a finite set of players, i.e., N = {1, ... ,N}.
• Si is the set of available strategies for player i .
• ui :S →R is the utility (payoff) function for player i , with S =S1×·· ·×Si×·· ·×SN

(Cartesian product of the strategy sets).

Note that while different game forms can be defined for dynamic games (as will be seen
in Section 3.3), for static games the strategic (or normal) form is essentially the only
representation.

When dealing with dynamic games (e.g., in Section 3.3), the choices of each player
are generally dependent on some available information. Thus, in dynamic games, one
has to distinguish between the notion of an action and a strategy. For example, if an
individual has to decide what to do in the evening and the options are camping in nature
or staying at home, then a possible strategy would be “If the weather report predicts dry
weather for the evening, then I will go out camping; otherwise, I will stay at home.”After
knowing about the weather, the individual would take an action, which is to go camping
or to stay at home, depending on the available information. Thus, in essence, a strategy
can be seen as a mapping from the information available to a player (e.g., the weather
report) to the action set of this player (e.g., go camping or stay at home). A constant
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strategy, e.g., a decision to stay at home regardless of any information, coincides with
the notion of an action. As a result, in static games, the choice that a given player makes
is independent of any information; thus, in such games, the concepts of an action and a
strategy are identical. Throughout this book, whenever we deal with static games, i.e.,
games where information has no role and where the decisions are simultaneous, we do
not distinguish between the notions of action and strategy, and so the terms will be used
interchangeably.

Given the definition of a strategic game, for any player i , every element si ∈ Si is the
strategy of i , s−i = [sj ]j∈N ,j �=i denotes the vector of strategies of all players except i ,
and s = (si ,s−i ) ∈ S is referred to as a strategy profile. Whenever the sets of strategies
Si are finite for all i ∈N , the game is called finite.

For a game in strategic form, each player has to select a strategy so as to optimize its
utility function.1 Whenever each player i ∈N selects a strategy si ∈Si in a deterministic
manner, i.e., with probability 1, then this strategy is known as a pure strategy. Further-
more, unless stated otherwise, in the remainder of this chapter we deal with games with
complete information, a notion defined as follows:

definition 3.2 A game is said to be one with complete information if all elements of
the game are common knowledge. Otherwise, the game is said to be one with incomplete
information, or an incomplete information game.

Thus, in a game with complete information, each player is aware of the identities of all
other players, their strategies, and the payoffs that would result from any combination of
strategies. For an incomplete information game, the players may not know the identities
of all other players, their payoffs, or their strategies; in this case the use of inference
methods such as Bayes’ rule can be useful. In this chapter, we deal mainly with games
with complete information; games with incomplete information will be tackled under
the heading of Bayesian games in Chapter 4.

One of the most common types of non-cooperative games is the two-player zero-sum
game. A two-player zero-sum game is one involving two players where the gains of one
player are the losses of the other player. In other words, it is a game such thatN = {1,2}
and

∑2
i=1 ui (s) = 0,∀s ∈ S, where s is a strategy profile. In such a game, one player is

a maximizer, i.e., aims to maximize its gain, while the other player is a minimizer, i.e.,
aims to minimize its losses (which are the gains of the other player). A zero-sum game
can also be thought of as a constant-sum game where the gains and losses of the players
add up to a constant value, for any strategy profile. The popular board game Go is a
typical example of a zero-sum game: It is impossible for both players to win. In wireless
and communication networks, zero-sum games are especially popular when modeling
security games involving an attacker and adefender (e.g., see [22] and references therein).
In such games, the attacker’s gains are most often equal to the defender’s losses, yielding
a zero-sum situation.

1 The discussion in this chapter is also applicable to games where the players seek to minimize a cost
function instead of maximizing a utility function.
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Despite being one of the most well studied and analyzed classes of games, zero-sum
games are restrictive. In fact, inmany disciplines, especiallywireless and communication
networks, the majority of the studied problems are better modeled as non-zero-sum
games.Non-zero-sumgames describe situations inwhich (without any loss of generality)
all players can be viewed as maximizers or minimizers, while having no constraint
on the total sum of utilities. In some sense, non-zero-sum games describe scenarios
where the participants can all gain or suffer together. Examples are prevalent in wireless
and communication networks. For example, the popular power-control non-cooperative
game is a non-zero-sum game: The sum of the rates (i.e., utilities) achieved by the
wireless users (i.e., players) is different depending on the selection of transmit power
(i.e., strategy profile) by the users.

3.2 Non-cooperative games in strategic form

In this section, we deal with non-cooperative games represented in strategic form. First,
we define the concept of a matrix game, which provides an interesting approach for solv-
ing non-cooperative games. Then, we study various properties and concepts useful for
treating non-cooperative games in strategic form, such as dominance, Nash equilibrium,
Pareto optimality, and mixed strategies.

3.2.1 Matrix games

Non-cooperative games in strategic form with complete information are central building
blocks in the understanding of game-theoretic decision-making. In these games, the
objective is to determine whether a reasonable outcome or solution to the game exists.
A solution implies a set of strategies that the players, when acting rationally, i.e., so as
to optimize their own utility, would select.

In order to analyze a non-cooperative game in strategic form, one must first clearly
specify the players, their strategies, and their potential payoffs. In this context, any
two-player non-cooperative finite game can be represented in a matrix format whereby
the strategies of the players constitute the rows and columns of the matrix, and each
element is a pair of numbers that represent the payoffs for the two players when a
certain combination of strategies is used. A game represented by a matrix is referred
to as a matrix game. The matrix representation of a game is mainly composed of the
following:

• Each row represents a strategy for the first player in the game, sometimes referred to
as the row player. Thus, the number of rows is equal to the number of strategies for
the row player.

• Each column represents the strategies of the second player in the game, sometimes
referred to as the column player. Thus, the number of columns is equal to the number
of strategies for the column player.
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Table 3.1 Prisoner’s Dilemma (prisoner 1, prisoner 2).

Confess (C ) Not confess (NC )

Confess (C ) (−4,−4) (0,−5)
Not confess (NC ) (−5,0) (−2,−2)

• Each entry of the matrix is a pair (x ,y), where x represents the payoff for the first
player, i.e., the row player, and y represents the payoff for the second player, i.e., the
column player.

In what follows, we provide some classical examples of non-cooperative matrix
games:

Example 3.1 (The Prisoner’s Dilemma) Two suspects are arrested for a crime and placed
in two isolated rooms. Each one of the suspects has to decide whether or not to confess
and implicate the other. The governing rules are the following. If none of the suspects
confesses, then each will serve 2 years in jail. If both of them confess and implicate each
other, they will both go to prison for 4 years. However, if one prisoner confesses and
implicates the otherwhile the other one does not confess, the onewhohas cooperatedwith
the police, i.e., confessed, will be set free, while the other one will spend 5 years in prison.

In this situation, a non-cooperative game in strategic form can be formulated with the
players being the two prisoners, with each prisoner having two strategies: to confess
(strategy C ) or not to confess (strategy NC ). The utility for each prisoner is simply the
number of years that will be spent in prison. A matrix representation of this game is
given in Table 3.1. The payoffs shown in Table 3.1 are negative numbers since we deal
with games where the players seek to maximize a utility. Finally, Table 3.1 clearly shows
that this game is a non-zero-sum game.

Example 3.2 (Battle of the Sexes) A husband and wife have to make a choice out of
two alternatives for an evening’s entertainment: attend a boxing match or watch an
opera. The husband prefers the boxing match while the wife prefers the opera, yet both
prefer being together rather than being apart. They must decide, simultaneously and
without communication, which event to attend. This situation can be modeled as a non-
cooperative game in strategic form, where the players are the husband and the wife. The
strategy of each player is to select either the boxing match (strategy B) or the opera
(strategy O). The payoffs depend on the strategy combination. If each one goes to a
different event, then the payoffs received by the wife and the husband are 0 since they
both prefer to be together. In contrast, if the husband (wife) manages to convince the
wife (husband) and they both choose the boxing match (opera) then the husband (wife)
gets a higher payoff than the wife (husband) although both payoffs would be positive.
This situation is seen in matrix representation in Table 3.2. For example, if both husband
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Table 3.2 Battle of the sexes (wife, husband).

Boxing (B) Opera (O)

Boxing (B) (1,2) (0,0)
Opera (O) (0,0) (2,1)

Table 3.3 Chicken (driver 1, driver 2).

Straight (ST ) Swerve (S)

Straight (ST ) (−100,−100) (1,−1)
Swerve (S) (−1,1) (0,0)

and wife select the opera, then the wife gets a payoff of 2, which is higher than that of
the husband, which is just 1. By inspecting Table 3.2 one can easily see that this is a
non-zero-sum game since the sum of payoffs is not equal for all strategy combinations.

Example 3.3 (The Game of Chicken) Consider two drivers who are driving towards each
other on a collision course. One must swerve, or both may die in the crash. However,
if one driver swerves and the other does not, the one who swerved will be called a
“chicken,” i.e., a coward. In this scenario, we can formulate a non-cooperative game in
strategic form, with the players being the drivers and the strategies of each player are
to swerve (strategy S) or to go straight (strategy ST ). A player would win if he goes
straight while the other player swerves, would tie if both players swerve, would lose if he
swerves while the other player goes straight, and would crash if both players go straight.
The payoffs are shown in the matrix representation in Table 3.3. These are chosen so as
to reflect the preferences of the players, which can be described as follows. Each player
would prefer to win (payoff of 1) over tying, to tie (payoff of 0) over losing, and to lose
(payoff of −1) over crashing (payoff of −100). This game is a non-zero-sum game.

Example 3.4 (Matching Pennies) Consider a situation where two players, player 1 and
player 2, must secretly and simultaneously choose to turn a penny to heads or tails. Once
the players reveal their pennies, the outcome of the game is as follows:

• If the two pennies match (both are heads or both are tails), then player 2 wins a dollar
from player 1.

• If the two pennies are different (one is heads and one is tails), then player 1 wins a
dollar from player 2.

This game is a non-cooperative game where each player selects a strategy of either
“heads” (strategy H) or “tails” (strategy T ). The payoff for each player is either 1,
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Table 3.4 Matching pennies: (player 1 (wins when pennies
mismatch), player 2 (wins when pennies match)).

Heads (H) Tails (T )

Heads (H) (−1,1) (1,−1)
Tails (T ) (1,−1) (−1,1)

i.e., win a dollar, or−1, i.e., lose a dollar. In Table 3.4 we provide a matrix representation
of the game. The rows represent the strategies of player 1, i.e., the player who wins if
there’s a mismatch. Clearly, since one player loses a dollar to the other player, then for
any combination of strategies the total sum of utilities is 0. Thus, Matching Pennies is
a two-player zero-sum game. Furthermore, this game is similar to the famous “rock,
paper, scissors” game, which can be seen as a three-strategy version of the Matching
Pennies game.

In Examples 3.1–3.4, we note that the players have complete information, i.e., they
are aware of all the elements of the matrix representation. Once a game is expressed in
strategic or matrix form, the next step is to solve it. Solving a game implies predicting
the strategies that might be adopted by each player and the possible outcomes of the
game. In the remainder of this section, we discuss in detail how to solve non-cooperative
games using a variety of concepts.

3.2.2 Dominating strategies

One useful notion for solving non-cooperative games in strategic form is the concept
of dominating strategies. The use of dominating strategies simplifies the solution of a
game by eliminating some strategies, i.e., rows or columns in a matrix game, which are
known from the very beginning to have no effect on the outcome of the game. First, we
look at the concept of a dominant strategy:

definition 3.3 A strategy si ∈ Si is said to be dominant for player i if

ui (si ,s−i )≥ ui (s ′
i ,s−i ), ∀s ′

i ∈ Si and ∀s−i ∈ S−i , (3.1)

where S−i =
∏
j �=i

Sj is the set of all strategy profiles for all players except i . Hence, a

dominant strategy is a player’s best strategy, i.e., the strategy that yields the highest
utility for the player regardless of what strategies the other players choose.

Whenever a player has a dominant strategy, a rational player has no incentive to
choose any other strategy. Consequently, if each player possesses a dominant strategy
then all players will choose their dominant strategies. This intuitive choice gives rise to
the following solution concept for a non-cooperative game:

definition 3.4 A strategy profile s∗ ∈S is the dominant-strategy equilibrium if every
element s∗

i of s∗ is a dominant strategy of player i .
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The concept of a dominant-strategy equilibrium is a natural outcome for a given game.
For example, in The Prisoner’s Dilemma (Example 3.1) in Table 3.1, each player has
a better payoff by confessing, i.e., choosing C , independent of the strategic choice of
the other player. Thus, (C ,C ) is a dominant-strategy equilibrium which yields a payoff
vector (−4,−4). Note that although this point is a solution for the game, the payoffs
received are not the best for both players. We will revisit the issue of efficiency at
the outcome of a game in Section 3.2.6. While the dominant-strategy equilibrium is
an intuitive solution for a given game, the existence of this equilibrium point is not
guaranteed. In fact, there are many games in which no player has a dominant strategy.
For instance, in Examples 3.2–3.4 one can clearly see that no dominant strategies exist.

Beyond the idea of a dominant strategy, it is useful to define the converse concept, a
strictly dominated strategy, as follows:

definition 3.5 A strategy s ′
i ∈ Si of a player i is said to be strictly dominated by a

strategy si ∈ Si if

ui (si ,s−i ) > ui (s ′
i ,s−i ), ∀s−i ∈ S−i . (3.2)

Thus, a strategy is strictly dominated for a player if this player has another strategy
that performs better, irrespective of what other players choose. Hence, given complete
information, it is natural that a rational player eliminates all strictly dominated strate-
gies before making a decision. This leads to the concept of iterated strict dominance,
which can be used to assist in solving a matrix game. Iterated strict dominance implies
eliminating all strictly dominated strategies in a given game. By doing so, we reduce
the number of possibilities and, in some cases, we can arrive at a reasonable outcome
for the game. In The Prisoner’s Dilemma (Example 3.1) in Table 3.1, clearly NC is
strictly dominated by C for both players; thus, by eliminating NC , (C ,C ) is found to
be a reasonable outcome of the game. Iterated strict dominance cannot be used to solve
Examples 3.2–3.4 since no player has a strictly dominated strategy. To further highlight
the use of iterated strict dominance, we consider the following example:

Example 3.5 Consider the two-player matrix game of Table 3.5. In this game, player 1
has two strategies, either Left (L) or Right (R), while player 2 has four strategies:
Left (L), Right (R), Up (U), and Down (D). In order to solve this game by iterated strict
dominance, we first look at player 2. Clearly, for player 2, strategy R strictly dominates
strategy L, and, hence, player 2 can eliminate strategy L. For player 1, strategy R is
strictly dominated by strategies L and D , and, hence, it can be eliminated. Similarly,
player 1 can eliminate strategy U since it is strictly dominated by strategy D . After these
eliminations, the game reduces to the matrix in Table 3.6.

In the reduced game of Table 3.6, one can see that strategy D strictly dominates
strategy L for player 1. Thus, the outcome of the game is (D,R), yielding the payoffs
(5,4).
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Table 3.5 Example of iterated strict
dominance (player 1, player 2).

L R

L (5,1) (4,2)
R (3,1) (3,2)
U (2,1) (4,2)
D (4,3) (5,4)

Table 3.6 Reduced game from
Example 3.5 (player 1, player 2).

R

L (4,2)
D (5,4)

Example 3.5 illustrates the use of iterated strict dominance for solving matrix games.
Although, at first glance, one may think that the order of elimination of strictly dominated
strategies can affect the outcome, it is of interest to note that in iterated strict dominance
the order of elimination does not affect the outcome of a game. However, this is not true
when using the notion of weak dominance, defined as follows:

definition 3.6 A strategy s ′
i ∈ Si of player i is said to be weakly dominated by

strategy si ∈ Si if

ui (si ,s−i )≥ ui (s ′
i ,s−i ), ∀s−i ∈ S−i , (3.3)

with strict inequality for at least one s−i .

Using the idea of a weakly dominated strategy, one can also define an iterated weak
dominance procedure for eliminating weakly dominant strategies.As already mentioned,
although in iterated strict dominance the reduced game is unique (independent of the
order of elimination), this is not so with iterated weak dominance, where the reduced
game could be different depending on the order of elimination of the strategies (see [160]
for detailed examples).

Although iterated-dominance techniques are compelling and interesting to study, in
many cases they are not sufficient to predict the outcome of a game. Nonetheless, it is
always of interest to consider the elimination of dominated strategies since, even if no
unique outcome can be found through iterated dominance, it can still reduce the strategy
space and make it easier to solve the game using other concepts.

3.2.3 Nash equilibrium

As already mentioned, the majority of non-cooperative games are not solvable by iter-
ated dominance, so alternative solution concepts must investigated. In this regard, the
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most accepted solution concept for a non-cooperative game is that of a Nash equilib-
rium, introduced by John F. Nash in his seminal work [351]. Loosely speaking, a Nash
equilibrium is a state of a non-cooperative game where no player can improve its utility
by changing its strategy, if the other players maintain their current strategies. Formally,
when dealing with pure strategies, i.e., deterministic choices by the players, the Nash
equilibrium is defined as follows [58]:

definition 3.7 A pure-strategy Nash equilibrium of a non-cooperative game G =
(N , (Si )i∈N , (ui )i∈N ) is a strategy profile s∗ ∈S such that∀i ∈N wehave the following:

ui (s∗
i ,s∗

−i )≥ ui (si ,s∗
−i ), ∀si ∈ Si . (3.4)

In other words, a strategy profile is a pure-strategy Nash equilibrium if no player has an
incentive to unilaterally deviate to another strategy, given that other players’ strategies
remain fixed. In the event where we have ui (s∗

i ,s∗
−i ) > ui (si ,s∗

−i ), ∀si ∈Si , si 	= s∗
i , ∀i ∈

N , the Nash equilibrium is said to be strict.
With this definition, we can check whether a Nash equilibrium solution can be found

for Examples 3.1–3.4 by studying possible deviations by the players for each combina-
tion of strategies. For instance, in Example 3.1, by inspecting Table 3.1 we can easily
find that (C ,C ) is the only Nash equilibrium of this game. Hence, in The Prisoner’s
Dilemma, as shown in the previous subsection, the Nash equilibrium can be found using
iterated dominance or the dominant-strategy equilibrium. In Example 3.2, by looking at
Table 3.2 it can be seen that attending either event, i.e., the opera (O,O) or the boxing
match (B,B) is a pure-strategy Nash equilibrium. (O,O) is a Nash equilibrium because,
from the husband’s perspective, if the wife decides on the opera, the husband’s payoff
would move from 1 to 0 if he decides to unilaterally deviate and go to the boxing match.
Similarly, from the wife’s perspective, if the husband decides on going to the opera,
the wife will also choose to go to the opera, since otherwise her payoff would drop
from 2 to 0 if boxing is selected. By similarly checking the possible deviations at each
outcome of Example 3.3, one can see that (S ,ST ) with payoffs (−1,1) and (ST ,S)
with payoffs (1,−1) are pure-strategy Nash equilibria. Hence, in the Game of Chicken,
the pure-strategy Nash equilibria dictate that one driver swerves while the other driver
continues straight.

By closely looking at Example 3.4, one can see that, at any outcome, a player would
have an incentive to deviate and change its strategy from heads to tails or vice versa.
Consequently, the Matching Pennies game admits no pure-strategy Nash equilibrium.
For example, if player 1 plays heads, player 2 has an incentive to play heads as well,
since it can achieve a payoff of 1. However, when player 2 plays heads, player 1 has an
incentive to play tails since (H,H) gives player 1 a payoff of −1 while (T ,H) gives
it a payoff of 1. Similarly, when player 1 plays tails, player 2 has an incentive to play
tails. In the same manner, one can verify that for any combination of strategies, one
of the players has an incentive to unilaterally deviate. Consequently, this game has no
pure-strategy Nash equilibrium.



3.2 Non-cooperative games in strategic form 65

From these examples, we can deduce the following statements regarding the concept
of a pure-strategy Nash equilibrium:

• Existence and multiplicity A non-cooperative game can admit zero, one, or multiple
Nash equilibria.

• Efficiency A Nash equilibrium is not necessarily the best outcome, from the
perspective of payoff.

Hence, when studying the Nash equilibria of a game, the key points of interest are
existence, multiplicity, and efficiency. The existence and multiplicity of Nash equilibria
have been previously shown in Examples 3.1–3.4. For instance, games such as The
Prisoner’s Dilemma admit a unique pure strategy Nash equilibrium, games such as the
Game of chicken admit multiple Nash equilibria, while a game such as Matching Pennies
has no pure-strategy Nash equilibrium.

With regard to efficiency, in The Prisoner’s Dilemma, as mentioned in the previous
subsection, the pure-strategy Nash equilibrium of the game (−4,−4) is inefficient. For
instance, the two prisoners could do better, i.e., achieve (−2,−2), if both choose not
to confess; however, this outcome is not stable in a non-cooperative setting, i.e., not
an equilibrium point, since unilateral deviations are possible. This shows that, although
cooperating by not confessing will give each player a better payoff of−2, the greediness
of each prisoner leads to an inefficient outcome. This demonstrates that the pure-strategy
Nash equilibrium solution of a non-cooperative game can be inefficient. In Section 3.2.6
we discuss further the issue of equilibrium efficiency.

3.2.4 Static continuous-kernel games

Heretofore, we mainly dealt with non-cooperative games where the strategy spaces
Si , ∀i ∈ N are discrete and finite sets. In many scenarios, notably in wireless and
communication applications, the action space available to each player is a continuum
and the utility functions are continuous. For example, in wireless networks, it is common
to find action sets that represent the transmit-power intervals that a node must choose.
In economics, firms must select a price from a continuum, in order to compete in the
market. Hence, non-cooperative games with continuous actions are of central interest in
many applications. In this section, we deal with static games where the action (strategy)
sets have uncountably many elements, such as subsets of a finite-dimensional Euclidean
space, and the payoff functions are continuous on these sets. Such games are generally
known as static continuous-kernel games.

In a static continuous-kernel game, each strategy (equivalently, action) set Si is
an element of a finite dimensional space. Most commonly, the strategies are inter-
vals, or unions of subintervals, of the real line. As with the discrete finite strategies
case, continuous-kernel games can be represented in strategic (normal) form. However,
one cannot use a matrix representation for such games since each strategy space is a
continuum.
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In solving any non-cooperative game, especially for continuous-kernel games, the
concept of a best-response function is useful, and is defined as follows:

definition 3.8 The best-response function bi (s−i ) of a player i to the profile of
strategies s−i is a set of strategies for that player such that

bi (s−i ) = {si ∈ Si | ui (si ,s−i )≥ ui (s ′
i ,s−i ), ∀s ′

i ∈ Si}. (3.5)

Hence, for a player i , when the strategies of the other players are fixed as s−i , any
strategy in bi (s−i ) is at least as good as every other available strategy in Si . The best-
response function is set-valued as it associates, for a player i , a set of strategies with
any strategy profile s−i of the other players. Every element of the best-response function
bi (s−i ) is a best-response of player i to s−i . In other words, the best response of a player i
implies that, if each of the other players adheres to s−i , then player i cannot do better than
to choose a member of bi (s−i ). In Example 3.1, the best-response functions for the first
prisoner if the second prisoner confesses or does not confess are, respectively, b1(C ) =
{C} and b1(NC ) = {C}. The same best-response functions can be found for the second
prisoner. Hence, in The Prisoner’s Dilemma, each prisoner has a single best response
to any action of the other prisoner. In contrast, if we consider Example 3.2, the best-
response function for the wife if the husband chooses boxing is b1(B)= {B}; in contrast,
if the husband chooses opera, the best response of the wife would be b1(O) = {O}. This
highlights that, for a given player, the best-response function need not lead to a unique
action for any strategy of the other players (that is, it need not be a constant function).
Moreover, although in these two examples each best-response function consists of a
single element, many games exist where a best-response function can have multiple
elements (that is, be non-unique as a function).

The concept of a best-response function leads to an alternative characterization of a
pure-strategy Nash equilibrium [160]:

proposition 3.1 A strategy profile s∗ ∈S is a Nash equilibrium of a non-cooperative
game if and only if every player’s strategy is a best response to the other players’
strategies; that is,

s∗
i ∈ bi (s∗

−i ) for every player i . (3.6)

Hence, a Nash equilibrium is a strategy profile for which every player’s strategy is a best
response to the other players’ strategies. Note that this definition applies to any type of
game and not just to continuous-kernel games.

If, for every strategy profile s−i , each player i has a single best response, then (3.6)
can be written as the following N equations (in this case every bi (s−i ) is a singleton):

s∗
i = b∗

i (s∗
−i ), for every player i = 1, ... ,N. (3.7)
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To find the Nash equilibria of a non-cooperative game, one can use the following
method, which is particularly useful for continuous-kernel games:

1. Find the best-response function of each player.
2. Find the strategy profiles satisfying (3.6), which reduces to the collection of equations

(3.7) in the case where every player i has a single best response to each strategy profile
s−i of the other players.

To illustrate this method, we consider the following example:

Example 3.6 (The Relationship Game) Two players are involved in a relationship
whereby, if both players devote more effort to the relationship, they are both better
off. For any given effort of player j , the return on individual i’s effort starts by increas-
ing, and then decreases. We represent an effort level by a non-negative number. For every
effort level si , the utility function for any player i is defined as ui (si ,sj) = si (c + sj − si ),
where sj is the effort level of player j and c > 0 is a constant. Consequently, we formu-
late a non-cooperative game between the two players where each strategy set Si is the
interval of non-negative numbers and the payoffs are given by ui , i = 1,2.

To find the Nash equilibria we construct the best-response functions by setting, for
every player i , the derivative of ui with respect to si to 0, i.e., ∂ui (si ,sj )

∂si
= 0, i = 1,2,

which yields

b1(s2) =
1
2
(c + s2), (3.8)

b2(s1) =
1
2
(c + s1). (3.9)

In Fig. 3.1, we plot the best-response functions of the players in (3.8) and (3.9). The
strategies of player 1 are shown on the x-axis while those of player 2 are shown on
the y-axis. Consequently, the best-response function b1 of player 1 associates a unique
strategy for player 1 to each strategy of player 2. Similarly, the best-response function b2

associates a unique strategy for player 2 to each strategy of player 1. In Fig. 3.1 we can
see that the two best-response functions intersect at a unique point (c ,c). This point,
in fact, constitutes the unique pure-strategy Nash equilibrium (s∗

1 ,s∗
2 ) = (c ,c) of the

game since, at this point, every player’s strategy is a best response to the other player’s
strategies, i.e., s∗

1 = b1(s∗
2 ) and s∗

2 = b2(s∗
1 ). Although for the Relationship Game the

best-response functions intersect at a single point, in general continuous-kernel games,
they may intersect at more than one point, i.e., multiple Nash equilibria, or they may not
intersect at all, in which case there is no pure-strategy Nash equilibrium.

Algebraically, by setting s∗
1 = b1(s∗

2 ) and s∗
2 = b2(s∗

1 ), from (3.8) and (3.9) one would
obtain

s∗
1 =

1
2
(c + s∗

2 ), (3.10)

s∗
2 =

1
2
(c + s∗

1 ). (3.11)
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Fig. 3.1 The players’ best-response functions in the Relationship Game of Example 3.6.

By substituting (3.11) into (3.10), we get s∗
1 = 3

4c + 1
4 s∗

1 which yields s∗
1 = c . Substi-

tuting into (3.11), we get s∗
2 = c . Thus, we can conclude that the game has a unique Nash

equilibrium (s∗
1 ,s∗

2 ) = (c ,c), which corroborates the result seen graphically in Fig. 3.1.

As shown in Example 3.6, whenever closed-form expressions for the best-response
functions can be found, the pure-strategy Nash equilibria (and their existence) of a
non-cooperative game can be found by checking the intersection of these best-response
functions.Moreover,whenever expressions for the best-response functions can be explic-
itly found, one can show the uniqueness of the pure-strategy Nash equilibrium through
the concept of a standard function:

definition 3.9 A function g : S → RN
+ is said to be standard if it has the following

properties:

• Monotonicity: ∀s,s′ ∈ S, s≤ s′ ⇒ g(s)≤ g(s′) (component-wise).
• Scalability: ∀α > 0,s ∈ S,g(αs)≤ αg(s).

Applying the result that a standard function has a unique fixed point to the best response
of a non-cooperative game, we present the following theorem (introduced and proved in
[519]):

theorem 3.1 [519] If the best-response functions of a non-cooperative game G are
standard functions for all players, i.e., ∀i ∈ N , then the game has a unique Nash
equilibrium in pure strategies.
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This result is mainly useful whenever the best responses can be written in closed form.
However, in numerous problems, writing down these functions can be quite complex
[58, 160, 283]. In fact, proving the existence of pure-strategy Nash equilibria and finding
these equilibria in a generic non-cooperative game is a challenging task [160]. For this
purpose, beyond the use of best-response functions, some theorems exist for character-
izing whether a Nash equilibrium in pure strategies exists in a given game, notably for
continuous-kernel games. One of the most popular of such theorems is the following
[167, 141, 125]:

theorem 3.2 [167, 141, 125] Given a non-cooperative game in strategic form
(N , (Si )i∈N , (ui )i∈N ), if ∀i ∈N , every strategy setSi is compact and convex, ui (si ,s−i )
is a continuous function in the profile of strategies s ∈ S and quasi-concave in si , then
the game has at least one pure-strategy Nash equilibrium.

In other words, by proving certain properties on the strategy sets and the utility func-
tions, one can show the existence of a pure-strategy Nash equilibrium. Recall that a
function f is quasi-concave on a convex set S if, for all α ∈ R, the upper contour set
C = {x ∈ S, f (x)≥ α} is convex. Although Theorem 3.2 is useful for showing the exis-
tence of pure-strategy Nash equilibria, it does not give any idea of the number of these
equilibria. Interestingly enough, Rosen showed that, under certain conditions, a unique
pure-strategy Nash equilibrium exists, as per the following theorem [402]:

theorem 3.3 [402] Consider a strategic game G where ∀i ∈ N , every strategy set
Si is compact and convex, ui (si ,s−i ) is a continuous function in the profile of strategies
s ∈ S and concave in si . Let r = (r1, ... , rN) be an arbitrary vector of fixed positive
parameters. If the diagonal strict concavity (DSC) property holds true, i.e.,

∃r > 0 : (s− s′)(g(s,r)− g(s′,r)) > 0, ∀s,s′ ∈ S, s 	= s′, (3.12)

withg(s,r)� [r1
∂u1(s1,s−1)

∂s1
, ... , rN

∂uN (sN ,s−N )
∂sN

]T , then the gamehasauniquepure-strategy
Nash equilibrium.

Theorem 3.3 provides a powerful result on the uniqueness of the Nash equilibrium in
pure strategies, which has been used in a variety of problems, notably in wireless and
communication networks, such as the water-filling game of [277] and the power-control
game in multiple-access channels [66]. Nonetheless, as discussed in [283], in complex
problems, proving the DSC property in complicated scenarios can be restrictive because
this condition needs to be satisfied for all strategy profiles in s∈S. Someother conditions,
based on the contraction properties of best-response maps, lead to the uniqueness of the
Nash equilibrium as well as iterative computational algorithms [291].

3.2.5 Mixed strategies

So far, the main focus in the study of strategic games has been on pure strategies and
pure Nash equilibria.As mentioned earlier, a pure strategy is a deterministic selection of
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a strategy by a given player. In general, a player may be able to select each pure strategy
with a certain probability, which is the basis of the concept of a mixed strategy. For a
given player, a mixed strategy consists of a number of possible moves and a probability
distribution (collection of weights) which corresponds to how frequently each move
would be selected by the player.

Given a strategic game (N , (Si )i∈N , (ui )i∈N ), for each player i we define Σi as the
set of probability distributions over its set of strategies Si . A mixed strategy σi (si ) ∈Σi

of player i is a probability distribution over the pure strategies si ∈ Si . For example,
whenever the set Si is finite, then σi is a probability mass function of the pure strategies.
Given the profile of mixed strategies σ ∈ Σ =

∏N
i=1 Σi and assuming that the pure

strategy sets Si are finite, we let sup(σi ) = {si ∈ Si | σi (si ) > 0} denote the support of
the set of strategies which are assigned positive probabilities. Consequently, the payoff
for a mixed strategy corresponds to the expected value of the pure-strategy profiles in
its support, i.e.,

ui (σ) =
∑
s∈S

⎛⎝ N∏
j=1

σj(sj)

⎞⎠ui (si ,s−i ), (3.13)

where ui (si ,s−i ) is the pure-strategy payoff pure for a strategy N-tuple (si ,s−i ). We can
now define the concept of a mixed-strategy Nash equilibrium MSNE:

definition 3.10 A mixed-strategy profile σ∗ ∈ Σ is a mixed-strategy Nash equilib-
rium if, for each player i ∈N , we have:

ui (σ∗
i ,σ∗

−i )≥ ui (σi ,σ∗
−i ), ∀σi ∈Σi (3.14)

Note that a pure-strategy Nash equilibrium can also be considered as a mixed-strategy
Nash equilibrium with a mixed-strategy profile in which each player selects one strategy
with probability 1 (a pure strategy) while assigning zero probability to all other strate-
gies. Because of this, a mixed-strategy equilibrium which assigns positive probability
to at least two strategies of at least one player is given a name, a proper mixed Nash
equilibrium.

Furthermore, given that ui (σi ,σ∗
−i ) =

∑
si∈Si

σi (si )ui (si ,σ∗
−i ), we can see that, when

determining whether a mixed-strategy profile is a Nash equilibrium or not, it is sufficient
to check only deviations in pure strategies, as follows [160]:

proposition 3.2 A mixed-strategy profile σ∗ ∈Σ is a mixed-strategy Nash equilib-
rium if, for each player i ∈N and for each si ∈ Si , we have:

ui (σ∗
i ,σ∗

−i )≥ ui (si ,σ∗
−i ). (3.15)
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To solve for the mixed-strategy Nash equilibrium, one can use the following lemma
[160]:

lemma 3.1 A strategy profile σ∗ ∈ Σ is a mixed-strategy Nash equilibrium if, and
only if, for each player i ∈N , the following two conditions hold:

1. The expected payoff given σ∗
−i to every si ∈ sup(σ∗

i ) is the same.
2. The expected payoff given σ∗

−i to the strategies which are not in the support of σ∗
i

must be less than or equal to the expected payoff in (3.13).

In other words, this lemma implies that a mixed-strategy profile σ∗ ∈ Σ is a mixed-
strategy Nash equilibrium if and only if, for each player i ∈ N , every pure strategy
in the support of σ∗

i is a best response to σ∗
−i . In fact, if the strategies in the support

have different payoffs, then one can just pick the pure strategy with the highest expected
payoff, which would contradict the fact that σ∗ is a Nash equilibrium. In some sense,
this lemma means that, at a mixed-strategy Nash equilibrium, the players would be
indifferent as to their pure strategies contributing to their support set, i.e., the expected
payoffs at those pure strategies are equal.

To illustrate the idea of a mixed-strategy Nash equilibrium as well as the use of
Lemma 3.1 to find the equilibrium, we reconsider Examples 3.2–3.4. In the Battle of
Sexes game of Example 3.2, we showed that (B,B), with payoffs (1,2), and (O,O),
with payoffs (2,1), are pure-strategy Nash equilibria. Now, assume that the wife picks
the strategy B with probability p and O with probability 1−p, while the husband picks
the strategy B with probability q and O with probability 1−q. Using Lemma 3.1 on the
wife’s strategies, we obtain the following:

1 · q +0 · (1− q) = 0 · q +2 · (1− q). (3.16)

Next, applying Lemma 3.1 to the husband’s strategies, we obtain:

2 · p +0 · (1− p) = 0 · p +1 · (1− p). (3.17)

Consequently, we conclude that the only possible proper mixed-strategy Nash equi-
librium for Example 3.2 is p = 1

3 and q = 2
3 , which is the solution to (3.16) and (3.17).

Using a similar approach for Example 3.3, we find that the only possible proper mixed-
strategy equilibrium indicates that each driver plays S with probability 0.99 and ST
with probability 0.01. In the Matching Pennies game of Example 3.4, using Lemma 3.1
we find that, although no pure-strategy Nash equilibrium exists, we have a single proper
mixed-strategy Nash equilibrium where both players randomize with probability 1

2 on
heads and 1

2 on tails.
The fact that, in Example 3.4, a mixed-strategy Nash equilibrium exists although no

pure-strategy equilibrium exists highlights the most important and crucial result of game
theory, which is the following theorem by Nash [351]:

theorem 3.4 [351] Every finite non-cooperative game in strategic form has a mixed-
strategy Nash equilibrium.
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The proof of this result relies on the Brouwer–Kakutani Fixed-Point Theorem, and
can be found in [58, 351]. The result of Theorem 3.4 deals primarily with finite strategy
spaces. Nonetheless, by a generalization of theBrouwer–Kakutani Fixed-PointTheorem,
Glicksberg extended the result to the case where the strategy spaces Si are non-empty
compact metric spaces while the utility functions are continuous functions, through the
following theorem [160]:

theorem 3.5 [167] A strategic game (N , (Si )i∈N , (ui )i∈N ), where Si are non-empty
compact metric spaces and ui , ∀i ∈N are continuous functions, has a mixed-strategy
Nash equilibrium.

To conclude, the Nash equilibrium in mixed or pure strategies provides a powerful
solution concept for non-cooperative strategic games which has revolutionized game
theory since the work of Nash [351]. As will be seen in the rest of this book, many
applications, concepts, and classes of games deal with models and solutions that, in one
way or another, rely on concepts inspired by the Nash equilibrium.

3.2.6 Efficiency and equilibrium selection

In the previous subsections, wemainly studied the existence and characterization ofNash
equilibria, in both pure and mixed strategies. For instance, Theorem 3.4 states that, in
a broad class of games, there always exists at least a mixed-strategy Nash equilibrium.
Nonetheless, once we have verified the existence (for pure strategies) and number of
equilibria, it is important to select an equilibrium that is desired in the game, e.g., optimal
or efficient. One important measure of efficiency can be found in the concept of Pareto
optimality, defined as follows:

definition 3.11 A strategy profile s∈S is Pareto-superior to another strategy profile
s′ ∈ S if, for every player i ∈N , we have:

ui (si ,s−i )≥ ui (s ′
i ,s

′
−i ), (3.18)

with strict inequality for at least one player. Accordingly, a strategy profile s◦ ∈ S is
Pareto-optimal if there exists no other strategy profile that is Pareto-superior to s◦.

Thus, the outcome of a game is Pareto-optimal if there is no other outcome that makes
every player at least as well off and at least one player strictly better off. Hence, a
Pareto-optimal outcome cannot be improved upon without hurting at least one player.
As a result, in games where a large number of Nash equilibria exist, it is desirable to
select a Pareto-optimal equilibrium, if possible. Nonetheless, one would note that often
a Nash equilibrium is not Pareto-optimal. For example, in Example 3.1, one Pareto-
optimal point is the point (NC ,NC ), i.e., (−2,−2), because one cannot improve the
payoff for one prisoner without decreasing the payoff for the other (e.g., by moving from
(−2,−2) to (−5,0), prisoner 2 improves while prisoner 1 has a worse performance).
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Note that points (−5,0) and (0,−5) are also Pareto-optimal points. However, none of
the Pareto-optimal points of this game constitutes an equilibrium. Also, we note that
the Nash equilibrium (−4,−4) of Example 3.1 is inefficient since we can improve the
payoffs for both prisoners by moving to the point (−2,−2), which is Pareto-optimal and
better for both prisoners when compared with (−4,−4).

Beyond Pareto optimality, one useful notion for evaluating the performance of a Nash
equilibrium (or any non-cooperative equilibrium) is the price of anarchy. The price of
anarchy is defined as the ratio of the maximum social welfare, i.e., the total utility,
achieved by a centralized or genie-aided solution to the social welfare achieved at the
worst-case equilibrium. Hence, let SNE be the set of Nash equilibrium strategy profiles
of a given game. Define

uNE = min
s∈SNE

(
∑
i∈N

ui (s)) (3.19)

as the social welfare at the worst-case Nash-equilibrium and

uCS = max
s∈S

(
∑
i∈N

ui (s)) (3.20)

as the maximum social welfare achieved, by a centralized solution, for example. Hence,
we can define the price of anarchy η as [382, 360]

η =
uCS

uNE
. (3.21)

The price of stability is defined similarly to the price of anarchy η but replacing the
denominator with the best Nash equilibrium. The two concepts are equivalent if there
exists a unique Nash equilibrium. Using the price of anarchy, one can evaluate the
performance of the Nash equilibria with respect to the solution that maximizes the social
welfare. In particular, in some games, one can find upper bounds on the price of anarchy
using techniques such as variational inequalities [283, 360]. For example, in simple
scenarios where each player has a cost function that is affine, the upper bound on the
price of anarchy is 4

3 [360]. In brief, the price of anarchy can be an interesting metric
to evaluate the performance of equilibria in a given game, and this concept has been
especially used in routing and flow-control games (see [360]).

Finally, we note that, in general, no formal rules exist for selecting an efficient equi-
librium, although concepts such as Pareto optimality and the price of anarchy can be
useful in this context. For particular games, namely in wireless and communication net-
works, some approaches such as pricing or the introduction of hierarchy can be used for
efficient equilibrium selection [283]. For a detailed survey of these techniques, we refer
the reader to [377]. We stress that the topic of equilibrium selection is of central interest
in game theory [58, 377, 419] as well as in wireless and communication networks [283].
This topic will be further explored in Part III of this book through examples of games
that arise in wireless and communication networks.
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3.3 Dynamic non-cooperative games

Dynamic non-cooperative games are games where the sequence of strategic choices
made by the players, as well as the information known (or gathered) by the players on
the other players’ decisions, strongly impact the outcome of the game. Unlike in static
games, players in a dynamic game have at least some information about the actions
chosen by the others; thus their play may be contingent on past moves. For example,
in a dynamic non-cooperative game, based on the history of selected actions and the
threats from other players one can encourage cooperation without the need for commu-
nication among the players themselves. Therefore, in dynamic games, as emphasized in
Section 3.1.2, there is a clear distinction between the action of a player, i.e., the set of
options that a player can select, and the strategy of the player, i.e., the mapping between
the information available to the player and its action set. This distinction will be made
explicit throughout this section.

In this section, we study three main classes of dynamic games. First, we discuss the
framework of dynamic games represented in extensive form. Then, we study the main
concepts of repeated games. We conclude this section with an overview of stochastic
games.

3.3.1 Non-cooperative games in extensive form

Sequential games constitute a major class of dynamic games in which players take their
decisions (select a strategy) in a certain predefined order. In a sequential game, some
of the players are able to observe the moves of players who acted before them, and
make strategic choices accordingly. Therefore, each player can devise its strategy, given
information available on the actions of the other players. Note that a static game is a
particular case of a sequential game where no player is able to observe the moves of the
others.

Thus, in a sequential game, the role of information, i.e., the moves known by the
players, is of central importance. In this regard, for dynamic sequential games, one
can distinguish between two types of information knowledge: perfect information and
imperfect information. A sequential game has perfect information if only one player
moves at a time and if each player knows every action of the players that moved before
it at every point of the game. Intuitively, if it is a player’s turn to select an action, a
perfect-information game assumes that this player is always aware of what every other
player has done up to that point. In contrast, a sequential game has imperfect information
whenever some of the players do not know all the previous choices of the other players.
It is common in many scenarios that, whenever a player’s turn to move is reached, this
player may need to take a decision without full knowledge of every single action taken
by the other players prior to its turn.

It must be stressed that the notion of perfect or imperfect information is quite different
from the notions of complete and incomplete information discussed in Section 3.2.1.
While the notion of complete information is concerned with the information that every
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player has on the elements of the game, e.g., the strategy space, the possible payoffs, and
so on, the notion of perfect information is concerned with the information that a player
has on the actions taken by the other players or their sequence.

While dynamic games can be represented in strategic (normal) form, because of the
presence of sequential decision-making it is of interest to utilize an alternative repre-
sentation that can clearly highlight the notion of time or sequence of moves. In this
context, one of the most useful representations of a dynamic sequential game is the
extensive form (or game tree). A game in extensive form is a graphical representation of
a non-cooperative dynamic game which provides not only a representation of the players,
payoffs, and their actions, but also a representation of the order of moves (or sequence)
and the information sets. A game tree consists of graph nodes, which are the points at
which players can take actions, connected by edges, which represent the moves that may
be taken by a player present at a certain node. An initial (or root) node represents the
first decision to be made by one of the players (the root node is typically represented as
the upper node in the game tree and play progresses from the upper node all the way
down to the terminal nodes). For every player, a number of nodes might be enclosed
by dotted lines which represent the information sets, i.e., the information available to
the player at the time of play. In a game with perfect information, every information set
contains exactly one node since each player knows exactly all the information on the
actions of the previous player. In contrast, in a game with imperfect information, there
exists at least one information set containing more than one node. A single level of the
tree is referred to as a stage. Every set of vertices from the first node through the tree
eventually arrives at a terminal node, representing an end to the game. Each terminal
node is labeled with the payoffs earned by each player if the game ends at that node. At
a given node in a given stage of the tree, history refers to the sequence of actions that
were taken up to the considered stage. In other words, at a given node in a given stage, a
history is the set of actions, i.e., the path in the tree, taken from the initial node up to the
considered node.

We note that a game in extensive form can always be converted into the strategic form
after finding the different strategies of the players, given their possible actions and the
available information (recall that a strategy is a mapping from the information sets to the
action sets of a player). Moreover, dynamic games where the players have finite action
sets and act only a finite number of times are equivalent, in strategic form, to finite static
games, and hence to matrix games.

An illustrative example of a game in extensive form is shown in Fig. 3.2(a) and (b).
The two trees shown in Fig. 3.2 represent a two-player game: player 1 and player 2. The
numbers noted at every terminal node represent the payoffs to the players (e.g., (2,1)
represents a payoff of 2 to player 1 and a payoff of 1 to player 2). The labels by every
edge of the graph are the name (label) of the strategy that each edge represents. In this
game, each player has a choice between two actions, Up (U) or Down (D). In Fig. 3.2(a),
player 2 does not know at which node it is, so both nodes are in the same information set.
Accordingly, Fig. 3.2(a) represents a game in extensive form with imperfect information.
In contrast, in Fig. 3.2(b), player 2 knows exactly at which point in the game tree it will
be acting, so this game is of perfect information.
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Player 1 Player 1

Player 2 Player 2

3,1 1,2 2,1 0,0 3,1 1,2 2,1

(a) Imperfect information (b) Perfect information

0,0

D

D

U

U D U

D U D U D U

Fig. 3.2 (a) Imperfect information; (b) perfect information.

Table 3.7 Matrix form of Fig. 3.2(a)
(player 1, player 2).

D U

D (3,1) (1,2)
U (2,1) (0,0)

Because player 2 is not aware of its position on the tree, Fig. 3.2(a) can be reduced
into the matrix game of Table 3.7. By careful inspection of Table 3.7, we can see that this
game admits a unique Nash equilibrium (D,U) with payoffs (1,2). In this game, there is
no role for information in the decision of player 2, owing to the lack of this information.

The game shown in Fig. 3.2(b) has perfect information and progresses as follows.
First, player 1, which owns the initial node, selects its action first. Once player 1 makes
a decision between action U and action D (at the first stage), player 2, acting second,
would decide between U or D depending on the action chosen by player 1. Hence, while
for player 1 we can simply define two strategies U or D , for player 2 the strategies need
to be a function of the action taken by player 1, i.e., the information available on the
moves of player 1. Hence, the set of possible strategies for player 2 are UU , UD , DU ,
and DD , where the first (second) element of the pair represents the strategy chosen by
player 2 when player 1 chooses its first (second) action. For example, DU means player 2
selects D if player 1 plays U , and player 2 selects U if player 1 selects D . If we denote by
a1 the action taken by player 1 at the initial node, the strategy s2(a1) = DU of player 2,
given the action of player 1, can be written as

s2(a1) =

{
D, if a1 = D,

U, if a1 = U.
(3.22)
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For each combination of strategies, the payoffs received for each sequence of play are
as specified at the terminal nodes of the tree in Fig. 3.2(b). We note that the game in
Fig. 3.2(b) can be converted into a matrix game (in strategic form) where player 1 has
two strategies, U and D , while player 2 has four strategies, UU , UD , DU , and DD .

In dynamic games, one can distinguish between two types of games: single-act games
and multi-act games. In a single-act game, each player makes a decision only once. In
contrast, in a multi-act game, a player is allowed to act more than once. Both games of
Fig. 3.2 are single-act games.

In order to solve dynamic games with perfect information, one can use the concepts
defined in Section 3.2, mainly the Nash equilibrium. For example, in Fig. 3.2(b), (U,DU)
and (D,UU) are pure-strategy Nash equilibria. To see how these strategies are equilibria,
let us investigate the possible deviations if strategy (U,DU) is played. When player 1
plays U , player 2 plays D and the payoffs achieved are (2,1). If player 1 deviates by
choosing D , then player 2 plays U and the payoffs achieved are (1,2); hence, player 1
has no incentive to deviate since it prefers to obtain 2 over 1. For player 2, given that
player 1 selected U , player 2 can select either DU or DD since in both cases it will
receive the payoff of 1 (since player 1’s strategy is fixed to U). However, (U,DD) is not
a Nash equilibrium, since, if player 2 plays DD , player 1 prefers to play D over U since
(D,DD) yields a payoff of 3 for player 1 while (U,DD) yields a payoff of 2. In contrast,
(U,DU) is a Nash equilibrium since, given that player 2 plays DU , player 1 prefers to
play U since it receives 2 while playing D , i.e., (D,DU) yields only a payoff of 1 for
player 1. Similar reasoning can be used to show that (D,UU) is also a Nash equilibrium.

One useful method for finding equilibria in a dynamic game (in extensive form) with
perfect information is through the use of backward induction. Backward induction is an
iterative technique similar to dynamic programming, which can be useful for solving
finite single-act extensive-form games [160]. In backward induction, one first determines
the optimal choice of the player who makes the last move of the game. Then, the optimal
action of the player moving next-to-last is determined, taking the last player’s action as
given. The process continues this way backwards in time until all players’ actions have
been determined. For example, in Fig. 3.2(b), we start by finding the optimal strategy
of player 2. Clearly, if player 1 selects D then player 2 would select U , and if player 1
selects U then player 2 would select D . Hence, the optimal strategy of player 2 is UD .
By anticipating this result, player 1 would then decide to select U , and the backward
induction solution would be (U,D).

Using backward induction for extensive-form games with perfect information, Kuhn
proved the following result [258, 160]:

theorem 3.6 [258] Every finite extensive-form game with perfect information has a
pure-strategy Nash equilibrium.

While dynamic games with perfect information can be solved in extensive form by
backward induction, thismethod cannot be used for gameswith imperfect information. In
addition, for dynamic games (notably when the game is one with imperfect information)
one would need an equilibrium solution which requires the strategy of each player to be
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optimal not only at the start of the game (such as in the Nash equilibrium) but also after
every history. This leads to the concept of a subgame-perfect equilibrium [160]:

definition 3.12 A subgame of a dynamic non-cooperative game consists of a single
node in the extensive-form representation of the game, i.e., the game tree, and all of its
successors down to the terminal nodes. The information sets and payoffs of a subgameare
inherited from the original game. Moreover, the strategies of the players are restricted
to the history of actions in the subgame.

definition 3.13 A strategy profile s∈S is a subgame-perfect equilibrium if players’
strategies (restricted to a subgame) constitute a Nash equilibrium in every subgame of
the original game.

To find a subgame-perfect equilibrium, it is generally useful to refer to the extensive
formof the game,find the subgames, and then identify theirNash equilibria. Nonetheless,
finding the subgame-perfect equilibrium requires checking every subgame of a dynamic
game, which can be a tedious task. For this purpose, one can use the one-stage deviation
principle, defined as follows [160]:

definition 3.14 The one-stage deviation principle requires that there must not exist
any information set in which a player i can gain by deviating from its subgame-perfect
equilibrium strategy (at this information set) while its strategy at other information sets
as well as the strategies of the other players are fixed.

In other words, a strategy profile s∗ is a subgame-perfect equilibrium for each player
i ∈N and at each information set where player i moves if we:

• fix the other players’ strategies as s∗.
• fix player i’s moves at other information sets as in s∗.

Then, player i cannot improve its payoff (at the information set) by deviating from si
at the information set only. Note that for games with perfect information the above
definitions reduce to backward induction.

We illustrate the idea of a subgame-perfect equilibrium through the dynamic game in
extensive form of Fig. 3.3. At first glance, this game appears as multi-act, since player 1
follows itself at one information set. However, the actions of this player can be collapsed
down to three, all at one stage: DL, DR , U . If player 1 plays DL or DR , then player 2
enters the game, otherwise player 2 does not play; hence each player acts only once
(at most) and the game can be seen as a single-act game. Moreover, clearly this game
has imperfect information, so backward induction cannot be used to obtain the outcome
of the game. However, we can compute the subgame-perfect equilibrium of the game
by considering the two subgames: the subgame that starts after player 1 plays D and
the subgame which is the game itself. To compute the subgame-perfect equilibrium,
we first consider the subgame that starts after player 1 plays D , and we find a Nash
equilibrium of this subgame. Then, fixing the equilibrium actions as they are in this
subgame and taking the equilibrium payoffs in this subgame as the payoffs for entering
the subgame, we compute a Nash equilibrium in the remaining game. The considered
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Player 1

Player 1

Player 2

D

D

L R
2,6

0,1 3,2 –1,3 1,5

U

U

D U

Fig. 3.3 A dynamic game in extensive form.

Player 1

D U

3,2 2,6

Fig. 3.4 Reduced game of Fig. 3.3 after finding the Nash equilibrium of its subgame.

subgame clearly has only one Nash equilibrium, which is (L,U), yielding a payoff of
(3,2) (this equilibrium can be found using strict dominance as the subgame is, in fact, a
static game). Consequently, the remaining game is shown in Fig. 3.4. Clearly, in Fig. 3.4,
player 1 would choose D which yields the subgame-perfect equilibrium in which player
1 picks D at stage 1 and L at stage 2, while player 2 would always pick U .

For instance, in a finite game, the following technique can be used for finding the
subgame-perfect equilibrium:

1. Pick a subgame that does not contain any other subgame.
2. Compute a Nash equilibrium of this subgame.
3. Assign the payoff vector associated with this equilibrium to the starting node, and

eliminate the subgame.
4. Iterate this procedure until a move is assigned at every contingency, when there

remains no subgame to eliminate.
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Note that, in dynamic games, a Nash equilibrium is not necessarily a subgame-perfect
equilibrium.

Here we have restricted our attention to extensive-form games where the solu-
tion sought is a pure-strategy equilibrium. However, the approaches described readily
extend to mixed-strategy spaces, and the interested reader is referred to [58] for further
details.

3.3.2 Repeated games

Beyond single-act and multi-act sequential games, an important type of dynamic games
is the repeated game.2 In simple terms, a repeated game can be seen as a static non-
cooperative strategic game that is repeated over time. By repeating a game over time,
the players may become aware of past behavior of the players and change their strategies
accordingly. The motivation for this class of games is rooted in The Prisoner’s Dilemma,
Example 3.1. In this example, the non-cooperative behavior where both prisoners con-
fess (or fink on each other) is the unique pure-strategy Nash equilibrium of the game.
However, both prisoners are better off if they cooperate and do not confess. The main
idea behind a repeated game is that, if a game such as The Prisoner’s Dilemma is played
repeatedly, then the mutually desired outcome in which both prisoners remain silent,
i.e., do not confess, in every period is stable if each player believes that a defection, i.e.,
a confession, will terminate the cooperation, resulting in a subsequent loss for him that
outweighs the short-term gain.

In the context of a repeated game, the strategic game will be referred to as a stage or
constituent game of the repeated game.The decisionsmade by the players in a constituent
game at any stage will be referred to as actions while the players’ decisions in the
repeated game itself will be the strategies.3 In a repeated game, at any stage t we define
the history of the game h(t) as the set of past actions at all periods before t. Then, for
t = 0, we have h(0) = ∅, and, for t ≥ 1, we have h(t) = {a(0), ... ,a(t − 1)}, where
a(z) = [a1(z), ... ,aN(z)] is the profile of actions chosen by the N players at time (stage)
z . The strategy of a player i at a stage t is thus defined as a function of the history at
time t, i.e., si (h(t)). Hence, for every history h(t) of the game, each player can define
a strategy si (h(t)) which is a function that associates with each history h(t) an action
ai (t) for player i at stage t, i.e., ai (t) = si (h(t)). For example, since the initial history
h(0) is empty, every player i needs to select an action ai (0) from its action space in
the initial constituent game. Here, we mainly deal with repeated games with observable
actions and perfect monitoring, implying that each player knows all the actions of others
as well as its own previous actions at each stage in the repeated game.

For example, consider the repeated Prisoner’s Dilemma game, i.e., a game where
The Prisoner’s Dilemma of Example 3.1 is repeated over a period T . For a two-stage

2 Note that repeated games can also be modeled in extensive form and solved using the methods of
Section 3.3.1. However, the main interest of this subsection is in repeated strategic games, since their
analysis differs from that of extensive-form games.

3 This is similar to the distinction between actions and strategies in extensive-form games.
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repeated Prisoner’s Dilemma game, a possible strategy for player i is CCCCC ,
where:

• At the first stage, the initial action of player i at t = 0 is ai (0) = C .
• At the second stage, t = 1, the strategy of player i is to confess, i.e., choose C , for

every history h(1), i.e.,

si (h(1)) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
C , if h(1) = {(C ,C )},
C , if h(1) = {(C ,NC )},
C , if h(1) = {(NC ,NC )},
C , if h(1) = {(NC ,C )}.

(3.23)

Clearly, the possible strategy spaces for a repeated game grow very fast with the number
of stages. For example, in the two-stage repeated Prisoner’s Dilemma, we have 25 = 32
possible strategies, so finding a Nash equilibrium through an exhaustive search of best-
response strategies is quite complicated. However, as we will see in the rest of this
subsection, alternative approaches can be used to find equilibrium points of a repeated
game.

Now that we have provided the motivation behind repeated games and the basic
concepts, we can formally define a repeated game, as follows:

definition 3.15 Let G = (N , (A)i∈N , (gi )i∈N ) be a strategic game and δ ∈ [0,1) be
a discount factor. The repeated game, denoted by G (T ,δ), consists of game G repeated
for T +1 periods from t = 0 until t = T . For every player i , we define player i ′s strategy
for the repeated game as si = [si (h(0)), ... ,si (h(T ))]. Thus the strategy profile of the
opponents can be denoted by s−i = [(sj)j∈N ,j �=i ]. Thus, the utility for a player i in the
repeated game is given by

ui (si ,s−i ) =
T∑

t=0

δtgi (ai (t),a−i (t)), (3.24)

where ai (t) = si (h(t)) denotes the action taken by player i at stage t, with
gi (ai (t),a−i (t)) being the payoff for player i from the constituent game at period t. If
T goes to infinity, then G (∞,δ) is referred to as a repeated game with infinite horizon;
otherwise, we have a repeated game with finite horizon.

First, we note that the idea of an infinite-horizon game does not necessarily mean
that the game will continue indefinitely. A model with an infinite horizon is appropriate
if, after each period, the players believe that the game will continue for an additional
period, while a model with a finite horizon is appropriate if the players clearly perceive
a well-defined final period. In other words, if the players are unaware of the duration of
the game and the stage at which it ends, the use of an infinite-horizon repeated game can
be more appropriate.
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Furthermore, in games with infinite horizon, the discounted utility in (3.24) is often
normalized, and so it is replaced with the following normalized utility:

ui (si ,si ) = (1− δ)
T∑

t=0

δtgi (ai (t),a−i (t)). (3.25)

The factor 1 − δ simply ensures that the stage payoff of the repeated game is
expressed in the same unit as the static strategic game. For example, if the stage
payoffs gi (ai (t),a−i (t)) = 1, ∀t = 0,1, ..., then the normalized utility in (3.25) is
ui (si ,si ) = (1− δ)

∑∞
t=0 δt = (1− δ) 1

1−δ = 1.
Let us now revisit the repeated Prisoner’s Dilemma game. In this game, if we consider

afinite horizonT , then one can use backward induction to solve the game. Since the game
is assumed to be of perfect information with observable actions and perfect monitoring,
then the players know the end of the game. Hence, the two players can conclude that, in
the last stage, the dominant strategy is to confess, i.e., C . Thus, by using this argument
and going back through the stages of the game, we find that playing C in every stage
is a subgame-perfect equilibrium of the repeated Prisoner’s Dilemma game with finite
horizon. When the game is played infinitely, however, it turns out that we have the
following result [160]:

proposition 3.3 If 1 > δ≥ 1
2 , then the repeated Prisoner’s Dilemma has a subgame-

perfect equilibrium in which (NC ,NC ) is played in every period, i.e., the prisoners do
not confess, and thus cooperate, in every period.

In some sense, this proposition means that, if the players sufficiently value future
payoffs compared to present ones, then (NC ,NC ) is a sustainable outcome. Indeed, if
each player plays NC as long as the other one does so in the past, and plays C otherwise,
both players have an incentive to always play NC . This is because the short-term gain
obtained by playing C is more than offset by future losses entailed by the opponent
playing C at all future stages.

Note that this proposition does not imply that (NC ,NC ) is the only subgame-perfect
equilibrium. In fact, depending on the value of δ, other equilibria can exist. Furthermore,
depending on the value of δ (notably when 0≤ δ < 1

2 ), the outcome (C ,C ) can also be
a subgame-perfect equilibrium, even when the horizon is infinite.

For repeated games with infinite horizon, the so-called Folk Theorem provides an
interesting result which implies that a feasible outcome that gives each player a payoff
that is better than the static game Nash equilibrium can be obtained through a repeated
game. Before formally stating the Folk Theorem, we define the set of feasible payoffs U
as follows:

U = Conv{u | ∃a ∈A such that g(a) = u}, (3.26)
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where Conv represents the convex hull and g(a) is the function which associates with
every action profile a an N-dimensional payoff vector (each element is the payoff for a
player i as given by function gi ). In other words, U is simply the convex hull of g(a).
For example, in The Prisoner’s Dilemma of Example 3.1, the set U of feasible payoffs
is the convex hull of {(−4,−4),(−2,−2),(−5,0), (0,−5)}.

Furthermore, we define, at any given stage of a repeated game, the notion of min-max
value ui for a player i , as follows (the stage subscript t is dropped since we consider a
single stage):

ui = min
a−i

[
max

ai
gi (ai ,a−i )

]
. (3.27)

The min-max value is the lowest-stage payoff that the opponents can enforce on player
i , provided that i plays its best response against them. For example, in The Prisoner’s
Dilemma of Example 3.1, the min-max value for both players is−4. We say that a payoff
vector u ∈ RN is strictly individually rational if ui > ui , ∀i ∈ N . Note that in a static
Nash equilibrium, the payoff for any player i is at least ui .

Consequently, the Folk Theorem is stated as follows:

theorem 3.7 (Folk Theorem) If u= (u1, ... ,uN) is a feasible and strictly individually
rational payoff vector, then there exists a discounting factor 0≤ δ < 1 such that for all
δ > δ, the repeated game with infinite horizon G (∞,δ) has a Nash equilibrium (which
is also a subgame-perfect equilibrium) with payoff vector u.

The main motivation behind the Folk Theorem is that, if the game duration is long
enough (δ close to 1), the gain obtained by a player by deviating once is outweighed by
the loss in every subsequent period, when loss is due to the min-max strategy of the other
players. Hence, on the one hand, with enough patience, i.e., a large δ, a player’s non-
cooperative behavior will be punished by the future actions of other cooperative players.
On the other hand, a player’s cooperation (through independent decision-making and
with no communication) can be rewarded in the future by others’ cooperation. Hence, in
the long run, the players, although acting non-cooperatively, might choose a cooperative
behavior so as to obtain a payoff that is better than the min-max value.

While the Folk Theorem states that payoffs that are better than the min-max values
are possible through a repeated game, the next key challenge is to define a rule suited to
achieving these better payoffs by enforcing cooperation among non-cooperative players.
For this purpose, two approaches can be used: Tit-for-Tat and cartel maintenance.

Tit-for-Tat is a type of trigger strategy; this is a class of strategies that rely on pun-
ishment to enforce cooperation. In a trigger strategy, typically applied to the repeated
Prisoner’sDilemma, a player begins by cooperating (i.e., not confessing) but defects (i.e.,
confesses) to cheating for a predefined period of time as a response to a defection by the
opponent. Hence, Tit-for-Tat is a trigger strategy in which a player starts by cooperating
but responds in one stage of the repeated game with the same strategy its opponent used
in the previous period. Hence, once an opponent defects from the cooperative strategy,
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the player would respond by also defecting. In the repeated Prisoner’s Dilemma, it has
been shown that Tit-for-Tat strategies by both prisoners result in a Pareto-optimal Nash
equilibrium [160]. The advantage of Tit-for-Tat is that it is an easy approach to imple-
ment, although it suffers from some drawbacks. First, in a given game and for a given
player, choosing the same strategy as that of an opponent is not necessarily the best
response of this player. Moreover, gathering information on all the strategies of the other
players, as needed for Tit-for-Tat, is quite difficult in many scenarios (although this is
a general drawback for games with observable actions and perfect monitoring). Hence,
although Tit-for-Tat is useful in many research problems, the drawbacks limit its field
of application.

As an alternative to Tit-for-Tat, one can use trigger strategies which can yield payoffs
closer to optimal (than in Tit-for-Tat) and, in some cases, are harsher strategies. One
such approach is cartel maintenance [390]. The basic idea for the cartel-maintenance
repeated-game framework is to provide enough of a threat to greedy players to prevent
them from deviating from a potential cooperation. In this context, one would first com-
pute a cooperative point in such a way that all players have better payoffs than in Nash
equilibrium points. However, if any player deviates from cooperation while the others
are still playing cooperative strategies, this deviating player has a better utility, while
others have relatively worse utilities. Without any enforcement rule, the other cooper-
ative players will also have incentives to deviate. Consequently, the overall outcome
of the game might revert back to an inefficient non-cooperative point such as the Nash
equilibrium. The cartel-maintenance framework provides a mechanism so that the cur-
rent defecting gains of any player will be outweighed by future punishment strategies
from other players. Thus, the threat of future punishments prevents any player, acting
rationally, from deviating.As a result, cooperation is enforced and the overall payoffs are
better. Further details on the use of the cartel-maintenance framework, notably within a
wireless environment, can be found in [187].

Finally, while we have focused here on repeated games with observable actions and
perfect monitoring, some of these concepts can also be extended to games with imperfect
monitoring, as shown in [160].

3.3.3 Stochastic games

Astochastic game, an idea introduced by Shapley [448], is a repeated game with stochas-
tic (probabilistic) transitions between the different states of the game.A stochastic game
is thus a dynamic game which is composed of a number of stages, and in which, at the
beginning of each stage, the game is in a particular state. In this state, the players select
their actions and each player receives a payoff that depends on the current state and the
chosen actions. The game then moves to a new random state whose distribution depends
on the previous state and the actions chosen by the players. The procedure is repeated at
the new state and the game continues for a finite or infinite number of stages. The total
payoff to a player is often taken to be the discounted sum of the stage payoffs (similar
to the discounted sum of repeated games) or the limit inferior of the averages of the
stage payoffs. Notice that a one-state stochastic game is equal to an (infinitely) repeated
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game, and a one-agent stochastic game is equal to a Markov decision process (MDP).
The formal definition of a stochastic game is as follows:

definition 3.16 An N-player stochastic game G consists of a finite, non-empty set
of states S, a setN of N players, a finite setAi of actions for the players, a conditional
probability distribution p on S × (A1×A2× ·· · ×AN) known as the Law of Motion,
and bounded real-valued payoff functions ui defined on the history space H = S ×A×

S ×A·· · , whereA=
N∏

i=1

Ai . The game is called an N-player deterministic game if, for

each state s ∈ S and each action choice a = (a1,a2, ... ,aN), there is a unique state s ′

such that p(s ′|s,a) = 1.

If the number of players, the action sets, and the set of states are finite, then a stochastic
game with a finite number of strategies always has a Nash equilibrium. This result is also
true for a stochastic game with infinitely many stages if the total payoff is of discounted
sum. Vieille [488] has shown that all two-person stochastic games with finite state and
action spaces have approximate Nash equilibria when the total payoff is the limit inferior
of the averages of the stage payoffs. Whether such equilibria exist when there are more
than two players is still a challenging open problem. Shapley [448] has proposed an
algorithm for finding the equilibrium of a two-player zero-sum stochastic game using
value iteration.

While the detailed treatment of stochastic games is outside the scope of this book,
readers are referred to [150] for a unified and rigorous treatment of the theories of
Markov decision processes and two-person stochastic games, and to [11] for a more
advanced and comprehensive study of stochastic games. Finally, we note that stochastic
games admit many applications in economics, evolutionary biology, and more recently
wireless and communication networks. For instance, in wireless networking, stochastic
games have been widely used to study problems in areas such as flow control, routing,
and scheduling [25, 31].

3.4 Special classes of non-cooperative games

In this section, we investigate several important special games that are widely used to
formulate problems in wireless and communication networks.

3.4.1 Potential games

Potential games are non-zero-sum games in which the determination of a Nash equi-
librium can be equivalently posed as the maximization of a single function (called the
potential function) collectively by all players. The concept was introduced by Monderer
and Shapley [342], and is related to the notion of strategic equivalence of a game to
a team problem [57] (see also [58]). The potential function is a useful tool for analyz-
ing equilibrium properties of games, since the objectives and goals of all players are
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mapped into one function, and the set of pure Nash equilibria can be found by simply
locating the person-by-person optima of the potential function. Note that the definitions
and discussions hereinafter pertain to static potential games. We formally define the
potential game as follows:

definition 3.17 Anon-cooperative strategic game (N , (Si )i∈N , (ui )i∈N ) is an exact
(cardinal) potential game if there exists an exact potential function Φ : S →R such that
∀i ∈N

Φ(x ,s−i )−Φ(z ,s−i ) = ui (x ,s−i )− ui (z ,s−i ), ∀x ,z ∈ Si ,∀s ∈ S. (3.28)

A game is a general (ordinal) potential game if there is an ordinal potential function
Φ : S →R such that

sgn[Φ(x ,s−i )−Φ(z ,s−i )] = sgn[ui (x ,s−i )− ui (z ,s−i )], ∀x ,z ∈ Si ,∀s ∈ S, (3.29)

where sgn denotes the sign function.

In other words, in exact potential games, the difference in individual utilities achieved
byeachplayerwhen changingunilaterally its strategyhas the samevalue as the difference
in values of the potential function. In ordinal potential games, only the signs of the
differences have to be the same. We note that the potential function does not depend on
the indices of the players. Hence, for every player, Φ quantifies the impact of unilateral
deviations on all the players’ utilities in exact potential games, while it gives a sign of
the difference in ordinal potential games.

The interest in potential games stems from the following existence result [160]:

corollary 3.1 Every finite potential game (exact or ordinal) has at least one pure-
strategy Nash equilibrium.

In fact, every strategy vector s which maximizes a potential function will be a pure-
strategy equilibrium for the game. However, other pure-strategy Nash equilibria might
exist, which are the person-by-person maxima of the ordinal potential. For the case of
infinite potential games, we note the following existence result [160]:

corollary 3.2 For infinite potential games (with a finite number of players), a pure-
strategy Nash equilibrium exists if: (i) Si are compact strategy sets and (ii) the potential
function Φ is upper semi-continuous on S.

Recall that a function f :X →R is upper semi-continuous at a point x0 ∈X if, for any
ε there exists a neighborhood v(x0) such that x ∈ v(x0) implies that f (x) < f (x0) + ε.
The function f is upper semi-continuous if it is upper semi-continuous at each x0 ∈X .

The interest in potential games stems from the guarantee of the existence of pure-
strategy Nash equilibria. Moreover, when the strategy set S is compact and convex and
the potential function Φ is a continuously differentiable function on the interior of S and
strictly concave on S, then the Nash equilibrium is unique.

Although potential games have very interesting properties, finding a potential function
for a game is complex, and in many cases such a function does not exist. In [342], the
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existence of a potential function for a given strategic game is shown for the case where
the strategy sets are intervals of R as per the following theorem:

theorem 3.8 Given a strategic game where the strategy setsSi , ∀i ∈N , are intervals
of real number, and assuming the utilities are twice continuously differentiable, then this
game is a potential game if and only if

∂2(ui − uj)
∂si∂sj

= 0,∀i ∈N , j ∈N . (3.30)

To illustrate the idea of a potential game, we first discuss the following two-player
game:

Example 3.7 In a two-player game, each player has two strategies and the utilities are
given by the function ui (si ,sj) = bi si + wsi sj , where si is player i ′s strategy, sj is the
opponent’s strategy, bi is a constant, and w is a positive externality from choosing the
same strategy. The strategy choice of each player is either +1 or −1, as seen in the
payoff matrix of Table 3.8(a). This game has the following potential function:

Φ(s1,s2) = b1s1 + b2s2 +ws1s2. (3.31)

If player 1 moves from −1 to +1, the utility difference is Δu1 = u1(+1,s2) −
u1(−1,s2) = 2b1 + 2ws2. The change in potential is ΔΦ = Φ(+1,s2)−Φ(−1,s2) =
(b1 +b2s2 +ws2)− (−b1 +b2s2−ws2) = 2b1 +2ws2 = Δu1. Similarly, one can check
the utility differences for player 2.

Using numerical values b1 = 2,b2 = −1,w = 3, this example transforms into a
simple Battle of the Sexes game, as shown in Table 3.8(b). The game has two pure
Nash equilibria, (+1,+1) and (−1,−1). These are also the person-by-person maxima
of the potential function (Table 3.8(c)). The only stochastically stable equilibrium is
(+1,+1), the global maximum of the potential function. Note that one can also define
a continuous-kernel game version of this example, where the utilities are given by the
function ui (si ,sj) =−s2

i +bi si +wsi sj , where the strategies s1 and s2 take values on the
real line. In this continuous-kernel game, the potential function would be given by

Φ(s1,s2) =−s2
1 − s2

2 + b1s1 + b2s2 +ws1s2. (3.32)

The use of potential games is quite popular in wireless networking and resource
allocation [308, 342, 356, 354, 355, 142, 26, 330, 209, 430]. The major applications are
to power control and waveform adaptation. The design implication is the property of
convergence, with shared and independent outcomes for each individual.

For example, the use of potential games in CDMA networks is discussed in [430].
Consider a single-cell CDMA network with N = {1, · · · ,N} players and where the
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Table 3.8 (a) Potential game example (upper); (b) Battle of the sexes (payoffs, lower left); (c) Battle of the
sexes (potentials, lower right).

(a) +1 −1
+1 (b1 +w ,b2 +w ) (b1−w ,−b2−w )
−1 (−b1−w ,b2−w ) (−b1 +w ,−b2 +w )

(b) +1 −1
+1 (5,2) (−1,−2)
−1 (−5,−4) (1,4)

(c) +1 −1
+1 4 0
−1 −6 2

received SINR of player i ∈N is

γi (p) =
pihi

σ2 +
∑

j �=i pjhj
,

where pi is the transmit power of player i , hi is the channel gain fromplayer i’s transmitter
to the base station, and σ2 is the variance of the Gaussian noise. For each player i ∈M,
we want to solve the following power-control problem:

min
pi∈[0,Pmax

i ]
pi , s.t. fi (γi (p))≥ γthresh

i . (3.33)

Here, Pmax
i is the maximum power, fi is a function reflecting the quality of ser-

vice (QoS), and γthresh
i is the QoS threshold. It is shown in [430] that (3.33) for

each player i can be transformed into an equivalent non-cooperative game G =[
N ,S,{log(Pmax

i − pi )}i∈N
]
, with the coupled strategy set

S =
{
p : fi (γi (p))≥ γthresh

i ,pi ∈ [0,Pmax
i ],∀i ∈N

}
.

Furthermore, it turns out that this power-control game G admits a potential function

Φ(p) =
∑
i∈M

log(Pmax
i − pi ).

We can then maximize the potential function Φ(p) over the set S, and the corresponding
maximizer(s) will be the pure-strategy Nash equilibria of the game G , and thus the
optimal solution(s) of (3.33) for all i ∈N .

3.4.2 Stackelberg games

In many non-cooperative games, a hierarchy among the players might exist whereby
one or more of the players declare and announce their strategies before the other players
choose their strategies. In such a hierarchical decision-making scheme, the declaring
players can be in a position to enforce their own strategies upon the other players. Thus,
in these games, the player who holds the strong position and that can impose its own
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strategy upon the others is called the leader while the players who react to the leader’s
declared strategy are called followers. In some situations there could be multiple leaders
as well as multiple followers.

Given a two-player non-cooperative game between a leader and a follower, with their
strategy sets denoted by S1 and S2, respectively, whenever the leader announces that
it needs to play any strategy s1 ∈ S1, the follower must respond or react with a given
strategy s2 ∈ S2. The follower might, indeed, have many possible reactions to a given
strategy of the leader. Capturing this possibility, we first have:

definition 3.18 Given a two-person finite game, the set R2(s1), defined for each
strategy s1 ∈ S1 by

R2(s1) = {s2 ∈ S2 : u2(s1,s2)≥ u2(s1, t), ∀t ∈ S2}, (3.34)

is the optimal response (or optimal reaction) set of player 2 to the strategy s1 ∈ S1 of
player 1.

Given the concept of a reaction set, we can define the concept of a Stackelberg equilib-
rium strategy (or Stackelberg strategy for short) which will prove to be useful in defining
an equilibrium point in games with hierarchical decision-making.

definition 3.19 In a two-person finite game with player 1 as the leader, a strategy
s∗
1 ∈ S1 is called a Stackelberg equilibrium strategy for the leader, if

min
s2∈R2(s∗

1

u1(s∗
1 ,s2) = max

s1∈S1
min

s2R2(s1)
u1(s1,s2) � u∗

1 . (3.35)

The quantity u∗
1 is the Stackelberg utility for the leader. The same definition applies for

the case where player 2 is the leader, with the subscripts 1 and 2 simply swapped.

For afinite game, given thatS1 andS2 arefinite sets, from (3.35)we have the following
result [58]:

theorem 3.9 Every two-person finite game admits a Stackelberg strategy for the
leader.

Although, in a given game with hierarchical decision-making, the Stackelberg utility
for the leader has a unique value, the leader’s Stackelberg strategy need not be unique. In
(3.35), the Stackelberg strategy s∗

1 of the leader ensures that the leader does not receive
a utility that is lower than u∗

1 . Hence, u∗
1 constitutes a secured utility level for the leader.

Nonetheless, whenever the follower’s reaction set R2(s1) is a singleton set for each
s1 ∈ S1, then the optimal response of the follower becomes unique for every strategy of
the leader, and u∗

1 becomes the actual utility level that the leader will attain. This now
leads to the following:

definition 3.20 Let s∗
1 ∈ S1 be a Stackelberg strategy for the leader, i.e., player 1.

Then, any strategy s∗
2 ∈R2(s∗

1 ) that is in equilibriumwith s∗
1 is an optimal strategy for the

follower. Thus, the pair (s∗
1 ,s∗

2 ) is a Stackelberg solution for the game with player 1 being
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Table 3.9 Stackelberg game example (player 1, player 2).

U D M

U (3,3) (2,3) (0,2)
D (1,4) (1,3) (4,4)

the leader, and the utility pair (u1(s∗
1 ,s∗

2 ),u2(s∗
1 ,s∗

2 )) is the corresponding Stackelberg
equilibrium outcome.

The Stackelberg solution of a non-cooperative game, i.e., the introduction of a hierar-
chy, does not necessarily yield payoffs for the leader and the follower that are better than
the Nash equilibrium. However, it can be shown that, using the Stackelberg solution, the
leader can improve its utility, as per the following proposition [58]:

proposition 3.4 For a given two-person finite game, let u∗
1 and uNE

1 denote, respec-
tively, the Stackelberg utility and the Nash equilibrium utility for player 1, i.e., the leader
in the Stackelberg formulation. If the reaction setR2(s1) is a singleton set for all s1 ∈S1,
then we have

u∗
1 ≥ uNE

1 . (3.36)

In other words, whenever the follower has a single optimal response for every strategy
of the leader, then the leader can, at the Stackelberg solution, perform at least as well as
at the Nash equilibrium. Note that this proposition holds ifR2(s1) is a singleton set for
all s1 ∈ S1 and not only at the Stackelberg strategy s∗

1 of the leader.
To better illustrate the idea of a Stackelberg equilibrium, we consider the matrix game

shown in Table 3.9. With no hierarchy, one can easily check that (D,M) and (U,U)
are Nash equilibria, but (D,M) is the one with better payoffs for both players as it
yields (4,4). Now consider the game in Table 3.9 with player 1 considered as a leader. If
the leader chooses strategy U , then the reaction set of the follower isR2(U) = {U,D}.
Hence, the Stackelberg utility for the leader, i.e., the secured utility, is u∗

1 = 2. In contrast,
if the leader chooses D , then u∗

1 = 1. Consequently, s∗
1 = U would be the leader’s

Stackelberg strategy, and the Stackelberg utility would be u∗
1 = 2. Note that, depending

on whether the follower chooses U or D , at the Stackelberg equilibrium the leader might
achieve either 2 or 3. In other words, the game admits two Stackelberg equilibria, (U,U)
and (U,D), with payoffs (3,3) and (2,3), respectively. This demonstrates the difference
between the secured Stackelberg utility u∗

1 = 2 and the actual utility at the Stackelberg
equilibrium u1(s∗

1 ,s∗
2 ), which could be either equal to u∗

1 , if the follower plays U , or
better than u∗

1 , if the follower plays D . In this game, we also note that the Stackelberg
equilibrium provides lower utilities for the leader and the follower than in the best Nash
equilibrium case (note that, here, the result of Proposition 3.4 does not hold since the
reaction sets are not singleton sets).

The Stackelberg solution easily extends to games with a single leader and multiple
followers. Although the detailed treatment of this case will be done through an example
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from communication networks in Chapter 14, the idea is relatively simple. In the multi-
follower case, given the leader’s announced Stackelberg strategy, one can define a single
reaction set for the group of followers. In this case, the optimal response (reaction set)
of the followers is the set of joint strategies that maximize the utilities of the followers,
where each follower’s utility is a function of (i) the leader’s announced strategy, and (ii)
the strategies of the other followers. Consequently, the Stackelberg solution of a single-
leader multi-follower non-cooperative game corresponds to the case where the leader
maximizes its utility given the reaction set of the followers groupwhile the followers react
to the leader’s announced strategy by playing according to a specific equilibrium concept
(e.g., theNash equilibrium). Similarly, one can also extend the Stackelberg solution to the
multi-leader multi-follower case (we treat an example in the context of cellular networks
in Chapter 9) as well as the case where more than two levels of hierarchy exist (e.g.,
a leader, a first follower, a second follower, etc.). However, a detailed treatment of this
case is more complicated and is beyond the scope of this book (the interested reader is
referred to [58] for further details).

3.4.3 Correlated equilibrium

The concept of a correlated equilibrium was introduced byAumann [47, 48] as a concept
suitable for scenarios that involve a decision process in between non-cooperation and
cooperation. In this sense, the correlated equilibrium can be viewed as a generalization
of the Nash equilibrium, whereby there exists an arbitrator or coordinator who can send
(public or private) signals to the players, which help them to correlate their actions. In the
context of the correlated equilibrium, an arbitrator is seen as an entity (not necessarily an
intelligent one) that can generate signals that do not depend on the system (nor individual)
states. Moreover, the arbitrator does not need any knowledge of the system, and can be a
virtual entity.All the arbitrator has to do is to create some random signals (according to a
randomized mechanism known by the players) which can help with the coordination of
actions between the players. The players can also ignore the received signals and select
their strategies independently of them.

The interest in correlated equilibrium stems from the fact that by allowing the players
to utilize a joint action profile with a certain probability, a performance that is better
than the Nash equilibrium can be achieved. In fact, it has been shown that the correlated
equilibriumcanbebetter than the convexhull of theNash equilibria [47, 48]. For instance,
given a non-cooperative strategic game G = (N , (Si )i∈N , (ui )i∈N ), we can define the
correlated strategy p(s) as a probability distribution over the strategy (or action) profile
s ∈ S. Given these basic notions, we can define the concept of a correlated equilibrium
as follows:

definition 3.21 Given a strategic game G , a correlated strategy p(s) = p(si ,s−i )
is said to be a correlated equilibrium if, for all i ∈N , si ,s ′

i ∈Si , and s−i ∈S−i , we have

∑
s−i∈S−i

p(si ,s−i ) [ui (s ′
i ,s−i )− ui (si ,s−i )]≤ 0. (3.37)



92 Non-cooperative games

Table 3.10 Chicken game variant (driver 1, driver 2).

Straight (ST ) Swerve (S)

Straight (ST ) (0,0) (5,1)
Swerve (S) (1,5) (4,4)

By dividing the inequality (3.37) by p(si ) =
∑

s−i∈S−i
p(si ,s−i ) and using Bayes’ rule,

we get ∑
s−i∈S−i

p(s−i |si )[ui (s ′
i ,s−i )− ui (si ,s−i )]≤ 0,∀s ′

i ∈ Si . (3.38)

This implies that the expected payoff received by a player i choosing strategy si at
the correlated equilibrium is greater than (or equal to) its expected payoff for choos-
ing any other strategy s ′

i . Furthermore, we note that the set of correlated equilibria is
non-empty, closed, and convex in every finite game [47, 48], and may include distri-
butions that are not in the convex hull of the Nash equilibrium solutions. Moreover,
every Nash equilibrium is a point inside the set of correlated equilibria. In fact, a
mixed-strategy Nash equilibrium is simply a correlated equilibrium where p(s) is a
product distribution, i.e., a product of each individual player’s probability for different
strategies.

As an illustrative example of correlated equilibrium, we consider a variant of the
game of Chicken, as shown in Table 3.10 (this is the same game as in Example 3.3 but
with modified payoff values). The strategies ST and S refer, respectively, to staying
straight and swerving. Using the payoffs in Table 3.10 and the inequalities in (3.37),
we conclude that a probability distribution at the correlated equilibrium must satisfy the
following:

(0− 1)p11 +(5− 4)p12 ≥ 0,

(1− 0)p21 +(4− 5)p22 ≥ 0,

(0− 1)p11 +(5− 4)p21 ≥ 0,

(1− 0)p12 +(4− 5)p22 ≥ 0,

∑
i ,j∈{1,2}

pij = 1,

0≤ pij ≤ 1,∀ i , j ∈ {1,2},

where pij is the probability of player 1 choosing strategy i and player 2 choosing strategy
j , where i , j ∈ {1,2} with strategy 1 being stay straight, i.e., strategy ST , and strategy 2
being swerve, i.e., strategy S . The first two inequalities represent the optimality of the
distribution for player 1 by comparing the payoffs for the cases when player 1 chooses
strategy ST (first inequality) and S (second inequality). Similarly, the third and fourth
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Table 3.11 Chicken game variant. (a) Nash equilibrium (upper left); (b) mixed Nash equilibrium (upper
right); (c) correlated equilibrium (lower left); (d) correlated equilibrium (lower right).

ST S
ST 0 (0 or 1)
S (1 or 0) 0

ST S
ST 1

4
1
4

S 1
4

1
4

ST S
ST 0 1

2
S 1

2 0

ST S
ST 0 1

3
S 1

3
1
3

inequalities are written for player 2’s case. The last two equations simply state that pij are
probability values. This system of inequalities admits an infinite number of solutions,
i.e., correlated equilibria. Nonetheless, we can find several straightforward correlated
equilibria, as shown in Table 3.11(a)–(d) (the probability of each joint distribution is
shown in each matrix). In Table 3.11(a), we show the two pure-strategy Nash equilibria
(which are in the correlated equilibria set). In Table 3.11(b), we show the correlated
equilibrium which is the mixed-strategy Nash equilibrium of this game. This mixed-
strategy Nash equilibrium dictates that each player use each strategy with a probability
of 1

2 . The correlated equilibrium in Table 3.11(c) can be interpreted as a traffic light: a
trusted arbitrator tosses a fair coin and, depending on the outcome, suggests a strategy to
each player; neither player has an incentive to deviate from the suggested strategy. Note
that the correlated equilibrium in Table 3.11(c) yields a better expected utility than the
mixed-strategy Nash equilibrium. Finally, the correlated equilibrium in Table 3.11(d) is
the one that maximizes the expected sum of utilities, obtained by a linear maximization
over the set of correlated equilibria.

As seen in the previous example, the set of correlated equilibria can contain an infinite
number of points. Therefore, it is useful in an application to define a metric through
which one can choose a suitable correlated equilibrium. Two useful criteria for selecting
a correlated equilibrium are the correlated optimal criterion and the max-min criterion.
The correlated optimality criterion is a correlated equilibrium that maximizes the social
welfare, i.e., the expected sum of utilities, as follows:

definition 3.22 A correlated strategy p(s) is correlated optimal if it satisfies the
following conditions:

p(s) = argmax
i∈S

∑
i∈N

Ep [ui ] , (3.39)

s.t.
∑

s−i∈S−i

p(si ,s−i ) [ui (s ′
i ,s−i )− ui (si ,s−i )]≤ 0,

∀si ,s ′
i ∈ Si and ∀i ∈N .
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In contrast, the max-min criterion attempts to find the correlated equilibrium that
guarantees a minimum expected utility:

definition 3.23 A correlated strategy p(s) satisfying the max-min criterion is
given by

p(s) = argmax,min
i∈S

Ep [ui ] , (3.40)

s.t.
∑

s−i∈S−i

p(si ,s−i ) [ui (s ′
i ,s−i )− ui (si ,s−i )]≤ 0,

∀si ,s ′
i ∈ Si and ∀i ∈N .

Finally, the use of the correlated equilibrium in wireless and communication networks
has recently attracted increased attention; see [283, 304] and the references therein. The
main motivation for using the correlated equilibrium in wireless and communication net-
works stems from its ability to provide a balance between the fully cooperative solution
(which requires a lot of overheadbut canbehighly efficient) and the fully non-cooperative
solution (which can be easy to implement but yields poor performance). In this context,
correlated equilibrium provides a scheme that can yield a better performance than the
Nash equilibrium while requiring a reasonable overhead for implementation. In particu-
lar, correlated equilibrium has been used in solving problems related to multiple-access
and wireless transmission (see [283] and references therein) as well as peer-to-peer
networks [304].

3.4.4 Supermodular games

Supermodular games are a class of static non-cooperative games characterized by
strategic complementarities. In a supermodular game, when a player takes a higher
action according to a defined order, the other players are better off if they also take a
higher action. In other words, supermodular games are characterized by increasing best
responses. Supermodular games are analytically appealing since they have interesting
properties regarding the existence of pure-strategy Nash equilibria and algorithms that
can find these Nash equilibria.

Before formally defining a supermodular game, we need to introduce the concept of
increasing differences, using the following definitions:

definition 3.24 A partial order ≥ over a Euclidean space RK is defined as

x≥ y⇔ xk ≥ yk , ∀k = 1, ... ,K .

definition 3.25 Let T be a partially ordered set with respect to order≥ andX ⊆R.
A function f :X ×T →R has increasing differences in (x , t) if

∀x ′ ≥ x , ∀t ′ ≥ t,

f (x ′, t ′)− f (x , t ′)≥ f (x ′, t)− f (x , t),
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i.e., f (x ′, t)− f (x , t) is increasing in t and, symmetrically, f (x , t ′)− f (x , t) is increasing
in x .

lemma 3.2 For a function f that is twice continuously differentiable, f has increasing
differences if and only if

t ′ ≥ t ⇒ ∂f
∂x

(x , t ′)≥ ∂f
∂x

(x , t),

⇔ ∂2f
∂x∂t

(x , t)≥ 0, ∀x ∈X , ∀t ∈ T .

Given the definition of a function with increasing differences, we can formally define
a supermodular game as follows:

definition 3.26 A strategic game (N , (Si )i∈N , (ui )i∈N ) is a supermodular game if,
for all i ,

• Si is a compact subset of R.
• ui is upper semi-continuous in si , and continuous in s−i .
• ui has increasing differences in (si ,s−i ).

Interest in supermodular games stems from the following properties [160]:

theorem 3.10 Let (N , (Si )i∈N , (ui )i∈N ) be a supermodular game. Then the set of
strategies surviving iterated strict dominance has greatest and least elements s,s which
are bothNash equilibria. In other words,

• A pure-strategy Nash equilibrium exists.
• The largest and smallest strategies compatible with iterated deletion, the correlated

equilibrium, and the Nash equilibrium are the same.
• If a supermodular game has a unique Nash equilibrium, then it is dominance solvable,

and the best-response dynamics converges to it.

proposition 3.5 Suppose a supermodular game is indexed by t. Then the largest
and smallest Nash equilibria are increasing in t.

proposition 3.6 Suppose a supermodular game has positive spillovers (for all i ,
ui (si ,s−i ) is increasing in s−i ). Then the largest Nash equilibrium is Pareto-preferred.

The application pool for supermodular games is quite large. In wireless networks,
one popular application is in power control, such as in the uplink power-control game
provided in [425] for CDMA networks. In this game, [425] considers the single cell of
a wireless CDMA network where all users access the channel using orthogonal codes
simultaneously, utilizing the entire available frequency spectrum. In such a system, the
main objective is to allow the users, in a distributed manner, to control their uplink
transmit power so as to optimize their quality of service, given the mutual interference
that occurs among the users. Hence, a key question that game theory needs to answer is
how to allocate the resources, i.e., the power.
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For this purpose, one can formulate a non-cooperative strategic gamewhere the players
are the network users, the strategies are the transmit power values, and the utilities are
a function of the power consumed by the users and the SINR they attain. Each user is
assumed to act selfishly but rationally to optimize the following objective function:

ui (pi ,p−i ) = f (γi )− cpi , (3.41)

where pi is the transmit power of user i , p−i is the vector of transmit powers of all the
users except i , c is a price factor, and f (·) is an increasing function (not necessarily
concave). Furthermore, γi is the SINR, which is defined as

γi =
hipi∑

j �=i hjpj +σ2 , (3.42)

where σ2 is the Gaussian noise variance and hi is the channel gain. For this power-
control game, using the partial derivatives of ui and by Lemma 3.2, one can show that
the function ui is supermodular if the function f is such that −γi f ′′(γi )+ f ′(γi ) > 0. In
[425], the authors provide an appropriate function f that makes the game supermodular,
and discuss the various properties of this game.

Beyond wireless and communication networks, applications of supermodular games
are abundant, and we provide a few examples below.

1. Investment game. Suppose N firms simultaneously make investments si ∈ {0,1}
and the payoffs are

ui (si ,s−i ) =
{

π(
∑

si )− k if si = 1,
0 if si = 0,

(3.43)

where π is increasing in aggregate investment and k is a positive constant. This is a
supermodular game.

2. Diamond search model. Consider N agents who exert effort looking for trading
partners. Let si denote the effort of agent i , and c(si ) the cost of this effort, where c
is increasing and continuous. The probability of finding a partner is si

∑
j �=i sj . Then

ui (si ,s−i ) = si
∑
j �=i

sj − c(si ), (3.44)

has increasing differences in (si ,s−i ). Hence, it is supermodular.
3. Well-known games such as the Cournot duopoly and the Bertrand competition game

can be supermodular under certain conditions on the payoffs and the strategies (see
[160]).

3.4.5 Wardrop equilibrium

Introduced in the 1950s by Wardrop [501], the concept of the Wardrop equilibrium was
first presented in the context of road traffic. The motivation was to introduce a concept
that can capture key features of resource sharing among many selfish individuals. Since
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then, the Wardrop equilibrium has been applied to many problems in transportation and
communication networks [200, 458, 35, 396, 121, 28]. In essence, Wardrop considered
the scenario of a network of roads and a large number (infinite in many cases) of vehicles
traveling through the network from an origin to a destination. The vehicles are interested
inminimizing their travel time,which is dependent on each road segment’s characteristics
and its congestion, i.e., the number of vehicles using it. Wardrop modeled this situation
using a non-cooperative game, with the players being the vehicles attempting to find a
shortest-path route while minimizing their travel time from origin to destination. In this
context, the Wardrop equilibrium was introduced as a stable network flow which incurs
equal and minimal latency on all used paths between a given origin–destination pair.
In addition, the journey times (latency) at the Wardrop equilibrium are less than those
experienced by a single vehicle on any unused route. Note that this equilibrium assumes
that there exists a large number of vehicles, so that the contribution of a single vehicle
to the delay is negligible, i.e., close to zero. Under this assumption of a large number of
vehicles, and given that all vehicles select their strategies, i.e., routes, independently and
rationally, the Wardrop equilibrium state can be seen as one where no arbitrary small
fraction of the traffic assigned to some path can benefit from unilaterally deviating to
another path.

Clearly, this situation from road traffic correlates with next-generation wireless and
communication networks,where the vehicles can be seen as packets and the road network
can be seen as a large-scale communication network such as the Internet or a large-scale
wireless ad hoc network. The interdependency between the packets stems from the
congestion that is caused mutually by the traffic traveling the same road.

Formally, we are given a directed graph G (V,E) the set of vertices V and set of edges
E , and latency functions L= (le)e∈E attached to the edges, where

le : R+
0 →R+

0 . (3.45)

The latency functions are considered to be non-decreasing, differentiable, and semi-
convex, i.e., x · le(x) is convex. Moreover, we consider a set of commodities [k] =
{1, ... ,k} specified, for every i ∈ [k], by source–sink pairs (si , ti ) ∈ V ×V , a directed
acyclic subgraph Gi of G connecting si and ti , and flow demands di . The total demand
is d =

∑
i∈[k] di . Thus, a Wardrop game is defined by a tuple (G ,d).

Let Pi denote all acyclic paths connecting si and ti in Gi , also known as admissible
paths of commodity i , and let P = ∪i∈[k]Pi . For every path p ∈ P , we let fp denote the
volume or traffic of agents on path p. Furthermore, a path-flow vector (fp)p∈P induces
an edge-flow vector (fe,i )e∈E,i∈[k] such that fe,i =

∑
p∈Pi :e∈p fp , i.e., fe,i is the sum of

flows on the paths in Pi containing edge e. The total flow of an edge e ∈ E is, thus,

fe =
∑
i∈[k]

fe,i . (3.46)

The latency of an edge e ∈ E is given by le(fe). A non-negative path-flow vector
(fp)p∈P is said to be feasible if it satisfies the flow demands, i.e.,

∑
p∈Pi

fp = di for all
i ∈ [k]. Note that an edge flow represented by an edge-flow vector (fe,i )e∈E,i∈[k] or by
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the total edge-flow vector (fe)e∈E is considered feasible if it is induced by a feasible
path-flow vector. By a slight abuse of notation, we denote (fp)p∈P , (fe,i )e∈E,i∈[k], and
(fe)e∈E by f (these flows can in any case be expressed as functions of each other). We
denote the set of all feasible flow vectors by F . The latency of a given path p ∈ P is
expressed by the sum of the edge latencies, i.e.,

lp(f ) =
∑
e∈P

le(fe). (3.47)

Note that this path latency is not a function of the corresponding path flow because it
depends on the total flow on each of its edges. Consequently, the total latency C (f ) of a
flow f is defined as follows:

C (f ) =
∑
p∈P

lp(fe)fp (3.48)

Given (3.46) and (3.47), it can be easily shown that C (f ) depends solely on the edge
flow, and is given by

C (f ) =
∑
e∈E

le(fe)fe . (3.49)

Hereafter, for notational brevity, we will drop the argument f whenever it is clear from
the context.

Given these definitions, we can formulate a non-cooperative game where each flow is
composed of an infinite number of players, each of which carries an infinitesimal amount
of flow. Hence, the flow of a single player has almost no effect on the latency of a path.
Each player selects a pure strategy by choosing one path from its origin to its destination.
The cost for a player is the chosen path’s latency. Here, each player attempts to minimize
its latency.

Consequently, we can define the Wardrop equilibrium as follows [501]:

definition 3.27 A feasible flow vector f is at Wardrop equilibrium if for every
commodity i ∈ [k] and paths p1,p2 ∈ Pi with fp1 > 0, it holds that

lp1(f )≤ lp2(f ). (3.50)

In the Wardrop equilibrium, a flow vector is considered stable when no fraction of the
flow can improve its sustained latency by moving unilaterally to another path. In this
context, a network at theWardrop equilibrium satisfiesWardrop’s two principles [501]:

• Wardrop’s first principle. All used paths from a source to a destination have equal
mean latencies.

• Wardrop’s second principle. Any unused path from a source to a destination has
greater potential mean latency than that along the used paths.
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Moreover, the latency of a flow f ∗ at the Wardrop equilibrium can be expressed as

C (f ∗) =
∑
i∈[k]

Li (f ∗) · di , (3.51)

whereLi (f ∗)denotes the unique path latency of an equilibriumflow in commodity i . Note
that, although the Nash equilibrium and the Wardrop equilibrium are related, in the sense
that they both describe a stable network flow, they can still be different in many cases.
For instance, while the Wardrop equilibrium satisfies the Wardrop principles, a Nash
equilibrium may not. Notably, when the number of players is finite, a Nash equilibrium
can be achieved without the latencies of all used paths being equal. This is mainly
because the Wardrop equilibrium and its principles are motivated by the assumption that
the contribution of an individual player is negligible, i.e., there exists an infinite number
of players for each flow. Nonetheless, it has been shown that, under some conditions,
the Wardrop equilibrium represents a limiting case of the Nash equilibrium when the
number of players goes to infinity [200].

Furthermore, it can be shown [65] that the Wardrop equilibria are exactly the
allocations that minimize the following potential function:

Φ(f ) =
∑
e∈E

∫ fe

0
le(u)du. (3.52)

The existence of a potential function, as discussed in the case of potential games in
Section 3.4.1, is sufficient to guarantee the existence of at least one Wardrop equilib-
rium. Moreover, every Wardrop equilibrium induces the same edge latencies and can be
computed in polynomial time (owing to the presence of a potential function). Note that
this existence result requires the latency functions to be continuous and monotone, but
not necessarily semi-convex.

We make two observations on the potential function in (3.52). First, this function
precisely absorbs progress: If an infinitesimal amount of flow du is shifted from path p1

to path p2, thus improving its latency by lp1− lp2 , the potential decreases by (lp1− lp2)du.
Furthermore, let f ∗ be a flow minimizing the potential function Φ. If an infinitesimal
amount of flow du is shifted from path p1 to path p2, transforming the flow f ∗ to g , it
follows that lp1 − lp2 = Φ(g)−Φ(f ∗)≥ 0. Hence, the fraction of deviating players are
not able to benefit from the move.

The existence of a Wardrop equilibrium makes it a useful concept in many routing
and flow-control problems. In wireless and communication networks, the Wardrop equi-
librium has mainly been used in flow control and routing in communication networks
[121, 28], in dense ad hoc networks [458, 35], as well as in routing in wireless networks
[396]. In Chapter 14 we discuss the use of the Wardrop equilibrium within the context
of flow control in communication networks, as per the work in [28].

Finally,wenote that theWardrop equilibriumalso has somedrawbacks.Twomain ones
are (i) the need for a large number of players, and (ii) the need for accurate knowledge
of the network and its latency functions. In this context, several alternatives can be used,
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such as the robust Wardrop equilibrium [151], the approximate Wardrop equilibrium for
a finite number of players [375], or even the correlated equilibrium.

3.5 Summary

Non-cooperative games constitute an important branch of game theory. Many of the
games that we will see in the following chapters, such as Bayesian games and differential
games, are also generally classified under the umbrella of non-cooperative games. Static
games, dynamic games, Stackelberg games, potential games, and others provide a wide
variety of analytical tools for studying many important problems in various disciplines.

In wireless and communication networks, the use of non-cooperative games has been
abundant, ever since the earliest work on power-control games [425]. For instance, there
exist very strong connections and analogies between non-cooperative game theory and
classical problems in wireless and communication networks such as routing, interference
management, flow control, packet forwarding, and multiple access. In this context, read-
ers interested in modeling communication problems using the non-cooperative-game
framework are referred to Part III of this book, where we will develop several models
that use many of the concepts introduced in this chapter, such as Nash equilibria and
Stackelberg equilibria.



4 Bayesian games

The game models discussed in the preceding chapters were all built on the governing
assumption that the players all have complete information on the elements of the game,
particularly on the action spaces of all players and the players’payoff (or cost) functions,
and that this is all common information to all players. However, in many situations,
especially in a competitive environment, the a priori information available to a player
may not be publicly available to other players. In particular, a player may not have
complete information on his opponents’ possible actions, strategies, and payoffs. For
example, in the latter case, a player may not know the resulting payoff value for another
playerwhen all players havepicked specific actions (or strategies).Onewayof addressing
situations that arise as a result of such incompleteness of information is to formulate them
as Bayesian games—the topic of this chapter. We first introduce this class of games in
general terms, and then discuss applications inwireless communications and networking.

4.1 Overview of Bayesian games

4.1.1 Simple example

Let us consider the example of a game between two car companies responding to the
possibility of a Clean Air Act, such as the one in 1990. If the Act is passed, then both car
companies will be faced with the task of redesigning their cars, which will be costly. In
order to prevent this from happening, they decide to start a lobbying campaign against
the Act. But lobbying will cost money, although less than what would it cost to redesign
their cars. Let us assume that this lobbying cost is known by both companies. With this
information, the underlying game model can be described as follows: the players are
the car companies (e.g., companies A and B); the strategies are whether to contribute or
not to the lobbying effort; the payoff for a player depends on the actions taken by both
players. In the first case, if neither company contributes, the Act will then pass and the
payoffs for both companies will be low as a result of smaller profits (or higher costs).
The Act will not pass if at least one company contributes to the lobbying effort. If only
one company lobbies (the second case), then the payoff for that company will be higher
than that in the first case. However, the other company without contribution will receive
a free ride and the payoff for this company will be even higher than that of the company
that contributes. In the third case, both companies contribute to the lobbying effort, and
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both end up with higher payoffs than those in the first case. These payoffs are also higher
than that of the company that lobbies in the second case, but is smaller than the payoff
for the company which does not contribute (again in the second case). A typical payoff
matrix consistent with this description is as follows:

B contributes B does not contribute
A contributes (3,3) (2,5)

A does not contribute (5,2) (1,1)
. (4.1)

The first and second figures in each pair are the payoffs for companies A and B, respec-
tively. Clearly, if both companies knew the payoffs for each other perfectly, then Nash
equilibrium would be the appropriate solution concept, which dictates that only one
company should contribute to the lobbying effort.

Whatwould happen if one company did not know the preference (e.g., payoff function)
of the other company? For example, company B may not be sure whether company A
has any new technology which will make it easier and less costly to comply with the
Clean Air Act. If company A has the new technology, its payoff will be different. In this
case, given that company B does not know whether company A has a new technology,
we can introduce multiple types of players, such as company A with or without the new
technology. In general, any player may have multiple types, with probabilities attached
to each.

With the new technology (in our example), the payoffmatrix in (4.1)would bemodified
as follows:

B contributes B does not contribute
A contributes (2,3) (1,5)

A does not contribute (4,2) (2,1)
. (4.2)

This captures the scenario that if neither company contributes, then (as compared with
the first game) the payoff for company A would be higher than that without the new
technology.Otherwise, the payoff for companyAis lower because of the cost of acquiring
the new technology. This game has a unique Nash equilibrium, which dictates that B
should contribute but A should not.

From this example, it can be seen that the sets of Nash equilibria are different in two
games which differ only in the types of players. In general, the strategy of a player will
depend not only on its own type but also on the probability distribution (i.e., belief) a
player carries about the types of other players. To model and analyze such situations, we
next introduce the static Bayesian game framework, where Bayesian Nash equilibrium
is considered to be the appropriate solution concept, with uncertainty about the player
types.

4.1.2 Static Bayesian game

In general, a gamewith incomplete information canbe considered aBayesian game [160],
which is formally defined as follows. We have a set of playersN = {1, ... ,N}, where N
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is the total number of players. player i’s action space is denoted byAi and his type space
by Ti , for i ∈N . The payoff for player i is defined as a function of the types and actions
of all players, i.e., Ui (a;t), where a is a vector of actions taken by all players and t is a
vector of types of all players. Belief for player i is defined as a conditional probability
mass function of the types of all other players, given his own type, i.e., Pri (t−i |ti ), where
t−i ∈ T−i is a vector of types of all players except player i and ti ∈ Ti is the type of
player i . This belief formulation captures the uncertainty, which is at the heart of the
formulation of a game with incomplete information.

In a Bayesian game, the different events occur in the following order:

1. Nature chooses the types of all players.
2. Players observe their own types, as drawn by nature.A full description of a particular

player’s type is known only by that player.
3. Players simultaneously choose their actions. In particular, player i chooses an action

ai ∈Ai based on his belief about the types of other players given his own type.
4. Players receive the payoff values.

As an example of a Bayesian game formulation, we consider the power-control game
with incomplete information [202]. The players are the transmitters, and the action for
each player is the transmit power. The type of player can be defined as the channel gain
to the target receiver. This channel gain is known by the corresponding transmitter, but
not by other transmitter–receiver pairs. Other transmitters know only the probability
distribution for the channel gain of other players. In this case, the payoff for one player
is a function of the transmit power of all players and of the channel gains.

In a Bayesian game, a strategy (i.e., the complete plan of action to be taken) is defined
as a function of the self type, i.e., si (ti ). In this case, strategy si (ti ) determines the action
from set Ai given the type ti .

The formal definition of a Bayesian game, as a game of incomplete information, is
given as follows:

definition 4.1 A game of incomplete information is defined through the following
elements:

1. A set of players: i ∈N = {1,2, ... ,N}.
2. A set of actions available to player i: Ai for i ∈ {1,2, ... ,N}, with ai ∈Ai denoting

a typical action for player i .
3. Sets of possible types for player i: Ti for i ∈ {1,2, ... ,N}, with ti ∈ Ti denoting a

typical type of player i .
4. Let a = (a1, ... ,aN), t = (t1, ... , tN), a−i = (a1, ... ,ai−1,ai+1, ... ,aN), t−i =

(t1, ... , ti−1, ti+1, ... , tN).
5. Nature’s move: t is selected according to a joint probability mass function Pr(t) on
T = T1×·· ·×TN , which induces natural conditional probabilities.

6. Strategies: si : T →Ai , for i ∈ {1,2, ... ,N}, where si (ti )∈Ai is the action of player i
of type i .

7. payoffs Ui (a;t), i ∈N .
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An appropriate solution concept for this game is the Bayesian Nash equilibrium, which
is defined as the strategy N-tuple s∗ = (s∗

1 , ... ,s∗
N) satisfying for all i ∈N ,

s∗
i (ti ) = max

ai∈Ai

∑
t−i∈T−i

Ui (s∗
1 (t1), ... ,s∗

i−1,ai ,s∗
i+1(ti+1), ... ,s∗

N(tN);t)Pr(t−i |ti ). (4.3)

Note that what is being maximized above is the conditional average payoff for player i
given his own type ti . This Bayesian Nash equilibrium ensures that if the strategies of
all players except the i th are fixed at s∗

−i , then player i cannot improve his payoff by
moving away from s∗

i , this being so for all players.
What is introduced above can be qualified as a pure-strategy Bayesian Nash equi-

librium (BNE). Just as in the case of finite (non-Bayesian) games we have considered
earlier, a BNE may not exist in pure strategies. In this case we have to extend the defini-
tion of BNE to encompass mixed strategies, defined as a probability distribution for each
player on his action set for each of his types (that is, a different probability distribution
for each type). With such an extension of strategy spaces from pure to mixed strategies,
it is known that every finite incomplete information game formulated as above has a
BNE in mixed strategies. The reader can find more detail on non-cooperative games
with incomplete information and BNE in [195].

4.1.3 Bayesian dynamic games in extensive form

Bayesian Nash equilibrium results in some complicated equilibria in a dynamic game,
where players make multiple moves, gaining information along the way. The intrica-
cies that arise here are similar to those in complete information games, which admit
a plethora of equilibria under dynamic information. Such a multiplicity can be tamed
in complete information games through various refinement schemes, such as subgame
perfectness. This, however, is not always possible in incomplete information games
because such games have non-singleton information sets, and because sometimes there
is only one subgame – the entire game – and so every Nash equilibrium is trivially
subgame-perfect.

To refine the equilibria generated by the Bayesian Nash solution concept or subgame
perfection, one can apply the perfect Bayesian equilibrium (PBE) solution concept. PBE
is in the spirit of subgame perfection in that it demands that subsequent play be optimal.
However, it places player beliefs on decision nodes that enable moves in non-singleton
information sets to be dealt with more satisfactorily.

definition 4.2 A perfect Bayesian equilibrium is a strategy profile and a set of beliefs
for each player such that:

1. At every information set, player i’s strategy maximizes its payoff, given the strategies
of all other players, and player i’s beliefs.

2. At information sets reached with positive probability when PBE strategy is played,
beliefs are formed according to strategy and Bayes’ rule when necessary.
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3. At information sets that are reached with probability zero when PBE strategy is
played, beliefs may be arbitrary but must be formed according to Bayes’ rule when
possible.

So far in discussing Bayesian games, it has been assumed that information is perfect
(or, if imperfect, play is simultaneous). In examining a dynamic game, however, it might
be necessary to have the means to model imperfect information as well. PBE affords
this means: players place beliefs on nodes occurring in their information sets, which
means that the information set can be generated by nature (in the case of incomplete
information) or by other players (in the case of imperfect information).

The beliefs held by players in a Bayesian game can be approached more rigorously in
PBE. A belief system is an assignment of probabilities to every node in the game such
that the sum of probabilities in any information set is 1. The beliefs of a player are exactly
those probabilities of the nodes in all the information sets at which that player has the
move (a player’s belief might be specified as a function of the union of his information
sets to [0,1]). A belief system is consistent for a given strategy profile if and only if the
probability assigned by the system to every node is computed as the probability of that
node being reached given the strategy profile, i.e., by Bayes’ rule.

The notion of sequential rationality is what determines the optimality of subsequent
play in PBE. A strategy profile is sequentially rational at a particular information set
for a particular belief system if and only if the expected payoff for the player whose
information set it is (i.e., who has the move at that information set) is maximal given the
strategies played by all the other players. A strategy profile is sequentially rational for a
particular belief system if it satisfies the above for every information set.

4.1.4 Cournot duopoly model with incomplete information

To demonstrate the formulation of a Bayesian game, the Cournot duopoly model with
incomplete information is considered (Fig. 4.1). In this game, there is one product and
two suppliers, namely suppliers 1 and 2 as the players, supplying the product in quantities
s1 and s2 (which are actions) to the market. The price of the product is a function of the
total supply, that is p(s) = A− s , where A is a constant and s is the total supply from
two suppliers, i.e., s = s1 + s2. Note that the price decreases as the aggregated supply
increases. Payoffs for the two suppliers are taken as the profit functions, defined as

Market

Supplier 1

Supplier 2

C2L

C1H

Low cost

High cost

s1

s2

Price p

C1

Fig. 4.1 Cournot competition under uncertainty of supplier 1 regarding the cost to supplier 2.
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follows:
Ui (s1,s2) = P(s1 + s2)si −Ci (si ), (4.4)

where Ci (si ) is the cost to supplier i of supplying the amount si to the market. For
supplier 1, this cost is defined as C1(s1) = C1s1, where C1 is the cost per unit of product.
However, for supplier 2, the cost is defined as C2(s2) = C2Hs2 with probability α,
where C2H is the high-cost constant (e.g., the new production or logistic technology
is not successfully deployed). Alternatively, the cost to supplier 2 is defined as C2(s2) =
C2Ls2 with probability 1−α, where C2L < C2H is the low-cost constant (e.g., the new
technology is successfully deployed). These high- and low-cost constants are defined as
the type of supplier 2.

At the time of decision on the amount of supply to the market, suppliers 1 and 2 know
their own cost functions (i.e., C1(s1) and C2(s2), respectively). Supplier 2 knows the
cost function for supplier 1. However, supplier 1 does not know the exact cost function
for supplier 2 (i.e., whether it is low- or high-cost). Supplier 1 knows, however, the two
cost functions and the probability α for supplier 2. Since supplier 2 knows exactly its
own cost, the best response (i.e., the optimal supply such that the profit is maximized)
can be obtained given the cost (i.e., type), as follows:

s∗
2 (C2H) = argmax

s2
((A− s∗

1 − s2)−C2H)s2 (4.5)

for the high-cost constant, and

s∗
2 (C2L) = argmax

s2
((A− s∗

1 − s2)−C2L)s2 (4.6)

for the low-cost constant. s∗
2 (c), where c ∈ {C2H ,C2L}, is obtained from the necessary

condition of optimality, as follows (in this case this is also sufficient, because of strict
concavity):

0 =
∂((A− s∗

1 − s2)− c)s2
∂s2

=−2s2 +A− s∗
1 − c , (4.7)

s∗
2 (c) =

A− s∗
1 − c
2

. (4.8)

However, supplier 1 knows that supplier 2 will choose the amount of supply s∗
2 (c) based

on its own cost c . Given that the probability α is known by supplier 1, the best response
can be defined as follows:

s∗
1 =argmax

s1
α((A−s1−s∗

2 (C2H))−C1)s1+(1−α)((A−s1−s∗
2 (C2L))−C1)s1. (4.9)

Again, s∗
1 can be obtained from the necessary condition of optimality (which is, again,

also sufficient), as follows:

0 =
∂α((A− s1− s∗

2 (C2H))−C1)s1 +(1−α)((A− s1− s∗
2 (C2L))−C1)s1

∂s1
,

s∗
1 =

α(A− s∗
2 (C2H)−C1)+ (1−α)(A− s∗

2 (C2L)−C1)
2

. (4.10)
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The solutions for s∗
2 (C2H), s∗

2 (C2L), and s∗
1 are

s∗
2 (C2H) =

A− 2C2H +C1

3
+

(1−α)(C2H −C2L)
6

, (4.11)

s∗
2 (C2L) =

A− 2C2L +C1

3
− α(C2H −C2L)

6
, (4.12)

s∗
1 =

A− 2C1 +αC2H +(1−α)C2L

3
. (4.13)

The solutions (4.11)–(4.13) constitute theBayesianNash equilibrium. Supplier 2 chooses
a strategy according to the type (i.e., C2H or C2L), while supplier 1 chooses a strategy
regardless of the type of supplier 2.

Note that the Nash equilibrium in the Cournot duopoly model with complete informa-
tion for supplier i is sn∗

i = (A−2ci+cj )
3 , where the other supplier is j , and ci and cj are the

cost constants of supplier i and j , respectively. It is observed that in the Cournot duopoly
model, the expected solution for supplier 1 in the incomplete information game equals
the Nash equilibrium in the complete information game (owing to the quadratic nature
of the payoff functions). However, in general this is not always true, and the Bayesian
Nash equilibrium has to be computed by considering the probability distribution for the
types of opponents rather than the expected value of type.

4.1.5 Auction with incomplete information

Competition among players in an auction can be formulated as a Bayesian game [166].
Specifically, we consider here the first-price, sealed-bid auction. In such an auction, two
bidders (i.e., i = 1,2) compete to buy a good by submitting non-negative bids (i.e., bi

and bj ) simultaneously. The bids are sealed and no bidder knows the bids of the others.
The auctioneer determines the winner, the one with the highest bid. The winning bidder
is committed to paying the price in the submitted bid. If both bidders submit the same
price, then the winner is randomly selected. Bidder i values the good at vi , and naturally
his bid cannot exceed this valuation. This means that if the bidder i wins the auction, the
price paid to the auctioneer to obtain the good is p = bi and the utility for this bidder i
is vi −p. Otherwise, his utility is zero. In this auction, each bidder knows its own value
for the good, but not the valuation by the other bidder. Each bidder assumes the value
of the other bidder to be random in [0,vmax]. The distribution of the value is assumed to
be uniform and independent.

Since the bidders are rational and seek to maximize their payoffs, and the valuations of
the bidder are not publicly available, the framework of the Bayesian game is appropriate
here. The players in this game are the bidders. The action for each player is the bid
submitted to the auctioneer. The type is defined to be the valuation for each player, and
the payoff is the utility. The action space of bidder i is defined as Ai = [0,∞), and the
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type space is Ti = [0,vmax]. The payoff function for bidder i can be expressed as

Ui (b,v) =

⎧⎨⎩
vi − bi , if bi > bj ,
vi−bi

2 , if bi = bj ,
0, if bi < bj ,

(4.14)

where b =
[

b1 b2
]T

and v =
[

v1 v2
]T

are the vectors of bids and valuations,
respectively. In this case, the action of bidder i can be defined as a function of its own type,
i.e., bi (vi ). The best response of bidder i can be obtained by maximizing his payoff, i.e.,

b∗
i (vi ) = Bi (vi ,bj(·)) = argmax

bi

∫ vmax

0
Ui (b,v)fv (vj)dvj (4.15)

= argmax
bi

(vi − bi )Pr(bi > bj(vj))+
1
2
(vi − bi )Pr(bi = bj(vj)), (4.16)

where fv (vj) is the probability density function of vj . The Bayesian Nash equilibrium is
defined as b∗

i (vi ) = Bi (vi ,b∗
j (·)) and b∗

j (vj) = Bj(vj ,b∗
i (·)), which can be obtained by

solving (4.15). To obtain explicit results, let us restrict the players’ strategies to affine
functions, of the form bi (vi ) = αi +βivi .

If bidder j adopts the affine strategy bj = αj +βjvj where it is natural to assume that
βj > 0, the best response of bidder i can be expressed as follows:

b∗
i (vi ) = Bi (vi ,bj(·)) = argmax

bi

(vi − bi )Pr(bi > αj +βjvj), (4.17)

where the case of bi = bj(vj) is ignored because Pr(bi = bj(vj)) = 0. We now obtain

Pr(bi > αj +βjvj) = Pr
(

vj <
bi −αj

βj

)
=

bi −αj

βjvmax
. (4.18)

The best response of bidder i can be obtained from the necessary condition of optimality,
as follows:

0 =
∂(vi − bi )

(
bi−αj

βj

)
∂bi

= vi − 2bi +αj . (4.19)

That is,

b∗
i (vi ) = Bi (vi ,bj(vj)) =

{ vi+αj

2 , if vi ≥ αj ,
αj , if vi < αj .

(4.20)
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Fig. 4.2 Best response of bidder i given αj = 1.

Figure 4.2 shows the best response of bidder i given αj = 1. The best response of
bidder i is constant and equal to αj if vi is less than αj . However, if vi is equal to or
greater than αj , the best response of bidder i will increase linearly with vi . For the linear
strategy, only the cases αj ≥ vmax and αj ≤ 0 will be considered. The case of αj ≥ vmax

cannot be the equilibrium since the best response for a higher type to bid must be at
least as much as a lower type’s best response (i.e., βj ≥ 0). In this case, αj ≥ vmax will
result in b∗

j (vj)≥ vj which cannot be the best response. As a result, if b∗
i (vi ) is linear,

only the case αj ≤ 0 is valid, where b∗
i (vi ) = vi+αj

2 , αi = αj/2, and βi = 1/2. When
the same procedure is applied to bidder j , we have to consider only the case αj = αi/2
and βj = 1/2. We conclude that at the Bayesian Nash equilibrium, αi = αj = 0 and
βi = βj = 1/2, and b∗

i (vi ) = vi/2.

4.2 Applications in wireless communications and networking

In this section, some applications of the Bayesian game framework in wireless communi-
cations and networking are discussed. The Bayesian game framework has been adopted
to solve various problems that arise in this context, specifically when the players lack
complete information on the types of their opponents.

4.2.1 Packet-forwarding game

In a multi-hop network, one major issue is packet forwarding. A node in a multi-hop
network could be cooperative in forwarding a packet for the other nodes. In such a
scenario, the specific type of the node will be important for the payoffs and actions (e.g.,
monitoring against attack) of the nodes in the multi-hop network. The problem can then
be formulated as a Bayesian game where the type (i.e., regular or malicious) of a node
is private information and cannot be known by the other nodes [498].
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SenderReceiver
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Forward/attack

Monitor/idle

Packet to be forwarded 

Fig. 4.3 Network model of packet forwarding.

The system model considered for the Bayesian game formulated in [498] is shown
in Fig. 4.3. There are two nodes, sender and receiver, denoted by i and j , respectively.
These nodes are players of the game. The sender receives the packet from an upstream
node. The game starts when the sender decides what to do with the received packet.
The type of sender can be regular or malicious, i.e., ti ∈ Ti = {regular,malicious}. A
regular sender will forward the received packet to the receiver, while a malicious node
(i.e., malicious sender) will attack the receiver (e.g., falsify the received packet and
send it to the receiver). A receiver is only of one type or the other in this game. The
strategy space (i.e., possible actions to be taken) of the sender depends on the type. If
the type of node is regular, the action it will take is si (ti = regular) = {forward}. That
is, a regular sender will always forward the packet to the receiver. However, if the node
is malicious, the possible actions it will take are si (ti = malicious) = {forward,attack}.
That is, a malicious sender can forward the packet or attack the receiver. The receiver
can monitor to prevent the attack, or stay idle. Therefore, the strategy space of receiver
j is Sj = {monitor, idle}.

We next define the payoffs for the sender and the receiver. The cost to a malicious
sender i to attack is denoted by CA. The probability of success of an attack is given by ψ.
If the attack on the receiver is successful, the malicious sender receives a payoff of GA.
The cost for a regular sender to forward the packet is CF . Monitoring the attack incurs
a cost of CM for the receiver, and staying idle has zero cost. The cost for the receiver
of being attacked is −GA. The payoff matrix for the case of a malicious sender can be
expressed as follows:

Monitor Stay idle
Attack (−GA−CA,GA−CM) (GA−CA,−GA)

Forward (−CF ,−CM) (−CF ,0)
(4.21)

and for the case of a regular sender it is as follows:

Monitor Stay idle
Forward (−CF ,−CM) (−CF ,0)

(4.22)

where the sender and receiver take actions in the rows and columns, respectively. The
belief of the receiver is defined as the probability α for the sender to be malicious and
1−α for the sender to be regular. Note that the receiver can monitor and prevent attack
successfully with a probability 1−β. The probability β could be the channel loss rate.
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The Bayesian Nash equilibria in pure and mixed strategies are analyzed for this game
below.

Pure strategy
For the pure strategy, the game can possess a Bayesian Nash equilibrium if the belief
of the receiver is higher than a threshold denoted by α0. The analysis is as follows. The
malicious sender always attacks and the regular sender always forwards. For the receiver
j , the expected payoff for the monitoring strategy is obtained from

Uj(monitor) = (GA−CM)α(1−β)−αβ(ψ(GA +CM)+ (1−ψ)CM)− (1−α)CM .
(4.23)

(GA−CM)α(1−β) is the payoff for successfully monitoring and preventing the attack.
αβ(ψ(GA +CM)+(1−ψ)CM) is the payoff for failing to monitor and prevent the attack.
(1−α)CM is the payoff if the sender is regular. The payoff for the receiver of staying
idle is obtained from

Uj(idle) =−αψGA. (4.24)

If Uj(idle) > Uj(monitor), then the receiver will stay idle. Therefore, the best response
for sender i would be to attack if the sender is malicious and to forward if the sender
is regular. This best response of the sender and the staying-idle strategy of receiver
is the Bayesian Nash equilibrium under the condition Uj(idle) > Uj(monitor). In
this case, it can be shown that this Bayesian Nash equilibrium can be achieved if
α < CM

(1−β)(1+ψ)GA
[498].

For Uj(idle) < Uj(monitor), the best response for the receiver will be to monitor.
Then, the best response of the sender to the monitoring strategy of the receiver will be
the forwarding strategy, regardless of the type. Therefore, there is no Bayesian Nash
equilibrium under this condition. In this case, the threshold is determined from α0 =

CM
(1−β)(1+ψ)GA

to achieve the Bayesian Nash equilibrium.

Mixed strategy
The pure-strategy Bayesian Nash equilibrium may not be desirable since the receiver
always stays idle. This solution may degrade the performance of the multi-hop network
significantly since an attack can easily occur. Therefore, a mixed-strategy Bayesian Nash
equilibrium is obtained as an alternative. Letφ andφ′ denote, respectively, the probability
that the malicious sender i chooses an attacking strategy and the probability that the
receiver chooses a monitoring strategy. The mixed-strategy Bayesian Nash equilibrium
is obtained as the probabilitiesφ andφ′ such that both sender and receiver cannot improve
their payoffs. For the receiver, the payoff for the monitoring strategy can be obtained
similarly to (4.23), as follows:

Uj(sj = monitor) = αφ(ψ(GA−CM)(1−β)+ (1−ψ)(1−β)(GA−CM)

−(1−ψ)βCM −ψβ(GA +CM))− (1−φ)αCM − (1−α)CM

= αφ(GA−GAβ(1+ψ))−CM . (4.25)
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Similarly to (4.24), the payoff of the staying-idle strategy for receiver j can be obtained
from

Uj(sj = idle) =−φψαGA. (4.26)

For the best response, the payoff of the monitoring strategy must be equal to the payoff
of the staying-idle strategy. Therefore, the probability φ can be obtained from

φ =
CM

αGA(1+ψ)(1−β)
. (4.27)

The probability φ′ can be obtained in a similar way. First, the payoff for sender i of
choosing the attacking strategy is obtained from

Ui (si = attack) =−(GA +CA)(1−β)φ′ +(GA−CA)ψ(1−φ′)

+(GA−CA)ψφ′β−CA(1−ψ)βφ′

−CA(1−φ′)(1−ψ) (4.28)

= φ′GA(β− 1)(1+ψ)+GAψ−CA. (4.29)

The payoff for the sender of choosing the forwarding strategy is obtained from

Ui (si = forward) =−CF . (4.30)

Again, for the best response, the condition Uj(sj = idle) = Ui (si = attack) must be true.
Therefore, probability φ′ is

φ′ =
GAψ−CA +CF

GA(1−β)(1+ψ)
. (4.31)

The mixed-strategy Bayesian Nash equilibrium is obtained as follows. If the sender is
malicious, the sender chooses an attacking strategy, with probability φ = CM

αGA(1+ψ)(1−β) .
If the sender is regular, the sender always chooses a forwarding strategy. The receiver
chooses a monitoring strategy with probability φ′ = GAψ−CA+CF

GA(1−β)(1+ψ) . It is also shown that
this mixed-strategy Bayesian Nash equilibrium can be reached only when the condition
of belief, i.e., α > α0, is true. Figure 4.4 shows the probability of a malicious sender
attacking the receiver under varied belief. Clearly, as the belief by the receiver that the
sender is malicious becomes larger, the probability of attack will decrease. Figure 4.5
shows the probability of the receiver monitoring and preventing the attack by the sender.
As the probability of successful attack increases, naturally the receiver will increase the
probability of monitoring.

Note that a similar game model for cooperative diversity can be found in [126].

4.2.2 K-player Bayesian water-filling game

For multiple-access control, power control is one of the important issues in CDMA and
OFDM systems. This problem becomes more challenging when the users are rational,
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Fig. 4.4 Probability of malicious sender attacking the receiver.
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Fig. 4.5 Probability of receiver monitoring and preventing the attack by the sender.

seeking to maximize their transmission rates. Game models have been formulated to
study this problem, which is known as the “water-filling game” [276]. In this game, the
objective of user i is to maximize the transmission rate, defined as follows:

Ri = log

(
1+

Pihi ,i

σ2 +
∑

j �=i Pjhj ,i

)
, (4.32)

where σ2 is the noise power, Pi is the transmission power of user i , and hj ,i is the channel
gain from the transmitter of user j to the receiver of user i . With complete channel-state
information (CSI), it is shown that there is a unique Nash equilibrium for the two-user
case (i.e., N = 2). However, the assumption of complete CSI may not be practical in an
environment in which measurement of channel gain can be noisy.
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In [202] the water-filling game is extended to consider the incompleteness of infor-
mation on channel gain. In particular, the user knows the exact value of its own channel
gain from transmitter to receiver, but only the probability distribution of channel gains of
the other users.ABayesian game model is developed to obtain the Bayesian equilibrium
of this water-filling game with incomplete information. As in the original water-filling
game, theN players of this Bayesian game are the users accessing the channel. The action
variable is the transmit power, which is bounded by the maximum threshold Pmax

i for
user (player) i . The type of player is the channel gain, which can take continuous values
from hhi

i to hlow
i . The probabilities of the channel gain to be hhi

i and hlow
i are denoted by

αhi
i and αlow

i , respectively. The payoff for a player is the achievable rate, which can be
defined as follows:

Ui = Ri = log2

(
1+

Pi (hi ,i )hi ,i

σ2 +
∑

j �=i Pj(hj ,i )hj ,i

)
, (4.33)

where the strategy (i.e., transmit power) is defined as a function of type (i.e., channel
gain). However, since the channel gain is random, the objective of each player can be
defined as follows:

max U i = Eh

(
log2

(
1+

Pi (hi ,i )hi ,i

σ2 +
∑

j �=i Pj(hj ,i )hj ,i

))
, (4.34)

s.t. Ehi ,i (Pi (hi ,i ))≤ Pmax
i , (4.35)

Pi (hi ,i )≥ 0, (4.36)

where E (·) is the expectation, h = {hj ,i |j = 1, ... ,N} is a set of channel gains, and Pmax
i

is the average maximum power for player i . The optimization model defined in (4.34)–
(4.36) is a convex optimization problem. Therefore, the solution can be obtained using
Lagrangian duality [202]:

Eh−i

(
1+

hi ,i

σ2 +Pi (hi ,i )hi ,i +
∑

j �=i Pj(hj ,i )hj ,i

)
= λi , (4.37)

where h−i is the set of channel gains of all players except player i , and λi is the dual
variable.

With theBayesian gamemodel for thewater-filling gamewith incomplete information,
the Bayesian equilibrium is obtained as the strategy profile in which no player can gain a
higher transmission rate while the other players keep their transmit powers unchanged.
The existence of this Bayesian equilibrium is proved by considering the strategy space
Pi to be convex, compact, and non-empty for each player. Also, the payoff function U i

is continuous in the strategies of all players. This payoff function U i is concave in Pi

for any P−i .
The uniqueness of the Bayesian equilibrium is proved by considering the sufficiency

condition. That is, the game has a unique equilibrium if the non-negative weighted sum
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of the payoffs is diagonally strictly concave [202]. The sum of the average payoffs is

u(p,w) =
N∑

i=1

wiU i (p), (4.38)

where p = [P1, ... ,PN ]T is the transmit power vector, and w = [w1, ... ,wN ]T is the non-
negative weight vector. This u(p,w) is diagonally strictly concave for any vector p and
fixed vector w if, for any two different vectors p0 and p1,

(p1−p0)δ(p0,w)+ (p0−p1)δ(p1,w) > 0, (4.39)

where δ(p,w) is the pseudo-gradient of u(p,w), defined as follows:

δ(p,w) =

⎡⎢⎢⎣
w1

∂U1
∂P1
...

wN
∂UN
∂PN

⎤⎥⎥⎦ . (4.40)

The detailed steps of the proof can be found in [202].
Note that the channel gain can be derived from the path-loss factor as in [465]. With a

CDMA network (Fig. 4.6), let R be the random variable representing the distance from
the transmitter to the base station. The probability density function of this distance is

fR(r) =
d
dr

(
πr2−πR2

min

πR2
max−πR2

min

)
=

2r
R2

max−R2
min

, (4.41)

where Rmin and Rmax are the minimum distance (i.e., antenna far-field reference distance)
and the maximum distance (i.e., cell radius), respectively.

CDMA
 base station

Rmin

Rmax

User

Fig. 4.6 CDMA cell with unknown channel gain.
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As in standard channel modeling, the path loss is [202]

L(R) = L(Rmin)+10n logR − 10n logRmin +Xσ, (4.42)

where L(Rmin) is the constant path loss at the reference distanceRmin, n is the propagation
exponent, Xσ is the shadowing, and σ is the standard deviation. The path-loss probability
density function αL(l), which is the belief of the other user, can be expressed as [202]:

αL(l) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ l−C0+3σ

a−C0

g(x)dx , if a− 3σ < l ≤ a+3σ,∫ l−C0+3σ

l−C0−3σ

g(x)dx , if a+3σ < l ≤ b− 3σ,∫ b−C0

l−C0−3σ

g(x)dx , if b− 3σ < l ≤ b +3σ,

0, otherwise,

(4.43)

where

g(x) =
10x/5n

R2
max−R2

min

ln10
10nerf(3)

exp(−(l −C0− x)2/2σ2)√
2πσ2

. (4.44)

erf(·) is the standard error function, C0 = L(Rmin)− 10n logRmin, a = L(Rmin), and
b = 10n logRmax +C0, where [a− 3σ,b +3σ] is the range of possible path loss.

The best response of user i can be defined as

P∗
i (li ) = argmax

Pi

∫
L−i

αL(l−i )Ui (Pi ,p−i (l−i ), (li , l−i ))dl−i , (4.45)

where l−i is a vector of path loss andL−i is the space of path loss of all users except user
i . Note that the best response defined in (4.45) is similar to the solution of (4.34)–(4.36).
The Bayesian Nash equilibrium can be obtained from the best response of all users, e.g.,
by numerical methods.

4.2.3 Channel-access game

In the wireless LAN (WLAN) environment, channel access can be competitive among
rational users. In particular, if multiple users transmit at the same time, collision will
occur. To maximize throughput, the user has to choose a transmit or backoff action
strategically. This competitive situation is formulated within a game model in [393, 223].
In [284], a Bayesian game model is proposed in view of the incomplete information
about the channel gain. Also, the interference among transmissions by different users to
different access points is also taken into consideration. Figure 4.7 shows an example of
this network model with four users and two access points.

In the network model under consideration in [284], the channel gain between the
transmitter of user i and the target access point is denoted by hi . The interference created
by this transmitter to the other user is denoted byβhi , whereβ is the crosstalk interference
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Fig. 4.7 Network model for channel access by multiple users to multiple access points with interference.

ratio, which is assumed to be identical for all users. Transmit power is also assumed to
be identical for all users. In this case, the transmission of any user i can be successful if
the SINR is higher than the threshold γthr, i.e.,

γi =
Phi

β
∑

j �=i Phj +σ2 ≥ γthr, (4.46)

where P is the transmitted power. To maintain the SINR higher than the threshold, only
a certain number of users can transmit simultaneously. Therefore, strategies of the users
to transmit or back off have to be optimized. In the Bayesian game model formulated
in [284], the players are the users. The type of user is the channel gain. A set of actions
for all types is defined as {transmit,back off}. The payoff function is defined as follows:

Ui (si ,s−i ) =
{

0, if si = back off,
Ri (s−i )−C , if si = transmit,

(4.47)

whereC is the cost of transmission (e.g., energy consumption) andRi (·) is the throughput
calculated from

Ri (s−i ) =
{

log (1+γi ) , if γi ≥ γthr,
0, otherwise,

(4.48)

where γi is obtained as in (4.46) for all j with sj = transmit. It is assumed that the channel
follows independent Rayleigh fading, in which the probability distribution function of
channel gain hi is Pr(hi ) = ρexp(−ρhi ), where 1/ρ is the average received power.
Therefore, the belief of the user in this Bayesian game is given by Pr(h−i |hi ). Again,
the Bayesian Nash equilibrium is defined as

s∗
i (hi ) = argmax

si∈Si

E (U(si ,s−i (h−i ),hi )) , (4.49)

for all hi and for all users i . Note that expectation in (4.49) is conditioned on hi . In this
case, the desirable strategy is to transmit (i.e., to achieve non-zero payoff), which can
be the Bayesian Nash equilibrium if

E (Ui (si = transmit,s−i (h−i ),hi ))≥ E (Ui (si = back off,s−i (h−i ),hi )) . (4.50)
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An interesting result from [284] is that the Bayesian Nash equilibrium is a threshold
strategy in the following form:

si (hi ) =
{

transmit, if hi ≥ hthr,i ,
back off, otherwise.

(4.51)

In particular, user i will choose to transmit if his channel gain is larger than or equal to
the threshold hthr,i . This finding is important since the user will know exactly whether
to transmit by evaluating only his channel gain. The proof of this finding is based on the
fact that the payoff is an increasing function of hi for the transmitting strategy. The trans-
mitting strategy will be the best response and, hence, Bayesian Nash equilibrium, if the
payoff for this strategy is higher than that of the backoff strategy. In this case, the thresh-
old will be the value such that the payoff for the transmitting strategy is equal to zero,
i.e., E (Ui (si = transmit,s−i (h−i ,hthr,i ))) = E (Ui (si = back off,s−i (h−i ,hthr,i ))) = 0
as defined in (4.47). The user can choose the value of the threshold so as to achieve
Bayesian Nash equilibrium.

For a simpler setting, the symmetric Bayesian Nash equilibrium is first considered
with two identical users (i.e., hthr,i = hthr). Let Λ(x) denote the cumulative distribu-
tion function of the exponential random variable (due to Rayleigh fading channel), and
Λ′(x) = 1−Λ(x). The payoff for user i for the transmitting strategy is obtained from

E (Ui (si = transmit,sj(hj),hi )) (4.52)

= Pr(hj < hthr)
(

log
(

1+
hi

σ2

)
−C

)
+Pr(hj ≥ hthr)

(
Pr
(

hi

βhj +σ2 ≥ γthr

∣∣∣∣hj ≥ hthr

)
×E

(
log

(
1+

hi

βhj +σ2

)
−C

∣∣∣∣hthr ≤ hj ≤
1
β

(
hi

γthr
−σ2

))
+Pr

(
hi

βhj +σ2 < γthr

∣∣∣∣hj ≥ hthr

)
(0−C )

)
. (4.53)

Then, because of the exponential distribution, the term Pr
(

hi
βhj+σ2 ≥ γthr

∣∣∣hj ≥ hthr

)
becomes Λ

(
1
β

(
hi

γthr
−σ2

)
− hthr

)
, and (4.53) can be simplified to

E (Ui (si = transmit,sj(hj),hi )) (4.54)

= Λ(hthr)
(

log
(

1+
hi

σ2

)
−C

)
+Λ′(hthr)

(
Λ
(

1
β

(
hi

γthr
−σ2

)
− hthr

)
×E

(
log

(
1+

hi

βhj +σ2

)∣∣∣∣hthr ≤ hj ≤
1
β

(
hi

γthr
−σ2

))
−β

)
. (4.55)

Since E (Ui (si = transmit,sj(hj),hi )) is an increasing function of hi , there exists a sym-
metric hthr for Bayesian Nash equilibrium such that E (Ui (si = transmit,sj(hj),hi )) ≥
E (Ui (si = back off,sj(hj),hi )). Extensions to multiple users can be found in [284].
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4.2.4 Bandwidth-auction game

When multiple users want to download/upload data from an access point, a bandwidth-
allocation problem arises. However, since the bandwidth of the access point is limited,
the allocation can be based on an auction mechanism. In this case, the users submit bids
(e.g., price per unit of bandwidth to be paid to the access point). Given the rule set by
the access point, the bandwidth is allocated according to the bidding outcome. Based
on the bandwidth demands, the users can strategically adjust their bidding strategies
so that their payoff is maximized. Since the demand of all users may be larger than
the total available bandwidth, the users will compete through the bidding strategy. This
bandwidth auction can be modeled using game theory [231, 252, 218].

Without knowing the bandwidth demand of the other users, the bandwidth auction can
be formulated as a Bayesian game [18]. In [18], a bandwidth auction among vehicular
nodes in a vehicular network to download data from a roadside access point is considered.
The access point is connected to the Internet. When a vehicular node moves into the
coverage area of the access point, the vehicular node can connect to the access point
and download data from the Internet. The total available bandwidth to connect to an
access point is denoted by B , and is shared among N vehicular nodes. Vehicular node i
submits a bid (i.e., strategy) si to the access point, where si is the bidding price per unit of
allocated bandwidth. Given the bids from all vehicular nodes, the amount of bandwidth
gi allocated to vehicular node i is

gi =
si ti∑N
j=1 sj tj

B, (4.56)

where ti is the duration of the connection of vehicular node i to the access point. The
players of this game are the vehicular nodes connecting to the access point. The strategy
is the bidding price as a function of the private information available to each player. The
type is duration, which is a function of bandwidth demand. The payoff is the difference
between utility and cost for the vehicular node, defined as follows:

Ui (gi ,si ,s−i , ti ,t−i ) = tiRi (gi )− δigi si ti , (4.57)

Access point

Bandwidth

auction

Competing

users 

Biddings

Bandwidth

allocation

Fig. 4.8 Bandwidth auction among competitive users.
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where s−i is the vector of bidding prices and t−i is the vector of connection duration for
all nodes except node i . δi is the cost weight, and Ri (gi ) is the utility, defined as follows:

Ri (gi ) =
{

w1 log(1+w2gi ), gi < if greq,i ,
w1 log(1+w2greq,i ), if gi ≥ greq,i ,

(4.58)

where w1 and w2 are constants. greq,i is the bandwidth requirement of the vehicular
node i .

In this Bayesian game model, the type of player is the connection duration ti , whose
value is exactly known by the vehicular node i . However, the vehicular node knows only
the probability density function for the connection duration of other nodes (i.e., belief).
This probability density function is assumed to be of the form

αT (t) =
1
β

exp(−t/β) > 0, (4.59)

where β is the average connection duration. Then the best response (i.e., best bidding
strategy) given the bidding and type of other players is

s∗
i (ti ) = argmax

si
E (Ui (gi ,si ,s−i , ti ,t−i )) (4.60)

= argmax
si

∫ ∞

0
· · ·
∫ ∞

0
αT (t)Ui (gi ,si ,s−i , ti , (t1, ... , ti−1, ti+1, ... , tN))

dt1 · · ·dti−1dti+1 · · ·dtN . (4.61)

To obtain the Bayesian Nash equilibrium, an iterative algorithm is used:

1: Initialize iteration counter k = 1.
2: Access point receives si [k], ti [k], and gthr,i from all vehicular nodes.
3: Access point computes gi [k−1] from (4.56) and allocates bandwidth to the vehicular

nodes.
4: repeat
5: k ← k +1 .
6: s∗

i [k]← argmax
si

E (Ui (gi [k − 1],si [k − 1],s−i [k − 1], ti [k − 1],t−i )).

7: Vehicular node i sends s∗
i [k] to access point.

8: Access point computes gi [k] from (4.56) and allocates bandwidth to the vehicular
nodes.

9: until max
i
|s∗

i [k]− s∗
i [k − 1]| ≤ ε .

ε is a small number (e.g., ε = 10−6) used as the termination condition.
From the performance evaluation, it is shown that with Bayesian Nash equilibrium

as the solution, the vehicular nodes can achieve higher utility than they can from the
Nash equilibrium when the average duration is used to compute the payoff. This result
confirms the usefulness of theBayesiangame formulation for the incomplete-information
environment.
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4.2.5 Bandwidth-allocation game

Abandwidth-allocation game is introduced tomodel users’competition to buy bandwidth
from an Internet service provider (ISP) [450, 451] (Fig. 4.9). The ISP can adjust the price
to maximize its profit. This results in a leader–follower (i.e., Stackelberg) game model
where the ISP is the leader and the users are the followers. The total number of users is
N . User i chooses the amount of bandwidth, denoted by si (i.e., strategy of follower),
to buy from the ISP. The ISP determines the price to be charged to user i , denoted
by pi (i.e., strategy of leader). The analysis can be classified based on the availability
of information, i.e., complete information, partially incomplete information, or totally
incomplete information.

Complete information
The payoff is expressed as follows:

Ui = Gi (si )+Hi (s)− pi si , (4.62)

where s is a vector of bandwidth of all users. Gi (si ) is the utility function due to the
bandwidth. This function is assumed to be strictly increasing, strictly concave, and non-
negative. Hi (s) is the service satisfaction function for the received QoS (e.g., delay
and loss due to congestion). This service satisfaction depends on the bandwidth used by
all other users (e.g., the outgoing link of the ISP is shared by all users). This function
Hi (s) is assumed to be non-increasing and concave. For the ISP, the payoff is the profit
function, which is defined as

F =
N∑

i=1

pi si . (4.63)

The objective of user i is to obtain

s∗
i = argmax

si
(Gi (si )+Hi (s)− pi si ) . (4.64)

For all users, s∗ can be obtained as the Nash equilibrium given p, a vector of prices
charged to all users, i.e., s∗(p). It can be shown that s∗(p) is unique because of the

Internet

Users as followers

Leader

Prices

p1,p2

Bandwidth
demand s1

s2

Internet
service

provider

Fig. 4.9 System model of network game.
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strict concavity of Gi (si ) and of Hi (s) [451]. For the ISP as the leader, the price can be
optimized as follows:

p∗ = argmax
p

N∑
i=1

pis∗(p). (4.65)

p∗ is referred to as the Stackelberg equilibrium.

Partially incomplete information
In this case, the utility function Gi (·) depends on the type ti . Types of users are assumed
to be independent. This type can be characterized by the user’s application. Specifically,
the utility function is defined as Gi (si , ti ). Given the price and known type (i.e., private
information), the objective of the user becomes

s∗
i = argmax

si
(Gi (si , ti )+Hi (s)− pi si ) . (4.66)

In this case, the Nash equilibrium can be defined as s∗(pi , ti ). Then the ISP optimizes
the profit as follows:

p∗ = argmax
p

N∑
i=1

piEti (s
∗(pi , ti )) . (4.67)

The difference between this and the complete-information case is that the Stackelberg
equilibrium is the solution which maximizes the expected profit, since the ISP does not
know the exact types of the users. However, the Nash equilibrium remains the same as
that in the complete-information case, since the service satisfaction function depends
only on the strategies but not the types of other users.

Totally incomplete information
In this case, both utility function Gi (·) and service satisfaction function Hi (·) are func-
tions of type, whose exact value is not known. Therefore, the Nash equilibrium among
the users will be affected and the objective of user i becomes

s∗
i = argmax

si

(
Gi (si , ti )+Et−i (Hi (s))− pi si

)
. (4.68)

The solution for all users (i.e., s∗
i (p, ti )) is the pure-strategy Bayesian Nash equilibrium.

Then the Stackelberg equilibrium for ISP is

p∗ = argmax
p

N∑
i=1

piEti (s
∗(p, ti )) . (4.69)

4.3 Summary

Games with incomplete information (i.e., Bayesian games) can be used to analyze sit-
uations where a player does not know the preference (i.e., payoff) of his opponents.
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This is a common situation in wireless communications and networking where there is
no centralized controller to maintain information on all users. Also, the users may not
reveal private information to others. In this chapter, the Bayesian game framework has
been studied in detail. Examples of this game in Cournot duopoly competition and first-
price sealed-bid auction have been presented. The framework has been applied to several
problems in wireless communications and networking, including packet-forwarding,
water-filling, power-control, channel-access, and bandwidth-allocation games.



5 Differential games

The differential games framework extends static non-cooperative continuous-kernel
game theory into dynamic environments by adopting the tools, methods, and models
of optimal-control theory. Optimal-control theory [58] has been developed to obtain the
optimal solutions to planning problems that involve dynamic systems, where the state
evolves over time under the influence of a control input (which is the instrument vari-
able that is designed). Differential games can be viewed as extensions of optimal-control
problems in two directions: (i) the evolution of the state is controlled not by one input but
by multiple inputs, with each under the control of a different player, and (ii) the objec-
tive function is no longer a single one, with each player now having a possibly different
objective function (payoff or cost), defined over time intervals of interest and relevance
to the problem. The relative position of differential games in this landscape is captured
in Table 5.1 [58]. Two main approaches that yield solutions to optimal-control problems
are dynamic programming (introduced by Bellman) and the maximum principle (intro-
duced by Pontryagin) [58]. The former leads to an optimal control that is a function of
the state and time (closed-loop feedback control), whereas the latter leads to one that is a
function only of the time and the initial state (open-loop control). These two approaches
have also been adopted in differential games, where the common solution concepts of
a differential game are again the Nash equilibrium and the Stackelberg equilibrium,
for non-hierarchical and hierarchical structures, respectively. Using the techniques of
optimal-control theory, not only can these solutions be obtained, but their stability can
be analyzed.

The players in a differential game can interact with a dynamic system whose state
affects the payoff, which is also affected directly by the controls of the players. For
example, Fig. 5.1(a) shows a differential game formulation of bandwidth allocation
among service providers (the players) to a group of users in a service area [264]. The
underlying dynamic system has a proportion of users selecting different providers as the
state, and this state affects the payoffs (i.e., revenue) for all providers. The providers,
through their controls, can determine the amount of allocated bandwidth, which affects
the evolution of the state.

The players themselves could also be dynamic systems, as depicted in Fig. 5.1(b),
where the users (i.e., the players) transmit data to a base station. Buffer occupancy is
the dynamic system, in which the state is the buffer length. This state evolves over
time because of the arrival and transmission of packets. The user action is to control
transmission rate or transmit power, and the payoff can be defined as the queueing delay
of packets waiting in the buffer.
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Table 5.1 Relationship between optimization, game theory, and differential games.

Single player Multiple players

Static Mathematical programming (static) Non-cooperative game
Dynamic Optimal control theory Dynamic and/or differential game theory

(a) (b)

Provider 1

Provider 2

Provider M

Proportion

of users

Service area

State: proportion of users

selecting the providers

User N

State: buffer occupancy

User 2

State: buffer occupancy

User 1

State: buffer occupancy

Transmission

rate
Base station

Dynamic system

Dynamic system

Dynamic system

Dynamic system

Fig. 5.1 Examples of a dynamic system in a differential game of (a) bandwidth allocation among service
providers (b) buffer occupancy.

5.1 Optimal-control theory

Since optimal-control theory can be viewed as a special case of a differential game,
the mathematical tools of optimal control will be useful for differential games in which
the players can adopt an optimal-control Nash equilibrium or Stackelberg equilibrium
concept. In an optimal-control game, there is one player, who is faced with an opti-
mization problem with a single objective (e.g., maximization of payoff) over a period of
time. In a differential game, on the other hand, even though there are multiple players,
if the strategies of all but one player are fixed, essentially what we have is an optimal-
control problem for the player whose action or strategy is to be determined. To solve
this optimization problem, two approaches will be discussed here, both of them for the
continuous-time case, dynamic programming, and the maximum principle. Both would
also admit natural discrete-time counterparts.

5.1.1 Dynamic programming

Dynamic programming is based on the principle of optimality [58]. With this principle,
an optimal course of action1 has the property that whatever the initial state and time
are, all remaining decisions must also constitute an optimal course of action [58]. In
line with this principle, the solution can be obtained in retrograde time. In a discrete-
time formulation, we start at all possible final states with the corresponding final times

1 The terms “optimal control,” “optimal strategy,” and “optimal course of action” will be used
interchangeably.
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(e.g., stages). The optimal action at this final time is selected for each state, and we
proceed back one step in time and determine the optimal action, again for each state.
This process is repeated until the initial time or stage is reached. The core of dynamic
programming, as applied to continuous-time optimal control, lies in a fundamental partial
differential equation (PDE) called the Hamilton–Jacobi–Bellman (HJB) equation [58].
Before proceeding further, let us formulate a generic optimal-control problem in precise
terms, as follows:

dx(t)
dt

= ẋ(t) = F (x(t),a(t)) , t ≥ 0, (5.1)

a(t) = γ(x(t), t) ∈A, (5.2)

J(a) =
∫ T

0
U (x(t),a(t))dt + q(x(T )), (5.3)

where x(t) is the state variable at time t, with x(0) = x0 as an initial condition (state);
a(t) is an action at time t that is generated by a control law γ(x(t), t); A is the action
space; U (x(t),a(t)) is the instantaneous payoff function; J(a) is the objective function;
T is the fixed terminal time; and q(x(T )) is the payoff at time T . From any state x and
any initial time t, the maximum payoff-to-go (or cost-to-go in the minimization case) is
determined by the value function, which is defined as follows:

V (x , t) = max
a(t′),t≤t′≤T

(∫ T

t
U (x(t ′),a(t ′))dt ′ + q(x(T ))

)
, (5.4)

given x(t) = x . If Vt(x) is jointly continuously differentiable in its two arguments, it
satisfies the HJB equation, written as:

−∂V (x , t)
∂t

= max
a

(
∂V (x , t)

∂x
F (x ,a)+U (x ,a)

)
, (5.5)

which has to be solved subject to the boundary condition VT (x) ≡ qT (x). The HJB
equation as a sufficient condition can be used to obtain the optimal control law γ∗

(which is what maximizes the right-hand side of (5.5)), which in turn leads to the optimal
action a∗(t) through a∗(t) = γ∗(x∗(t), t), where x∗(·) is the corresponding optimum
trajectory [58].

5.1.2 The maximum principle

While the HJB equation is a sufficient condition for the optimal-control law (and hence
optimal action), Pontryagin’s maximum principle provides a necessary optimality con-
dition for the optimal-control problem, and delivers the optimal solution in open-loop
form. A restricted version of Pontryagin’s maximum principle can be derived using the
HJB equation with twice continuously differentiable Vt as the starting point. Let us first
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introduce the function

G (x ,a) =
∂V (x , t)

∂x
F (x ,a)+U (x ,a), (5.6)

and note that the HJB equation can be written as

−∂V (x , t)
∂t

= max
a

G (x ,a). (5.7)

For the optimal-control law γ∗, the HJB equation can be rearranged as follows:

G (x ,a∗)+
∂V (x , t)

∂t
= 0, a∗(t) = γ∗(x , t). (5.8)

Because Vt is twice continuously differentiable, by applying second partial derivatives
with respect to x we obtain

∂U

∂x
+

d
dt

(
∂V (x , t)

∂x

)
+

∂V (x , t)
∂x

∂F
∂x

+
∂G

∂a
∂γ∗(x , t)

∂x
= 0. (5.9)

If there is no constraint on the control a, then ∂G
∂a = 0 for a = a∗. On the other hand,

if there are constraints on a and if a∗ is not an interior point, then it can be shown
that ∂G

∂a
∂γ∗(x ,t)

∂x = 0 as a result of the optimality condition, and ∂G
∂a and ∂γ∗(x ,t)

∂x are
orthogonal. Therefore (5.9) becomes

∂U

∂x
+

d
dt

(
∂V (x , t)

∂x

)
+

∂V (x , t)
∂x

∂F
∂x

= 0. (5.10)

Then an auxiliary variable, called the co-state λ(t), is introduced to simplify the deriva-
tion for the given state trajectory x∗ and the optimal action a∗(t) = γ∗(x∗(t), t).
Equation (5.10) can be expressed in the following form:

dλ

dt
=− ∂

∂x
(U (x∗,a∗)+λ(t)F (x∗,a∗)) =− ∂

∂x
H (λ,x∗,a∗), (5.11)

where

H (λ,x ,a) = U (x ,a)+λF (x ,a). (5.12)

The boundary condition for the terminal time of the co-state is

λ(T ) =
∂V (x∗,T )

∂x
=

∂q(x∗)
∂x

. (5.13)

This leads to the maximum principle of Pontryagin, which can in fact be derived more
directly, without the need for differentiability of the value function, or the HJB equation.
Furthermore, here the necessary condition of the maximum principle yields the control
as an open-loop one, i.e., as a function of t and x0, and not of the state x .
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The maximum principle may be stated as follows. For the optimal-control problem,
if a∗(·) is an optimal open-loop control, and x∗(·) is the corresponding state trajectory,
there exists a co-state function λ(·) such that

ẋ∗(t) = F (x∗,a∗), x(t0) = x0, (5.14)

λ̇(t) =−∂H (λ,x∗,a∗)
∂x

, (5.15)

λ(T ) =
∂qT (x∗)

∂x
, (5.16)

H (λ,x ,a) = U (x ,a)+λF (x ,a), (5.17)

a∗(t) = argmax
a∈A

H (λ,x∗,a). (5.18)

Here, H is known as the Hamiltonian associated with the optimal-control problem.

5.2 Differential games

5.2.1 Main ingredients and general results

The main ingredients of differential games are the state variable, the control variable, the
action (control) set of each player, the objective functions of the players, the information
structure, and the relevant solution concept.As in the case of an optimal-control problem,
in a differential game the state variable evolves over time, driven by the players’ actions.
The actions are generated by the strategies of the players, which are defined for each
player as mappings from the information available to that player to his action set. A
differential game is played over time t ∈ [0,T ], where the time horizon of the game can
be finite (i.e., T <∞) or infinite (i.e., T =∞). LetN denote the set of players, defined
as N = {1, ... ,N}. The state vector for the game is described by x(·), evolving as in
(5.1) according to

ẋ(t) = F (x(t),a(t)) , (5.19)

where a(t) = [a1(t), ... ,aN(t)]T is the collection of actions at time t (which can also be
viewed as a vector), with ai standing for player i’s action, and i ∈ {1,2, ... ,N}.

The objective function of a player (i.e., the payoff) is the benefit to be maximized
(or minimized in case of a negative payoff, equivalently cost). The payoff function in
a differential game can be defined in general as the discounted value of the flow of
instantaneous payoff over time. Let Ui (·) denote the instantaneous payoff function at
time t (e.g., the utility) for player i . This instantaneous payoff for player i is a function
of the actions and state variables of all players. The cumulative payoff is defined as the
integral of instantaneous payoff over time, properly discounted, that is,

Ji =
∫ T

0
Ui (x(t),ai (t),a−i (t))e−ρtdt, (5.20)
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where a−i (t) is the vector of actions of all players except player i , and ρ > 0 is the
discount factor. Note that to keep the presentation simple, we have not included a cost
on the terminal state here, such as qi (x(T )). For each player, the objective is to optimize
this cumulative payoff by choosing an action ai (·), i.e., maxai (·) Ji , more generally by
choosing a strategy γi . For this, we need to introduce possible information structures for
the players in the game.

Even though a much higher number of information structures is possible, we will
consider here the three most commonly used ones:

• Open-loop (OL) information. The players have common knowledge of the value of
the state vector at initial time t = 0, and acquire no further information.

• Feedback (FB) information.At time t, each player has access to the value of the state
vector at time t, that is x(t), and no further information.

• Closed-loop (CL) information.At time t, players have access to the values of the state
variables from time 0 to t, namely {x(s), 0≤ s ≤ t}, that is, to perfect information
on the past and present as far as the state goes.

It is possible to have a mixture of these three information structures for the play-
ers, some having OL, some FB, and others CL information, but we will not consider
such structures here. We will consider only the open-loop case (for all players) and the
feedback case (for all players), in the context of Nash equilibrium.

For the OL structure, the derivation of Nash equilibrium involves the solution of N
optimal-control problems, where, in the generic i th one, the actions of all players except
the i th are held fixed as OL policies (that is as functions of time, and not of state), and
maximization of the payoff, Ji (ai ,a−i ) is carried out with respect to ai (·), the action
variable of player i [58]:

max
ai (·)

Ji (ai ,a−i ) =
∫ T

0
Ui (x(t),ai (t),a−i (t))e−ρtdt, (5.21)

s.t.
dx(t)

dt
= ẋ(t) = F (x(t),a(t)) , x(0) = x0. (5.22)

This problem can be solved for each a−i using the maximum principle of Pontryagin,
discussed earlier. The Hamiltonian function is defined as

Hi (x(t),ai (t),a−i (t);λi (t)) = e−ρtUi (x(t),ai (t),a−i (t))+μ(t)F (x(t),a(t)) ,
(5.23)

where λi (t) = μi (t)e−ρt is the co-state.
A set of necessary conditions for the open-loop solution of (5.21)–(5.22) now arise

from the maximum principle:

∂Hi (x(t),ai (t),a−i (t);λi (t))
∂ai (t)

= 0, (5.24)

−∂Hi (x(t),ai (t),a−i (t);λi (t))
∂x(t)

=
dλi (t)

dt
, (5.25)
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given the two-point boundary conditions xi (0) = x0, λi (T ) = 0. For the infinite-horizon
problem, we require in addition that the system be stable under optimal control, that is,
lim

t→∞
xi (t) = 0. Introducing H̃i := eρtHi , we obtain a relationship equivalent to (5.25)

but without the exponential term, and in terms of μi , and subject again to the boundary
condition μi (T ) = 0, for all i :

−∂H̃i (x(t),ai (t),a−i (t))
∂x(t)

+ ρμi (t) =
dμi (t)

dt
. (5.26)

For the feedback Nash equilibrium, say {γ∗
1 (x(t), t), ... ,γ∗

N(x(t), t)}, the underlying
optimization problem for each player, say player i , as the counterpart of (5.21)–(5.22),
would be

max
γi

Ji (γi ,γ∗
−i ) =

∫ T

o
Ui
(
x(t),γi (x(t), t),γ∗

−i (x(t), t)
)
e−ρtdt, (5.27)

subject to dynamics (5.22)witha replaced byγ. The tool to be used in this case is dynamic
programming, and particularly the HJB equation. If Vi (x , t) denotes the value function
(cost-to-go function) associated with player i , assuming that it is jointly continuously
differentiable in x and t, we have as a sufficient condition for a feedbackNash equilibrium
solution the following set of coupled PDEs:

−∂Vi (x , t)
∂t

= max
ai

[
∂Vi (x , t)

∂x
F
(
x ,ai ,γ∗

−i (x , t)
)
+ e−ρtUi

(
x(t),ai ,γ∗

−i (x(t), t)
)]

,

(5.28)
with boundary conditions Vi (x ,T )≡ 0, for i = 1, ... ,N . The ai that maximize the right-
hand side of the HJB PDEs above are clearly functions of both x and t (in general), and
they constitute the feedback Nash equilibrium solution {γ∗

1 (x(t), t), ... ,γ∗
N(x(t), t)} of

the differential game.
If we introduce, as we did in the case of the open-loop solution, the transformation

Ṽi (x , t) = eρtVi (x , t), i = 1, ... ,N , then, given that

∂Ṽi (x , t)
∂t

= ρṼi (x , t)+ eρt ∂Vi (x , t)
∂t

, (5.29)

we arrive at the equivalent set of PDEs without the exponential term:

−∂Ṽi (x , t)
∂t

+ρṼi (x , t)=max
ai

[
∂Ṽi (x , t)

∂x
F
(
x ,ai ,γ∗

−i (x , t)
)
+Ui

(
x(t),ai ,γ∗

−i (x(t), t)
)]
,

(5.30)
where the boundary conditions are again Ṽi (x ,T )≡ 0, i = 1, ... ,N .

5.2.2 Stackelberg differential game

While under the Nash equilibrium in a differential game all players decide on their
actions or strategies simultaneously, under the Stackelberg solution there is a hierar-
chy in decision-making, either in the announcement and execution of actions or in the
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announcement of strategies. We will call such games Stackelberg differential games.
They arise in many applications, with one area being management science, particularly
supply-chain management [204]. Here we will consider the two-player case, where one
player is the leader and the other one a follower, both making decisions over a time hori-
zon T . In an open-loop Stackelberg differential game, the leader chooses the action path
ale(t) first. Then the follower determines its optimal action path afo(t) in response to the
action path of the leader. A Stackelberg solution is obtained when the leader reaches the
maximum payoff, anticipating (and taking into account) the optimal action path of the
follower. If the information structure is closed-loop instead of open-loop, then the leader
will have to announce a strategy using the dynamic information it has (instead of a course
of action), and obtaining the Stackelberg solution in that case is very complicated since
its derivation involves the solution of functional optimization problems; for details see
[58]. In its place, a solution concept that is introduced is that of a “feedback Stackelberg
solution,” which provides the leader with an advantage in decision-making only stage-
wise (in a discrete time framework) or at each point in time, and not during the entire
course of the game. Such a definition allows for the solution to be computed backwards
in time, by solving static Stackelberg games at each point in time, assuming that both the
leader and the follower have access to the current value of the state. Below we discuss
the derivation of the Stackelberg solution, first for the open-loop case and then under the
feedback Stackelberg concept with closed-loop feedback information available to both
players.

Open-loop solution of a Stackelberg differential game
An open-loop solution can be obtained as follows. First, the best response action path
of the follower is anticipated by the leader. Specifically, the optimal-control problem
of the follower is formulated and solved given the action path of the leader. Then, the
optimal response action path of the follower (i.e., best response) is used in the optimal-
control problem formulated for the leader, the solution of which leads to the Stackelberg
solution.

The given action path of the leader is denoted by ale(·). The optimal-control problem
of the follower is defined as follows:

max
afo

Jfo(x0,ale(t),afo(t)) =
∫ T

0
e−ρfotUfo(x(t),ale(t),afo(t))dt + e−ρfoTqfo(x(T )),

(5.31)
given the constraint on the state variable,

dλ

dt
= ẋ(t) = F (x(t),ale(t),afo(t)), (5.32)

for x(0) = x0, where ρfo > 0 is the discount rate of the follower, Ufo(x(t),ale(t),afo(t))
is the instantaneous payoff function, qfo(x(T )) is the terminating condition, and x0 is
the initial state. The Hamiltonian of the follower is

Hfo(x ,λ,ale,afo) = Ufo(x ,ale,afo)+λF (x ,ale,afo), (5.33)
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where λ is the co-state. The adjoint equation is

λ̇ = ρλ− ∂

∂x
Hfo(x ,λ,ale,afo), (5.34)

λ(T ) =
∂

∂x
qfo(x(T )). (5.35)

The optimal action path of the follower is

a∗
fo(t) = arg max

afo∈Afo

Hfo(x(t),λ,ale(t),afo), (5.36)

whereAfo is the action set of the follower.Assuming that this solution is unique for each
action path of the leader, let us write it as follows to show the dependence on the action
path of the leader: a∗

fo(t) = Bfo(x(t),λ(t),ale(t)). Note that, assuming differentiability
and that the action set of the follower is open, Bfo(x(t),λ(t),ale(t)) must satisfy the
first-order condition

∂

∂afo
Hfo(x ,λ,ale,Bfo) = 0. (5.37)

Then, the optimal-control problem faced by the leader is defined as follows:

max
ale

Jle(x0,ale), (5.38)

Jle(x0,ale) =
∫ T

0
e−ρletUle(x ,ale,Bfo(x ,λ,ale))dt + e−ρleTqle(x(T )),

ẋ = F (x ,ale,Bfo(x ,λ,ale)),

λ̇ = ρleλ−
∂

∂x
Hfo(x ,λ,ale,Bfo(x ,λ,ale)),

λ(T ) =
∂

∂x
qfo(x(T )),

for x(0) = x0, where ρle is the discount rate of the leader. The Hamiltonian of the leader
is then

Hle(x ,λ,φ,θ,ale) = Ule(x ,ale,Bfo(x ,λ,ale))+φF (x ,ale,Bfo(x ,λ,ale))

+θ

(
ρfoλ−

(
∂

∂x
Hfo(x ,λ,ale,Bfo(x ,λ,ale))

))
, (5.39)

where φ and θ are the co-states of the state variable x and of the co-state λ of the follower,
respectively. The adjoint equations are

φ̇ = ρleφ−
∂

∂x
Hle(x ,λ,φ,θ,ale,Bfo(x ,λ,ale)) (5.40)
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= ρleφ−
∂

∂x
Ule(x ,ale,Bfo(x ,λ,ale))−φ

∂

∂x
F (x ,ale,Bfo(x ,λ,ale))

+ θ
∂2

∂x2 Hfo(x ,λ,ale,Bfo(x ,λ,ale)), (5.41)

φ(T ) =
∂

∂x
qle(x(T ))− θ(T )

∂2

∂x2 qfo(x(T )), (5.42)

θ̇ = ρleθ−
∂

∂λ
Hle(x ,λ,φ,θ,ale,Bfo(x ,λ,ale)) (5.43)

= ρleθ−
∂

∂λ
Ule(x ,ale,Bfo(x ,λ,ale))− θ

∂

∂λ
F (x ,ale,Bfo(x ,λ,ale))

+ θ
∂

∂λ

∂

∂x
Hfo(x ,λ,ale,Bfo(x ,λ,ale)), (5.44)

θ(0) = 0. (5.45)

The second-order terms in these adjoint equations are due to the hierarchical game
structure, in which the optimal-control problem of the leader has as a constraint the
solution of the optimal-control problem of the follower. The leader’s optimal action path
is defined as

a∗
le(t) = arg max

ale∈Ale

Hle(x(t),λ(t),φ(t),θ(t),ale), (5.46)

whereAle is the action set of the leader, which we assume to be open. Then, a necessary
optimality condition for the leader’s optimal action path is computed from

∂

∂ale
Hle(x(t),λ(t),φ(t),θ(t),a∗

le) = 0, (5.47)

and the optimal action path of the follower a∗
fo at the Stackelberg equilibrium can be

obtained by substituting a∗
le into Bfo(x(t),λ(t),a∗

le).
However, the best response for the follower, i.e., Bfo(·), cannot always be expressed

in closed form. In this case, the equality constraint from the follower’s optimal-control
problem is introduced into the optimal-control problem formulation of the leader. Let
a∗
le and a∗

fo denote the open-loop Stackelberg equilibria for the leader and follower,
respectively, and let x∗ be the corresponding state variable trajectory. Assume that F (·),
Ule(·), qle(·), Ufo(·), and qfo(·) are twice continuously differentiable on x ; Hfo(·) is
continuously differentiable and strictly convex on afo; and F (·), Ule(·), and Ufo(·) are
continuously differentiable on ale. Then there exist continuously differentiable functions
λ(·), φ(·), θ(·), and μ(·) which satisfy the following relationships:

ẋ∗ = F (x ,a∗
le,a

∗
fo), x∗(0) = x0, (5.48)

λ̇ = ρfoλ−
∂

∂x
Hfo(x∗,λ,a∗

le,a
∗
fo), (5.49)

λ(T ) =
∂

∂x
qfo(x∗(T )), (5.50)
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φ̇ = ρleφ−
∂

∂x
Hle(x∗,λ,φ,θ,μ,a∗

le,a
∗
fo), (5.51)

φ(T ) =
∂

∂x
qle(x∗(T ))− θ(T )

∂2

∂x2 qfo(x∗(T )), (5.52)

θ̇ = ρleθ−
∂

∂λ
Hle(x∗,λ,φ,θ,μ,a∗

le,a
∗
fo), (5.53)

θ(0) = 0, (5.54)

0 =
∂

∂ale
Hle(x∗,λ,φ,θ,μ,a∗

le,a
∗
fo), (5.55)

0 =
∂

∂afo
Hle(x∗,λ,φ,θ,μ,a∗

le,a
∗
fo), (5.56)

0 =
∂

∂afo
Hfo(x∗,λ,a∗

le,a
∗
fo), (5.57)

where Hfo is defined as in (5.33), and Hle is defined as follows:

Hle(x ,λ,φ,θ,μ,ale,afo) = Ule(x ,ale,afo(x ,λ,ale))+φF (x ,ale,afo(x ,λ,ale))

+θ

(
ρλ− ∂

∂x
Hfo(x ,λ,ale,afo)

)
+μ

∂

∂afo
Hfo(x ,λ,ale,afo). (5.58)

Note that the open-loop Stackelberg equilibrium is static, in the sense that the players
have to commit to action paths at the initial time, regardless of how the state evolves. In
this sense, the open-loop Stackelberg equilibrium is not time-consistent.

Feedback Stackelberg solution
Unlike the open-loop Stackelberg equilibrium, the feedback Stackelberg equilibrium
differential game at any time t is a function of the value of the state variable at that time.
Therefore, the feedback Stackelberg equilibrium can be considered to be the perfect
state-space equilibrium, since the necessary optimality condition must be satisfied for
all values of the state variable and at each point in time. In other words, the feedback
Stackelberg equilibrium is subgame-perfect, since the solution does not depend on the
initial condition, and the solution remains optimal at any time instance after the game
starts.

The feedback Stackelberg equilibrium can be physically interpreted as the sequence of
solutions applied to a discrete-time dynamic game. In particular, the original differential
game is divided into multiple sampled-stage games. Each solution is applied to each
discrete time in which the player can observe the value of the state variable. Therefore,
the feedback Stackelberg equilibrium of each sampled-state game can be obtained by
solving a sequence of approximately defined open-loop Stackelberg games. Let Vle(x)
and Vfo(x) denote the feedback Stackelberg value-to-go of the leader and the follower,
respectively. This value-to-go is defined in current-value form at any time given the value
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of the state variable x . For a given policy ale(t,x), the HJB equation of the follower is
[532, 204]

ρfoVfo−
∂Vfo(x)

∂t
= max

afo∈Afo

(
∂Vfo(x)

∂x
F (x ,ale(t,x),afo

)
+Ufo(x ,ale(t,x),afo)), (5.59)

for Vfo(x(T )) = qfo(x(T )). The best response of the follower at each point in time is
expressed as

Bfo(x ,ale,
∂Vfo

∂x
) = arg max

afo∈Afo

(
∂Vfo(x)

∂x
F (x ,ale,afo)+Ufo(x ,ale,afo)

)
. (5.60)

Then the HJB equation of the leader can be written as

ρleVle−
∂Vle(x)

∂t
= max

ale∈Ale

(
∂Vle(x)

∂x
F
(

x ,ale(t,x),Bfo

(
x ,ale,

∂Vfo

∂x

))
+Ule

(
x ,ale,Bfo

(
x ,ale,

∂Vfo

∂x

)))
, (5.61)

for Vle(x(T )) = qle(x(T )). The maximization of the HJB equation of the leader then
yields the optimal feedback action,

a†
le(t,x) = arg max

ale∈Ale

(
∂Vle(x)

∂x
F
(

x ,ale(t,x),Bfo

(
x ,ale,

∂Vfo

∂x

))
+Ule

(
x ,ale,Bfo

(
x ,ale,

∂Vfo

∂x

)))
. (5.62)

The optimal action path of the follower is

a†
fo(t,x) = Bfo

(
x ,a†

le,
∂Vfo

∂x

)
. (5.63)

With some manipulation, the HJB equation for the entire game can be expressed as

ρleVle−
∂Vle(x)

∂t
=

∂Vle(x)
∂x

F (x ,a†
le(t,x),a†

fo(t,x))

+Ule(x ,a†
le(t,x),a†

fo(t,x)), (5.64)

ρfoVfo−
∂Vfo(x)

∂t
=

∂Vfo(x)
∂x

F (x ,a†
le(t,x),a†

fo(t,x))

+Ufo(x ,a†
le(t,x),a†

fo(t,x)), (5.65)

for Vle(x(T )) = qle(x(T )) and Vfo(x(T )) = qfo(x(T )). These equations for Vle(x) and
Vfo(x) can be solved to obtain the feedback Stackelberg equilibrium of a†

le(t,x) and
a†
fo(t,x) for the leader and follower, respectively.
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5.3 Applications of differential games in wireless communications
and networking

For routing in a mobile ad hoc network (MANET), the forwarding nodes, as players,
have an incentive from the destination, in terms of price, to allocate transmission rate to
forward packets from the source. A differential game for duopoly competition is applied
to model this competitive situation.

In [299], the traffic routing in an ad hoc network is formulated as a differential game.
The network under consideration is shown in Fig. 5.2, in which the source transmits
data to the destination. There are two forwarding nodes, considered to be the players in
this game. As the destination pays these forwarding nodes according to the amount of
forwarded data, the two nodes compete with each other by adjusting the forwarding rate
(i.e., action denoted by ai (t) for player i at time t) to maximize their utility over the time
duration [0,∞]. Let the payment from the destination at time t be denoted by P(t). The
payoff function for player i can be expressed as

Ji =
∫ +∞

0
e−ρt

(
P(t)ai (t)− cai (t)−

1
2
ai (t)2− g(a)

)
dt, (5.66)

where a quadratic cost function (i.e., cai (t)+ 1
2ai (t)2 + g(a)) is considered, c is a cost

parameter, and g(a) is a cost function given vector a of the actions of the players. Note
that the cost is quadratic, for example because of the precipitous discharge of battery life.
ρ > 0 is the discount rate. For the payment, the following evolution (i.e., a differential
equation of Tsutsui and Mino [480]) is considered:

dP(t)
dt

= Ṗ(t) = K (E − a1(t)− a2(t)−P(t)), (5.67)

where K and E are constants. If g(a) = 0, this game is reduced to an infinite-horizon
duopolistic competition. The feedback Nash equilibrium strategies of this game can be

Source

Relay 2

(player 2)

Forwarding

Forwarding

Relay 1

(player 1)

Payment

Destination

Fig. 5.2 Packet routing as a differential game.
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expressed as [299]
a∗
i = P∗(t)− c −K (AP∗(t)−B), (5.68)

for i = 1,2, where

P∗(t) =
(

P0−
E +2(c −KB)

3− 2KA

)
e−K(3−2KA)t +

E +2(c −KB)
3− 2KA

, (5.69)

A =
ρ+6K −

√
(ρ+8K )2− 12K 2

6K 2 , (5.70)

B =
−EKA+ c − 2KcA

ρ− 3K 2A+3K
, (5.71)

where P0 is the initial payment at time t = 0. However, for general g(a) the payoff
optimization becomes a coupling constraint. In [299], an iterative approach based on
greedy adjustment is proposed to obtain the solution. In particular, the algorithm gradu-
ally increases the forwarding rate of the player as long as the payoff is non-decreasing. If
the payoff for one player decreases, the algorithm will allow the other players to adjust
the forwarding rate until none of players can gain a higher payoff.

5.4 Summary

In this chapter, the topic of differential games has been introduced. In a differential game,
the players adapt their actions to gain the highest payoffs over the time period. Therefore,
optimal-control theory is applied to obtain the equilibrium solution. The basics of opti-
mal control and its solution methods based on dynamic programming and Pontryagin’s
maximum principle have been presented. The general form of a non-cooperative differ-
ential game has been introduced, with examples from oligopoly competition to obtain
open-loop, closed-loop, and feedback equilibria. The topic of hierarchical (Stackelberg)
differential game has also been covered, and solution methods for both open-loop and
feedback Stackelberg equilibria have been discussed. To this end, to applications of a
differential game wireless communications and networking have been presented.
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Evolutionary-game theory has been developed as a mathematical framework to study
the interaction among rational biological agents in a population [152]. In evolutionary-
game theory, the agent adapts (i.e., evolves) the chosen strategy based on its fitness (i.e.,
payoff). In this way, both static and dynamic behavior (e.g., equilibrium) of the game
can be analyzed.

Evolutionary-game theory has the following advantages over the traditional non-
cooperative game theory we have studied in the previous chapters:

• As we have seen, the Nash equilibrium is the most common solution concept for
non-cooperative games. An N-tuple of strategies in an N-player game is said to be in
Nash equilibrium if an agent (player) cannot improve his payoff by moving to another
strategy, given that the other players stay with their strategies at Nash equilibrium.
Specifically, the strategy of a player at Nash equilibrium is the best response to the
strategies of the other players, again at Nash equilibrium. However, the Nash equilib-
rium is not necessarily efficient, as it would be possible for all players to benefit from
a collective behavior. Also, there could be multiple Nash equilibria in a game, and if
the agent is restricted to adopting only pure strategies, the Nash equilibrium may not
exist. In this case, the solution of the evolutionary game (i.e., evolutionarily stable
strategies (ESS) or evolutionary equilibrium) can serve as a refinement to the Nash
equilibrium, especially when multiple Nash equilibria exist.

• In a traditional non-cooperative game, the agents are assumed to be rational. That
is, an agent will always be able to maximize his payoff, which is consistent with
his preferences among different alternative outcomes. This rationality of the agent
requires complete information and a well-defined and consistent set of choices (e.g.,
actions). However, in reality, this assumption rarely holds. A number of results from
experimental economics and the social sciences have shown that strong rationality (i.e.,
so-called hyperrational behavior) rarely exists and cannot describe the behavior of real
human beings. For example, people tend to have limited information about available
choices and consequences. Also, people occasionally make decisions irrationally. On
the other hand, evolutionary-game theory has been developed to model the behavior
of biological agents (e.g., insects and animals). Hence, a strong rationality assump-
tion is not required. Therefore, an evolutionary-game formulation will be suitable for
scenarios that involve human beings as agents who may not display hyperrational
behavior.
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• Traditional non-cooperative game theory has mostly been developed in a static set-
ting. It cannot capture the adaptation of agents to change their strategies and reach
equilibrium over time. Although in a non-cooperative game the dynamics of the
decision-making process can be modeled in extensive form, such an extensive-form
description becomes intractable for most game settings with reasonable complexity.
In addition, it relies on the selection of a strategy at the outset of the game. This can-
not capture the fact that an agent can observe his opponent’s behavior, learn from this
observation, and optimize the strategy selection according to the knowledge gained. In
contrast, an evolutionary game is based on an evolutionary process, which is dynamic
in nature.An evolutionary game establishes the dynamics of interactions among agents
in the population (i.e., strategy adaptation over time).

6.1 The evolutionary process

In an evolutionary game, the game is played repeatedly by agents who are selected
from a large population. Two major mechanisms of the evolutionary process and the
evolutionary game are mutation and selection. Mutation is the mechanism of modifying
the characteristics of an agent (e.g., genes of the individual or strategy of the player). As
a result, agents with new characteristics are introduced into the population. The selection
mechanism is then applied to retain the agents with high fitness while eliminating agents
with lowfitness [170]. In particular,while themutationmechanism is used tomaintain the
diversity of a population, the selection mechanism is used to promote agents with higher
fitness over other agents. In the evolutionary game, the mutation mechanism is described
by evolutionarily stable strategies (ESS), and the selection mechanism is described by
replicator dynamics. In other words, ESS is used to study the static evolutionary game
while replicator dynamics is used for the dynamic evolutionary game.

6.1.1 Evolutionarily stable strategies

ESS is the key concept in the evolutionary process in which a group of agents choosing
one strategy will not be replaced by other agents choosing a different strategy when the
mutation mechanism is applied. In the game context, a pure or mixed strategy s chosen
by the initial group of agents in a population is referred to as the incumbent strategy. A
small group of agents whose population share is ε∈ (0,1) may choose a different pure or
mixed strategy s ′, referred to as the mutant strategy. In this case, an agent selected from
the population will use strategies s and s ′ with probabilities 1− ε and ε, respectively.
The payoff for the selected agent in this game is identical to that in the traditional non-
cooperative game when the player chooses a mixed strategy with probability ε (i.e.,
s = εs ′ +(1− ε)s). Let u(s,s ′) denote the payoff for strategy s given that the opponent
chooses strategy s ′. Strategy s is called evolutionarily stable if, for each strategy s ′ 	= s ,
there is ε̂ ∈ (0,1) such that the following condition is satisfied:

u(s,εs ′ +(1− ε)s) > u(s ′,εs ′ +(1− ε)s), (6.1)
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for all ε ∈ (0, ε̂). With ESS, the mutant population share will tend to decrease, since it
gains lower payoff and, hence, has lower growth rate. In this case, strategy s is then
immune to mutation.

We now establish the relationship between ESS and the Nash equilibrium. If we
consider the linear payoff function from (6.1), which would definitely be the case in a
matrix game with mixed strategies, we have the following condition:

(1− ε)u(s,s)+ εu(s,s ′) > (1− ε)u(s ′,s)+ εu(s ′,s ′). (6.2)

As the value of ε approaches zero, by continuity we have u(s,s)≥ u(s ′,s), which shows
(by symmetry) that ESS is a mixed-strategy Nash equilibrium (MSNE). This shows
that for s to be ESS, it is necessary that (s,s) be a MSNE. However, this may not be
sufficient, unless u(s,s) > u(s ′,s). If, on the other hand, u(s,s) = u(s ′,s), then we
need as a second-order condition u(s,s ′) > u(s ′,s ′), which again provides a sufficient
condition for ESS.

Hawk–dove game
The classical example of an evolutionary game is the Hawk–Dove game [463]. In this
game, there are two types of agents competing for a resource (i.e., food) of a fixed value
V . Each agent chooses his strategy from a set of two possibilities (i.e., hawk and dove).
If an agent chooses to be hawk, it will display aggressive behavior and will not stop
fighting until it is injured or until the opponent retreats. On the other hand, if the agent
chooses to be a dove, it will display mild behavior and always retreat instantly if the
opponent initiates aggressive behavior. Therefore, we have the following scenarios in
this game:

• If both agents adopt hawk behavior (i.e., competing aggressively), the competition
will result in both being equally injured. The cost of competition reduces the value of
the resource by a constant C .

• If one agent adopts hawk behavior and the other agent adopts dove behavior, the dove
immediately retreats and earns zero payoff, while the hawk captures the resource V .

• When both adopt dove behavior, they will share the resource equally.

According to these scenarios, the payoff matrix for the Hawk–Dove game can be
expressed as follows:

Hawk Dove
Hawk 1/2(V −C ),1/2(V −C ) V ,0
Dove 0,V V /2,V /2

, (6.3)

where the first and second elements correspond to the payoffs of agents choosing strategy
row-wise or column-wise, respectively.The strategywill be evolutionarily stable if,when
almost all agents in the population adopt this strategy, no mutant (i.e., a small number
of agents adopting a different strategy) can invade. In other words, the small number of
agents cannot make the large group of agents move from the ESS. This property can be
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demonstrated as follows. Let φ(s1,s2) denote the change in fitness for an agent adopting
strategy s1 against an opponent adopting strategy s2, and let f (s) denote the total fitness
of an agent adopting strategy s . Let f0 denote the initial fitness, s denote the ESS, and
s ′ denote the mutant strategy. The fitness of the agents adopting the different strategies
can be expressed as follows:

f (s) = f0 +(1− ε)φ(s,s)+ εφ(s,s ′), (6.4)

f (s ′) = f0 +(1− ε)φ(s ′,s)+ εφ(s ′,s ′), (6.5)

where ε is the proportion of the population adopting the mutant strategy s ′. For ESS, the
fitness of an agent adopting strategy s must be larger than that of those members of the
population choosing strategy s ′, i.e., f (s) > f (s ′). If ε approaches zero, it is required
that either of these conditions holds, i.e.,

φ(s,s) > φ(s ′,s), (6.6)

φ(s,s) = φ(s ′,s) and φ(s,s ′) > φ(s ′,s ′). (6.7)

With the payoff matrix of the Hawk–Dove game, the dove is not ESS since a pure
population of doves can be invaded by a hawk mutant. In this case, if the value V of
the resource is larger than the cost of both agents behaving aggressively (i.e., V > C ),
then the hawk is ESS as there is value in both agents competing for a resource even
though they would be hurt. Otherwise, there is no ESS in this game if agents adopt a
pure strategy. However, if mixed strategies are considered, there could be ESS in this
Hawk–Dove game.

6.1.2 Replicator dynamics

The population can be divided into multiple groups, and each group adopts a different
pure strategy. Replicator dynamics can model the evolution of the group size over time.
Unlike ESS, in replicator dynamics agents will play only pure strategies. A large but
finite group of agents adopts strategy s ∈ S, where S is a set of strategies. Let ns(t)
denote the number of agents using strategy s at time t. The total number of agents in a
population is denoted by N(t) =

∑
s∈S ns(t). In this way, the proportion or fraction of

agents using a pure strategy s (i.e., population share) is denoted by xs(t) = ns(t)/N(t).
The population state can then be defined as the vector x(t) =

[
· · · xs(t) · · ·

]T
of

dimension |S|. Let the payoff to an agent using strategy s given the population state
x be denoted by u(s,x). The average payoff for the population, which is the payoff
to an agent selected randomly from a population, is given by u(x) =

∑
s∈S xsu(s,x).

Naturally, the reproduction rate of each agent (i.e., the rate at which the agent switches
from one strategy to another) depends on the payoff. In other words, agents will switch
to the strategy that leads to a higher payoff. The larger the payoff, the faster the strategy
switching. As a result, the group size of agents ensuring higher payoff will grow over
time because the agents having low payoff will switch their strategies. Based on this
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fact, the dynamics of the population share can be expressed as follows:

ẋs = xs (u(s,x)−u(x)) , (6.8)

where ẋs is the time derivative of the population state xs .With these dynamics, the groups
of agents with payoffs higher than the average will grow in size over time.

The evolutionary equilibrium can be determined at ẋs = 0. That is, the fractions of
the population choosing different strategies cease to change. It is important to analyze
the stability of the replicator dynamics to determine the evolutionary equilibrium. Evo-
lutionary equilibrium can be stable (i.e., equilibrium is robust to the local perturbation)
in the following two cases:

• Given an initial point of replicator dynamics sufficiently close to the evolutionary
equilibrium, the solution path of replicator dynamics will remain arbitrarily close to
the equilibrium. This is referred to as Lyapunov stability.

• Given an initial point of replicator dynamics close to the evolutionary equilibrium,
the solution path of replicator dynamics converges to the equilibrium. This is referred
to as asymptotic stability.

Two main approaches to prove the stability of evolutionary equilibrium are based on the
Lyapunov function and eigenvalues of a corresponding matrix of the linearized system,
as in the study of the stability of non-linear systems. The details for such a stability
analysis can be found in [462].

The Prisoner’s Dilemma
Replicator dynamics canbe established for the classical gameofThePrisoner’sDilemma.
In this game, two agents choose a strategy of either cooperate or defect. The payoffmatrix
of this game can be written as follows:

Cooperate Defect
Cooperate R,R S ,T

Defect T ,S P,P
, (6.9)

where T > R > P > S . For simplicity, it is assumed that the payoffs of The Prisoner’s
Dilemma are identical for all agents in a large population. Let xC and xD denote the
proportions of the population adopting cooperate and defect strategies, respectively. The
average fitnesses of agents adopting these two strategies are denoted by uC and uD,
respectively. The average fitness of the entire population is u. These fitness values can
be obtained from

uC = u0 + xCφ(C,C)+ xDφ(C,D), (6.10)

uD = u0 + xCφ(D,C)+ xDφ(D,D), (6.11)

u = xCuC + xDuD, (6.12)

where u0 is an initial payoff and φ(s1,s2) is the change in fitness for an agent adopt-
ing strategy s1 against an opponent adopting strategy s2. The future proportion of the



6.1 The evolutionary process 143

population adopting the strategies (i.e., x̂C and x̂D) depends on the current proportion
(i.e., xC and xD). This relationship can be expressed as follows:

x̂C =
xCuC

u
, (6.13)

x̂C− xC =
xC (uC− u)

u
, (6.14)

x̂D =
xDuD

u
, (6.15)

x̂D− xD =
xD (uD−u)

u
. (6.16)

If we consider a small time interval, the difference equations can be approximated by
the differential equations

dxC

dt
= ẋC ≈

xC (uC−u)
u

, (6.17)

dxD

dt
= ẋD ≈

xD (uD− u)
u

. (6.18)

These differential equations are the replicator dynamics. ForThe Prisoner’sDilemma,we
have uC = u0 +xCR +xDS and uD = u0 +xCT +xDP . Since T > R and P > S , it is clear
that uD > uC, and uD−u

u > 0 and uC−u
u < 0. Therefore, as time increases, the proportion of

the population adopting the cooperate strategy will approach zero (i.e., become extinct).
From replicator dynamics, the defect strategy constitutes the evolutionary equilibrium.
Also, it can be proven that the defect strategy is the ESS of The Prisoner’s Dilemma
game [504].

6.1.3 The evolutionary game and reinforcement learning

Reinforcement learning (i.e., Q-learning) of agents can be modeled as an evolutionary
game [481]. For a game with two players, let U1 and U2 denote payoff matrices for
players 1 and 2, respectively. With two strategies (i.e., s1 and s2), these matrices are
defined as follows:

U1 =
[

u1(s1,s1) u1(s1,s2)
u1(s2,s1) u1(s2,s2)

]
, U2 =

[
u2(s1,s1) u2(s1,s2)
u2(s2,s1) u2(s2,s2)

]
, (6.19)

where ui (s,s ′) is the payoff for player i when this player chooses strategy s while the
other player chooses s ′. The dynamics of player 1 can be expressed as follows:

dxs,1

dt
= ẋs,1 = xs,1α((U1x2)s − x1U1x2)+ xs,1α

∑
s′

xs′,1 ln
(

xs′,1

xs,1

)
, (6.20)

and the dynamics of player 2 can be expressed as follows:

dxs,2

dt
= ẋs,2 = xs,2α((U2x1)s − x2U2x1)+ xs,2α

∑
s′

xs′,2 ln
(

xs′,2

xs,2

)
. (6.21)



144 Evolutionary games

These dynamics represent the evolution of both players using the Q-learning algorithm
in terms of probability of selecting a strategy (i.e., xs,i is the probability of selecting
strategy s of player i). It can be observed that the first terms of (6.20) and (6.21),
which account for the strategy-selection process of the players, are the same as those for
replicator dynamics. The second terms account for the mutation process. Specifically, the
mutation and selection processes can be considered as the exploration and exploitation
steps in reinforcement learning. Details of the relationship between evolutionary games
and reinforcement learning can be found in [481].

6.2 Applications of evolutionary games in wireless communications and
networking

In this section, selected applications of evolutionary-game theory in wireless communi-
cations and networking are discussed. These applications are from various aspects and
protocols of such networks. Analyses based on both ESS and replicator dynamics are
presented.

6.2.1 Congestion control

The competition between two types of behaviors (i.e., aggressive and peaceful) in
wireless nodes to access the channel using a certain protocol can be modeled as an
evolutionary game [29]. Congestion control is required in the transport protocol to avoid
performance degradation by the ongoing users. Congestion control limits the transmis-
sion rate according to the available network resources. In particular, the protocol observes
the success of data transmission. The transmission rate can be increased if the transmit-
ted packet is successful, and decreased if the transmitted packet fails. The transmission
rate can be adjusted by changing the congestion window size (i.e., the maximum num-
ber of packets to be transmitted). The increase or decrease in the rate of transmission
defines the aggressiveness of the protocol. The transmission control protocol (TCP)
with an additive-increase multiplicative-decrease (AIMD) mechanism can control this
aggressiveness through the parameters determining the increase and decrease [29]. In
particular, if the transmitted packet is successful, the window size will linearly increase
by α packets for every round trip time. Otherwise, the window size will decrease by β

proportional to the current size. For the TCP New-Reno protocol, the values of these
parameters are α = 1 and β = 1/2.

With congestion control, when multiple flows share the same link, a competitive
situation arises. In a wired network environment, it is found that the aggressive strat-
egy of all flows (i.e., large values of α and β) becomes the Nash equilibrium, and the
performance will degrade significantly because of the congestion in the network. How-
ever, in a wireless environment, the congestion due to playing Nash equilibrium not
only degrades the performance but also shortens the battery life of a mobile node. The
analysis of the TCP protocol in a wireless environment is performed in [29], where an
evolutionary-game model similar to the Hawk–Dove game [302, 162] is introduced. The
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TCPNew-Reno protocol is considered because it is shown to be well behaved in wireless
networks [461]. However, the analysis can be applied to other TCP variants as well.

Static game
The evolutionary game is formulated as follows. There are two populations (i.e., groups)
of flows with AIMD TCP. The flow from population i ∈ {1,2} is characterized by
parameters αi and βi , the increase and decrease rates, respectively. Strategy s of flow is
to be aggressive (i.e., hawk or H) or to be peaceful (i.e., dove or D), i.e., s ∈ {H,D}. The
parameters associated with these strategies are given as (αi ,βi ) ∈ {(αH,βH), (αD,βD)}
for αH ≥ αD, and βH ≥ βD. The transmission rate at time t is denoted by ri (t). It is
assumed that there is light traffic in the network in which the flow can utilize almost all
resources. Packet loss occurs when the total transmission rate of all flows reaches the
capacity C , i.e., x1r1 + x2r2 = C . The payoff ui of flow in population i is defined as

ui = τi −ωL, (6.22)

where τi is the average throughput, L is the loss rate, and ω is the weight for the loss.
The throughput of flow from population i is given by

τi =
1+βi

2
αiβj

αiβj +αjβi
C , (6.23)

where βi = 1−βi . The average loss rate is the same for all flows, i.e.,

L =
1
C

(
αi

βi
+

αj

βj

)
. (6.24)

The average throughput and loss rate can be defined as functions of the strategies of
two populations, i.e., τi (si ,sj) and L(si ,sj), respectively. In this case, it is shown that
τi (H,H) = τi (D,D). When the loss rate is considered, it increases as the flow becomes
more aggressive, i.e., larger values ofαi andβi .Therefore, it canbe shown thatui (H,H)<

ui (D,D) and ui (D,H) < ui (D,D). In this form, the game becomes a Hawk–Dove game
whose solution is the ESS. The mixed ESS (i.e., the probability of using strategy H) is
given by

x∗(ω) =
η1− η2ω

η3
, (6.25)

where

η1 =
(

μ
1+βi

2
− 1+βj

4

)
C , η2 =

1
C

(
αi

βi
− αj

βj

)
, (6.26)

η3 = C (1/2−μ)
βi −βj

2
, μ =

αjβi

αjβi +αiβj
, (6.27)



146 Evolutionary games

where μ = 1−μ. In this case, η2 and η3 are positive numbers.As a result, the probability
x∗ decreases linearly with the weight of packet loss ω. It can be concluded that the
application that is loss-sensitive will tend to use a less aggressive strategy at ESS [29].

In addition, it is observed that when there is a change of wireless link (e.g., due to
fading), the aggressive flow will take a longer time to adjust the transmission rate to the
available capacity. Therefore, the aggressive flow will experience more loss from this
longer transient period.

Dynamic game
The dynamics of strategy selection by the flows in two populations can also be analyzed
using replicator dynamics, expressed in this case as follows:

ẋs(t) =
dxs(t)

dt
= xs(t)K

(
u(s,x(t))−

∑
s′

xs′(t)u (s ′,x(t))

)
, (6.28)

where xs is the proportion of the population choosing strategy s and x(t) is a vector of
xs at time t; u(s,x(t)) is the payoff for using strategy s , and K is a positive constant
standing for the speed of strategy change.

However, the payoff may not immediately affect the strategy selection of the popula-
tion. Let t̂ denote the time duration (i.e., delay) for the population to change strategy after
the payoff has changed. The replicator dynamics with delay can be expressed as follows:

ẋs(t) = xs(t)K

(∑
s′

xs′(t− t̂)u(s,s ′)−
∑
s′,s′′

xs′(t)u(s ′,s ′′)xs′′(t− t̂)

)
. (6.29)

Given the speed K and delay t̂, the strategy adaptation of two populations will be
stable if the stability condition t̂K < θ is satisfied, where

θ =
(u(s ′,s)− u(s,s))+ (u(s,s ′)− u(s ′,s ′))
(u(s ′,s)− u(s,s))(u(s,s ′)− u(s ′,s ′))

. (6.30)

If the delay is large, the strategy change can fluctuate. It can be shown that the
evolutionary equilibrium can be reached if the delay is small.

6.2.2 Evolutionary game for the Aloha protocol

In a network with the Aloha protocol, the nodes can access a channel independently to
maximize their utility.An evolutionary game is formulated for the node population using
the Aloha protocol in [473]. For the network model, the number of nodes, which are the
players, in the population is random, and the nodes are randomly located in the service
area. Each node has a transmission range of r , and the node can either transmit or back
off (i.e., use strategy). The cost of transmission (e.g., energy consumption) is denoted
by δ, and transmission loss is due to collision only. Collision occurs when there is more
than one node transmitting at the same time. The cost to the node due to collision is
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denoted by Δ, but if there is no collision the node gains benefit, denoted by V , where
V > δ. If none of the nodes transmits (i.e., they all choose to back off) the regret cost is
denoted by κ.

With the evolutionary-game setting, the node chooses pure strategy in which the state
of the evolutionary game indicates the fraction of nodes in the population choosing these
strategies. Let x denote the proportion of the population choosing the transmit strategy,
so (1− x) denotes the proportion choosing the backoff strategy. The payoff of the node
with k other interfering nodes when strategy s is used can be expressed as

u(s,k,x) =
{
−(Δ− δ)(1− ηk)+ (V − δ)ηk , s = transmit,
−κ(1− x)k , s = back off,

(6.31)

where ηk = (1− x)k .
Three cases are studied in [473]. In the first case, the node does not know the number

of interfering nodes. In the second case, the node knows that there is an interfering node
in the range of its receiver. Therefore, this node will transmit with a certain probability
if no potential interfering nodes are present. The third case corresponds to the dense
network in which there is always an interfering node. Properties of this evolutionary
game (i.e., the existence and uniqueness of ESS) are analyzed for these three cases using
the ratio between the collision cost and the difference between the global cost for the
node and the benefit. This ratio is defined as

ψ =
Δ+ δ

V +Δ+κ
. (6.32)

In the first case, the game has a unique ESS if Pr(k = 0) < ψ, where Pr(k) is the
probability of the number of interfering nodes being k . That is, the probability of the
number of interfering nodes being zero is less than the ratioψ. TheESS is at x∗ =φ−1(ψ),
where φ(·) =

∑
k>0 Pr(k)(1− x)k . In the second case, the game has a unique ESS if

Pr(k = 0) < Δ+δ
V+Δ . The ESS is at x∗ = φ−1

(
Δ+δ+κPr(k=0)

V+Δ+κ

)
. In the third case, the game

always has a unique ESS, which is the solution of
∑

k≥1 Pr(k)(1− x)k = ψ.
The game can be further analyzed by considering the spatial node distribution. Two

scenarios are considered, namely when a fixed number of nodes are in a local interaction,
and when the number of nodes is random.

Fixed number of nodes
With n nodes, for n≥ 2, the average payoff can be expressed as

u = x
(
(−Δ− δ)(1− (1− x)n−1)+ (V − δ)(1− x)n−1)−κ(1− x)n. (6.33)

It is shown in [473] that the ESS exists and is unique. This ESS is at x∗ = 1−ψ1/(n−1).

Random number of nodes
In this scenario, the nodes are distributed in the area following a Poisson distribution
with density λ. The ESSs for different cases can be obtained. For example, in the first
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case (i.e., when the node does not know the number of interfering nodes), the probability
of having k interfering nodes is

Pr(k) =

(
λπr2

)k
k!

exp
(
−λπr2) , (6.34)

for k ≥ 1, where r is the transmission range of the node; hence πr2 is the transmission
area, which is a circle. The corresponding ESS, x∗, is the solution of the following
equation:

exp
(
−λπr2x

)
= ψ. (6.35)

Then, replicator dynamics can be used to evaluate the stability of ESS. The
corresponding replicator dynamics can be expressed as

ẋ(t) = (V +Δ+κ)x(t)(1− x(t))(φ(x(t))−ψ). (6.36)

Since φ(·) is decreasing in (0,1), the derivative of x(1− x)(φ(x)− ψ) at the ESS is
negative. Therefore, ESS is stable.

6.2.3 Evolutionary game for WCDMA access

The evolutionary game is now formulated for the WCDMAsystem. The number of inter-
fering nodes is random, and depends on the geographical location of the mobile nodes.
The decentralized power-control problem of WCDMA access is considered [473]. The
mobile nodes have two strategies, to use high or low power levels, which correspond to
transmit power PH and PL, respectively. Given the random location of the mobile nodes,
the signal-to-interference-plus-noise ratio (SINR) with distance r between transmitter
and receiver of node i is given by

γi (Pi ,x , r) =

⎧⎪⎪⎨⎪⎪⎩
gPi/rα

0

σ +βI (x)
, if r ≤ r0,

gPi/rα

σ +βI (x)
, if r > r0,

(6.37)

wherePi is the strategyof node i (i.e.,Pi ∈{PH,PL}), x is the proportionof the population
choosing PH, g is the channel gain, r0 is the radius-of-reception circle of the receiver, α
is the attenuation order, with a value between 3 and 6, σ is the noise power, and β is the
inverse of the processing gain. I (x), the total interference from all nodes to the receiver
of node i , is given by

I (x) = gλπ(xPH +(1− x)PL)
(

α

α− 2
r−(α−2)
0

)
, (6.38)

where λ is the density of the nodes. The payoff for node i is then defined as

ui (Pi ,x) =
∫ R

0
log(1+γi (Pi ,x , r))ζ(r)dr −wpPi , (6.39)
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where R is the transmission range and wp is the cost weight due to adopting transmit
power Pi (e.g., energy consumption). ζ(r) is the probability density function given the
density ν of receivers (e.g., ζ(r) = νe−νr ).

Based on this evolutionary-game formulation, the sufficient condition [29] for exis-
tence and uniqueness of the ESS in WCDMA access is established as follows. For all
density functions ζ(r), if H (1) < wp(PH − PL) < H (0), then there exists a unique
ESS x∗ given by x∗ = H −1(wp(PH−PL)). In this case, function H (x) is defined as
follows:

H (x) = log
(

1+γi (PH,x , r)
1+γi (PL,x , r)

)
ζ(r). (6.40)

It is shown that this function H (x) is continuous and strictly monotonic, which is
required for the proof of stability based on sufficient condition. With ESS, it is observed
that the cost weight wp can be adjusted so that the node will select the optimal transmit
power. In particular, x∗ decreases as cost weight wp increases. Therefore, the node
becomes less aggressive in its use of high transmit power, and the optimal transmission
rate can be achieved because of reduction of interference in the network.

The dynamics of the evolutionary-game formulation of WCDMA access can be
established based on replicator dynamics, as follows:

ẋ(t) = x(t)(1− x(t))(H (x(t))−wp(PH−PL)) . (6.41)

Again, it can be seen that the function H (·) is decreasing according to x(t). As a result,
the derivative of x(1− x)(H (x)−wp(PH−PL)) at x∗ = H −1(wp(PH−PL)) can be
evaluated, and it can be shown that the system is asymptotically stable at x∗ [473].

6.2.4 Routing-potential game

In [30], non-cooperative traffic routing among non-cooperative users is formulated as
a potential game and subsequently analyzed by evolutionary dynamics (i.e., potential-
game replicator dynamics). Consider a general network topology modeled as a directed
graph, where L is a set of links andN is a set of users. In this case, the total numbers of
links and users are denoted by L = |L| and N = |N |, respectively. The cost of utilizing
the link l is a function of the aggregated traffic rate or total load, i.e., λl(Alλl + Bl),
where λl is the total load on link l ∈L from all users and Al and Bl are constants. There
are N users using this network (i.e., N players), and user i transmits data from source
S(i) to destination D(i). If we let λl ,i denote the transmission rate of user i on link l , the
cost for user i on link l can be expressed as

Cl ,i (λl) = λl ,i (Alλl +Bl). (6.42)

Therefore, the total cost for user i is defined as

Ci (λ) =
∑
l∈L

λl ,i (Alλl +Bl) =
∑
l∈L

Cl ,i (λ), (6.43)
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where λ is a vector of the transmission rates on all links for all users. The objective of
each user is to choose a transmission rate on the link so that the demand ismet and the cost
is minimized. The demand (i.e., total transmission rate from source S(i) to destination
D(i)) of user i is denoted by Λi . The strategy is λl ,i and the negative payoff is Ci (λ). In
addition to the above objective, user i has to meet feasibility conditions: positivity (i.e.,
λl ,i ≥ 0) and flow conservation,

ri (v)+
∑
l∈I

λl ,i =
∑
l∈O

λl ,i , (6.44)

where

ri (v) =

⎧⎨⎩
Λi if v = S(i),
−Λi if v = D(i),
0 otherwise.

(6.45)

I and O are the sets of links that are the inputs and outputs of node v , respectively. It
is proved in [30] that the above game formulation is the potential game whose potential
function is

P(λ) =
∑
l∈L

Al

2

⎛⎝ N∑
i=1

(λl ,i )2 +

(
N∑

i=1

λl ,i

)2
⎞⎠+

∑
l∈L

Blλl . (6.46)

The Nash equilibrium can be obtained as the solution of the constrained optimization
minλ P(λ). The Lagrangian function of this optimization problem is

L (λ,μ) = P(λ)−
N∑

i=1

(∑
v∈V

μi ,v

(
ri (v)+

∑
l∈I

λl ,i −
∑
l∈O

λl ,i

))
, (6.47)

where V is a set of nodes in the network, and μ is a vector of Lagrange multipliers (i.e.,
μi ,v for user i at node v ).

Then, the evolutionary-game model is formulated as follows. It is assumed that the
demand Λi of user i is constant. User i is considered to be the population with mass Λi

of infinitesimal users. As a result, the proportion of population i (of user i) choosing
strategy l (i.e., link l) is xl ,i = λl ,i/Λi . With this population i , the cost can be rewritten as

Cl ,i (xl) = (xl ,iΛi )

(
Al

N∑
i=1

xl ,iΛi +Bl

)
, (6.48)

where xl =
[
xl ,1 · · · xl ,i · · · xl ,N

]T
. The replicator dynamics can be expressed as

ẋl ,i = xl ,i (Fi (x)− fl ,i (xl)) , (6.49)
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where fl ,i (xl) is the marginal cost and Fi (x) is the average cost for the population; x is
a vector of the proportions of the population of users. These costs can be obtained from

fl ,i (xl) =
∂Ci (λ)
∂λl ,i

= Al

N∑
i ′=1

xl ,i ′Λi ′ +Alxl ,i ′Λi ′ +Bl , (6.50)

Fi (x) =
∑
l∈L

xl ,i fl ,i (xl). (6.51)

In the special case when Bl = B , ∀l , that is, a constant, it can be proved that the
Nash equilibrium x∗ is the stable point where ẋl ,i = 0, ∀l and ∀i . In this case, the Nash
equilibrium for each user on each link is

x∗
l ,i =

1/Al∑L
l=1 1/Al

. (6.52)

However, in some cases the Nash equilibrium may not be the stationary point of the
dynamics (i.e., when Bl is not identical for all links and at the equilibrium the traffic rate
on each link is positive).

The stability (i.e., Lyapunov stability) of this Nash equilibrium is investigated by con-
structing a Lyapunov function. This function can be derived from the potential function
defined in (6.46), i.e.,

Y (x) = P(x)−P(x∗), (6.53)

where P(x) is the potential function, a function of the proportion x of the population.
The proof in [30] is based on the fact that for all x 	= x∗, Y (x) > 0 and also dY (x)

dt ≤ 0.
Therefore, the Nash equilibrium is Lyapunov-stable.

6.2.5 Cooperative sensing in cognitive radio

In a cognitive-radio network, spectrum sensing plays an important role for unlicensed
users (i.e., secondary users) to opportunistically access the spectrum allocated to the
licensed users (i.e., primary users). Spectrum sensing must be performed by secondary
users to ensure that the spectrum is not occupied by primary users. This can be achieved
by sampling the signal with hypotheses that a primary user is present or absent, denoted
by H1 and H0, respectively. The received signal is expressed as

r(t) =
{

gd(t)+w(t), if H1,
w(t), if H0,

(6.54)

where g is the channel gain between a primary user and a sensing secondary user, d(t)
is the signal from the primary user, and w(t) is additive white Gaussian noise (AWGN).
Given the slot duration, denoted by T , and the sensing time, denoted by Tsense for
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Tsense < T , the average throughput for a secondary user when the spectrum is idle (i.e.,
H0 event) is

τH0 =
T −Tsense

T
(1−Pfal)Ri , (6.55)

where Pfal is the false-alarm probability (i.e., the probability that the spectrum is idle, but
the secondary user falsely detects activity of a primary user), and Ri is the transmission
rate of the secondary user i . Similarly, the average throughput when the spectrum is
occupied by a primary user (i.e., H1 event) is

τH1 =
T −Tsense

T
(1−Pdet)Ri , (6.56)

where Pdet is the detection probability (i.e., the probability that the secondary user
correctly detects activity of a primary user).

Multiple secondary users can cooperate and share sensing results, to reduce sensing
time while maintaining the detection and false-alarm probabilities at the target levels.
The shorter sensing time results in lower energy consumption, but longer transmis-
sion times. The sensing result obtained by each node can be shared by broadcasting
it over the dedicated channel. However, there will be secondary users who contribute
or choose not to contribute to cooperative spectrum sensing because they are rational.
Secondary users refusing to participate in cooperative spectrum sensing will have more
time for data transmission. However, if none of the secondary users performs coop-
erative sensing, throughput will be low because the detection probability is low and
the false-alarm probability is high. This conflict situation can be analyzed using the
evolutionary-game framework to find the equilibrium strategy of secondary users for
participation in cooperative spectrum sensing [496].

The evolutionary game is defined as follows. The players are the secondary users (N
players in total), and the strategies are to contribute or deny (refuse), denoted by C and
D, respectively. The payoff for the secondary user is the throughput. For the contributing
secondary user i , the payoff function is

uC,i = PH0

(
1− Tsense

|C|T

)
(1−Pfal(C))Ri , (6.57)

where PH0 is the probability that the spectrum is idle (i.e., a primary user is absent), C is
a set of contributing secondary users (i.e., i ∈ C), |C| is the cardinality of this set, Pfal(C)
is the false-alarm probability given a set of contributing secondary users C, and Ri is the
transmission rate for user i . For the denying secondary user j , the payoff function is

uD,j = PH0 (1−Pfal(C))Rj . (6.58)

Since denying secondary users do not need to spend time on sensing, their throughput is
larger. However, if there is no contributing secondary user (i.e., C = ∅), the payoff for the
denying secondary userswill be uD,j =0.With cooperative spectrum sensing, the logical-
OR rule applies. That is, if any contributing secondary user detects the signal of a primary
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user, the final decision will be H1. In this case, the detection and false-alarm probabilities,
given a set of contributing users C, are Pdet(C) = 1−

∏
i∈C(1−Pdet,i ) and Pfal(C) =

1−
∏

i∈C(1− Pfal,i ), respectively. Pdet,i and Pfal,i are, respectively, the detection and
false-alarm probabilities for the individual secondary user i . Let xi denote the probability
of secondary user i selecting a contributing strategy. The replicator dynamics can be
expressed as follows:

ẋi = (uC,i (x−i )− ui (x))xi , (6.59)

where x is the vector of xi for all secondary users, x−i is the vector of the probabilities of
all secondary users except user i contributing, and ui (·) is the average payoff for user i .

To simplify the equilibrium analysis of the above game, the homogeneous case is
considered. That is, all secondary users are taken to be identical (i.e., with the same
detection and false alarm probabilities and the same transmission rates). In this case, the
respective payoff functions for contributing and denying users become

uC(J) = PH0(1−Pfal)
(

1− Tsense

JT

)
, (6.60)

uD(J) = PH0(1−Pfal), (6.61)

where J = |C|. Let x denote the probability of each secondary user contributing to
cooperative sensing. The average payoff for a pure strategy of contributing is

uC =
F−1∑
j=0

(
F − 1

j

)
x j(1− x)F−1−juC(j +1), (6.62)

where F is the number of channels. In this case,

(
F − 1

j

)
x j(1− x)F−1−j is the prob-

ability that j users contribute to cooperative spectrum sensing. Similarly, the average
payoff for the deny pure strategy is

uD =
F−1∑
j=0

(
F − 1

j

)
x j(1− x)F−1−juD(j). (6.63)

The replicator dynamics can be modified to

ẋ = x(1− x)(uC− uD) . (6.64)

At the equilibrium, we have ẋ = 0. Therefore, the ESS can be obtained by solving the
following equation for x∗:

Tsense

T
(1− x∗)F +Fx∗(1− x∗)F−1− Tsense

T
= 0. (6.65)

In addition to the ESS, the distributed learning algorithm to achieve Nash equilibrium
in this cooperative spectrum-sensing game is presented in [496]. From the numerical
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study, it is shown that as the number of secondary users and the cost of spectrum sensing
increase, there is less incentive for secondary users to contribute to cooperative sensing.
However, with more than two secondary users, they still gain higher average throughput
than without cooperative sensing.

6.2.6 TCP throughput adaptation

When TCP is used on a wireless link, the packet loss that affects the throughput of the
protocol can be from network congestion or from wireless channel error. To optimize
the performance of TCP in the WiMAX network, a TCP throughput adaptation scheme
based on the evolutionary game in [38] (i.e., selection of adaptive modulation and coding
mode) is proposed. The network model considers one WiMAX user transmitting a group
of packets (λ packets in total). This user selects adaptive modulation and coding for the
packets so that the end-to-end throughput is maximized. From an evolutionary-game
perspective, the population is the packets, and the strategy is the mode of modulation
and coding. Let S denote a set of available modes (i.e., of strategies). The number of
packets transmitted using mode s is denoted by λs , so λ =

∑
s∈S λs . The normalized

number of packets using mode s is denoted by xs , which is the population share. The

corresponding vector of population share is x =
[
x1 · · · xs · · · xS

]T
, where S = |S| is the

total number of modulation and coding modes.

TCP throughput
The throughput of TCP in packets per second can be approximated by [62]

τ ≈min

(
1

RTT

√
3

2PER
,τmax

)
, (6.66)

where RTT is the average round-trip time, PER is the total packet error rate, and τmax is
the maximum TCP throughput. In this case, the packet loss can occur because of network
congestion or wireless channel error. Let Lcong and Lerr denote the packet loss due to
network congestion and channel error, respectively. The PER is given by

PER = 1− (1−Lcong)(1−Lerr). (6.67)

Throughput dynamics
The modulation and coding mode selection works as follows. First, a user selects random
mode for the packets. Then, the throughput is measured for the sampled packets with
different modes. The user uses this measured throughput to adjust the mode selection in
the future. In this case, the changing of modulation and coding mode is modeled as the
replicator dynamics, which depends on the throughput and the current population state x.
Let the sampling rate for the throughput from mode s be denoted by rs . The probability
of switching from mode s to mode s ′ is denoted by ps→s′(x), and the number of packets
changing from mode s to mode s ′ is denoted by xs rs(x)ps→s′(x). With the balance of
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mode switching, the differential equation for population share is

ẋs =
∑

s′∈S,s′ �=s

xs′rs′(x)ps′→s(x)− xs rs(x)(1− ps→s(x)) (6.68)

=
∑
s′∈S

xs′rs′(x)ps′→s(x)− xs rs(x), (6.69)

which can be considered to be the replicator dynamics.
Let the throughput of packets using modulation and coding mode s be denoted by τs .

The conditional probability that the packet assigned with mode s switches to mode s ′ is

φ(τs′ − τs) = Pr(τs′ − τs > 0). (6.70)

The conditional switching probability is

ps→s′(x) =
{

xs′φ(τs′ − τs), if s 	= s ′,
1−

∑
ŝ �=s,ŝ∈S xŝφ(τŝ − τs), if s = s ′.

(6.71)

For simplicity, rs(x) = 1, and the dynamics in (6.69) can be expressed as follows:

ẋs = xs

∑
s′∈S,s �=s′

xs′ (φ(τs − τs′)−φ(τs′ − τs)) . (6.72)

It is shown in [62] that under long-term rain-fading conditions, there is a unique
modulation and coding mode that maximizes TCP throughput. In addition, under fading
conditions, the ESS is the strategy for transmitting a packet with a single modulation
and coding mode.

Incentive protocol for peer-to-peer networks
An evolutionary game is used to model the learning process of a rational agent in peer-
to-peer (P2P) networks in [532]. In P2P networks, multiple users (i.e., peers) share a file
by relying on other peers to perform an uploading service. Since there are many peers in
the network, server overload can be avoided. However, the major issue in P2P networks
is the incentive for a peer to share or upload a file, as uploading a file consumes resources
and may overload the uploading peer. In a common approach [146], a peer uploads file
to other peers, but when many free riders (i.e., peers performing downloading without
uploading contributions) are detected, this peer may switch to a more selfish strategy. To
study the adaptation of peers’ strategies in a P2P network, an evolutionary-game model
is introduced [532] to study the current-best learning model (CBLM).

In the CBLM, all peers find and switch to the current best strategy. The available strate-
gies are: cooperate, reciprocate, and defect. In the cooperate strategy, a peer uploads data
to other peers unconditionally. In the reciprocate strategy, a peer uploads data depending
on the requesting peers. In the defect strategy, a peer refuses to upload any data. The set
of these strategies is denoted by S = {C,R,D}. To decide on the strategy to switch to, a
peer will observe the other peers. Let s ′(t) ∈ S denote the strategy that has the highest



156 Evolutionary games

expected payoff among all strategies at the end of time slot t. In this case, the peer with
strategy s ∈S will switch to s ′ at time t +1 with probability γnor(us′(t)−us(t)), where
γnor is a normalizing factor. If the peer switches to the new strategy with probability γswt,
the learning rate of the peer can be defined as γ = γnorγswt. This CBLM can be imple-
mented by using a centralized controller, selected from the nodes in the P2P network.
This controller collects the payoffs for all peers, and computes the average payoff for
all strategies. The average payoff is used to determine the best strategy, and informs all
peers in the P2P network.

Let xs′(t) denote the fraction of peers using strategy s ′ at time t. The update of this
fraction can be expressed as the following difference equations:

xs′(t +1) = xs′(t)−γxs′(t)(us(t)− us′(t)), (6.73)

xs(t +1) = xs(t)+γ
∑

ŝ∈S,ŝ �=s

xŝ(us(t)− uŝ(t)). (6.74)

These difference equations can be transformed into a differential equation in a
continuous-time model (i.e., when the time step in the difference equations is small)
as follows:

ẋs = γ
∑
ŝ �=s

xŝ(t)(us(t)− uŝ(t)) (6.75)

= γ

(
us(t)−

∑
ŝ∈S

xŝ(t)uŝ(t)

)
, (6.76)

which is the replicator dynamics.
The payoff function can be derived based on the generosity parameter. The generosity

matrix G is defined as

G =

⎡⎣GC→C GC→R GC→D

GR→C GR→R GR→D

GD→C GD→R GD→D

⎤⎦ , (6.77)

where element Gs→s′ is the probability that peer type s uploads data to peer type s ′. In
this case, a peer with type s gains a benefit α from uploading data to another peer with
cost β = 1 (e.g., resource consumption due to data upload). Ds(t), the expected amount
of downloaded data in one time slot, can be obtained from

Ds(t) =
∑
ŝ∈S

xŝ(t)Gŝ→s . (6.78)

Then the expected amount of uploaded data can be approximated from

Us(t)≈
∑
ŝ∈S

xŝGs→ŝ . (6.79)



6.2 Applications of evolutionary games 157

The payoff for peer type s can be calculated from

us(t) = αDs(t)−Us(t). (6.80)

The generosity parameter Gs→ŝ depends on the incentive policy. Three incentive policies
are considered: mirror, proportional, and linear.

Mirror incentive policy
When a reciprocative peer (i.e., s = R) receives a request for a data download, this
peer evaluates the reputation of the requester. This peer will upload data with the same
probability as that of the requester uploading data to other peers. As the name of the
policy implies, if the requester is a cooperator, this peer will behave exactly the same as
the requester. Therefore, the generosity matrix is

Gmirror =

⎡⎣1 1 1
1 GR→R 0
0 0 0

⎤⎦ , (6.81)

where

GR→R = xC(t)+ xR(t)GR→R =
xC(t)

1− xR(t)
. (6.82)

Proportional incentive policy
A reciprocative peer uploads data to another peer s ′ with a probability equal to the
requester’s uploading and downloading ratio Us′(t)/Ds′(t), a ratio bounded by 1. The
generosity matrix of this policy is similar to that of the mirror incentive policy except
that GR→R = UR(t)/DR(t). The expected amounts of uploaded and downloaded data are

UR(t) = xC(t)GR→C + xR(t)GR→R + xD(t)GR→D (6.83)

= xC(t)+ xR(t)GR→R, (6.84)

DR(t) = xC(t)GC→R + xR(t)GR→R + xD(t)GD→R (6.85)

= xC(t)+ xR(t)GR→R. (6.86)

It can be concluded that GR→R = 1.

Linear incentive policy class
The generosity matrix of this policy class can be expressed as follows:

Glinear =

⎡⎣ 1 1 1
pC pR pD

0 0 0

⎤⎦ . (6.87)

In particular, a reciprocative peer uploads data to other peers according to the fixed
parameters pC, pR, and pD, which are independent of xs(t). The proportional incentive
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policy is a special case of the linear incentive policy class, while the mirror incentive
policy is not.

Using the notion of replicator dynamics of CBLM, these three incentive policies can
be analyzed. For example, with the mirror incentive policy, there are two equilibria,
E1 and E2. At equilibrium E1, the fraction of reciprocative peers xR(t) will be 1/α,
while at equilibrium E2 the defector will dominate (i.e., xD(t) = 1). It can be shown that
equilibrium E1 is not stable. The network can change from E1 to E2 (e.g., when a new
peer enters the network or an existing peer leaves the network). Therefore, the mirror
incentive policy with CBLM is not robust, and eventually all peers will be defectors.

6.2.7 User churning behavior

Thechurningofmobile users fromone service provider to another is expected to becomea
common feature when mobile users have the freedom to choose the best wireless service.
This churning behavior impacts both the system and the economic aspects of wireless
network design. In [366], the churning behavior of wireless service users is analyzed
using the theory of evolutionary games. The wireless service under consideration is
based on WLAN hotspots, where a wireless user can choose among different IEEE
802.11-based WLAN access points (APs) based on performance and/or price. In this
WLAN hotspot scenario, multiple APs operate in a service area using non-overlapping
channels (Fig. 6.1). These APs use the distributed coordination function (DCF)-based
MAC protocol in the IEEE 802.11 standard, and theAPs are operated by different service
providers. In the service area, the total number of service providers is S . There are
multiple wireless users in the service area, and the number of ongoing connections (i.e.,
active users) is random because of connection arrival and departure processes (i.e., users
initiate and terminate connections randomly). We assume that the ongoing users always
have data to transmit (i.e., an infinite backlog situation). Service provider s charges each
user a price ps per connection.

Service provider 1
Service provider 2

User arrival

Service area
User departure

Fig. 6.1 Service area with churning, arriving, and departing users.
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It is assumed that the users in a service area show the following behavior:

• A user tends to choose and churn to the wireless service provider that returns a higher
payoff.

• Owing to the lack of information about performance by different service providers
and/or inadequate information about the decisions of other users, a user has to gradually
learn and change his/her decisions about choosing a particular wireless service.

• A user can make a wrong decision, choosing a wireless service provider that provides
a lower payoff. This event, which is referred to as irrational churning, occurs randomly
with a small probability.

• An individual user has no intention of influencing the decisions of other users in the
service area.

With these behaviors, the stochastic dynamic evolutionary game with a single pop-
ulation can be formulated as follows [489]. The players in this game are the users in
a service area, and the strategies of these users correspond to the selection of a wire-
less service provider. The payoff for a user choosing wireless service provider s (i.e.,
strategy s) is

u(s) = U (τs(ns))− ps , (6.88)

where U (τs) is a concave utility function representing user satisfaction as a function of
throughput τs , and ps is the price charged by service provider s to a user. A logarithmic
utility function U (τs) = log(1 + τs) is adopted. τs , the MAC-layer throughput for a
wireless user attached to service provider s , is given by [72]:

τs(ns) =
PsuccPack

Φ+PsuccTsucc +(1−Psucc)Tcoll
, (6.89)

where Psucc is the successful transmission probability, Pack is the average packet length,
Φ is the average number of consecutive idle slots, Tsucc is the average time the channel
is sensed busy as a result of successful transmission, and Tcoll is the average time the
channel is sensed busy because of collision. This throughput is a function of the total
number of users ns attached to service provider s .

Stochastic dynamic evolutionary-game formulation
It is assumed that connections in the service area are initiated at an average rate of λ

and that connection initiation follows a Poisson process. The connection holding time
is exponentially distributed with mean 1/μ. Since the price impacts the decision of a
user to initiate a connection, the arrival rate is a function of the average charging price
p =

∑S
s=1 ps/S and the normal price p0. That is, when the average charged price is

higher than the normal price, the demand (i.e., connection arrival rate) decreases. Here,
the normal price defines the highest price that is acceptable to the users.With this demand
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function, the effective connection arrival rate is computed from [216]:

λ̃ = λexp

⎛⎝−(∑S
s=1 ps/S

p0
− 1

)2
⎞⎠ . (6.90)

A user randomly initiates a wireless connection with one of the S service providers.
Therefore, the connection arrival rate for each service provider is λs = λ̃/S .

Based on these arrival and departure processes for connections, and the churn-
ing behavior of the users, the stochastic dynamic evolutionary game can be modeled
as a continuous-time Markov chain. The state space of this Markov chain is Δ =
{ (N1, ... ,Ns , ... ,NS)|0≤Ns ≤N}, where N is the maximum number of ongoing con-
nections and Ns is a random variable representing the number of ongoing connections
with service provider s . Based on this state space, the transition matrix is Q, whose
element q(n1,...,ns ,...,nS ),(n′

1,...,n
′
s ,...,n

′
S ) is the transition rate from state (n1, ... ,ns , ... ,nS)

to state (n′
1, ... ,n

′
s , ... ,n

′
S). These elements can be obtained for the different cases as

follows:

• Connection arrival: q(...,ns ,...),(...,ns+1,...) = λs , where the number of connections of
service provider s increases by one (i.e., one connection arrives at service provider s).

• Connection departure: q(...,ns ,...),(...,ns−1,...) = nsμ, where the number of connections
of service provider s decreases by one (i.e., one connection to service provider s
departs).

• Rational churning: q(...,ns ,...,ns′ ,...),(...,ns−1,...,ns′+1,...) = ns (u(s ′)− u(s)), for u(s ′) >

u(s), where the number of connections to service provider s decreases by one and the
number to service provider s ′ increases by one. In this case, the rational churning rate
is proportional to the difference in payoffs from service providers s and s ′.

• Irrational churning: q(...,ns ,...,ns′ ,...),(...,ns−1,...,ns′+1,...) = nsρ, for u(s ′)≤ u(s). Here, ρ
is a parameter for irrational churning, or the perturbation rate of the users who choose
the wireless service provider with lower payoff.

For the case of two wireless service providers (i.e., S = 2), the transition matrix is

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q0,0 q0,1

q1,0 q1,1 q1,2
. . .

. . .
. . .

qn,n−1 qn,n qn,n+1
. . .

. . .
. . .

qN,N−1 qN,N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (6.91)

where each row represents the number of connections in the service area, denoted by n.
The maximum number of ongoing connections is N . Each row of element qn,n′ is defined
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as follows:

qn,n+1 =

⎡⎢⎣q(n1,0),(n1+1,0) q(n1,0),(n1,1)

q(n1−1,1),(n1,0) q(n1−1,1),(n1−1,2)
. . .

. . .

⎤⎥⎦ ,

qn,n−1 =

⎡⎢⎢⎢⎣
q(n1,0),(n1−1,0)

q(n1−1,1),(n1−1,0) q(n1−1,1),(n1−2,1)

q(n1−2,2),(n1−2,1) q(n1−2,2),(n1−3,2)
. . .

. . .

⎤⎥⎥⎥⎦ ,

qn,n =

⎡⎢⎣ q(n1,0),(n1,0) q(n1,0),(n1−1,1)

q(n1−1,1),(n1,0) q(n1−1,1),(n1−1,1) q(n1−1,1),(n1−2,2)
. . .

. . .
. . .

⎤⎥⎦ ,

where n1 and n2 are the numbers of users choosing service providers 1 and 2, respectively.
The diagonal elements of matrix Q are

q(n1,n2),(n1,n2) =−
∑
n′

1,n
′
2

q(n1,n2),(n′
1,n

′
2), (6.92)

for n1 	= n′
1,n2 	= n′

2, and the off-diagonal elements are zero.
The steady-state probability (i.e., vector π) of this Markov chain,

π =
[
· · ·π(...,ns ,...,ns′ ,...) · · ·

]T
, (6.93)

can be obtained by solving πTQ = 0 and πT1 = 1, where 0 and 1 are the vectors
of zeros and ones, respectively. The evolutionary equilibrium of the stochastic dynamic
evolutionary game is defined as the state at which the steady-state probability is non-zero.
The average number of users in a service area choosing service provider i is

ns =
N∑

ns=1

ns

∑
ns′ �=ns

π(...,ns ,...,ns′ ,...). (6.94)

Competitive and cooperative pricing
Given the churning behavior of the user, service providers can apply non-cooperative
and cooperative pricing schemes to maximize their revenues. An interaction between
the evolutionary game of user churning and the non-cooperative game of competitive
pricing is shown in Fig. 6.2.

Non-cooperative pricing
Service providers compete with each other in terms of price to gain the highest revenue.
To model this competitive situation, a non-cooperative-game framework is applied. The
players of this game are the wireless service providers, who are rational to maximize
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Pricing competition

of service providers

(noncooperative game)

Number of users selecting

service providers Prices

User churning

(evolutionary game)

Fig. 6.2 Interaction between pricing and users’ churning.

their revenue. The total number of players is the number of wireless service providers S .
The strategy of each service provider is the offered price, and the payoff for each is the
revenue. The revenue earned by service provider s is

Rs(ps ,p−s) = ns(ps ,p−s)ps , (6.95)

where ps is the price offered by service provider s , p−s is the vector of prices of all
service providers except s , and ns(ps ,p−s) is the average number of users choosing
service provider s , which can be obtained from the evolutionary-game model.

The solution of this price competition among the service providers is the Nash
equilibrium, for which the condition is

Rs(p∗
s ,p∗

−s)≥Rs(ps ,p∗
−s), (6.96)

∀ s where p∗
s is the Nash equilibrium price of service provider s , and p∗

−s is the vector
of Nash equilibrium prices of all service providers except s . In this case, the Nash
equilibrium is obtained by using the best-response function Bs (p−s). The best-response
function for service provider s is defined as

Bs (p−s) = argmax
ps

Rs(ps ,p−s). (6.97)

The Nash equilibrium price for this non-cooperative game among wireless service
providers is p∗

s = Bs
(
p∗

−s

)
. Note that the best-response functions and the Nash

equilibrium can be obtained using numerical optimization methods.

Cooperative pricing
With cooperative pricing, all wireless service providers agree (i.e., collude) to choose
the price so that their revenue is maximized. In this case, the total revenue is simply the
sum of individual revenues for each service provider. In cooperative pricing, the optimal
price is defined as

p∗ = argmax
p

S∑
s=1

Rs(p), (6.98)
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where p is the vector of prices offered by all wireless service providers.Again, numerical
methods can be used to obtain the solution.

6.2.8 Dynamic bandwidth allocation with evolutionary network selection

In [264], the bandwidth-allocation problem for different service classes in heteroge-
neous wireless networks is formulated as a differential game with the dynamics of
network selection. In particular, a two-level game framework is developed (Fig. 6.3).
The underlying dynamic service selection is modeled as an evolutionary game based on
replicator dynamics. An upper bandwidth-allocation differential game is formulated to
model the competition among different service providers. In this case, the service selec-
tion distribution of the underlying evolutionary game describes the state of the upper
differential game.

Service area A in the coverage of a heterogeneous wireless environment consists of M
access networks and N(t) active users at time t, as shown in Fig. 6.4. Each access net-
work is owned by the corresponding service provider. Service provider i ∈ {1,2, ... ,M}
can provide Ki service classes to users to satisfy different quality-of-service (QoS)
requirements. K =

∑M
i=1 Ki is the total number of service classes. For differentiating

Differential game

of bandwidth allocation

(service providers)

Bandwidth Number of users

selecting service provider

Evolutionary game

of network selection

(users)

Fig. 6.3 Interaction between an evolutionary game of network selection by users and a differential game
of bandwidth allocation by service providers.

Service area A

AN1

ANM

AN2

Fig. 6.4 System model of a heterogeneous wireless network. “AN” denotes an access network.
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services, the Paris Metro Pricing (PMP) model [444] is used, on the basis of which the
access network is partitioned into several logically separated channels, each channel
for one class. Bi (t) denotes the total available bandwidth from the service provider or
access network i at time t. It is assumed that all users subscribed to the same service
class will share the available bandwidth equally (e.g., a WiMAX base station allocates
equal-size time slots to all users). The bandwidth for user k of service class j from service
provider i at time t is denoted by τ ij

k (t) = Bij(t)/Nij(t), where Bij(t) is the allocated
bandwidth of service class j from service provider i , Nij(t) is the total number of users
choosing service class j from service provider i at time t, and

∑M
i=1

∑Ki
j=1 Nij(t) = N(t).

Users with multi-mode terminals can choose different service classes from different ser-
vice providers freely and independently, according to the perceived instantaneous utility.
Users in the service area compete to select the available access networks from candidate
service providers. The objective of this selection is to maximize the satisfaction (i.e.,
utility) from QoS performance.

Network selection as an evolutionary game
As in [367], an underlying evolutionary game is formulated to model the dynamic com-
petition in service selection among users. This is the lower-level game in the proposed
two-level game framework (Fig. 6.3). In this lower-level evolutionary-game model, the
players are the N(t) active users at time t. In the context of an evolutionary game, a
group of users constitutes the population. The strategies of the players are the choices
of a particular service class from a certain service provider (i.e., available access net-
work). The payoff for a player is the utility representing the QoS satisfaction level. Let
xij(t) ∈ [0,1] denote the proportion of users in the service area choosing service class j
from service provider i at time t. The bandwidth allocated to each proportion of users
at time t is τ ij

k (t) = Bij (t)
N(t)xij (t)

and the payoff for user k is

P(τ ij
k (t)) = ατ ij

k (t) = α
Bij(t)

N(t)xij(t)
, (6.99)

where α is a constant indicating the increasing rate of utility. The average payoff (utility)
for the population is then

P(t) =
M∑
i=1

Ki∑
j=1

xij(t)P(τ ij
k (t)). (6.100)

The replicator dynamics used tomodel the evolution process of service-selection strategy
for all i ∈{1,2, ... ,M}, j ∈{1,2, ... ,Ki} can be described using the following differential
equations:

∂xij(t)
∂t

= ẋij(t) = δxij(t)
(
P(τ ij

k (t))−P(t)
)

,

M∑
i=1

Ki∑
j=1

xij(t) = 1, (6.101)
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with initial condition x(0) = x0 ∈X , where x(t) =
[
x11(t) · · · xij(t) · · · xMKM (t)

]T
is a

vector describing the population state, δ is the learning rate of the population, and X is
the set of all possible initial states.

Bandwidth allocation as a differential game
With the dynamic service-selection behavior of users, the service providers can optimally
allocate bandwidth to achieve maximum profits. Increasing the allocated bandwidth of a
certain service is a natural way to improve performance and also to attract more users for
this service class. However, with the limited capacity of the access network, increasing
the bandwidth allocated to one service class will decrease the bandwidth allocated to
other service classes, which may result in a reduced total profit for the service provider.
Therefore, the differential game model for bandwidth allocation by service providers
is formulated to obtain the equilibrium solution of this conflicting situation. This is the
upper-level game in the proposed two-level game framework (Fig. 6.3). This differential
game model takes the dynamic service selection of users into account.

Each of the M non-cooperative service providers competes to maximize the present
value of its objective function, derived over an infinite time horizon, by controlling
the bandwidth-allocation action. To achieve this, a simultaneous-play differential game
is formulated as follows. The set of players is composed of all service providers of
the available access networks. For a service provider as a player, the strategy is the
dynamic control of the proportion of bandwidth allocated to different service classes.
Specifically, the proportion of bandwidth of service provider i allocated to service class
j at time t is denoted by aij(t). The control action of service provider i is denoted by the

vector ai (t) =
[
ai1(t) · · · aij(t) · · · aiKi (t)

]T
in which aij(t) ∈ [0,1],

∑Ki
j=1 aij(t) = 1,

and Bij(t) = Bi (t)aij(t) for all t ∈ [0,+∞). Let ai (t) denote the action profile of player
i and a−i (t) the action profile (i.e., vector) of all players except player i .

The open-loop control action of the service provider is considered because of its sim-
plicity of implementation (i.e., a centralized controller is not required), suitable for a
loosely coupled, heterogeneous wireless network. In the bandwidth-allocation differen-
tial game, all service providers (i.e., players) choose their bandwidth-allocation control
actions simultaneously, thereby influencing the evolution of the state of the differential
game, as well as their own and their opponents’ objective functions. The state of the
differential game is represented by the population state x(t) of the underlying service-
selection game. The replicator-dynamics differential equations (6.101) describe how the
current state x(t) and the service providers’ control ai (t) at time t influence the rate
of change of the state at time t. For a service provider, the problem becomes optimal
control subject to the constraints (e.g., state-evolution differential equations) given the
control actions of other service providers. The instantaneous payoff for service provider
i choosing control action ai (t) is

Ui (ai (t),a−i (t)) =
Ki∑
j=1

(pijN(t)xij(t)− cj(aij(t)Bi (t))2),
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where cj is a cost parameter, and pij is price charged by service provider i for service
class j per user per unit of time.

In non-cooperative bandwidth allocation, for each rational service provider i ∈
{1,2, ... ,M}, the optimal control can be expressed as follows:

maxJi (ai (t),a−i (t)) =
∫ ∞

0
e−ρt

Ki∑
j=1

(pijN(t)xij(t)− cj(aij(t)Bi (t))2)dt, (6.102)

subject to

ẋij(t) = δxij(t)
(

U

(
Bi (t)aij(t)
N(t)xij(t)

)
−U (t)

)
, x(0) = x0, (6.103)

for i ∈ {1, ... ,M} and j ∈ {1, ... ,Ki}, where

M∑
i=1

Ki∑
j=1

xij(t) = 1, xij(t) ∈ [0,1],

Ki∑
j=1

aij(t) = 1, aij(t) ∈ [0,1], t ∈ [0,+∞), (6.104)

where ρ is the discount rate of payoff for the service provider.
The Nash equilibrium concept is chosen as the solution of the above bandwidth-

allocation differential game. An optimal bandwidth-allocation action is defined as
follows:

definition 6.1 A bandwidth-allocation control path a∗
i (t) is optimal for service

provider i if the inequality condition Ji (a∗
i (t),a−i (t)) ≥ Ji (ai (t),a−i (t)) holds for

all feasible control paths ai (t), ∀i in the non-cooperative bandwidth-allocation
differential game.

According to Definition 6.1, an open-loop Nash equilibrium for the bandwidth-
allocation differential game is defined as follows:

definition 6.2 Denote by ai (t) the open-loop bandwidth-allocation action of service
provider i . The action profile a∗ = {a∗

i (t),a
∗
−i (t)} is an open-loop Nash equilibrium if,

for each service provider i ∈ {1,2, ... ,M}, a∗
i (t) is an optimal-control path given other

service providers’ control actions a∗
−i (t).

To obtain the open-loop Nash equilibrium, each service provider must solve
an optimal-control problem. In this case, Pontryagin’s maximum principle can be
used [132]. First, the definitions of the Hamiltonian function H , the maximized
Hamiltonian function H ∗, and the adjoint equation λ̇(t) for a bandwidth-allocation
differential game are given.
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The Hamiltonian function Hi of service provider i is

Hi (x(t),γ i (t),a−i (t),λij(t), t)

=
Ki∑
j=1

(
pijN(t)xij(t)− cj(γij(t)Bi (t))2

)

+
M∑
i=1

Ki∑
j=1

λij(t)δxij(t)
(

U

(
Bi (t)aij(t)
N(t)xij(t)

)
−U

)
, (6.105)

where λij(t) is the co-state associated with x(t). The corresponding maximized
Hamiltonian function H ∗ is defined as

H ∗
i (x(t),λij(t), t) = max{Hi (x(t),ai (t),a−i (t),λij(t), t)|ai (t) ∈ [0,1]Ki}.

(6.106)

The adjoint equation is

λ̇ij(t) = ρλij(t)−
∂H ∗

i (x(t),λij(t), t)
∂xij(t)

. (6.107)

Based on the above Hamiltonian functions and the linear utility function, the following
derivation can be carried out:

∂Hi (x(t),ai (t),a−i (t),λij(t), t)
∂xij(t)

= pijN(t)− αδB(t)λij(t)
N(t)

, (6.108)

where B(t) =
∑M

i=1 Bi (t). Therefore,

∂2Hi (x(t),ai (t),a−i (t),λij(t), t)
∂xij(t)2

= 0, (6.109)

and similarly
∂2Hi (x(t),ai (t),a−i (t),λij(t), t)

∂λij(t)∂xij(t)
= 0. (6.110)

According to (6.109) and (6.110), the bandwidth-allocation differential game defined
in (6.102)–(6.104) is a linear-state differential game. Therefore, this bandwidth-
allocation differential game has the property that the open-loop Nash equilibria are
Markovian-perfect.

To solve for the optimal-control action, the first-order condition is defined as follows:

∂Hi

∂aij(t)
=−2cjBi (t)2aij(t)+λij(t)δα

Bi (t)
N(t)

= 0. (6.111)

The solution can be expressed as

a∗
ij(t) =

λij(t)δα
2cjBi (t)N(t)

. (6.112)
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It can be observed that the optimal-control path is independent of the system state x(t)
and only relates to the co-state λij(t). This co-state can be obtained by solving the adjoint
equations

λ̇ij(t) = ρλij(t)−
∂H ∗

i (x(t),λij(t), t)
∂xij(t)

, (6.113)

where the maximized Hamiltonian function H ∗
i (x(t),λij(t), t) can be obtained by sub-

stituting (6.112) into the Hamiltonian function in (6.105). Denote the solution of (6.113)
by λij(t). Substituting this into (6.112), the optimal bandwidth-allocation control path
a∗
ij(t) for service class j of service provider i can be obtained. Similarly, the optimal-

control path for all service classes of all service providers can be derived. Then, the action
profile a∗ = {a∗

ij(t)|i ∈ {1, ... ,M}, j ∈ {1, ... ,Ki}} is obtained. Since the state space X
is a convex set, the solution to the state-evolution differential equation (6.103) exists
and is unique [132]. Also, for all t ∈ [0,∞), the maximized Hamiltonian function H ∗

is concave and continuously differentiable with respect to x. Therefore, the obtained
action profile a∗ is a Nash equilibrium for the non-cooperative bandwidth-allocation
differential game.

The service providers can cooperate to allocate bandwidth to service classes. In partic-
ular, they can adjust their bandwidth-control paths in a cooperative manner to maximize
the social welfare in terms of aggregated profits. As in the non-cooperative case, the
optimal-control problem for the cooperative bandwidth allocation can be expressed as

maxsJ(ai (t),a−i (t)) =
∫ ∞

0
e−ρt

M∑
i=1

Ki∑
j=1

(pijN(t)xij(t)− cj(aij(t)Bi (t))2)dt,

(6.114)

with the same constraints as defined in (6.103) and (6.104).
To obtain the optimal solution of cooperative bandwidth allocation, Pontryagin’s max-

imum principle is used. In this case, the Hamiltonian function H c
i , the maximized

Hamiltonian function H �
i , and the adjoint equation λ̇c

ij(t) for service provider i for the
cooperative bandwidth allocation are

H c
i (x(t),ai (t),a−i (t),λc

ij(t), t) (6.115)

=
M∑
i=1

Ki∑
j=1

(pijN(t)xij(t)− cj(aij(t)Bi (t))2)

+
M∑
i=1

Ki∑
j=1

λc
ij(t)δxij(t)

(
U

(
Bi (t)aij(t)
N(t)xij(t)

)
−U

)
,

H �
i (x(t),λc

ij(t), t) = max{H c
i (x(t),ai (t),a−i (t),λc

ij(t), t)|aij(t) ∈ [0,1]}, (6.116)
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and

λ̇c
ij(t) = ρλc

ij(t)−
∂H �

i (x(t),λc
ij(t), t)

∂xij(t)
. (6.117)

According to (6.115), we can verify that the cooperative bandwidth allocation is a
linear-state optimal control. With methods similar to those used in the non-cooperative
case,we can obtain the cooperative optimal controla�

ij(t) and accordingly the cooperative
action profilea�. Then the efficiency of non-cooperative behavior of the service providers
can be evaluated.According to thefirst-order condition, let ∂H c

i
∂aij (t)

=0. The optimal action
can be expressed as

a�
ij(t) =

λij(t)δα
2cjBi (t)N(t)

. (6.118)

The adjoint equation for the cooperative case is

λ̇c
ij(t) = ρλc

ij(t)−
∂H �

i (x(t),λc
ij(t), t)

∂xij(t)

= ρλc
ij(t)+

B(t)δαλc
ij(t)

N(t)
− pijN(t), (6.119)

which is the same as the adjoint equation for the non-cooperative case. Accordingly, the
co-state is given by λc

ij(t) = λij(t), for all i ∈ {1,2, ... ,M}, j ∈ {1,2, ... ,Ki}. Thus, we
obtain a�

ij(t) = a∗
ij(t), which shows that the selfish behavior of service providers can also

maximize the social welfare.
The dynamic behavior of service selection by users under the bandwidth-allocation

control is shown in Fig. 6.5 for two SPs and two service classes. The distribution of users
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selecting different service classes from different providers converges to a distribution in
which every user in the service area receives the same utility as the average utility for
the population.

6.3 Summary

In this chapter, the basics of evolutionary games have been presented. The evolutionary-
game framework has some advantages over the classical non-cooperative game, among
which are equilibrium selection, bounded rationality, and dynamic behavior of players.
There are two approaches in the evolutionary-game framework, namely the static and the
dynamic models. For the static case, the solution concept in terms of evolutionarily stable
strategies (ESS) has been considered. For the dynamic model, the replicator dynamics
have been used to model the adaptation of the strategies of the players. Evolutionary
equilibriumhas been considered as the solution of this dynamicmodel of the evolutionary
game. Since an evolutionary game can model the decisions of a number of players in
a population, it can be applied to address various issues in different protocol layers
of wireless communications and networking. Some of these applications have been
discussed in this chapter, including congestion control, contention-based (i.e., Aloha)
protocol adaptation, power control in CDMA, routing, cooperative sensing in cognitive
radio, TCP throughput adaptation, and service-provider selection.



7 Cooperative games

While non-cooperative game theory studies the strategic choices resulting from the inter-
actions among competing players, cooperative game theory provides analytical tools
to study the behavior of rational players when they cooperate. In this context, in a
cooperative-game scenario, the players are allowed to form agreements among them-
selves that can impact the strategic choices of these players as well as their utilities.
Cooperative games encompass two main branches: bargaining theory and coalitional
games. The former describes the bargaining process between a set of players that need to
agree on the terms of cooperation, while the latter describes the formation of cooperat-
ing groups of players, referred to as coalitions, that can strengthen the players’ positions
in a game. In this chapter, we examine the key characteristics, properties, and solution
concepts of both branches of cooperative games as well as sample applications within
wireless and communication networks.

7.1 Bargaining theory

7.1.1 Introduction

In economics, many problems involve a number of entities that are interested in reaching
an agreement over a trade or the sharing of a resource but have a conflicting interest
on how to reach this agreement and on the terms of the agreement. In this context,
a bargaining situation is defined as a situation in which two (or more) players can
mutually benefit from reaching a certain agreement but have conflicting interests on the
terms of the agreement. Certainly, in a bargaining situation, no agreement can be imposed
on any player without the player’s approval. Bargaining theory is an established field
that deals with studying and analyzing bargaining situations in a variety of problems.
The foundations of bargaining theory were first laid by the work of Nash in the 1950s
[350, 352]; however, the field only began to blossom following the seminal work of
Ariel Rubinstein in [405]. In fact, the contributions of Rubinstein constitute the origin
of most of the work that followed, so it lies at the heart of the development of the theory
of bargaining.

The motivation and ever-growing interest in developing models and theories for
analyzing bargaining situations stems from the prevalence of such situations in many dis-
ciplines. In economics, the simplest example of a bargaining situation is a trade between
a buyer and a seller. An example would be a seller who owns a painting that he values at
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$1,000 and who wishes to sell this painting to a buyer who values it at $1,500. Clearly,
in this situation the seller and the buyer have an incentive to agree on completing the
transaction, but at the same time they have conflicting interests regarding the price at
which to trade: the seller would like to trade at a high price, while the buyer would
like to trade at a low price. In wireless and communication networks, an example of a
bargaining situation is the sharing of a resource (e.g., time, bandwidth, rate) between
two or more nodes. While the nodes have an interest in agreeing on a division of the
resource (e.g., in order to communicate), they have conflicting interests on the share:
each node is interested in maximizing the amount of resource that it receives.

While bargaining theory involves a broad range of challenging issues, one can identify
the following four key issues that are of central concern for studying any bargaining
problem:

• Efficiency. A central issue in bargaining theory is to identify a unique, mutually ben-
eficial agreement. From the set of all possible outcomes of a bargaining situation, the
bargainers need to identify the set of jointly efficient outcomes.

• Distribution. Once the efficient bargaining outcomes are identified, the key issue is
to select one of the outcomes as a solution to the considered problem.

• Strategy coordination. Once the chosen outcome is identified, the bargainers must
identify the joint strategy that they can use to reach this outcome.

• Agreement enforcement. Once the joint strategy is found, the terms of the agree-
ment must be identified so as to enforce the implementation of the strategies by the
bargainers.

In order to develop a theoretical analysis of these four key issues of bargaining, one has
to use solid mathematical and analytical frameworks. In this context, bargaining theory
is strongly linked to game theory. For instance, a significant portion of cooperative
games, which are the main focus of this chapter, deals mainly with efficient distribution
of resources or utilities, and is thus a suitable framework for tackling the efficiency
and distribution issues of bargaining. In addition, non-cooperative game theory, notably
dynamic games and evolutionary games (which are treated in Chapters 3 and 6), deals
with the coordination of strategies and the enforcement of agreements.

In this section, we mainly focus on bargaining theory as it relates to cooperative games
through the concept of Nash bargaining. We start by introducing the central concept of
Nash bargaining, and then discuss a few representative applications of bargaining theory
in wireless and communication networks.

7.1.2 The Nash bargaining solution

In bargaining theory, we distinguish between two key concepts: the bargaining process
and the bargaining outcome. The bargaining process is the procedure that the involved
bargainers must follow in order to reach an agreement over a certain bargaining outcome.
The bargaining outcome is, thus, the result of the bargaining process. In his seminal paper,
Nash [350] adopted an axiomatic approach that abstracts the bargaining process and
considers only the bargaining outcome. Hence, instead of studying how the bargainers
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can reach an agreement, Nash looked at the possible outcomes or agreements that satisfy
“reasonable” properties identified by a set of axioms that he defined.

In this context, consider two players, labeled i = 1,2, that are trying to come to an
agreement over an outcome in a space X . Each player i has a utility function ui defined
over the space X ∪ {D}, where D is the outcome if the two players fail to reach an
agreement, i.e., the disagreement outcome. Define the space S as the set of all possible
utilities that the two players can achieve, i.e.,

S = {(u1(x1),u2(x2))| x = (x1,x2) ∈X}. (7.1)

Furthermore, we define the pair d = (d1,d2) with d1 = u1(D) and d2 = u2(D) as the
disagreement point or the threat point.

Subsequently, a bargaining problem is defined as the pair (S,d) where S ⊂ R2 and
d ∈ S such that

• S is a convex and compact set.
• There exists some s ∈ S such that s > d , i.e., s1 > d1 and s2 > d2 (note that, in some

references, this property is considered as a feasibility axiom rather than part of the
definition of a bargaining problem).

We are interested in a bargaining solution that is a function f that specifies a unique
outcome f (S,d) ∈ S for every bargaining problem (S,d) (fi (S,d) would represent the
component of player i in the bargaining outcome). As previously mentioned, instead
of looking at the bargaining process, Nash stated the following four axioms, specifying
properties that the bargaining outcome (or solution) must satisfy:

1. Pareto efficiency: A bargaining solution f (S,d) is Pareto-efficient if there does not
exist a point (s1,s2) ∈ S such that s ≥ f (S,d) and si > fi (S,d) for some i . Any rea-
sonable bargaining scheme must choose a Pareto-efficient outcome since, otherwise,
there would exist another outcome which is better for both players.

2. Symmetry: Let (S,d) be symmetric around s1 = s2, i.e., (s1,s2) ∈ S if and only
if (s2,s1) ∈ S and d1 = d2; then f1(S,d) = f2(S,d). In other words, the bar-
gaining solution would not discriminate among the players if these players were
indistinguishable.

3. Invariance to equivalent utility representation: If we transform a bargaining problem
(S,d) into another different bargaining problem (S ′,d ′) by taking s ′

i = αi si +βi and
d ′

i = αidi +βi where αi > 0, then fi (S ′,d ′) = αi fi (S,d)+βi .
4. Independence of irrelevant alternatives: Given two bargaining problems (S,d) and

(S ′,d) such that S ′ ⊆ S, if f (S,d) ∈ S ′ then f (S ′,d) = f (S,d). This axiom states
that, if bargaining in the utility region S results in a solution f (S,d) that lies in a
subset S ′ of S, then a hypothetical bargaining in the smaller region S ′ would result
in the same outcome.

Nash’s result shows that there exists a unique bargaining solution that satisfies the
four axioms, which we state through the following theorem:
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theorem 7.1 There exists a unique solution satisfying the four axioms, and this
solution is the pair of utilities (s∗

1 ,s∗
2 ) that solves the following optimization problem:

max
(s1,s2)

(s1− d1)(s2− d2), s.t. (s1,s2) ∈ S, (s1,s2)≥ (d1,d2), (7.2)

where (s1−d1)(s2−d2) is knownas theNash product and the solution of the optimization
problem (7.2) is the Nash bargaining solution.

Proof For the purpose of the proof, we first note that the optimization problem (7.2)
admits a unique optimal solution since: (i) S is a compact set, and (ii) the objective
function is continuous and strictly quasi-concave. In order to prove the existence and
uniqueness of a solution that solves (7.2) and satisfies the four axioms (i.e., the Nash
bargaining solution), we proceed in two steps. In the first step, we prove that the Nash
bargaining solution (i.e., the solution to (7.2)) satisfies the four axioms. Then we show
that if a bargaining solution satisfies the four axioms it is a Nash bargaining solution.

Step 1:

1. Pareto efficiency: Since the objective function of (7.2) is increasing in s1 and s2, the
solution of (7.2) is, indeed, Pareto-optimal.

2. Symmetry: Assume that d1 = d2 and let s∗ = (s∗
1 ,s∗

2 ) be the Nash bargaining solution
of (7.2). Then we easily see that (s∗

2 ,s∗
1 ) would also be an optimal solution of (7.2).

Because of the uniqueness of the optimal solution of (7.2), we must have s∗
2 = s∗

1 ;
thus, the Nash bargaining solution satisfies the symmetry axiom.

3. Invariance to equivalent utility representation:Consider theNashbargaining outcome
f ∗(S ′,d ′) of the transformed bargaining problem (S ′,d ′); by definition, this outcome
is the optimal solution of the problem

max
(s1,s2)

(s1−α1d1−β1)(s2−α2d2−β2), s.t. (s1,s2) ∈ S ′. (7.3)

Performing the change of variables s ′
1 = α1s1 +β1, s ′

2 = α2s2 +β2, it follows imme-
diately that the Nash bargaining solutions of (S,d) and its transformed problem
(S ′,d ′) satisfy f ∗

i (S ′,d ′) = αi f ∗
i (S,d)+βi for i = 1,2.

4. Independence of irrelevant alternatives: Let S ′ ⊆ S. From (7.2), it is clear that the
objective function value at the Nash bargaining solution f ∗(S,d) is greater than or
equal to the one at f ∗(S ′,d). If f ∗(S,d)∈S ′, then the objective function values must
be equal; thus, f ∗(S,d) is optimal for S ′. By the uniqueness of the solution, we will
have f ∗(S,d) = f ∗(S ′,d).

Step 2:

Consider a bargaining solution f (S,d) satisfying the four axioms, and let us prove that
this solution is, indeed, the Nash bargaining solution f ∗(S,d) of (7.2). Let t = f ∗(S,d)



7.1 Bargaining theory 175

denote the Nash bargaining solution of (7.2), and define the set

S ′ = {α′s +β|s ∈ S;α′t +β =
(

1
2
,
1
2

)′
;α′d +β = (0,0)′}. (7.4)

In other words, we map the point t to ( 1
2 , 1

2 ) and the disagreement point d to (0,0).
Since f (S,d) and f ∗(S,d) both satisfy the axiom of invariance to equivalent utility
representations (Axiom 3), then we have f (S,d) = f ∗(S,d) if and only if f (S ′,0) =
f ∗(S ′,0) = ( 1

2 , 1
2 ). Thus, to conclude our proof, it is sufficient to prove that f (S ′,0) =

( 1
2 , 1

2 ).
For this purpose, we first show that there exists no s ∈S ′ such that s1 +s2 > 1. Assume

that such a point s exists. Then let z = (1− λ)( 1
2 , 1

2 ) + λ(s1,s2) for some λ ∈ (0,1).
Since S ′ is convex, then z ∈ S ′. Although we can choose λ sufficiently small such that
z1z2 > 1

4 = f ∗(S ′,0), this contradicts the optimality of f ∗(S ′,0), which shows that for
all s ∈ S ′ we have s1 + s2 ≤ 1. Then, since S ′ is bounded, we can find a rectangle R
that is symmetric around the line s1 = s2 and such that S ′ ⊆R and ( 1

2 , 1
2 ) lies on the

boundary ofR.
Consequently, by Axioms 1 and 2, we have f (R,0) = ( 1

2 , 1
2 ), and, by Axiom 4, since

S ′ ⊆R, we have f (S ′,0) = ( 1
2 , 1

2 ), which completes the proof.

In consequence, the Nash bargaining solution provides a unique outcome of a bargain-
ing process that satisfies a set of desired properties as conveyed by the axioms of Nash.
In order to give a better idea of this solution, consider the following two classic examples
(detailed analyses of these examples can be found in [345] and references therein).

Example 7.1 Two players are negotiating over sharing a pie of size 1. Let x be the share
that player 1 will receive, so the share obtained by player 2 will be 1− x . Denote by
u1(x) and u2(x) the utilities (assumed to be concave) of players 1 and 2, respectively.
Clearly, u1 is increasing in x while u2 is decreasing in x , since x is the share of player 1.
For this example, the Nash bargaining solution is the share x∗ that maximizes the Nash
product (u1(x)− d1)(u2(x)− d2), where x ∈ [0,1] and (d1,d2) are the utilities at the
disagreement point. If we choose u1(x) = x and u2(x) = 1− x with d1 = d2, then the
Nash bargaining solution dictates that the two players would split the pie equally, i.e.,
x∗ = 1

2 .

Example 7.2 Consider two men, one rich and one poor, who run into a genie on the
street. The genie offers to let them share $100 on the condition that they agree on how
to split the money.1 This problem highlights a common bargaining situation in which
two individuals have an incentive to cooperate but are negotiating on how to cooperate.

1 A variant of this problem considers the case in which the rich man and the poor man need to share the
payment of a debt to a bank.
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One solution to this problem is through the Nash bargaining concept. We assume that
the rich man initially has a wealth of w1 = $1010 while the poor man has initially a
wealth of w2 = $10. In order to formulate the problem as a bargaining problem, we
first need to define the space S and the disagreement point d . Consider logarithmic
utilities, and choose the disagreement point as the log of the initial wealth of the two
men, i.e., d1 = logw1 and d2 = logw2. This choice is natural since, if the two men do
not agree on the division of the $100, then, the genie will not give it to them. If we let x
denote the share of the money that the rich man gets, then the utility for the rich man
would be u1 = log(1010 + x) and that of the poor man u2 = log(10+ (100− x)). By
solving the maximization of the Nash product (u1− d1)(u2− d2) over x ∈ [0,100], the
Nash bargaining solution yields x∗ ≈ $66. This solution can be found graphically by
intersecting the Pareto boundary of the utility region (i.e., the boundary of the utility
region which is Pareto-efficient) with the hyperbola parameterized by a constant m such
that (u1− d1)(u2− d2) = m. To find the Nash bargaining solution, the parameter m is
chosen so as to have a single intersection point with the Pareto boundary. The Nash
bargaining solution for this problem favors the rich man, i.e., the player who had a
larger initial wealth, and thus greater bargaining power. The reason is that, from the
rich man’s perspective, the loss incurred from staying at the disagreement is not as big as
the loss of the poor man (owing to the relative importance of $100 with respect to each
man’s initial wealth). As a matter of fact, in the case where w1 and w2 are comparable,
the Nash bargaining solution goes toward equal division.

One important aspect of Nash bargaining is the selection of the disagreement point.
In general, this selection is dependent on the application, as some scenarios have a
natural value for this point. For example, in Example 7.2, it is quite intuitive to select
the initial wealth of the two men as their disagreement point. In many other cases, the
disagreement point can be simply chosen as the origin. Nonetheless, one rule of thumb
in the selection of the disagreement point is to select a point that the players can improve
upon by bargaining. For instance, in many applications, it is of interest to select the
Nash equilibrium as the disagreement point and, subsequently, use the Nash bargaining
solution to improve the utilities of the players with respect to their non-cooperative
payoffs.

While the Nash bargaining solution was initially derived for the two-player case,
it can be extended to the general N-player case, N > 2, by expanding S to become
an N-dimensional utility space. Hence, the Nash bargaining solution for an N-player
bargaining problem (S,d), with d = (d1, ... ,dN) being the disagreement point, becomes
the unique solution of the following optimization problem:

max
(s1,...,sN )

N∏
i=1

(si − di ), s.t. (s1, ... ,sN) ∈ S, (s1, ... ,sN)≥ (d1, ... ,dN). (7.5)

Certainly, this solution satisfies the four axioms of Nash, in the N-dimensional space.
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Although the extension of the Nash bargaining solution concept to the N-player case
is straightforward, the complexity of finding the solution, i.e., solving the optimization
problem in (7.5), becomes higher. While in the two-player case a graphical method can
be used, e.g., using the intersection of the Pareto boundary of the utility region S with
the hyperbola given by the Nash product parameterized by a constant m, in the N-player
case advanced optimization techniques may be required. In general, when approaching
an N-player Nash bargaining solution, depending on the structure of the problem and the
properties of the considered utility functions, one can utilize thewell-knownoptimization
methods in [81], such as the bisection method, to find the solution.

In a given N-player bargaining problem (S,d) with N ≥ 2, it is sometimes useful
to give some additional weight, i.e., power, to some of the players. For example, some
large companies might need to be assured of a large share of the pie (in a bargaining
situation) before they indulge in the bargaining process. In order to do so, one can assign,
for every player i , a value αi ∈ [0,1] which represents the bargaining power of i . The
bargaining-power values are chosen such that

∑N
i=1 αi =1. The idea of bargaining power

allows us to give some weight to the negotiation capabilities of every player. A player
having a higher bargaining power would thus be a candidate to obtain an advantage in
the final outcome of the bargaining process. In such a bargaining problem, if we drop
the symmetry axiom of Nash (Axiom 2), we can define the generalized Nash bargaining
solution, which is the solution of the following optimization problem:

max
(s1,...,sN )

N∏
i=1

(si − di )αi , (7.6)

with the same constraints as (7.5). Clearly, as seen in (7.6), the use of bargaining power
allows the maximization to become more biased towards the player having a higher
bargaining power αi . Furthermore, one can see that, whenever the weights αi are equal
for all i = 1, ... ,N , then (7.6) reduces back to the standard Nash bargaining solution
of (7.5). In the pie-splitting Example 7.1, if we assign a bargaining power α to the first
player, then we can use the first-order conditions to solve (7.6) and obtain the generalized
Nash bargaining solution. In this case, the solution dictates that x∗ = d1 +α(1−d1−d2)
and 1− x∗ = d1 +(1−α)(1−d1−d2). Hence, in this example, each player will obtain
his disagreement point plus a certain share of the extra utility 1− d1− d2, i.e., the total
utility available in surplus of the utility at the disagreement point.

Although the Nash bargaining solution is a widely popular concept for solving bar-
gaining problems, it is worth noting that it is by no means the only approach for doing
so.As a matter of fact, the Nash bargaining solution suffers from several drawbacks that
have led to the emergence of other concepts or solutions for bargaining situations. One
drawback of the Nash bargaining solution is that it requires convexity of the utility space,
which can be quite restrictive inmany applications. For overcoming this restriction, some
extensions of the Nash bargaining solution to other regions, such as log convex regions
[76], have been proposed. Moreover, ever since the introduction of the Nash bargaining
solution,many objections have been raisedwith regard to the “independence of irrelevant
alternatives” axiom (Axiom 4) [305, 237]. An important criticism of Axiom 4 pertains
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to its claim that expanding the utility region in a direction favorable to one of the players
does not yield any extra benefit for this player in the bargaining process. In many scenar-
ios, this restriction has been deemed unfair since it does not provide any advantage to the
player when its bargaining power in the utility region (maximum utility) increases. To
overcome this problem, a number of alternative bargaining solutions have been proposed
[305, 237, 345]. One popular alternative is the Kalai–Smorodinsky solution, which was
first introduced in [237]. The Kalai–Smorodinsky approach suggests replacing Axiom 4
with a montonicity axiom. This new monotonicity axiom states that if, for every utility
level that player 1 may demand, the maximum feasible utility level that player 2 can
simultaneously reach is increased, then, in the bargaining outcome, the share of the utility
for player 2 would also increase. In other words, the Kalai–Smorodinsky solution of a
bargaining problem (S,d) requires that whenever the maximum feasible utility achiev-
able by one of the players is increased, i.e., S is expanded in a direction favorable to one
of the players, this player obtains a larger utility at the bargaining outcome.

Beyond the shortcomings of the axioms and the mathematical properties, one draw-
back of the Nash bargaining solution is, as previously mentioned, the fact that it is
concerned solely with the outcome of the bargaining situation, while ignoring com-
pletely the details of the bargaining process that can achieve this outcome. This implies
that many questions such as “how do the players negotiate so as to reach the Nash bar-
gaining solution?” are left unanswered by Nash’s approach. In this regard, important
aspects of bargaining such as the delay in reaching the agreement and the cost of hag-
gling and negotiation are abstracted and somewhat ignored by the Nash solution. In this
context, dynamic bargaining is a major branch of bargaining theory that deals with the
bargaining process and its connection to the outcome of a given bargaining situation. One
of the first approaches to modeling the bargaining process was presented by Rubinstein
in [405] for the case of two players negotiating over shares of a pie of size 1 (a scenario
somewhat similar to Example 7.1). The Rubinstein process is based on an offer/counter-
offer procedure, and, through concepts from non-cooperative games, Rubinstein shows
that there exists a unique outcome to the bargaining process and, whenever no delay for
negotiations is taken into account, this outcome is the Nash bargaining solution.

An in-depth analysis of the alternatives to the Nash bargaining solution, as well as
dynamic bargaining approaches, are beyond the scope of this chapter, sincewe aremainly
interested in the aspects of bargaining theory that fall under the umbrella of cooperative-
game theory, i.e., the Nash bargaining solution. However, interested readers are referred
to [345] for an in-depth treatment of the field of bargaining theory which, like game
theory, admits numerous applications in the context of wireless and communication
networks.

7.1.3 Sample applications in wireless and communication networks

In the context of wireless and communication networks, the Nash bargaining solution
turns out to be very useful for characterizing the outcome of many bargaining situations,
notably in the area of resource allocation and management. As a demonstration of the
strong connection between Nash bargaining and communication networks, it has been
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shown that, whenever the disagreement point d is chosen as the origin, i.e., d =(0,0), the
Nash bargaining solution, when applied to resource allocation in a wireless or commu-
nication network, coincides with the famous proportional fair distribution of resources
(see [76] and references therein), which was introduced by Kelly [242]. Hence, in this
subsection, we discuss several applications of the Nash bargaining solution in wireless
and communication networks.

Nash bargaining for downlink beamforming in an interference channel
Enabling wireless systems to efficiently operate in the same spectral band is a key
challenge for next-generation networks. An illustrative example of this problem is the
scenario whereby two base stations (BS) equipped with multiple antennas are trying to
transmit their information, in the downlink, to two mobile stations (MS). In this scenario,
considering that bothBSs utilize the same spectrum,whenever the communication occurs
simultaneously, the received signal at each MS will suffer from the interference caused
by the other transmission. The scenario is depicted in Fig. 7.1 and studied in detail
in [281].

Formally, consider two BSs, each equipped with k antennas and belonging to different
operators, with BS 1 transmitting data to MS 1 and BS 2 transmitting data to MS 2.
By considering that each BS performs single-stream transmission, i.e., scalar coding
followed by beamforming (which is optimal under certain conditions on the channel
knowledge and interference modeling [180]) and given that all channels are frequency-
flat, we have the following complex baseband data symbols y1 and y2 received at MS 1

Base station 1

h11

h22

h
12

h 21

Mobile station 1

Mobile station 2

Base station 2

Fig. 7.1 Example of the BS downlink beamforming system model.
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and MS 2, respectively:

y1 = hT
11w1s1 +hT

21w2s2 + n1, (7.7)

y2 = hT
22w2s2 +hT

12w1s1 + n2, (7.8)

where s1 and s2 represent the transmitted symbols,hij represents the k×1 channel-vector
between BS i and MS j , wi is the k×1 beamforming vector used by BS i , and n1, n2 are
the noise terms modeled as i.i.d. (independently and identically distributed) Gaussian
with zero mean and variance σ2. The maximum transmit power per BS is normalized to
1, which yields the following power constraint on each BS i : ||wi ||2 ≤ 1.

In this scenario, we highlight an important conflict of interest that arises between
the two BSs. While every BS i has an incentive to optimize its weight vector wi so as
to maximize the quality of service received by its served MS, this optimization yields
increased interference in the transmission of BS j , thus requiring BS j to change its
weight vector, which in turn would affect the optimization of BS i . This cycle continues,
and two key questions need to be answered:

• If the BSs act in a non-cooperative manner, with each BS being self-interested, what
are the resulting beamforming vectors w1 and w2?

• Can some sort of cooperation improve the performance of the BSs?

In order to answer the second question, one must first assess the outcome of the non-
cooperative situation, i.e., the first question. To tackle the first question, we revert to
a concept from non-cooperative non-zero-sum games. In this scenario, we formulate a
non-cooperative game with the following components:

• The players are the two BSs.
• The strategy of eachBS i is the choice of a beamforming vectorwi such that ||wi ||2≤ 1.
• The utility for each BS i is simply the rate that it achieves at the MS.

Considering no interference-cancellation techniques at the receivers, for a given pair
of beamforming vectors (w1,w2), expressions for the rates R1 and R2 achievable,
respectively, by BS 1 and BS 2 (using codebooks approaching Gaussian) are given by

R1 = log2

(
1+

|wT
1 h11|2

σ2 + |wT
2 h21|2

)
, (7.9)

R2 = log2

(
1+

|wT
2 h22|2

σ2 + |wT
1 h12|2

)
. (7.10)

Consequently, the utilities of BSs 1 and 2 can be defined simply as u1(w1,w2) = R1 and
u1(w1,w2) = R2. As the utilities depend on the strategies of the competing players, we
have a non-cooperative game among the BSs.

In order to specify the outcome of this game, we can use the notion of the Nash equi-
librium as defined in Chapter 3. Nevertheless, prior to determining the Nash equilibrium
of this game, we first define an achievable-rate region for the considered multiple-input
single-output (MISO) interference channel. Although, in general, the capacity region of
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the MISO interference channel is not known, for the purpose of studying this problem,
we can use the following achievable-rate region [281]:

R=
⋃

w1,w2,||w1||2≤1

(R1,R2). (7.11)

In the absence of coordination among the BSs, the outcome of the game will generally
be the Nash equilibrium. In this regard, a pair of strategies (wNE

1 ,wNE
2 ) at the Nash

equilibrium must satisfy

u1(wNE
1 ,wNE

2 )≥ u1(w1,wNE
2 ) (7.12)

for BS 1 and for all w1, ||w1||2 ≤ 1, as well as

u2(wNE
1 ,wNE

2 )≥ u2(wNE
1 ,w2) (7.13)

for BS 2 and for all w2, ||w2||2 ≤ 1. By substituting (7.9) and (7.10) into (7.12)
and (7.13), it is shown that, for this game, there exists a unique Nash equilibrium in
pure strategies determined by the maximum-ratio transmission beamforming vectors
[281]:

wNE
1 =

h†
11

||h11||
,wNE

2 =
h†

22

||h22||
, (7.14)

where h†
ij is the complex conjugate. This result follows immediately from the fact that

when BS i uses the beamforming vector wNE
i at the Nash equilibrium, there exists no

other vector that can yield a larger rate while satisfying the power constraint.
Although the Nash equilibrium is a natural outcome of the considered scenario,

as mentioned in previous chapters the Nash equilibrium point in many cases is not
necessarily Pareto-efficient. As a matter of fact, in the studied scenario, it can be
shown that the Nash equilibrium does not lie at the Pareto boundary of R. More-
over, at high SNR the Nash equilibrium yields a poor performance for both BSs [281,
Proposition 4].

Because of the inefficiency of the Nash equilibrium, a better solution must be sought.
The inefficiency of the Nash equilibrium solution is partially due to the uncoordinated
actions of the BSs. For instance, one can remark that, by a small exchange of information
(without any need for a centralized controller), the BSs might be able to coordinate their
beamforming vectors so as to improve upon their non-cooperative performance. How-
ever, each BS is self-interested, and would seek to maximize its own individual rate.
Hence,we have a bargaining situation between the twoBSswhereby theywould certainly
benefit fromcooperation but theyneed to agree on away to cooperate, i.e., on a point in the
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achievable-rate region. Thus, we formulate a Nash bargaining problem between the two
BSs whereby

• The achievable-rate region R is compact but can be non-convex; thus, in order to
define a bargaining problem, we consider the convex hull S of the achievable-rate
regionR as the bargaining utility region.2

• The disagreement point is chosen as the Nash equilibrium point d =
(u1(wNE

1 ,wNE
2 ),u2(wNE

1 ,wNE
2 )) ∈ S.

Hence, the outcome of the Nash bargaining problem described above would be a pair
of utilities (i.e., rates) in the rate region which improve upon the disagreement point (the
Nash equilibrium) and which can be mapped onto a pair of beamforming vectors consti-
tuting the Nash bargaining solution. Given the beamforming Nash bargaining problem
(S,d) previously defined, the Nash bargaining solution is a point on the Pareto boundary
that corresponds to the solution of the following optimization problem (recall that the
utility is the rate):

max
(R1,R2)∈S+,

(R1−RNE
1 )(R2−RNE

2 ), s.t. (R1,R2)≥ (RNE
1 ,RNE

2 ). (7.15)

In order to find the Nash bargaining solution, (7.15) can be solved graphically by
intersecting the Pareto boundary of S with a hyperbola (R1 − RNE

1 )(R2 − RNE
2 ) = m,

where m is a parameter chosen in such a way as to have a single intersection with the
Pareto boundary. By finding the Nash bargaining solution for the problem (S,d), one
would find a point in the rate region that outperforms the Nash equilibrium and is Pareto-
optimal. For example, given channels that are randomly chosen so as to have a convex
rate region with a signal-to-noise ratio of 0 dB, the Nash equilibrium solution yields,
approximately, the rates (1.05,0.19) (in bits per channel use), while the Nash bargaining
solution yields approximately (1.17,0.225) [281]. In fact, the Nash bargaining solution
outperforms theNash equilibrium in any given scenario, and, in some cases of thismodel,
this solution is as good as the sum-ratemaximizing centralized solution, as shown through
extensive numerical simulations in [281].

While in this example we have focused on the case of the MISO interference channel,
the use of theNash bargaining solution for picking Pareto-optimal rate vectors inwireless
channels extends to numerous scenarios and problems. For instance, in [288], the use of
theNash bargaining solution forfinding efficient rate vectors in theGaussian interference
channel is studied. The authors show that, under certain conditions on the signal-to-noise
ratio, the Nash bargaining solution using frequency-division multiplexing significantly
outperforms the Nash equilibrium solution in a frequency-flat channel. The results are
further extended to a frequency-selective channel whereby it is shown that, using convex
optimization techniques, theNash bargaining solution for anN-player game can be found
with reasonable complexity, and its performance is significantly better than that of the
Nash equilibrium. InOFDMAnetworks, the authors in [224] discuss the use of bargaining
for rate allocation and its relation to well-known concepts such as proportional fairness

2 For an interpretation of the convex hull in the context of the considered scenario, the reader is referred to
[281].
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and max-min fairness. The use of the Nash bargaining solution in MIMO interference
channels is discussed in [104]. The link between rate allocation in wireless networks and
the Nash bargaining solution is further surveyed in [282] and the references therein.

In summary, beyond the presented example, whenever one is faced with the problem
of resource allocation, notably rate allocation in a wireless channel, it is of interest to
study the Nash bargaining solution because it can provide an efficient outcome as well
as important insights on the operating point of the studied problem.

Nash bargaining for multimedia resource management
In recent years, the need for deploying resource-demanding applications such as multi-
media streaming, video surveillance, and video gaming over bandwidth-constrained
network infrastructures has increased. In this context, ensuring the required quality-of-
service parameters for these applications becomes very challenging under constrained
resources. Hence, an efficient resource management scheme is required to enable
multimedia communication over resource-constrained communication networks. This
problem is tackled using bargaining theory in [384].

Consider N video users that are seeking to share the bandwidth of a wired or wireless
network. The users have an incentive to jointly agree on a division of the network
resources so as to optimize their performance. However, each user is self-interested and
would aim at obtaining the largest amount of resources for its own use. Clearly, this
gives rise to a bargaining problem with the following characteristics:

• The players are the N video users.
• Each player i seeks to obtain a share xi of the bandwidth. Hence, we define ui (xi ) as

the utility for player i , which is a function of its share of the bandwidth xi . We let S
denote the N-dimensional bargaining region.

• A disagreement point d ∈ S represents the minimum utility that each user demands
before agreeing on a bargaining outcome.

Given this (S,d) bargaining problem, we seek to characterize the Nash bargaining
solution and its implications in this multimedia resource-management context. Using an
adequate distortion-rate model, the utility function of any video user i can be defined as
[384]

ui (xi ) =
255 · (xi − x0i )

D0i (xi − x0i )+μi
, (7.16)

where x0i is the bandwidth share at the disagreement point, D0i and μi are rate-distortion
parameters (D0i is non-negative, and μi is positive) that are dependent on the video
sequence characteristics, resolutions, and delay. This utility function is chosen in such a
way that PSNRi = 10log10 ui (xi ) represents the PSNR achieved by video user i . Con-
sequently, there is an optimization of the utility which maps into an optimization of
the PSNR.

From (7.16), we first remark that, at the disagreement point, i.e., at xi = x0i , the
utility is 0, and thus the disagreement point d can be defined as the origin: d = (0,0).
Furthermore, with this utility definition, it is shown in [384] that the utility region S is
compact and convex.
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Consequently, we assign to every video user a bargaining power αi ∈ [0,1], such that∑N
i=1 αi = 1, and we formally define a generalized Nash bargaining problem (S,d)

among the video users, with its solution given by the solution to

max
(u1,...,uN )∈S

N∏
i=1

ui (xi )αi . (7.17)

The outcome of this problem would determine the resource allocation that would provide
Pareto-optimal utilities, i.e., PSNR, for the video users. To obtain the generalized Nash
bargaining outcome, optimization techniques such as the bisection method can be used
(the details of these techniques are beyond the scope of this example but can be found
in [384, Algorithm 1]).

Using (7.16), the logarithm of the Nash product in (7.17) becomes

10 log10

N∏
i=1

ui (xi )αi =
N∑

i=1

αiPSNR∗
i , (7.18)

where PSNR∗
i is the PSNR achieved by user i at the generalized Nash bargaining out-

come. In other words, the Nash bargaining solution maximizes a weighted sum of PSNRs
(weighted in terms of bargaining power, i.e., importance of the user in the game) given
the total available bandwidth. In some sense, the Nash bargaining solution in the con-
sidered resource-management problem optimizes the total system utility in terms of the
weighted sum of PSNRs.

Furthermore, for multimedia resource management, the choice of the bargaining pow-
ers allows more importance to be given to some users relative to others, depending on
the characteristics of the video (e.g., content characteristics, spatio-temporal resolution,
delay requirements) or on the communication channel characteristics (e.g., fading when
dealing with wireless channels). For example, to facilitate the transmission of highly
delay-sensitive content, one would assign higher bargaining power to users with strin-
gent delay requirements, thus giving them a higher share of the resource so that they
maintain an acceptable quality of service.

Moreover, it is shown in [384] that using the generalized Nash bargaining solution in
this problem yields a significant performance improvement for the system, notably when
compared with equal allocation. Using various bargaining powers and video scenarios,
the results in [384] show that, as the resources become scarcer, the use of the generalized
Nash bargaining solution becomes more crucial in that it allows important improvements
in terms of resource allocation and achieved PSNR performance. Thus, in summary, this
example demonstrates how the Nash bargaining solution, in the context of multimedia
resource management, provides a fair and Pareto-optimal outcome.

Finally, beyond the presented examples, bargaining theory and the Nash bargaining
solution admit numerous applications in wireless communications and networking such
as in cognitive-radio networks [91, 516, 46], vehicular communications [455], common
radio resource management [247].
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7.2 Coalitional game theory: basics

In this section, we introduce the main fundamental concepts of coalitional-game theory,
which is a key branch of cooperative games.

7.2.1 Introduction

Coalitional-game theoryprovides suitable analytical tools that havebeenwidely explored
in different disciplines such as economics and political science. With the recent emer-
gence of cooperation as a new networking paradigm, coalitional-game theory started
to become a central framework for modeling cooperation in wireless and communi-
cation networks. For instance, coalitional games prove to be a very powerful tool for
designing fair, robust, practical, and efficient cooperation strategies in communication
networks. The goal of the remainder of this chapter is to introduce the main concepts of
coalitional-game theory as well as to address the major opportunities and challenges in
applying coalitional games to the understanding and designing of modern communica-
tion systems, with emphasis on both new analytical techniques and potential application
scenarios.

This section starts by laying out the main components of coalitional games before
zooming in on an in-depth study of these games, their solution concepts, and their
properties. Since the literature on coalitional games is sparse, we will follow the
engineering-oriented classification of coalitional games that is given in [412]. Hence,
based on various properties of the considered game, we group coalitional games into
three distinct classes [412]:

• Class I. Canonical (coalitional) games3

• Class II. Coalition-formation games
• Class III. Coalitional graph games.

The key features of these classes are summarized in Fig. 7.2, and an in-depth study of
each class is provided in the rest of this chapter.

7.2.2 Coalitional-game theory: preliminaries

In essence, coalitional games involve a set of players, denoted by N , who seek to form
cooperative groups, i.e., coalitions, in order to strengthen their positions in a given
situation. Any coalition S ⊆ N represents an agreement between the players in S to
act as a single entity. The formation of coalitions or alliances is ubiquitous in many
applications. For example, in political games, parties or groups of individuals can form
coalitions for improving their voting power. In addition to the player set N , the second
fundamental concept of a coalitional game is the coalition value. Mainly, the coalition
value, denoted by v , quantifies the worth of a coalition in a game. The definition of the

3 We will use the terms “canonical coalitional games” and “canonical games” interchangeably throughout
this book.
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Class I: Canonical coalitional games

• The grand coalition of all users is an

  optimal structure and is of major

  importance.

• Key question: How to stabilize the

  grand coalition?

Class II: Coalition formation games

• The network structure that forms depends

  on gains and costs from cooperation.

• Key question: How to form an

  appropriate coalitional structure (topology)

  and how to study its properties?

Class III: Coalition graph games

• Players’ interactions are governed by

  a communication graph structure.

• Key question: How to stabilize the

  grand coalition or form a network

  structure taking into account the

 communication graph?

1

1

3 1 3
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4
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Fig. 7.2 Engineering-oriented classification of coalitional games.

coalition value determines the form and type of the game. Nonetheless, independent of
the definition of the value, a coalitional game is uniquely defined as follows:

definition 7.1 A coalitional game (or game in coalitional form) is defined by the
pair (N ,v), where N is the set of the players, and v is a mapping that determines the
payoffs that these players receive in the game.

It must be noted that the value v is, in many instances, referred to as the game, since
for every v a different coalitional game may be defined.

The most common form of a coalitional game is the characteristic form, whereby the
valueof a coalitionS depends solely on themembers of that coalition,with nodependence
on how the players inN \S are structured. The characteristic form was introduced, along
with a category of coalitional games known as games with transferable utility (TU), by
von Neuman and Morgenstern [492]. The value of a game in characteristic form with
TU is defined as follows:

definition 7.2 The characteristic function of a coalitional game with transferable
utility is a function v over the real line defined as follows: v : 2N →R with v(∅) = 0.

This characteristic function associates with every coalition S ⊆ N a real number
quantifying the gains of S . The TU property implies that the total utility represented
by this real number can be divided in any manner between the coalition members. The
values in TU games are thought of as monetary values that the members in a coalition
can distribute among themselves using an appropriate fairness rule (one such rule being
an equal distribution of the utility). The amount of utility that a player i ∈ S receives
from the division of v(S) constitutes the player’s payoff and is denoted by xi hereinafter.
The vector x ∈RS , with each element xi being the payoff for player i ∈ S , constitutes a
payoff allocation for the players in S .
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Although the TU characteristic function can model a broad range of games, many
scenarios exist in which the coalition value cannot be assigned a single real number, or
rigid restrictions exist on the distribution of the utility. These games are known as coali-
tional games with non-transferable utility (NTU) and were first introduced by Aumann
and Peleg using non-cooperative strategic games as a basis [50, 347]. In an NTU game,
the payoff that each player in a coalition S receives is dependent on the joint actions that
the players of coalition S select.4 The value of a coalition S in an NTU game, v(S), is no
longer a function over the real line, but rather a set of payoff vectors, v(S)⊆RS , where
each element xi of a vector x ∈ v(S) represents a payoff that player i ∈ S can obtain
within coalition S given a certain strategy selected by player i while being a member
of S . Given this definition, a TU game can be seen as a particular case of the NTU
framework [347]. Coalitional games in characteristic form with TU or NTU constitute
one of the most important types of cooperative games, and their solutions are explored
in detail in the rest of this chapter.

Furthermore, although the characteristic form covers a broad range of applications,
there has been a recent interest in games in which the value of a coalition depends on the
partition of N that is in place at any time during the game. In such games, unlike the
characteristic form, the value of a coalition S will have a strong dependence on how
the players inN \S are structured. For this purpose, Thrall and Lucas [475] introduced
the concept of games in partition form. In these games, given a coalitional structure
B, defined as a partition of N , i.e., a collection of coalitions B = {B1, ... ,Bl} such that
∀ i 	= j , Bi ∩Bj = ∅, and∪l

i=1Bi =N , the value of a coalition S ∈B is defined as v(S ,B).
This definition imposes a dependence on the coalitional structure when evaluating the
value of S . Coalitional games in partition form are inherently complex to solve; however,
the potential of these games is interesting and, although in this chapter themain focuswill
be on the characteristic form, we will also provide some insights on games in partition
form in the following sections.

As an example of the difference between characteristic and partition forms, consider a
five-player game withN = {1,2,3,4,5}, and let S1 = {1,2,3}, S2 = {4}, S3 = {5}, and
S4 = {4,5}. Given two partitions B1 = {S1,S2,S3} and B2 = {S1,S4} ofN , evaluating
the value of coalition S1 depends on the form of the game. If the game is in characteristic
form, then v(S1,B1) = v(S1,B2) = v(S1), while in partition form v(S1,B1) 	= v(S1,B2)
(the value here can be either TU or NTU). The basic difference is that, unlike in the
characteristic form, the value of S1 in partition form depends on whether players 4 and
5 cooperate or not. This is illustrated in Fig. 7.3(a).

In many coalitional games, the players are interconnected and communicate through
pairwise links in a graph. In such scenarios, both the characteristic form and the partition
form may be unsuitable since, in both forms, the value of a coalition S is independent of
how the members of S are connected. For modeling the interconnection graphs, coali-
tional games in graph form were introduced by Myerson in [346], in which connected
graphs were mapped into coalitions. This work was generalized in [229] by making the
value of each coalition S ⊆N a function of the graph structure connecting the members

4 The action space depends on the underlying non-cooperative game (see [50] for examples).
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Fig. 7.3 (a) Coalitional games in characteristic form vs. partition form; (b) example of a coalitional game
in graph form.

of S . Hence, given a coalitional game (N ,v) and a graph GS (directed or undirected)
connecting the members of a coalition S ⊆ N (the coalition members are, thus, the
vertices of the graph GS ), the value of S in graph form is given by v(GS). For games in
graph form, the value can also depend on the graph GN\S interconnecting the players
in N \ S . An example of a coalitional game in graph form is shown in Fig. 7.3(b). In
this figure, given two graphs G 1

S = {(1,2), (2,3)} and G 2
S = {(1,2), (1,3)} (a pair (i , j)

is a link between two players i and j) defined over coalition S = {1,2,3}, a coalitional
game in graph form could assign a different value for coalition S depending on the
graph.5 Hence, in graph form, it is possible that v(G 1

S ) 	= v(G 2
S ), while in characteristic

or partition form, the presence of the graph does not affect the value.

5 In this example we have considered an undirected graph and a single link between each pair of nodes.
However, multiple links between pairs of nodes as well as directed graphs can also be considered within
the graph form of coalitional games.
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7.3 Class I: canonical coalitional games

7.3.1 Main properties of canonical coalitional games

Canonical coalitional games are a class of coalitional games in which the value is
considered in characteristic form (TU or NTU) and cooperation, i.e., the formation of
large coalitions, is always beneficial to the players. In such games, it is assumed that
when forming a larger coalition the players cannot do worse than by acting alone (non-
cooperatively). This characteristic maps to the mathematical property of superadditivity,
defined as follows for NTU games:

definition 7.3 An NTU coalitional game (N ,v) is said to be superadditive if and
only if

v(S1 ∪S2)⊃ {x ∈RS1∪S2 | (xi )i∈S1 ∈ v(S1), (xj)j∈S2 ∈ v(S2)}

∀S1 ⊂N ,S2 ⊂N ,S1 ∩S2 = ∅, (7.19)

where x is a payoff allocation for coalition S1 ∪S2.

In other words, superadditivity implies that, in an NTU game, given any two disjoint
coalitions S1 and S2, if coalitionS1∪S2 forms, this coalition can always give its members
the payoffs that they would receive if they acted separately in the disjoint coalitions S1

and S2.
For a TU game, the superadditivity property given in (7.19) reduces to

v(S1 ∪S2)≥ v(S1)+ v(S2) ∀S1 ⊂N ,S2 ⊂N , s.t. S1 ∩S2 = ∅. (7.20)

From (7.20), the concept of a superadditive game is better understood. For instance, a
game is superadditive if cooperation, i.e., the formation of a large coalition out of dis-
joint coalitions, guarantees at least the value that is obtained by the disjoint coalitions
separately. The rationale behind superadditivity is that, within a coalition, the players
can always revert back to their non-cooperative behavior to obtain their non-cooperative
payoffs. Thus, in a superadditive game, cooperation is never detrimental to any of the
players. Note that, in some references, superadditivity is considered as part of the defi-
nition of a coalitional game, because these references deal solely with canonical games.
However, in this book, we will deal with superadditivity as a separate property that may
or may not be satisfied by a coalitional game.6

Since canonical games are superadditive by definition, it is to the joint benefit of the
players to always form the grand coalitionN (i.e, the coalition of all the players) since
the payoff received from v(N ) is at least as large as the amount received by the players
in any disjoint set of coalitions they could form (for both the TU and the NTU cases).
The formation of the grand coalition in canonical games implies that the main emphasis

6 As will be seen in later chapters, many applications map to coalitional games that are inherently
non-superadditive.
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is on studying the properties of this grand coalition. Two key aspects are of importance in
canonical games: (i) finding a payoff allocation that guarantees that no group of players
has an incentive to leave the grand coalition (having a stable grand coalition), and (ii)
assessing the gains that the grand coalition can achieve as well as the fairness criteria
that must be used for distributing these gains (having a fair grand coalition). For solving
canonical coalitional games, the literature presents a number of concepts [347, 377] that
we will explore in detail in the following sections.

7.3.2 The core as a solution for canonical coalitional games

The most renowned solution concept for canonical coalitional games is the core. The core
of a canonical game is directly related to the grand coalition’s stability. In a canonical
coalitional game (N ,v), as a result of superadditivity, the players have an incentive to
form the grand coalition N . In this regard, the core of a canonical game is the set of
payoff allocations that guarantees that no group of players has an incentive to leave N
in order to form another coalition S ⊂N . For a TU game, given the grand coalitionN ,
we make the following definitions.

definition 7.4 A payoff vector x ∈ RN for dividing v(N ) is group-rational if∑
i∈N xi = v(N ).

definition 7.5 A payoff vector x ∈ RN is individually rational if every player can
obtain a benefit no less than acting alone, i.e., xi ≥ v({i}),∀ i ∈N .

definition 7.6 An imputation is a payoff vector that is both individually rational and
group-rational.

Following the definition of an imputation, we can define the core of a TU canonical
coalitional game as follows:

definition 7.7 Given a TU canonical coalitional game (N ,v), the core is defined
as the set of imputations in which no coalition S ⊂N has an incentive to reject the pro-
posed payoff allocation, deviate from the grand coalition, and form coalition S instead.
Mathematically, the core CTU of a canonical TU game is given by

CTU =

{
x :
∑
i∈N

xi = v(N ) and
∑
i∈S

xi ≥ v(S) ∀ S ⊆N
}

. (7.21)

In other words, the core guarantees that the players have no incentive to deviate from
the grand coalition, because any payoff allocation x that is in the core guarantees at least
an amount of utility equal to v(S) for every S ⊂N . Clearly, whenever one is able to find
a payoff allocation that lies in the core, then the grand coalition is a stable and optimal
solution for the coalitional game.

For solving NTU canonical games using the core, the value v of the NTU game must
satisfy the following conditions, for any coalition S [347]:



7.3 Class I: canonical coalitional games 191

1. The value v(S) of any coalition S must be a closed and convex subset of RS .
2. The value v(S) must be comprehensive, i.e., if x ∈ v(S) and y ∈ RS are such that

y≤ x, then y ∈ v(S).
3. The set {x|x∈ v(S) and xi ≥ zi , ∀i ∈ S}with zi = max{yi |y ∈ v({i})}<∞∀i ∈N

must be a bounded subset of RS .

The comprehensive property implies that if a certain payoff allocation x is achievable
by the members of a coalition S , then, by changing their strategies, the members of S can
achieve any allocation y where y ≤ x. The last property implies that, for a coalition S ,
the set of vectors in v(S) in which each player in S receives no less than the maximum
that it can obtain non-cooperatively, i.e., zi , is a bounded set. These properties are often
assumed to be part of the definition of an NTU game because they are needed for solving
the game using the core, notably when the game is canonical. However, since the NTU
framework is more general, we consider these characteristics as properties that may or
may not be satisfied by an NTU game.

For a canonical NTU game (N ,v) with v satisfying the above properties, the core is
defined as

CNTU = {x ∈ v(N )| ∀S ,�y ∈ v(S), such that yi > xi , ∀i ∈ S}. (7.22)

This definition for NTU also guarantees a stable grand coalition. The basic idea is
that any payoff allocation in the core of an NTU game guarantees that no coalition S
can leave the grand coalition and provide a better allocation for all of its members. The
difference from the TU case is that, in the NTU core the grand coalition’s stability is
acquired over the elements of the payoff vectors, while in the TU game it is acquired by
the sum of the payoff vectors’ elements.

Properties and existence
The cores of TU or NTU canonical games are not always guaranteed to exist. In fact, in
many games, the core is empty and, hence, the grand coalition cannot be stabilized. In
these cases, alternative solution concepts may be used, as we will see in the following
sections. However, coalitional-game theory provides several categories of games that fit
under our canonical game class, where the core is guaranteed to be non-empty. Before
exposing the existence results for the core, we provide a simple example of the core in
a TU canonical game:

Example 7.3 Consider a majority-voting TU game (N ,v), where N = {1,2,3}. The
players, on their own, have no voting power, hence v({1}) = v({2}) = v({3}) = 0. Any
two-player coalition wins two-thirds of the voting power; hence, v({1,2}) = v({1,3}) =
v({2,3})= 2

3 . Thegrand coalitionwins thewhole votingpower, and thus v({1,2,3})=1.
Clearly, this game is superadditive and is in characteristic form, and is thus classified as
canonical. By (7.21), solving the following inequalities yields the core and shows what
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allocations stabilize the grand coalition.

x1 + x2 + x3 = v({1,2,3}) = 1, x1 ≥ 0, x2 ≥ 0, x3 ≥ 0,

x1 + x2 ≥ v({1,2}) =
2
3
, x1 + x3 ≥ v({1,3}) =

2
3
, x2 + x3 ≥ v({2,3}) =

2
3
.

By manipulating these inequalities, the core of this game is found to be the unique
vector x = [ 1

3
1
3

1
3 ], which corresponds to an equal division of the total utility for the

grand coalition among all three players.

In general, given a TU coalitional game (N ,v) and an imputation x ∈ RN , the core
is found by the following linear program (LP):

min
x

∑
i∈N

xi , s.t.
∑
i∈S

xi ≥ v(S), ∀S ⊆N . (7.23)

The existence of the TU core is related to the feasibility of the LP in (7.23). In general,
determining whether the core is non-empty through this LP, is NP (non-deterministic
polynomial time) -complete [113] owing to the number of constraints growing expo-
nentially with the number of players N (this is also true for NTU games). However, for
determining the non-emptiness of the core, as well as finding the allocations that lie in
the core, several techniques exist; these are summarized in Table 7.1.

The first technique in Table 7.1 deals with TU games with up to three players. In such
games, the core can be found using an easy graphical approach. The main idea is to plot
the constraints of (7.23) in the plane

∑3
i=1 xi = v({1,2,3}). By doing so, the region

containing the core allocation can be easily identified. Several examples of the graphical
techniques are found in [377], and the technique for solving them is straightforward.
Although the graphical method can provide a lot of intuition into the core of a canonical
game, its use is limited to TU games with up to three players.

The second technique in Table 7.1 utilizes the dual of the LP in (7.23) to show that the
core is non-empty. The main result is given through the Bondareva–Shapley Theorem
[347, 377], which relies on the balanced property. We define a balanced TU game as
follows:

definition 7.8 A canonical TU game (N ,v) is known as a balanced game if and
only if the inequality ∑

S⊆N
μ(S)v(S)≤ v(N ) (7.24)

is satisfied for all non-negative weight collections μ = (μ(S))S⊆N (μ is a collection
of weights, i.e., numbers in [0,1], associated with each coalition S ⊆ N ) that satisfy∑

S�i μ(S) = 1, ∀i ∈N ; this set of non-negative weights is known as a balanced set.

This notion of a balanced game is interpreted as follows. Each player i ∈N possesses
a single unit of time, which can be distributed between all the coalitions of which i can
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Table 7.1 Approaches for finding the core of a canonical coalitional game.

Game-theoretic and mathematical approaches
(T1) A graphical approach can be used for finding the core of TU games with up to three

players.
(T2) Using duality theory, a necessary and sufficient condition for the non-emptiness of the

core exists through the Bondareva–Shapley Theorem (Theorem 7.9) for TU and NTU
[347, 377].

(T3) A class of canonical games, known as convex coalitional games always has a non-empty
core.

(T4) A necessary and sufficient condition for a non-empty core exists for a class of canonical
games known as simple games, i.e., games in which v(S) ∈ {0,1}, ∀S ⊆ N , and
v(N ) = 1.

Application-specific approaches
(T5) In several applications, it suffices to determine whether payoff distributions that are of

interest in a given game, e.g., fair distributions, lie in the core.
(T6) In many games, exploiting game-specific features such as the value’s mathematical

definition or the underlying nature and properties of the game model, helps in finding the
imputations that lie in the core.

be a member. Every coalition S ⊆N is active during a fraction of time μ(S) if all of its
members are active during that time, and this coalition achieves a payoff of μ(S)v(S).
In this context, the condition

∑
S�i μ(S) = 1, ∀i ∈N is simply a feasibility constraint

on the players’ time allocation, and the game is balanced if there is no feasible allocation
of time that can yield a total payoff for the players that exceeds the value of the grand
coalition v(N ). Subsequently, given a TU balanced canonical game, the following result
holds [347, 377]:

theorem 7.2 (Bondareva–Shapley Theorem) The core of a game is non-empty if
and only if the game is balanced.

For NTU canonical games, two different definitions for balancedness exist (one of
which is analogous to the TU case) and can be found in [347, 377]. The definitions for
NTU accommodate the fact that the value v in an NTU game is a set and not a function.
In the NTU case, the Bondareva–Shapley Theorem is also true; however, in that case
the balanced condition presented is sufficient but not necessary as a second definition
for a balanced game to also exist (see [347, 377]). Therefore, in a given canonical game,
one can always show that the core is non-empty by proving that the game is balanced
through (7.24) for TU games or its counterparts for NTU [347, Section 9.7].

The third technique in Table 7.1 pertains to convex games, which are defined as
follows:

definition 7.9 A TU canonical game (N ,v) is convex if

v(S1)+ v(S2)≤ v(S1 ∪S2)+ v(S1 ∩S2) ∀ S1,S2 ⊆N . (7.25)
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Alternatively, a convex coalitional game is defined as any coalitional game that satisfies
v(S1∪{i})−v(S1)≤ v(S2∪{i})−v(S2),wheneverS1⊆S2⊆N \{i}. This alternative
definition implies that a game is convex if and only if for each player i ∈N the marginal
contribution of this player, i.e., the difference between the value of a coalition with
and without this player, is non-decreasing with respect to set inclusion. The convexity
property can also be extended to NTU in several ways, and the reader is referred to [377,
Chapter 9.9] for more details. For both TU and NTU canonical games, a convex game
is balanced and has a non-empty core , but the converse is not always true [377]. Thus,
convex games constitute an important class of games in which the core is non-empty.

The fourth technique in Table 7.1 pertains to simple games, which are an interesting
class of canonical games in which the core can be shown to be non-empty.Asimple game
is a coalitional game in which the values are either 0 or 1, i.e., v(S) ∈ {0,1}, ∀S ⊆N
and the grand coalition has v(N ) = 1. These games model numerous scenarios, notably
voting games. It is known that a simple game that contains at least one veto player
i ∈N , i.e., a player i such that v(N \{i}) = 0 has a non-empty core [377]. Moreover,
in such simple games, the core is fully characterized, and it consists of all non-negative
payoff profiles x ∈ RN such that xi = 0 for each player i that is a non-veto player, and∑

i∈N xi = v(N ) = 1.
The first four techniques in Table 7.1 rely mainly on well-known game-theoretic prop-

erties. In many practical scenarios, notably in wireless and communication networking
applications, alternative techniques may be needed to find the allocations in the core.
These alternatives are inherently application-specific, and depend on the nature of the
defined game and the properties of the defined value function. One of these alternatives,
the fifth technique in Table 7.1, is to investigate whether well-known allocation rules
yield vectors that lie in the core. In many communication applications (and even game-
theoretic settings), the objective is to assess whether certain well-defined types of fair
allocation, such as equal fairness or proportional fairness, are in the core or not, without
finding all the allocations that are in the core. In such games, showing the non-emptiness
of the core is done by testing whether such well-known allocations lie in the core or not,
using the intrinsic properties of the considered game and using (7.21) for TU games or
(7.22) for NTU games. A simple example of such a technique is Example 7.3, where
one can easily check the non-emptiness of the core by showing that the equal allocation
lies in the core. In many canonical games, the nature of the defined value for the game
can be explored for showing the non-emptiness of the core; this is done in many appli-
cations, such as [323], where information-theoretical properties are used; [191], where
network properties are used; as well as [42, 447], where the value is given as a convex
optimization and, through duality, a set of allocations that lie in the core can be found.
Hence, whenever techniques (T1)–(T4) are too complex or difficult to apply for solving
a canonical game, as in the sixth technique in Table 7.1, one can explore the properties
of the considered game model, as in [323, 191, 310, 42, 447].

In summary, the core is one of the most important solution concepts in coalitional
games, notably in our canonical games class. It must be stressed that the existence of the
core shows that the grand coalition N of a given (N ,v) canonical coalitional game is
stable, optimal (from a payoff perspective), and desirable.
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7.3.3 The Shapley value

As a solution concept, the core suffers from three main drawbacks:

• The core can be empty.
• The core can be quite large, so selecting a suitable core allocation can be difficult.
• In many scenarios, the allocations that lie in the core can be unfair to one or more

players.

These drawbacks have motivated the search for a solution concept that can associate
with each coalitional game (N ,v) a unique payoff vector known as the value of the
game (which is quite different from the value of a coalition). Shapley approached this
problem axiomatically by defining a set of desirable properties, and he characterized a
unique mapping φ that satisfies these axioms, later known as the Shapley value [347].
The Shapley value was essentially defined for TU games; however, extensions to NTU
games exist. In this chapter,we restrict our attention to theShapley value forTUcanonical
games, and we refer the reader to [347, Chapter 9.9] for insights on how the Shapley
value is extended to NTU games. Shapley provided four axioms7 as follows (φi is the
payoff given to player i by the Shapley value φ):

1. Efficiency axiom:
∑
i∈N

φi (v) = v(N ).

2. Symmetry axiom: If player i and player j are such that v(S ∪{i}) = v(S ∪{j}), for
every coalition S not containing player i and player j , then φi (v) = φj(v).

3. Dummy axiom: If player i is such that v(S) = v(S ∪{i}), for every coalition S not
containing i , then φi (v) = 0.

4. Additivity axiom: If u and v are characteristic functions, then φ(u +v) = φ(v +u) =
φ(u)+φ(v).

Shapley showed that there exists a unique mapping, the Shapley value φ(v), from the
space of all coalitional games to RN , that satisfies these axioms. Hence, for every game
(N ,v), the Shapley valueφ assigns a unique payoff allocation inRN that satisfies the four
axioms. The efficiency axiom is in fact group rationality. The symmetry axiom implies
that, when two players have the same contribution in a coalition, their assigned payoffs
must be equal. The dummy axiom assigns no payoff to players that do not improve the
value of any coalition. Finally, the additivity axiom links the value of different games u
and v and asserts that φ is a unique mapping over the space of all coalitional games.

The Shapley value also has an alternative interpretation that takes into account the
order in which the players join the grand coalition N . In the event in which the players
join the grand coalition in a random order, the payoff allotted by the Shapley value to a
player i ∈ N is the expected marginal contribution of player i when it joins the grand
coalition. The basis of this interpretation is that, given any canonical TU game (N ,v),

7 In some references, the Shapley axioms are compressed into three by combining the dummy and efficiency
axioms.
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for every player i ∈N the Shapley value φ(v) assigns the payoff φi (v) given by

φi (v) =
∑

S⊆N\{i}

|S |!(N −|S |− 1)!
N!

[v(S ∪{i})− v(S)]. (7.26)

In (7.26), it is clearly seen that the marginal contribution of every player i in a coali-
tion S is v(S ∪ {i})− v(S). The weight that is used in front of v(S ∪ {i})− v(S) is
the probability that player i faces the coalition S when entering in a random order, i.e.,
the players in front of i are the ones already in S . In this context, there are |S |! ways of
positioning the players of S at the start of an ordering, and (N−|S |−1)! ways of posi-
tioning the remaining players except i at the end of an ordering. The probability that such
an ordering occurs (when all orderings are equally probable) is therefore |S|!(N−|S|−1)!

N! ;
consequently, the resulting payoff φi (v) is the expected marginal contribution under
random-order joining of the players for forming the grand coalition.

In general, the Shapley value is unrelated to the core. However, in some applications,
one can show that the Shapley value lies in the core. Such a result is of interest, since
if such an allocation is found, it combines both the stability of the core as well as
the axioms and fairness of the Shapley value. In this regard, an interesting result from
game theory is that for convex games the Shapley value lies in the core [347, 377].
The Shapley value presents an interesting solution concept for canonical games, and
it has numerous applications in both game theory and communication networks. For
instance, in coalitional voting simple games, the Shapley value of a player i represents
its power in the game. In such games, the Shapley value is used as a power index
(known as the Shapley–Shubik index), and it has a large number of applications in many
game-theoretic and political settings [377]. In communication networks, the Shapley
value presents a suitable fairness criteria for allocating resources or data rates, as in
[275, 191, 89]. The computation of the Shapley value is generally done using (7.26);
however, in games with a large number of players the computational complexity of the
Shapley value grows significantly. For computing the Shapley value in reasonable time,
several analytical techniques have been proposed, such as multi-linear extensions [377]
and sampling methods for simple games [92].

7.3.4 The nucleolus

Another prominent and interesting solution concept for canonical games is thenucleolus,8

which was introduced mainly for TU games [377]. Extensions of the nucleolus for NTU
games are not yet formalized in game theory, and hence this chapter will only focus
on the nucleolus for TU canonical games. The basic motivation behind the nucleolus is
that, instead of applying a general fairness axiomatization for finding a unique payoff
allocation (i.e., a value for the game), one can provide an allocation that minimizes the
dissatisfaction of the players with the allocation they can receive in a given (N ,v) game.
For this purpose, we introduce the concepts of excess and kernel, as follows.

8 In the game-theory literature, sometimes the term prenucleolus is used to indicate a concept similar to the
nucleolus but without individual rationality [377].
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definition 7.10 The measure of dissatisfaction with an allocation x ∈ RN for a
coalition S is defined as the excess e(x,S) = v(S)−

∑
j∈S xj . A kernel of v is the set of

all allocations x ∈RN such that

max
S⊆N\{j},i∈S

e(x,S) = max
G⊆N\{i},j∈G

e(x,G ). (7.27)

The kernel states that if players i and j are in the same coalition, then the highest excess
that i can make in a coalition without j is equal to the highest excess that j can make in
a coalition without i .

Clearly, an allocation x that can ensure that all excesses (or dissatisfactions) are mini-
mized is of particular interest as a solution9 and, hence, constitutes the main motivation
behind the concept of the nucleolus, defined as follows.

definition 7.11 Let O(x) be the vector of all excesses in a canonical game (N ,v)
arranged in non-increasing order (except the excess of the grand coalitionN ). A vector
y =(y1, ... ,yk) is said to be lexographically less than a vector z =(z1, ... ,zk) (denoted by
y≺lex z) if ∃l ∈ {1, ... ,k}, where y1 = z1,y2 = z2, ... ,yl−1 = zl−1,yl < zl . An imputation
x is a nucleolus if, for every other imputation δ, O(x)≺lex O(δ). Hence, the nucleolus
is the imputation x that minimizes the excesses in a non-increasing order starting with
the maximum excess.

The nucleolus of a canonical coalitional game exists and is unique. The nucleolus
is group- and individually rational (since it is an imputation), lies in the kernel of the
game, and satisfies the symmetry and dummy axioms of Shapley. If the core is not
empty, the nucleolus is in the core. Thus, the nucleolus is the best allocation under a
min-max criterion. The process for computing the nucleolus is more complex than for
the Shapley value, and is described as follows. First, we start by finding the imputations
that distribute the worth of the grand coalition in such a way that the maximum excess
(dissatisfaction) isminimized. In the eventwhere thisminimization has a unique solution,
this solution is the nucleolus. Otherwise, we search for the imputations that minimize
the second-largest excess. The procedure is repeated for all subsequent excesses, until a
unique solution is found, which would be the nucleolus. These sequential minimizations
are solved using linear programming techniques such as the simplex method [128]. The
applications of the nucleolus are numerous in game theory. One of the most prominent
examples is the marriage contract problem that first appeared in the Babylonian Talmud
(0–500 AD):

Example 7.4 A man has three wives, and he is committed to a marriage contract that
specifies that they should receive 100, 200, and 300 units respectively, after his death.
This implies that, given a total of α units left after the man’s death, the three wives can
only claim 100, 200, and 300, respectively, out of the α units. If after the man dies, the

9 In particular, an imputation x lies in the core of (N,v) if and only if all its excesses are negative or zero.
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amount of money left is not enough for this distribution, the Talmud recommends the
following:

• If α = 100 is available after the man dies, then each wife gets 100
3 .

• If α = 200 is available after the man dies, wife 1 gets 50, and the other two get 75
each.

• If α = 300 is available after the man dies, wife 1 gets 50, wife 2 gets 100 and wife 3
gets 150.

Note that the Talmud does not specify the allocation for other values of α but, certainly,
if α ≥ 600 each wife simply claims her full right. A key question that puzzled mathe-
maticians and researchers in game theory was how this allocation was made, and it
turns out that the nucleolus is the answer. Let us model the game as a coalitional game
(N ,v), where N is the set of all three wives, who constitute the players, and v is the
value defined for any coalition S ⊆ N as v(S) = max(0,α−

∑
i∈N\S ci ), and where

α ∈ {100,200,300} is the total units left after the death of the man and ci is the claim
that wife i must obtain (c1 = 100,c2 = 200,c3 = 300). It then turns out that, with this
formulation, the payoffs that were recommended by the Talmud coincide with the nucle-
olus of the game! This result highlights the importance of the nucleolus in allocating fair
payoffs in a game.

In summary, the nucleolus is quite an interesting concept, since it combines a number
of fairness criteria with stability. However, the communications applications that utilize
the nucleolus remain scarce, one example being [191],where itwas used for allocating the
utilities in the modeled game. The main drawback of the nucleolus is its computational
complexity in some games. Nonetheless, with appropriate models, the nucleolus can
be an optimal and fair solution to many applications in wireless and communication
networks.

7.3.5 Sample applications in wireless and communication networks

Canonical coalitional games are a very powerful analytical tool for modeling several
problems in wireless and communication networks. The application of canonical games
range from physical-layer applications, such as rate allocation and stable cooperation, to
network-layer applications, such as cooperation in packet-forwarding networks. In this
section, we discuss a few state-of-the-art applications of canonical coalitional games.

Rate allocation in a multiple-access channel
An elegant and interesting use of canonical games within communication networks is
presented in [275] for the study of rate allocation in multiple-access channels. The model
in [275] tackles the problem of how to fairly allocate the transmission rates between a
number of users accessing a wireless Gaussian multiple-access channel. In this model,
the users are trying to obtain a fair allocation of the total transmission rate available.
Every user, or group of users (coalition), that does not obtain a fair allocation of the rate
can threaten to act on its own, which can reduce the rate available for the remaining
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users. Consequently, the game is modeled as a canonical coalitional game defined by
(N ,v), where N = {1, ... ,N} is the set of players, i.e., the wireless network users
that need to access the channel, and v is the maximum sum-rate that a coalition S can
achieve. In order to have a characteristic function, [275] assumes that, when evaluating
the value of a coalition S⊂N , the users in Sc =N \ S , known as jammers, cooperate
in order to jam the transmission of the users in S . The jamming assumption is a neat
way of maintaining the characteristic form of the game, and it was previously used in
game theory for deriving a characteristic function from a strategic-form non-cooperative
game [50, 347]. Subsequently, when evaluating the sum-rate utility v(S) of any coalition
S ⊆N , the users in Sc form a single coalition to jam the transmission of S , and, hence,
the coalitional structure of Sc is always predetermined, yielding a characteristic form.
For a coalition S , the characteristic function in [275], v(S), represents the capacity, i.e.,
the maximum sum-rate, that S achieves under the jamming assumption. Hence, v(S)
represents a rate that can be apportioned in an arbitrary manner between the players in
S , and thus the game is a TU game. It is proven in [275] that the game is superadditive
since the sum of sum-rates achieved by two disjoint coalitions is no less than the sum-
rate achieved by the union of these two coalitions, since the jammer in both cases is
the same (from the assumption of a single coalition of jammers). Consequently, the
problem lies in allocating the payoffs (i.e., the transmission rates) between the users in
the grand coalition N that forms in the network. The grand coalition N has a capacity
region C = {R ∈ RN |

∑N
i=1 Ri ≤ C (ΓS ,σ2), ∀S ⊆ N}, where ΓS captures the power

constraints on the users in S , σ2 is the Gaussian noise variance, and, hence, C (ΓS ,σ2) is
themaximum sum-rate (capacity) that coalitionS can achieve. Based on these properties,
the rate allocation game in [275] is clearly a canonical coalitional game, and the key
question that [275] seeks to answer is how to allocate the capacity of the grand coalition
v(N ) among the users in a fair way that stabilizes N . In answering this question, two
main concepts from canonical games are used: the core and the Shapley value.

In this rate-allocation game, it is shown that the core, which represents the set of rate
allocations that stabilize the grand coalition, is non-empty, using technique (T5) from
Table 7.1. By considering the imputations that lie in the capacity region C, i.e., the rate
vectors R ∈ C such that

∑N
i=1 Ri = C (ΓN ,σ2), it is shown that any such vector lies in

the core. Therefore, the grand coalition N of the Gaussian MAC canonical game can
be stabilized. However, the core of this game is big and contains a large number of rate
vectors. Thus, the authors in [275] sought to answer the next question, how to select a
single fair allocation which lies in the core. For this purpose, the authors investigated the
use of the Shapley value as a fair solution for rate allocation that accounts for the random
order of joining of the players in the grand coalition. In this setting, the Shapley value
simply implies that no rate is left unallocated (efficiency axiom), dummy players receive
no rate (dummy axiom), and the labeling of the players does not affect the rate that
they receive (symmetry axiom). However, the authors show that (i) the fourth Shapley
axiom (additivity) is not suitable for the rate-allocation game, and (ii) the Shapley value
does not lie in the core and, hence, cannot stabilize the grand coalition. Based on these
results for the Shapley value, the authors propose a new fairness criterion, named “envy-
free” fairness. The envy-free fairness criterion relies on the first three axioms of Shapley
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Table 7.2 The main steps in solving the Gaussian MAC rate allocation canonical game as per [275].

1. The player set is the set N of users in a Gaussian MAC channel.
2. For a coalition S ⊆ N , a superadditive value function in characteristic form with TU is

defined as the maximum sum-rate (capacity) that S achieves under the assumption that the
users in coalition Sc = N \S attempt to jam the communication of S .

3. Through technique (T5) of Table 7.1 the core is shown to be non-empty and containing all
imputations in the capacity region of the grand coalition.

4. The Shapley value is discussed as a fairness rule for rate allocation, but is shown to be outside
the core, thus rendering the grand coalition unstable.

5. A new application-specific fairness rule, known as “envy-free” fairness, is shown to lie in the
core and is presented as a solution to the rate-allocation game in Gaussian MAC.

(without the additivity axiom), and complements them with a fourth axiom, the envy-free
allocation axiom [275, Eq. (6)]. This axiom states that, given two players i and j with
power constraints Γi > Γj , an envy-free allocation ψ gives a payoff ψj(v), for user j
in the game (N ,v), equal to the payoff ψi (v i ,j) for user i in the game (N ,v i ,j), where
v i ,j is the value of the game in which user i utilizes a power Γi = Γj . Mathematically,
this axiom implies that ψj(v) = ψi (v i ,j). With these axioms, it is shown that a unique
allocation exists and that this allocation lies in the core. Thus, the envy-free allocation
is presented as a fair and suitable solution for the rate-allocation game in [275]. Finally,
the approach used for solving the rate-allocation canonical coalitional game in [275] is
summarized in Table 7.2.

Canonical games for receiver and transmitter cooperation
In [323], canonical games were used for studying the cooperation possibilities between
single-antenna receivers and transmitters in an interference channel. The model consid-
ered in [323] consisted of a set of transmitter-receiver pairs, in a Gaussian interference
channel.The authors studied the cooperation between the receivers under two coalitional-
game models: a TU model in which the receivers communicate through noise-free
channels and jointly decode the received signals, and an NTU model in which the
receivers cooperate by forming a linear multi-user detector (in this case the interference
channel is reduced to a MAC channel). Furthermore, the authors studied the transmitters’
cooperation problem under perfect cooperation and partial decode-and-forward cooper-
ation, while considering that the receivers have formed the grand coalition. Since all the
considered games are canonical (as we will see later), the main interest is in studying
the properties of the grand coalitions for the receivers and for the transmitters.

For receiver cooperation using joint decoding, the coalitional-game model is as fol-
lows. The player setN is the set of links (the players are the receivers of these links) and,
assuming that the transmitters do not cooperate, the value v(S) of a coalition S ⊆N is
the maximum sum-rate achieved by the links whose receivers belong to S . Under this
model, one can easily see that the utility is transferable since it represents a sum-rate;
hence the game is TU. The game is also in characteristic form, since, as the transmitters
are considered non-cooperative, the sum-rate achieved when the receivers in S cooperate
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depends solely on the receivers in S , while the signal from the links in N \S is treated
as interference. In this game, the cooperation channels between the receivers are con-
sidered noiseless; hence, cooperation is always beneficial, and the game is shown to
be superadditive. This game is clearly a canonical game, and the interest is in studying
the properties of the grand coalition of receivers. Under this cooperation scheme, the
network can be seen as a single-input multiple-output (SIMO) MAC channel, and the
coalitional game is shown to have a non-empty core that contains all the imputations
that lie in the SIMO MAC capacity region. The technique used for this proof is similar
to that for the game in [275], which selects a particular set of rate vectors, those that are
in the SIMO MAC region, and shows that they lie in the core as per (T5) from Table 7.1.
The core of this game is very large, and for selecting fair allocations, it is proven in [323]
that the Nash bargaining solution, and in particular a proportional fair rate allocation,
lie in the core, and hence constitute suitable fair and stable allocations. For the second
receiver-cooperation game, the model is similar to the joint decoding game, with one
major difference: instead of jointly decoding the received signals, the receivers form
linear multi-user detectors (MUD). The MUD coalitional game is inherently different
from the joint decoding game since, in a MUD, the SINR ratio achieved by a user i
in coalition S cannot be shared with the other users, and hence the game becomes an
NTU game with the SINR representing the payoff for each player. In this NTU setting,
the value v(S) of a coalition S becomes the set of SINR vectors that a coalition S can
achieve. For this NTU game, the grand coalition is proven to be stable and sum-rate
maximizing in a high SINR regime using limiting conditions on the SINR expression,
hence technique (T6) in Table 7.1.

For modeling the transmitter-cooperation problem as a coalitional game, two assump-
tions aremade: (i) the receivers jointly decode the signal andhence formagrand coalition,
and (ii) a jamming assumption similar to [275] is considered for the purpose of main-
taining the characteristic form. In the transmitters’ game, from the set of links N , the
transmitters are the players. When considering the transmitters’ cooperation along with
the receivers’ cooperation, the interference channel is mapped onto a MIMO MAC
channel. For maintaining a characteristic form, it is assumed, in a manner analogous to
[275], that whenever a coalition of transmitters S forms, the users in Sc =N \S form
one coalition and aim to jam the transmission of coalition S . Without this assumption,
the maximum sum-rate that a coalition can obtain depends highly on how the users
in Sc structure themselves; hence, it requires a partition form that may be difficult to
solve. With these assumptions, the value of a coalition S is defined as the maximum
sum-rate achieved by S when the coalition Sc seeks to jam the transmission of S .
Using this transmitters-with-jamming coalitional game, the authors show that, in gen-
eral, the game has an empty core. This game is not totally canonical since it does not
satisfy the superadditivity property. However, by proving through [323, Theorem 19]
that the grand coalition is the optimal partition, from a total-utility point of view the
grand coalition becomes the main candidate partition for the core. The authors conjec-
ture that, in some cases, the core can also be non-empty, depending on the power and
channel gains. However, no existence results for the core can be provided in this game.
Finally, the authors in [323] provide a discussion of the grand coalition and its feasibility
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Table 7.3 Main results for receiver and transmitter-cooperation coalitional games as per [323].

1. The coalitional game between the receivers, where cooperation entails joint decoding of the
received signal, is a canonical TU game that has a non-empty core. Hence, the grand coalition
is the stable and sum-rate-maximizing coalition.

2. The receivers’ coalitional game, in which cooperation entails forming linear multi-user
detectors, is a canonical NTU game that has a non-empty core. Hence, the grand coalition is
the stable and sum-rate maximizing coalition.

3. For transmitter cooperation under the jamming assumption, the coalitional game is not
superadditive, and hence it is non-canonical. However, the grand coalition is shown to be the
rate-maximizing partition.

4. For transmitter cooperation under the jamming assumption, no results for the existence of the
core can be found, owing to mathematical intractability.

when the transmitters employ a partial decode-and-forward cooperation. The main
results of this receiver- and transmitter-cooperation canonical game are summarized in
Table 7.3.

Other sample applications of canonical coalitional games
Canonical coalitional games cover a broad range of communications and networking
applications and, indeed, most research activities in these areas utilize the tools that
fall within the canonical coalitional-games class. In addition to the previous examples,
numerous applications can use models that involve canonical games.

For instance, in [191] canonical coalitional games are used to solve an inherent problem
in packet-forwarding ad hoc networks. In such networks, the users located in the center of
the network, known as backbone nodes, have a mutual benefit in forwarding each others’
packets. In contrast, users located at the boundary of the network, known as boundary
nodes, are not helped by the backbone nodes because the backbone nodes do not need
the help of the boundary nodes at any time. Hence, in such a setting the boundary nodes
end up having no way of sending their packets to other nodes, a problem known as the
curse of the boundary nodes. In [191], a canonical coalitional-game model is proposed
between a player set N that includes all boundary nodes and a single backbone node.
The details of this model are discussed and developed further in Chapter 12 of this book.
Beyond packet forwarding, many other applications, such as in [42, 310, 89], utilize
several of the techniques in Table 7.1 for studying the grand coalition in a variety of
communications applications.

In summary, canonical games are an important tool for studying cooperation and fair-
ness in communication networks, notably when cooperation is always beneficial. Future
applications are numerous, e.g., to study cooperative-transmission capacity gains, dis-
tributed cooperative source coding, and cooperative relaying in cognitive radio. In brief,
whenever a cooperative scheme that yields significant gains at any layer is devised, one
can utilize canonical coalitional games for assessing the stability of the grand coali-
tion and identifying fairness criteria in allocating the gains that result from cooperation.
Finally, it has to be noted that canonical games are not restricted to link-level analysis,
but also extend to network-level studies.
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7.4 Class II: coalition-formation games

7.4.1 Main properties of coalition-formation games

Coalition-formation games encompass coalitional games where, unlike the canonical
class, network structure and cost for cooperation play major roles. While in canonical
games the focuswason the stability of the grand coalition, themain challenge in coalition-
formation games is to study the network coalitional structure, i.e., to answer questions
such as: Which coalitions will form? What is the optimal coalition size? How does the
network structure evolve over time? How can we assess the structure’s characteristics?
and so on. In contrast to canonical games, a coalition-formation game is generally not
superadditive and can support both the characteristic-form and partition-form models
(in TU or NTU). Another important characteristic that classifies a game as a coalition-
formation game is the presence of a cost for forming coalitions. In canonical games, as
well as in most of the literature, there is an implicit assumption that forming a coalition is
always beneficial (e.g., through superadditivity). In many problems, forming a coalition
requires a negotiation process or an information-exchange process that can incur a cost,
thus reducing the gains from forming the coalition.

In general, coalition-formation games can be divided into two types:

• Static coalition-formation games
• Dynamic coalition-formation games.

In static coalition-formation games, an external factor imposes a certain coalitional struc-
ture, and the objective is to study the properties of this structure, such as its stability.
In contrast, dynamic coalition-formation games constitute a richer framework. In these
games, the main objectives are to analyze the formation of a coalitional structure through
players’ interaction, and to study the properties of this structure and its adaptability to
environmental variations or externalities. In contrast to canonical games, with their for-
mal rules and analytical solution concepts, such as the core, solving a coalition-formation
game, notably dynamic coalition formation, is more difficult, and application-specific.

The rest of Section 7.4 is devoted to dissecting the key properties of coalition-
formation games.

7.4.2 Impact of a coalitional structure on solution concepts for canonical
coalitional games

In canonical games, the solution concepts defined, such as the core, theShapley value, and
the nucleolus, assumed that the grand coalitionwould formbecause of the superadditivity
property. In a coalition-formation game, the presence of a coalitional structure (a partition
ofN ) affects the definition and use of these concepts, as pointed out in [49] for a given
static coalition-formation game. For instance, consider a TU coalitional game, in the
presence of a static coalitional structure B = {B1, ... ,Bl} (each Bi is a coalition). In
this setting, the coalitional game can be defined as the triplet (N ,v ,B) in which v is a
characteristic function.
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In such coalition-formation games, the concept of group rationality can be replaced
by the following concept:

definition 7.12 For a coalition-formation game (N ,v ,B), an allocation vector
x∈RN is said to satisfy the relative efficiency property if and only if, for each coalition
Bk ∈ B, we have

∑
i∈Bk

xi = v(Bk).

Hence, relative efficiency implies that for every present coalition Bk in B the total
value available for coalition Bk is divided among its members, unlike in canonical games
in which the value of the grand coalition v(N ) is distributed among all players (group
rationality).

Given this definition, we investigate the impact of the presence of the coalitional
structure B on canonical solutions. First, we turn our attention to the Shapley value. For
a coalition-formation game (N ,v ,B), the Shapley axioms defined for a canonical game
remain valid, except for the efficiency axiom, which is replaced by a relative efficiency
axiom. With this modified axiom, the Shapley value of (N ,v ,B), referred to as the
B-value, has the restriction property [49]. The restriction property implies that, for
finding theB-value, one can consider the restricted coalitional games (Bk ,v |Bk), ∀Bk ∈
B, where v |Bk is the value v of the original game (N ,v ,B) defined over player set
(coalition) Bk . As a result, for finding the B-value, we proceed in two steps, using the
restriction property:

1. Consider the games (Bk ,v |Bk),k = 1, ... , l , separately and, for each such game
(Bk ,v |Bk), find the Shapley value using the canonical definition (7.26).

2. The B-value of the game is the 1×N vector φ of payoffs constructed by combining
the resulting allocations of each restricted game (Bk ,v |Bk).

In the presence of a coalitional structure B, the canonical definitions of the core
and the nucleolus are also mainly modified by replacing group rationality with relative
efficiency. However, unlike the Shapley value, the restriction property does not apply
to the core, nor to the nucleolus. This can be easily deduced from the fact that both the
core and the nucleolus depend on all coalitions of N , i.e., all coalitions in the power
set 2N . Hence, in the presence of B, the core and the nucleolus depend on the values
of coalitions Bj ∈ B as well as the values of coalitions that are not in B, i.e., coalitions
S ⊂ N ,�Bk ∈ B such that Bk = S . Hence, the problem of finding the core and the
nucleolus of (N ,v ,B) is more complex than for the Shapley value. An approach for
finding these solutions for 0-normalized games, i.e., games in which v({i}) = 0, ∀i ∈N
is possible. The approach is based on finding a game equivalent to v by redefining the
value, from which the core and nucleolus can be found for this equivalent game. For a
detailed analysis, we refer the reader to [49, theorems 4 and 5].

Even though the analysis presented in this section is restricted to static coalition-
formation games with TU and in characteristic form, it shows that finding solutions
for coalition-formation games is not straightforward. The difficulty of such solutions
increases whenever an NTU game, a partition-form game, or a dynamic coalition-
formation game are considered, notably when the objective is to compute the solution
in a distributed manner. For example, when considering a dynamic coalition-formation
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game, one would need to evaluate the payoff allocations jointly with the formation of the
coalitional structure, and hence solution concepts become even more complex to find
(although the restriction property of the Shapley value makes things easier). For this
purpose, the solution concepts are either redefined or alternative concepts, specific to the
game being studied, are introduced. Hence, unlike canonical games for which formal
solutions exist, the solution of a coalition-formation game depends on the model and the
objectives that are being considered.

7.4.3 Dynamic coalition-formation algorithms

In a coalition-formation game, themost important aspect is the formation of the coalitions
in the game. While in static games these coalitions are already formed by an external
factor, in dynamic coalition-formation games a challenging question is how to form
a coalitional structure that is suitable to the studied game. In addition, the evolution
of this structure is important, notably when changes to the game’s nature can occur
because of external or internal factors (e.g., if one or more players leave the game). In
many applications, coalition formation entails either finding a coalitional structure that
maximizes the total utility (social welfare) if the game is TU, or finding a structure with
Pareto-optimal payoff distribution for the players if the game is NTU. For achieving
such a goal, a centralized approach can be used; however, such an approach is generally
NP-complete [465, 398, 41, 44]. The main reason is that finding an optimal partition
requires iterating over all the partitions of the player set N . The number of partitions
of a set N grows exponentially with the number of players in N and is given by a
value known as the Bell number [465]. For example, for a game where N has only
10 elements, the number of partitions that a centralized approach must go through is
115 975 (computed using the Bell number). Hence, finding an optimal partition from a
centralized approach is, in general, computationally complex and impractical. In some
cases, it may be possible to explore the properties of the game, notably of the value v ,
for reducing the centralized complexity. For example, if the value v of a TU game is
concave, a procedure with computational time consumption polynomially bounded in
the number of players inN exists for finding the social-welfare-maximizing partition in
a centralized manner.

However, in many coalition-formation games, v may not be concave, especially when
there is a cost for coalition formation. Moreover, for utilizing coalition-formation games
in practical applications, it is desirable that the coalition-formation process take place in a
distributed manner, whereby the players have autonomy on the decision of whether or not
they join a coalition. In fact, the complexity of the centralized approach aswell as the need
for distributed solutions has sparked a huge growth in the coalition-formation literature
that aims to find low complexity and distributed algorithms for forming coalitions [398,
41, 44, 465]. The approaches used for distributed coalition formation are quite varied
and range from heuristic approaches [465] and Markov-chain-based methods [398] to
set-theory-based methods [41], as well as approaches that use bargaining theory or other
negotiation techniques from economics [44]. Although there are no general rules for
distributed coalition formation, some work, such as [41], provides generic rules that
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can be used to derive application-specific coalition-formation algorithms. Next, we will
delve into the details of how to build a coalition-formation algorithm using these rules.

The merge-and-split algorithm
The main ingredients needed in order to construct a coalition-formation algorithm based
on the generic rules given in [41] are three:

• Well-defined orders suitable for comparing collections of coalitions
• Two simple rules for forming or breaking coalitions
• Adequate notions for assessing the stability of a partition.

First, we present the following definitions:

definition 7.13 A collection of coalitions in the grand coalition N , denoted S,
is defined as the set S = {S1, ... ,Sl} of mutually disjoint coalitions Si ⊆ N . In other
words, a collection is any arbitrary group of disjoint coalitions Si of N not necessarily
spanning all players ofN . If the collection spans all the players ofN , i.e.,

⋃l
j=1 Sj =N ,

the collection is simply a partition of N .

definition 7.14 A preference relation or comparison relation � is an order defined
for comparing two collectionsR= {R1, ... ,Rl} and S = {S1, ... ,Sp} that are partitions
of the same subset A⊆N (i.e., same players inR and S). Thus,R �S implies that the
wayR partitions A is preferred to the way S partitions A.

For comparing collections of coalitions, a number of preference relations can be
defined. These can be divided into two categories: coalition-value orders and individual-
value orders. Coalition-value orders compare two collections (or partitions) using
the value of the coalitions inside these collections, such as in the utilitarian order.
The utilitarian order, which is mainly suitable for TU games, states that a group of
players prefers to organize themselves into a collection R = {R1, ... ,Rk} instead of
S = {S1, ... ,Sl} if the total social welfare achieved inR is strictly greater than in S, i.e.,∑k

i=1 v(Ri ) >
∑l

i=1 v(Si ). Individual-value orders perform the comparison using the
individual payoffs received by the players. One example of an individual-value order is
the Pareto order, defined as follows:

definition 7.15 Given two payoff allocations x and y that are allotted by two collec-
tions R and S, respectively, to the same players,R is preferred over S by Pareto order
if and only if x≥ y, with at least one element xi of x such that xi > yi .

Pareto order is an individual-value order in which a collection R is preferred over
another collectionS if at least one player improves inRwithout hurting the other players.
It must be noted that the Pareto order is suitable for both TU and NTU games.

Using these preference relations, two main rules for forming or breaking coalitions,
referred to as merge and split, can be defined as follows [41]:

definition 7.16 (Merge Rule) Any set of coalitions {S1, ... ,Sl} may be merged
whenever themerged form is preferred by the players; i.e., where{

⋃l
j=1 Sj}�{S1, ... ,Sl},

therefore, {S1, ... ,Sl}→ {
⋃l

j=1 Sj}.
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definition 7.17 (Split Rule) Any coalition
⋃l

j=1 Sj may be split whenever a split

form is preferred by the players; i.e., where {S1, ... ,Sl}�{
⋃l

j=1 Sj}, thus, {
⋃l

j=1 Sj}→
{S1, ... ,Sl}.

The basic idea behind the rules is that, given a set of players N , any collection
of disjoint coalitions {S1, ... ,Sl}, Si ⊂ N can agree to merge into a single coalition
G = ∪l

i=1Si , if this new coalition G is preferred by the players over the previous state,
depending on the selected comparison order. Similarly, a coalition S splits into smaller
coalitions if the resulting collection {S1, ... ,Sl} is preferred by the players over S . For
example, when the Pareto order is selected, coalitions will merge only if at least one
player can enhance its individual payoff through this merge without decreasing the other
players’payoffs. Similarly, a coalition will split only if at least one player in that coalition
is able to strictly improve its individual payoff through the split without hurting other
players. A decision to merge or split is thus tied to the fact that all players must benefit;
thus, any merged (or split) form is reached only if it allows all involved players to
maintain their payoffs with that of at least one user improving. Hence, an algorithm
based on the merge-and-split rules with Pareto order is a dynamic coalition-formation
algorithm with partially reversible agreements, where the players enter into a binding
agreement to form a coalition through the merge operation (if all players are able to
improve their individual payoffs from the previous state) and can only split this coalition
if splitting does not decrease the payoff to any coalition member (partial reversibility).
Independent of the selected order or the starting partition of the network, any arbitrary
sequence of these two rules is shown to converge to a final partition ofN . Consequently,
one can build a dynamic coalition-formation algorithm using the merge-and-split rules,
as the players in the game (or the users in a network) can interact to form the coalition
and converge to a suitable network partition. Notice that each decision to merge or split
can be taken in a distributed manner by each individual player or by each already-formed
coalition without any reliance on a centralized entity.

Once a merge-and-split coalition-formation algorithm is constructed, the next step
is to study the properties of the resulting partition. For instance, in order to assess the
stability of any partition ofN , the concept of a defection function can be used.Adefection
function is defined as follows:

definition 7.18 A defection function D is a function that associates with each parti-
tion S ofN a group of collections inN . A partition S = {S1, ... ,Sl} ofN is D-stable if
no group of players benefits from leaving N when the players who leave can only form
the collections allowed by D.

By defining various types of defection functions, one can assess whether, in a given
partition T ofN , there is an incentive for the players to deviate and form other partitions
or collections. One example of such functions is a weak equilibrium-like stability known
as Dhp stability, suitable for algorithms that rely on the merge-and-split rule. A Dhp-
stable partition simply implies that, in this partition, no group of players has an interest
in performing a merge or a split operation. This type of stability can be thought of as
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merge-and-split proof of a partition, or a kind of equilibrium with respect to merge-and-
split.

Another type of stability of importance to merge-and-split algorithms is Dc -stability.
A Dc -stable partition presents numerous attractive properties:

• A Dc -stable partition is a unique outcome of any arbitrary merge-and-split itera-
tion. Hence, starting from any given partition, one would always reach the Dc -stable
partition by merge-and-split.

• Depending on the selected order, the players prefer the Dc -stable partition over all
other partitions. On the one hand, if the selected order is the utilitarian order, this
implies that the Dc -stable partition maximizes the social welfare (total utility); on
the other hand, if the selected order is the Pareto order, the Dc -stable partition has a
Pareto-optimal payoff distribution for the players.

• No group of players in a Dc -stable partition has an incentive to leave this partition to
form any other collection in N .

Nonetheless, the existence of a Dc -stable partition is not always guaranteed. The Dc -
stable partition S = {S1, ... ,Sl} of the whole space N exists if a partition of N verifies
two necessary and sufficient conditions:

1. For each i ∈{1, ... , l} and each pair of disjoint coalitionsA andB , such that {A∪B}⊆
Si , we have {A∪B} � {A,B}.

2. For the partition S = {S1, ... ,Sl}, a coalition G ⊂N formed of players belonging to
different Si ∈S is S-incompatible if for no i ∈ {1, ... , l}we have G ⊂Ti . Dc stability
requires that, for all S-incompatible coalitions, {G}[S]�{G}, where {G}[S] = {G ∩
Si ∀ i ∈ {1, ... , l}} is the projection of coalition, G in partition S.

If no partition of N can satisfy these conditions, then no Dc -stable partition of N
exists and, in this case, using merge-and-split algorithms yields suboptimal Dhp-stable
partitions.

Although this section has presented the concept of a defection function for merge-and-
split algorithms, it should be noted that, depending on the application being investigated,
one can possibly define different suitable defection functions, as this concept is not
limited to a particular problem or algorithm. Moreover, other stability notions can also
be defined for dynamic coalition-formation games, some of which are direct extensions
of notions such as the core. The selection of a particular stability notion is application-
dependent.

Finally, by periodically taking distributed merge-and-split decisions, the players can
adapt their coalitional structure to environmental changes such as the arrival of new
players, the departure of other players, the change of position of players, or an increase
or decrease in the utility.

Hedonic coalition-formation games
Coalition formation-games are diverse, and are by no means limited to the concepts in
[41]. For example, a type of coalition-formation game, known as a hedonic coalition-
formation game, has been widely studied in game theory. Hedonic games are interesting
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because they allow the formation of coalitions (whether dynamic or static) based on the
individual preferences of the players. In addition, these games admit different stability
concepts that are extensions to well-known concepts such as the core or the Nash equilib-
rium used in a coalition-formation setting [77]. In this regard, hedonic games constitute
a very useful analytical framework, which has a very strong potential to be adopted in
modeling problems in wireless and communication networks (only a few contributions,
including [406, 409] have used this framework in wireless communication problems).

Beyond merge-and-split and hedonic games, dynamic coalition-formation games
encompass a multitude of algorithms and concepts such as those in [465, 398, 41, 44].
This chapter cannot provide an exhaustive survey of all such algorithms. Nonetheless,
as will be seen later, many coalition-formation algorithms and concepts can be tailored
and adapted for communication applications.

7.4.4 Sample applications in wireless and communication networks

In this section, we present a couple of sample applications of coalition-formation games
in wireless and communication networks, and discuss some potential applications of this
class of coalitional games.

Transmitter cooperation with cost in a TDMA system
The formation of virtual MIMO systems through distributed cooperation has received
increasing attention recently (see [323, 411] and references therein). The problem
involves a number of single-antenna users that cooperate and share their antennas in
order to benefit from spatial diversity or multiplexing, and hence form a virtual MIMO
system. Beyond the exhaustive research devoted to analyzing the link-level information-
theoretical gains from distributed cooperation, or to assessing the stability of the grand
coalition for cooperation with no cost, there is an interest in studying how a network
of users can interact to form virtual MIMO systems, notably when there is a cost for
cooperation. For this purpose, coalition-formation games are quite an appealing tool for
performing this network-level analysis of virtual MIMO formation in wireless networks,
as demonstrated in [411].

For instance, consider the model in [411] in which a network of single-antenna trans-
mitters that send data in the uplink of aTDMAsystem to a receiverwithmultiple antennas
is studied. In such a non-cooperative approach, each single-antenna transmitter sends
its data in an allotted slot. To improve their capacity, the transmitters can interact form
coalitions, whereby each coalition S is seen as a single-user MIMO that transmits in the
slots that were previously held by the users of S . After cooperation, the TDMA system
schedules one coalition per time slot. An illustration of the model is shown in Fig. 7.4.
The use of coalitional games is highly suited to the study of network problems such
as this one.

In thismodel, in order to cooperate, the transmittersmust exchangedata.This exchange
of information incurs a cost in terms of power, which increases with distance inside the
coalition as well as coalition size. This cost, as shown in [411], renders the game non-
superadditive. For example, when two users are far away from one another, information



210 Cooperative games

User 1

Coalition 1

Time slot 1

Time slot 1

Time slot 2

Time slot 2

Time slot 3

Time slot 3

Base station

(multiple antennas)

Time slot 4 Time slot 5 Time slot 6

Coalition 2

Coalition 3

Coalition 1

Time slot 5 Time slot 6Time slot 4

Coalition 1 Coalition 1 Coalition 2 Coalition 3 Coalition 2

User 2 User 3 User 4 User 5 User 6

3

2

1
6

4

5

Fig. 7.4 System model for virtual MIMO-formation game.

exchange can consume the total available power, so, the utility received by the users
(e.g., in terms of rate) when cooperating is smaller than in the non-cooperative case.
Similarly, adding more users to a coalition does not always yield an increase in the
utility; a coalition consisting of a large number of users increases the cost of information
exchange, for example, so superadditivity cannot be guaranteed. As a consequence, for
the game in [411] the grand coalition seldom forms10 and the game is modeled as a
dynamic coalition-formation game between the transmitters (identified by the set N )
that seek to form cooperating coalitions. The dynamic aspect stems from the fact that
many environmental changes, such as the mobility of the transmitters or the deployment
of new users, may affect the coalitional structure that will form, and any algorithm must
be able to cope with these changes accurately.

For this virtual MIMO coalition-formation game, the value function represents the
sum-rate, or capacity, that the coalition can achieve, while taking into account the power
cost. Owing to the TDMAnature of the problem, a power constraint P̃ per time slot, and
hence per coalition, is considered. Whenever a coalition forms, a fraction of P̃ is used
for information exchange, which constitutes a cost for cooperation, while the remaining
fraction is used by the coalition to transmit its data, as a single-user MIMO, to the
receiver. For a coalition S , the fraction used for information exchange is the sum of the
powers that each user i ∈ S needs to transmit its data to the user j ∈ S that is farthest
from i ; because of the broadcast nature of the wireless channel, all other users in S can
receive this data as well. This power cost scales with the number of users in the coalition,
as well as with the distance between these users. Hence, the sum-rate that a coalition can
achieve is limited by the fraction of power spent on information exchange. For instance,

10 In this game, the grand coalition only forms in extremely favorable cases, such as when the network
contains only two users and these users are located quite close to one another.



7.4 Class II: coalition-formation games 211

if the power for information exchange for a coalition S is larger than P̃ , then v(S) = 0.
Otherwise, v(S) represents the sum-rate achieved by the coalition using the remaining
fraction of power. Clearly the sum-rate is a transferable utility, so we are dealing with a
TU game.

In this framework, a dynamic coalition-formation algorithm based on the merge-and-
split rules previously described can be built. Using [411], we start with a non-cooperative
network, inwhich eachuser discovers its neighbors, startingwith the closest, and attempts
to merge based on the utilitarian order, i.e., if cooperating with a neighbor improves
the total sum-rate that the involved users can achieve, then merging occurs (merging
is accomplished through pairwise interactions between a user or coalition and a user
or coalition in the vicinity). Furthermore, if a formed coalition finds that splitting into
smaller coalitions improves the total utility achieved by its users, then a split occurs. Start-
ing from the initial non-cooperative network, the coalition-formation algorithm involves
sequential merge-and-split rules. Any coalition in the network can autonomously decide
whether to perform a merge or split, based on the utility evaluation. Convergence is
guaranteed by the definition of merge-and-split. Furthermore, if an optimal Dc -stable
partition exists, the studied algorithm converges to it. The existence in this model of a
Dc -stable partition cannot always be guaranteed, as it depends on random locations of
the users; however, convergence, when it does exist, is guaranteed.

The coalition-formation algorithm proposed in [411] can handle any network size, as
implementation is inherently distributed so that each coalition (or user) can detect the
strength of the other users’ uplink signals (using techniques as in ad hoc routing), and
discover nearby candidate partners. Consequently the distributed users can exchange the
required information and assess the kinds of merge or split decisions they can make. The
transmitters engage in merge-and-split periodically, adapting the topology to environ-
mental changes such as the mobility or joining/leaving of transmitters. The topology is
always dynamically changing, through individual and distributed decisions by the net-
work’s coalitions. As the model is TU, one of several rules for dividing the coalition’s
value can be used, fromwell-known fairness criteria such as the proportional fair division
to coalitional-game-specific rules such as the Shapley value or the nucleolus. Owing to
the distributed nature of the problem, the nucleolus or the Shapley value are applied at the
level of the coalitions that are forming or splitting. Although for the Shapley value this
allocation coincides with the Shapley value of the whole game, as previously discussed,
for the nucleolus the resulting allocations lie in the nucleolus of the restricted games only.
In this game, for any coalition S ⊆N that forms through merge-and-split, the Shapley
value presents a division of the payoff that takes into account the random order in which
transmitters can join the coalition S (this division is also efficient at the coalition level
and treats the players symmetrically within S). In contrast, the division by the nucleolus
at the level of every coalition S ⊆ N that forms through merge-and-split ensures that
the dissatisfaction of any transmitter within S is minimized by minimizing the excesses
inside S . Finally, in this virtual MIMO game, one can use either the utilitarian order
or the Pareto order for merge-and-split. Using the Pareto order, the model allows every
user of the coalition to assess the improvement to its own payoff during merge or split,
instead of relying on the entire coalitional value as in the utilitarian order [411]. Using the
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Pareto order, the fairness criteria chosen for payoff division would impact the network
structure, so that, for each fairness type, one obtains a different topology.

Coalition-formation games for roadside-unit cooperation in vehicular networks
Recent advances in the integration of communication and sensor technologies have led
to the emergence of intelligent transportation systems (ITS), which enable numerous
attractive applications for road transportation systems (e.g., providing road traffic con-
ditions, remote vehicle monitoring, accident prevention, payment services, and security
applications) [374]. In order to support different ITS applications, both vehicle-to-
roadside (V2R) and vehicle-to-vehicle (V2V) communications must be supported in
vehicular networks. On the one hand, V2R communications allow vehicles to connect,
through their on-board units (OBUs), to roadside units (RSUs) belonging to one or
several service providers, in order to download (or upload) data related to a variety of
applications. On the other hand, V2V communications enable a group of vehicles to
exchange information for different purposes. The emergence of ITS applications raises
numerous challenges for vehicular networks, such as advanced communication tech-
nologies for V2R and V2V communication, modeling of content-sharing through V2V
cooperation, and analysis of non-cooperative data delivery in V2R communications (see
[374] and references therein).

In this example, we tackle one challenge for vehicular networks: the design of cooper-
ative strategies among RSUs. For instance, RSUs can cooperate in order to improve the
diversity of the data circulating in the network, or to exploit the data-exchange capabili-
ties of the underlying V2V networks. Instead of non-cooperatively sending information
on the traffic in the same geographical location to their served vehicles, two RSUs can
cooperate to send information on the traffic conditions at different locations, relying on
V2V data exchange to disseminate this data to all the vehicles traveling between them.
Thus, with an efficient V2V data-exchange protocol, all the vehicles moving between the
two RSUs can acquire traffic information on various geographical areas without passing
multiple RSUs. In doing so, the RSUs can obtain more revenue since they are providing
more diverse information through cooperation. Furthermore, from the vehicles’perspec-
tive, because of the short time a vehicle spends at each RSU [374], a vehicle commonly
has time to download only a limited number of data chunks or packets, e.g., related to a
single class of data. By enabling cooperation among RSUs, vehicles could obtain more
diverse data. The need for modeling cooperation in this scenario is a motivation for the
use of coalitional-game theory as demonstrated in [415].

In [415], a network of RSUs is considered, with each having a number of data classes
from which it can pick which data to send to its served vehicles. For each class of data
there is a corresponding priority level that determines the importance of this data to the
vehicles (and the RSUs). Because of the short period that a vehicle may spend at an
RSU, each RSU selects only one class of data to transmit at a time to the vehicles in a
given direction. From the chunks of data downloaded, the RSUs generate revenue by
charging the vehicles a price proportional to the priority of the data.

Moreover, in the considered network, between each pair of RSUs there exists a V2V
content-sharing scheme that allows vehicles to exchange data when possible. However,
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when RSUs act in a non-cooperative way, as is often the case, they are not aware of
the underlying V2V content-sharing network. Without coordination, the RSUs cannot
estimate the fraction of vehicles that can potentially share content, nor the numbermoving
in their direction, so they are unaware of the vehicle-to-vehicle content-sharing that can
potentially occur. As a result, it is beneficial for a non-cooperative RSU to transmit data
in the class with the highest priority for the vehicles passing by it, in order to maximize its
revenue. This scheme is also the most beneficial for the vehicles, considering the time of
entry of these vehicles into the network. Once a vehicle enters the network and meets its
first RSU, the most beneficial action for this vehicle is to acquire the most important class
of data from this RSU. In non-cooperative model, the utility for each RSU corresponds
to the total revenue generated from the data transmitted to the vehicles. This utility is a
function of the total data downloaded, the priorities of each data class, and the pricing
scheme.

To increase their revenues, the RSUs can cooperate and exploit the underlying V2V
content-sharing network. We consider that a pairwise content-sharing scheme exists
between each pair of RSUs, i.e., between each pair of RSUs, a certain average number
of pairs of vehicles can meet and engage in V2V content sharing. The average number of
vehicles that can meet between each pair of RSUs depends on many factors, including
the distance between the RSUs and the mobility of the vehicles. In order to exploit the
V2V content-sharing scheme, RSUs can form coalitions, as explained in [415], using
the following two-step cooperative protocol:

1. The RSUs exchange information on their estimates of the average number of vehicles
they are serving, their distances, and so on.

2. The members of each cooperative group (i.e., coalition) coordinate the classes of data
that each RSU needs to transmit to its served vehicles. The classes are agreed upon by
the coalition members so as to maximize amount and diversity of data received by the
vehicles through joint V2R and V2V communication. This coordination maps into
agreeing on a selection of the classes of data that will be transmitted to the vehicles
circulating between any two RSUs inside the same coalition.

Using this cooperative protocol, the RSUs in a vehicular network can increase the
revenue fromV2Rcommunicationwith their served vehicles.Asample network structure
is shown in Fig. 7.5 for five RSUs and three data classes (class 1 is the highest priority,
class 2 is the second highest, and so on). In this figure, a number of RSUs with relatively
high traffic among them form a cooperative coalition, while coordinating the classes of
data transmitted so as to exploit V2V content-sharing.

In order to characterize the RSU network structure that will form, one can formulate
a coalitional game whereby:

• The players are the RSUs.
• The value or utility function of a coalition captures the total revenue received by

the RSUs from the downloaded data, as well as the cost due to synchronization and
information exchange. Hence, the utility represents a total amount of money received
by the RSUs, which is a transferable entity by definition.
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Fig. 7.5 Example of coalition formation for cooperation among RSUs for a vehicular network with five
RSUs and three data classes.

When a coalition of RSUs forms, the potential mutual benefit from cooperation
depends highly on the traffic between the RSUs as well as on the average number of
vehicles that can utilize V2V content sharing. Hence, cooperation might not be always
beneficial. In addition, because of the cost of information exchange, which is function
of the coalition size, the formation of a grand coalition is not guaranteed. Clearly the
RSUs’ coalitional game is a coalition-formation game with transferable utility.

In [415] a distributed algorithm for coalition formation based on a simple switch oper-
ation is considered.A switch operation allows each RSU to decide on leaving its current
coalition and joining a new coalition, depending on the potential payoff as well as on the
approval of the new coalition. That is, an RSU can break from a coalition and join another
one if it can improve its payoff without decreasing the payoff to any member of the new
coalition. It is shown that, using well-defined preferences, an algorithm based on switch
operations converges to a Nash-stable network partition, i.e., a partition whereby no RSU
prefers to leave its current coalition and join another. In this partition, each coalition of
RSUs can utilize the two-step cooperative protocol to improve its performance.

Simulations offer insights into the application of the coalition-formation game to RSU
cooperation in [415]. Numerical examples demonstrate that, if the number of vehicles
that can potentially meet between two RSUs depends mainly on the distance, then closely
located RSUs are more apt to form coalitions. Furthermore, it is shown that cooperation
among RSUs can present gains, in terms of average revenue per RSU, of up to 33.2
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percent relative to the non-cooperative case. An additional interesting result is that, in
general, after coalition formation the resulting network of RSUs is mainly composed of a
small number of relatively large coalitions rather than a large number of small coalitions.

In a nutshell, this example demonstrates that coalition-formation games constitute
an important analytical framework for the study of vehicular networks. Although this
example focuses on RSU cooperation while abstracting the details of the V2V protocol,
extensions can investigate the use of this coalition-formation model in conjunction with
realistic wireless channels and practical V2V protocols. Further extensions can look at
joint coalition formation among RSUs and vehicles (for an insight on vehicles-coalition
formation, readers are referred to [371]).

Other sample applications of coalition-formation games
Potential applications of coalition-formation games in wireless and communication
networks are numerous and diverse. Coalition-formation games have been applied to
cognitive-radio networks for collaborative sensing, as will be discussed in Chapter 13.
They have also been applied (see [407]) to improving the physical-layer security of
wireless nodes through cooperation among transmitters. In [406] coalition formation
among autonomous agents, such as unmanned aerial vehicles, is studied in the context
of data collection and transmission in wireless networks. Recently, there has been a
significant increase in interest in autonomic communication systems, networks that are
self-configuring, self-organizing, self-optimizing, and self-protecting. In such networks,
the users should be able to learn and adapt to their environment (changes in topology,
technologies, service demands, application context, etc.), thus providing much-needed
flexibility and functional scalability. Coalition-formation games present an adequate
framework for the modeling and analysis of these self-organizing next-generation com-
munication networks. Potential applications of coalition-formation games encompass
cooperative networks, peer-to-peer networks, delay-tolerant networks, wireless sensor
networks, next-generation IP networks, ad hoc self-configuring networks, and many
others. In general, whenever there is a need for distributed algorithms for autonomic
networks, coalition formation is a strong tool for modeling such problems. Any study of
cooperative wireless nodes’ behavior when a cost is present is a candidate for modeling
using coalition-formation games.

Finally, although the main applications of coalition-formation games explored in this
book require a characteristic form, coalition-formation games in partition form are of
major interest and are ripe for application in wireless and communication networks (e.g.,
see [408] for insights into the application of coalition-formation games in partition form
to cooperation in peer-to-peer networks).

7.5 Class III: coalitional graph games

7.5.1 Main properties of coalitional graph games

In canonical and coalition-formation games, the utility or value of a coalition does
not depend on how the players are interconnected within the coalition. However, in
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many scenarios, the underlying communication structure between the players in a coali-
tional game can have a major impact on the utility and other characteristics of the
game [346, 205]. By the underlying communication structure, we imply a graph struc-
ture representing the connectivity of the players among one another, i.e., which player
communicates with which one inside every coalition. We provided examples of such
interconnections in Section 7.2.2 and Fig. 7.3(b). In general, a coalitional graph game is
in graph form, and can be TU or NTU with the possibility that the value of a coalition
depends on the external network structure, as explained in Section 7.2.2.

In coalitional graph games, the main theme is the presence of a graph of the com-
munication between the players. Typically, there are two objectives in coalitional graph
games. The first and most important objective is to derive low-complexity distributed
algorithms for players who wish to build a network graph (directed or undirected) and
not just coalitional groups as in coalition-formation games. A second objective is to
study the properties (stability, efficiency, etc) of the formed network graph, which are
inherently different from those of a coalitional structure because of the presence of the
graph. In some scenarios, the network graph is given, and hence analyzing its stability
and efficiency is the only goal of the game. The following sections provide an in-depth
study of coalitional graph games.

7.5.2 Coalitional graph games and network-formation games

The idea of a value which is dependent on a graph of communication between players
was introduced by Myerson [346], through the graph-function form for TU games. To
define the graph-function form of a game, a TU canonical coalitional game (N ,v) is
considered along with an undirected graph G that interconnects the players in the game.
In this setting, a fair solution can be found by defining a new value function u that
depends on the graph. To evaluate the value u of a coalition S , the coalition is divided
into smaller coalitions depending on the players connected through S . For example,
given a three-player coalition S = {1,2,3} and a graph G = {(2,3)} (only players 2
and 3 are connected by a link in G ), the value u(S ,G ) is v({2,3}) + v({1}), where
v is the original value of the canonical game. Using the new value u, an axiomatic
approach, similar to the Shapley value, is provided by Myerson for solving the game
in graph-function form. In this context, the so-called Myerson value, defined as the
Shapley value of the game (N ,u), where u is the newly defined value, presents a fair
solution of the canonical game (N ,v) in the presence of a graph structure G . The
main drawback to using the Myerson value as a solution concept for coalitional graph
games is that the value u of a coalition depends solely on the connected players in the
coalition,with no dependence on the structure. For example, for both graphsG 1

S andG 2
S in

Fig. 7.3(b), the values u are equal, although the individual payoffs received by the players
in G 1

S and G 2
S through the Myerson value allocation would be different because of the

different graphs.
Nevertheless, the Myerson value is a cornerstone for coalitional graph solutions, and it

has resulted in several extensions. Notably, the value function as presented by Myerson
can be extended so as to depend on the graph structure, and not only on the connected
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components. In this regard, a general definition for a coalitional graph game, with a
general value, is as follows:

definition 7.19 Consider a coalitional graph game (N ,v) and denote by G(S) the
set of all possible graphs with vertices being the players in any coalition S ⊆N . In this
setting, for any coalition S ⊆ N , connected by any graph GS ∈ G(S), the value v is
defined as the set v(S ,GS)⊂RS . If the game is TU, then v(S ,GS)∈R is a real number
representing the worth of coalition S when connected by graph GS .

Using this definition for the value, coalitional graph games offer a framework that
is richer than the Myerson value but is more complex to solve. Furthermore, while the
Myerson value was proposed in [346] as a solution to a game in which the graph is
given, coalitional graph games also support games in which the formation of the graph
is a key issue. One prominent tool in this area is non-cooperative game theory, which was
extensively used for forming the network graph. For instance, in [347, Section 9.5], using
the Myerson framework of [346], an extensive-form game is proposed for forming the
network graph. However, the extensive-form approach is impractical in many situations,
as it requires listing all possible links in the graph, which is a complex combinatorial
problem.

Nonetheless, following this work, a new breed of games started to appear known as
network-formation games. The main objective in these games is to study the interac-
tions within a group of players that wish to form a graph. Although in some references
these games are decoupled from coalitional-game theory, we discuss them here for two
reasons:

• The basis of all network-formation games is the work on coalitional graph games,
starting in [346].

• Network-formation games share many aspects with coalitional graph games, such as
the ideas of a value and an allocation rule, and the need for stability. The solutions
of network-formation games are quite correlated with those of coalition-formation
games (in terms of forming the graph) and canonical games (in terms of having stable
allocations).

Network-formation games can be thought of as hybrids of coalitional graph games and
non-cooperative games because, in forming the network, non-cooperative game theory
plays a prominent role. In network-formation games one needs to form a network graph
as well as to ensure the stability of this graph, using concepts analogous to those in
canonical coalitional games. For forming the graph, a broad range of approaches exists,
grouped into two types: myopic and far-sighted.11 In myopic approaches, players choose
their strategies given the current state of the network, while in far-sighted algorithms,
players adapt their strategy by learning and by predicting the future strategies of other
players. In both approaches, well-known concepts from non-cooperative game theory are
used. The most popular approach is to consider the network formation as a non-zero-sum,

11 These approaches are sometimes referred to as dynamics of network formation, for example in the
terminology of [228].
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non-cooperative game in which a player’s strategy is to select one or more links to form
or break. One approach to solving the game is to play myopic best-response dynamics,
whereby each player selects the strategy, i.e., the link(s) to form or break, that maxi-
mizes its utility. Under certain conditions on the utilities, the best-response dynamics
converge to a Nash equilibrium, which constitutes a Nash network. These approaches
are widespread in network-formation games [127, 61, 129], and several refinements to
the Nash equilibrium suitable for network formation are used [127, 61, 129]. The main
drawback of aiming for a Nash network is that, in many network-formation games, the
Nash networks are trivial graphs, such as the empty graph, or can be inefficient. For these
reasons, a new type of network-formation game has been developed, which utilizes new
concepts for stability such as pairwise stability and coalitional stability [228]. The basic
idea is to present stability notions that depend on deviations by a group of players instead
of the unilateral deviations allowed by the Nash equilibrium. In the following, given an
undirected graph G and a link between two players i , j ∈N , the notation G + ij indicates
that link ij is added to the graph G , while G − ij indicates that link ij is removed from
the graph G . The concept of pairwise stability is defined as follows:

definition 7.20 Given a coalitional graph game (N ,v), an undirected graph G over
N , and a payoff allocation x(G )∈RN (the payoffs in a coalitional graph game depend
on both the coalitional value v and the graph G in place), the undirected graph G is said
to be pairwise stable with respect to the payoff allocation x(G ) if (1) for all links ij ∈G ,
xi (G )≥ xi (G − ij) and xj(G )≥ xj(G − ij), and (2) for all ij /∈ G , if xi (G + ij) > xi (G )
then xj(G + ij) < xj(G − ij).

The concept of pairwise stability considers an undirected graph, but it can be easily
extended to directed graphs. It can be also applied to subgraphs (e.g., graphs on coalitions
S ⊆N ). Although pairwise stability is an appealing concept because of its simplicity,
in many games no network that is pairwise-stable exists. Moreover, as its name implies,
pairwise stability only considers deviations by a pair of players in the network-formation
game. In contrast, coalitional (strong) stability allows deviations by groups of players.
The concept of strong stability is defined as follows:

definition 7.21 Given a coalitional graph game (N ,v), and any graph G over N ,
a graph G ′ is said to be obtainable from graph G via deviations by a coalition S ⊆N
if (1) ij ∈ G ′ and ij /∈ G implies ij ⊂ S , and (2) ij ∈ G and ij /∈ G ′ implies ij ∩S = ∅.

definition 7.22 Consider a coalitional graph game (N ,v) and define a graph G
over N as well as a payoff allocation x(G ) ∈ RN . Then, the graph G is said to be
coalitional stable (or strongly stable) with respect to x(G ) if, for any coalition S ⊂N ,
graph G ′ obtainable from graph G via deviations by coalition S , and i ∈ S such that
xi (G ′) > xi (G ), there exists j ∈ S such that xj(G ′) < xj(G ).

The concept of coalitional stability is a strong refinement of the pairwise stability
concept, but it is a very demanding concept.
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Independent of the stability concept, a key design issue in network-formation games is
the tradeoff between stability and efficiency. It is desirable to devise algorithms for form-
ing stable networks that can also be efficient in terms of payoff distribution or total social
welfare. Several approaches for devising such algorithms exist, notably using stochastic
processes, graph-theoretical techniques, or non-cooperative games. For a comprehensive
survey of such algorithms, we refer the reader to [228].

Finally, the Myerson value and network-formation games are not the only approaches
for solving coalitional graph games. Other approaches, closely tied to canonical games,
have been proposed. Herings, van der Laan, and Talman [205] formulate a canonical
game-like model for an NTU game, whereby the graph structure is taken into account.
The authors propose an extension to the core called the balanced core, which takes into
account the graph structure. Furthermore, under certain conditions, analogous to the
balanced conditions of canonical games, they show that this balanced core is non-empty.
Hence, coalitional graph games constitute quite a rich analytical framework, with a broad
range of applications.

7.5.3 Sample applications in wireless and communication networks

The need to analyze network architectures, routing, and graph structures in the context
of wireless communications and networking has led to the emergence of interest-
ing applications of coalitional graph games. In this section, we survey a few sample
applications.

In next-generation wireless networks such as LTE-Advanced and the most recent
WiMAX standard, the IEEE 802.16j, a new node, the relay station, has been introduced
in order to improve network capacity and coverage [7, 11]. This impacts the network
architecture of next-generation networks, which will be governed by a tree architecture
connecting a base station to subordinate relay stations. The deployment of relay stations
leads to new and important design challenges, such as devising distributed algorithms
for building the network’s architecture. In this context, network-formation games, as will
be seen in Chapter 9, can be an important tool in studying the architecture and structure
of next-generation LTE-Advanced or IEEE 802.16j networks in the presence of three
types of network nodes: mobile stations, base stations, and relay stations.

In fact, the presence of network graphs is ubiquitous in many wireless and communi-
cation applications. In designing, understanding, and analyzing such graphs, coalitional
graph games are an accurate tool. Using concepts such as network formation, stability,
fairness, and others, one can model a wide range of problems. For instance, network-
formation games have been widely used in routing problems. For example, in [43], a
stochastic approach to network formation is proposed, in which a network of nodes
wishing to form a graph for routing traffic among themselves is considered. Each node
aims to minimize its costs, (e.g., for routing, link maintenance, disconnection, etc.). For
network formation, a myopic dynamic best-response algorithm is proposed. Each round
of this algorithm begins by randomly selecting a pair of nodes i and j in the network.
The algorithm proceeds in two steps. In the first step, if the link (i , j) is already formed
in the network, node i is allowed to break this link, while in the second step node i is
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allowed to form a new link with a certain node k , if k accepts the formation of the link
(i ,k). The benefit from the link (i , j) can be seen as a kind of cost sharing between nodes
i and j . Using a stochastic-process approach, the authors show that the myopic algorithm
always converges to a pairwise stable and efficient tree network. Under certain condi-
tions on the cost function, this network is a simple star network. Efficiency is measured
in terms of Pareto optimality of the utilities, as the game is inherently NTU. Although
the network-formation algorithm in [43] converges to a stable and efficient network, it
suffers from a major drawback, which is the slow convergence time, notably for large
networks. The algorithm is mainly intended for undirected graphs, although the authors
provide insights on how this work can be extended to directed graphs.

The use of network-formation games in routing applications is not restricted to network
formation, but can be used for studying existing networks. In [234], the authors study
the stability and flow of traffic in a given directed graph. Several concepts from network-
formation games, including pairwise stability, are used. In addition the authors generalize
the concept of pairwise stability, making it suitable for directed graphs. Non-cooperative
game theory is used to determine the network flows at different nodes while taking into
account the stability of the network graph.

Applications of coalitional graph games are not limited to routing problems. In fact,
the main potential of this class of games lies in solving problems beyond network rout-
ing. For instance, coalitional graph games are suitable tools for analyzing information
trust management in wireless networks, multi-hop cognitive radio, relay selection in
cooperative communication, intrusion detection, peer-to-peer data transfer, multi-hop
relaying, packet forwarding in sensor networks, and many other applications.

7.6 Summary

Cooperative game theory provides a variety of tools useful in many applications. From
bargaining theory to coalitional games, one can identify numerous analytical tools suited
tomodeling different aspects ofwireless and communication networks.While bargaining
theory is useful in the allocation and distribution of resources among nodes in a wireless
or wired network, coalitional-game theory allows us to model a broad range of problems,
including cooperative behavior, fairness in cooperation, network formation, cooperative
strategies, and incentives for cooperation.

In this chapter, we have covered the key elements of cooperative game theory from
an engineering and communications perspective. In order to illustrate the application
of cooperative games in a wireless and communication context, we have studied a
number of representative applications drawn from state-of-the-art research, including
rate and resource allocation, virtual MIMO systems, cooperation in vehicular networks,
distributed cooperation, and network formation in next-generation networks.



8 Auction theory and
mechanism design

Auction theory is an applied branch of game theory that deals with how people act in
auction markets, and it studies the game-theoretic properties of auction markets. There
are many possible designs (or sets of rules) for an auction, and typical issues studied
by auction theorists include the efficiency of a given auction design, optimal and equi-
librium bidding strategies, and revenue comparison. Auction theory is also used as a
tool to inform the design of real-world auctions, most notably auctions for the privati-
zation of public-sector companies or the sale of licenses for use of the electromagnetic
spectrum.

Mechanism design is a subfield of game theory studying solution concepts for a
class of private-information games. The distinguishing features of these games are
as follows. First, a game “designer” chooses the game structure rather than inherit-
ing one. Thus, the mechanism design is often called “reverse game theory.” Second,
the designer is interested in the game’s outcome. Such a game is called a “game of
mechanism design” and is usually solved by motivating players to disclose their private
information. The 2007 Nobel Memorial Prize in Economic Sciences was awarded to
Leonid Hurwicz, Eric Maskin, and Roger Myerson “for having laid the foundations of
mechanism design theory.”

Auction theory and mechanism design are important for communications and net-
working for practical, empirical, and theoretical reasons. First, a large number of wireless
networking and resource-allocation problems can be formulated within the framework of
auction theory – for example, the routing problem for self-interested users [39]. Second,
auction theory has a simple game setup, and many theoretical results are available for
analysis. Third, the Federal Communications Commission (FCC) spectrum auction has
garnered a significant amount of money. There are 51 major trading areas (MTAs), with
a 30 MHz spectrum per MTA, and 492 basic trading areas (BTAs), each with one 30
MHz and four 10 MHz blocks. So there are 51×1+492× (1+4) = 2511 items. From
1994 to 2001, the total revenue was more than $40 billion.

In this chapter, we first discuss the basics of auction theory. Second, we introduce
mechanism design to show how to control the game outcome by cleverly designing
the game rules. Then, we discuss some typical types of auctions. Finally, some com-
munications and networking applications of auction theory and mechanism design are
described.
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8.1 Introduction and auction basics

In this section, we first introduce the concept of an auction. Then, we present the auction
within a game-theoretic model. Some basic properties are also discussed. Finally, we list
several basic types of auctions, followed by a simple example.

Auctions take many forms but always satisfy two conditions. First, they can be used
to sell any item, so they are universal; second, the outcome of the auction does not
depend on the identity of the bidders, i.e., auctions are anonymous. Most auctions have
the feature that participants submit bids, or the amounts of money they are willing to
pay. Following is the definition of an auction.

definition 8.1 An auction is a market mechanism in which an object, service, or
set of objects, is exchanged on the basis of bids submitted by participants. It provides
a specific set of rules that will govern the sale or purchase (procurement auction) of an
object to the submitter of the most favorable bid. Specific mechanisms include first-price,
second-price, English, and Dutch auctions.

Agame-theoretic auctionmodel is amathematical game represented by a set of players,
a set of actions (strategies) available to each player, and a payoff vector corresponding to
each combination of strategies. Generally, the players are the buyer(s) and the seller(s).
The action set of each player is a set of bid functions or reservation prices. Each bid
function maps the player’s value (in the case of a buyer) or cost (in the case of a seller) to
a bid price. The payoff for each player under a combination of strategies is the expected
utility (or expected profit) for that player under that combination of strategies.

Game-theoretic models of auctions and strategic bidding generally fall into one of
two categories. In a private-value model, each participant (bidder) assumes that each of
the competing bidders obtains a random private value from a probability distribution.
In a common-value model, each participant assumes that any other participant obtains
a random signal from a probability distribution common to all bidders. Usually, but not
always, a private-value model assumes that the values are independent across bidders,
whereas a common-value model usually assumes that the values are independent up to
the common parameters of the probability distribution. When it is necessary to make
explicit assumptions about bidders’ value distributions, most of the published research
assumes symmetric bidders. This means that the probability distribution from which
the bidders obtain their values (or signals) are identical across bidders. In a private-
value model that assumes independence, symmetry implies that the bidders’ values are
independently and identically distributed (i.i.d.).

There are various properties for an auction. First, allocative efficiency means that in all
such auctions the highest bidder always wins (i.e., there are no reserve prices). Second,
it is desirable for an auction to be computationally efficient. Finally, to study the revenue
(expected selling price) of different auctions, we have the following theorem:

theorem 8.1 (Revenue Equivalence Theorem) Any two auctions with the following
properties

• the bidder with the highest value wins
• the bidder with the lowest value expects zero profit
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• bidders are risk-neutral 1

• value distributions are strictly increasing and atomless

have the same revenue and also the same expected profit for each bidder.

It is worth mentioning the phenomenon of the winner’s curse, which can occur in
common-value settings when the actual values to the different bidders are unknown but
correlated, and the bidders make bidding decisions based on estimated values. In such
cases, the winner will tend to be the bidder with the highest estimate, and that winner
will frequently have bid too much for the auctioned item.

There are many ways to categorize auctions. For example, standard auctions require
that the winner of the auction be the participant with the highest bid. A non-standard
auction (e.g., a lottery) does not require this. There are traditionally four types of auctions
that are used for the allocation of a single item, as follows.

A first-price auction is an auction in which the bidder who submitted the highest
bid is awarded the object being sold and pays a price equal to the amount of the bid.
Alternatively, in a procurement auction the winner is the bidder who submits the lowest
bid and is paid an amount equal to that bid. In practice, first-price auctions are either
sealed-bid, in which bidders submit bids simultaneously, or Dutch. Infirst-price auctions,
bidders shade their bids below their true value.

A second-price auction is an auction in which the bidder who submitted the highest
bid is awarded the object being sold and pays a price equal to the second-highest amount
bid. Alternatively, in a procurement auction the winner is the bidder who submits the
lowest bid, and is paid an amount equal to the next-lowest submitted bid. In practice,
second-price auctions are either sealed-bid, in which bidders submit bids simultaneously,
or English, in which bidders continue to raise each other’s bids until only one bidder
remains. The theoretical nicety of second-price auctions, first pointed out by William
Vickrey, is that bidding one’s true value is a dominant strategy. Alternatively, first-
price auctions award the object to the highest bidder, but the payment is equal to the
amount bid.

An English (or open ascending-bid) auction is a type of sequential second-price auc-
tion in which the auctioneer directs participants to beat the current standing bid. New
bids must increase the current bid by a predefined increment. The auction ends when
no participant is willing to outbid the current standing bid. Then, the participant who
placed the current bid is the winner and pays the amount bid. An English auction, in
which the highest bidder pays the amount bid, is termed a second-price auction since
the winning bidder need only outbid the next-highest bidder by the minimum incre-
ment. Thus, the winner effectively pays an amount equal to (or slightly higher than) the
second-highest bid.

A Dutch (or open descending-bid) auction is a type of first-price auction in which a
“clock” initially indicates a price for the object for sale which is substantially higher

1 In economics, risk-neutral behavior is in between risk aversion and risk seeking. If offered either $50 or
a 50 percent chance of $100, a risk-averse person will take the $50, a risk-seeking person will take the
50 percent chance of $100, and a risk-neutral person will have no preference between the two options.
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than any bidder is likely to pay. Then, the clock gradually decreases the price until a
bidder “buzzes in” or indicates a willingness to pay. The auction is then concluded, and
the winning bidder pays the amount reflected on the clock at the time the process was
stopped.These auctions are named after a common market mechanism for sellingflowers
in Holland, but they also mirrored in stores successively reducing prices on sale items.

Most auction theory revolves around the above four “standard” auction types.
However, other auction types have also received some academic study.

A Japanese auction is a type of sequential second-price auction, similar to an English
auction, in which the auctioneer regularly raises the current price. Participants must
signal at every price level their willingness to stay in the auction and pay the current
price. Thus, unlike an English auction, each participant must bid at each level to stay
in the auction. The auction concludes when only one bidder indicates his willingness to
stay in. This auction format is also known as a button auction.

In an all-pay auction, bidders place their bids in sealed envelopes and simultaneously
hand them to the auctioneer.The envelopes are opened, and the individualwith the highest
bid wins, paying a price equal to the exact amount bid.All losing bidders are also required
to make a payment to the auctioneer equal to their own bid. This auction format is non-
standard, but it can be used to understand things such as election campaigns (in which
bids can be interpreted as campaign spending) and queuing for a scarce commodity (in
which your bid is the amount of time that you are prepared to remain in the queue). The
most straightforward form of an all-pay auction is a Tullock auction, sometimes called a
Tullock lottery, in which everyone submits a bid but both the losers and the winners pay
their submitted bids. This is instrumental in describing certain ideas in public-choice
economics. A dollar auction is a two-player Tullock auction, or a multi-player game,
in which only the two highest bidders pay their bids. Other forms of all-pay auctions
exist, such as the war of attrition, in which the highest bidder wins, but all (or both,
more typically) bidders pay only the lower bid. The war of attrition is used by biologists
to model conventional contests, or agonistic interactions resolved without recourse to
physical aggression.

Aunique-bid auction is a type of strategy game related to traditional auctions, in which
the winner is usually the individual with the lowest unique bid, although less commonly
the auction rules may specify that the highest unique bid is the winner. Unique-bid
auctions are often used as a form of competition or lottery.

A generalized second-prize (GSP) auction is a non-truthful auction mechanism for
multiple items. First thought of as a natural extension of the Vickrey auction [257],
it actually does not conserve some good properties of the Vickrey auction (such as
truthfulness, for example). It is used mainly in the context of keyword auctions, in
which sponsored search slots are sold on an auction basis.

Finally, we study a simple first-price auction model with two buyers who are bidding
for an object. Each buyer might assume that the rival buyer’s private value is drawn
from the uniform distribution over the interval [0,1], with the cumulative distribution
function2 F (v) = v . We assume that (i) the value of the object for the seller is 0,

2 Since F is symmetric between the two buyers, this is an auction model with symmetric bidders.
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and (ii) the seller’s reservation price is also 0. Each buyer’s expected utility U can be
written as

U(p) = (v − p)Pr [p > B(vo)], (8.1)

where p is the bid price, (v − p) is the consumer surplus that the buyer will receive,
conditional upon winning, and Pr [p > B(vo)] is the likelihood that he or she will be
the buyer with the highest bid price. That likelihood is given by the probability that this
buyer’s bid price p exceeds the other buyer’s bid price B (expressed as a function of the
other buyer’s value vo).

Assume that each buyer’s equilibrium bid price is monotonically increasing in that
buyer’s value; this implies that the bid function B has an inverse function. Let Y be the
inverse of B: Y = B−1. Then U(p) = (v − p)Pr [Y (p) > vo ]. Since vo is distributed
according to F (vo), we have

Pr [Y (p) > vo ] = F (Y (p)) = Y (p), (8.2)

which implies that U(p) = (v − p)Y (p). A bid price p maximizes U if U ′(p) = 0.
Differentiating U with respect to p and setting to zero, we have

U ′(p) =−Y (p)+ (v − p)Y ′(p) = 0. (8.3)

Since the buyers are symmetric, in equilibrium it must be the case that p = B(v) or
(equivalently) Y (p) = v . Therefore, we have

−Y (p)+ (Y (p)− p)Y ′(p) = 0. (8.4)

A solution Ŷ of this differential equation is an inverse Nash equilibrium strategy of this
game.

At this point,wemay conjecture that the (unique) solution is the linear function Ŷ (p)=
αp and Ŷ ′(p) = α for some real number α. Substituting into U ′(p) = 0, we have

−αp +(αp− p)α = 0. (8.5)

Solving for α yields α̂ = 2. Therefore, Ŷ (p) = 2p satisfies U ′(p) = 0. Ŷ (p) = α̂p
implies Ŷ (p)/α̂ = p, or v/α̂ = B̂(v). Thus, the (unique) Nash equilibrium strategy
bidding function of this game is established as B̂(v) = v/2, at least within the set of
invertible bidding functions.
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8.2 Mechanism design

A game designer tries to consider all possible games and choose the one that best influ-
ences other players’ selections. Mechanism design is used to define the game rules so as
to achieve the desired outcome. This is different from game analysis, in which the game
rules are predefined and then the outcome is investigated. In addition, the game designer
has to consider the situation in which players may lie. Fortunately, by the revelation
principle, it is only necessary to consider games in which players truthfully report their
private information. In this section, we discuss mechanism design in some detail.

First, let us introduce the following ingredients:

• Outcome set: Ω
• Players i ∈ I, where I is the set of players. The set has size |I|= N , with preference

types θi ∈Θi

• Utility ui (o,θi ), over outcome o ∈Ω
• Mechanism M = (S ,g), which defines

– a strategy space SN = S1×·· ·×SN , s.t. player i chooses a strategy si (θi )∈ Si with
si : Θi → Si

– an outcome function g : SN →Ω, s.t. outcome g(si (θ1), ... ,sN(θN)) is implemented
given strategy profile s = (s1(·), ... ,sN(·))

• Game:The utility to player i from strategy profile s is ui (g(s(θ)),θi ), denoted ui (s,θi ).

The objective of a mechanism M = (S ,g) is to achieve the desired game outcome
f (θ) such that

g(s∗
1 (θ1), ... ,s∗

N(θN)) = f (θ), ∀θ ∈ΘN (8.6)

for an equilibrium strategy (s∗
1 , ... ,s∗

N). The desired properties of a mechanism are:

• Efficiency. Select the outcome that maximizes total utility.
• Fairness. Select the outcome that achieves a particular fairness criterion for utility.
• Revenue maximization. Select the outcome that maximizes revenue to a seller (or

more generally, utility to one of the players).
• Budget balance. Implement outcomes that have balanced transfers across players.
• Pareto optimality. Only implement outcomes o∗ for which, for all o′ 	= o∗, either

ui (o′;θi ) = ui (o∗;θi ) for all i or ∃i ∈ I with ui (o′,θi ) < ui (o∗,θi ).

In the following, we first discuss several design concepts, then explain the revelation
principle, and finally explain the concepts of impossibility and possibility. The Groves
mechanism is studied as an example.

8.2.1 Equilibrium concepts

We define three types of mechanism: Nash implementation, Bayes–Nash implementa-
tion, and dominant implementation, in order of increasing constraints and difficulty.



8.2 Mechanism design 227

definition 8.2 Nash implementation mechanism M = (S ,g) implements f (θ)
in a Nash equilibrium if, for all θ ∈ Θ, g(s∗(θ)) = f (θ), where s∗(θ) is a Nash
equilibrium; i.e.,

ui (s∗
i (θi ),s∗

−i (θ−i ),θi )≥ ui (s ′
i (θi ),s ′

−i (θ−i ),θi ), ∀i ,∀θi ,∀s ′
i 	= s∗

i . (8.7)

definition 8.3 Bayes–Nash implementation with common prior F (θ), mechanism
M = (S ,g) implements f (θ) in a Bayes–Nash equilibrium if, for all θ ∈Θ, g(s∗(θ)) =
f (θ), where s∗(θ) is a Bayes–Nash equilibrium; i.e.,

Eθ−i [ui (s∗
i (θi ),s∗

−i (θ−i ),θi )]≥ Eθ−i [ui (s ′
i (θi ),s ′

−i (θ−i ),θi )], ∀i ,∀θi ,∀s ′
i 	= s∗

i . (8.8)

definition 8.4 Dominant implementation mechanism M = (S ,g) implements f (θ)
in a dominant-strategy equilibrium if, for all θ ∈Θ, g(s∗(θ)) = f (θ), where s∗(θ) is a
dominant-strategy equilibrium; i.e.,

ui (s∗
i (θi ),s∗

−i (θ̂−i ),θi )≥ ui (s ′
i (θi ),s ′

−i (θ̂−i ),θi ), ∀i ,∀θi ,∀θ̂−i ,∀s ′
i 	= s∗

i . (8.9)

8.2.2 Participation and incentive compatibility

Next, we define three rationality concepts: ex ante individual rationality, interim indi-
vidual rationality, and ex post individual rationality, in order of increasing constraints
and difficulty.

Let ūi (θi ) denote the (expected) utility to player i with type θi as its outside option,
and recall that ui (f (θ);θi ) is the equilibrium utility for player i from the mechanism. We
state the definitions of three types of rationality:

• Ex ante individual rationality: players choose to participate before they know their
own types:

Eθ∈Θ[ui (f (θ);θi )]≥ Eθi∈Θi [ūi (θi )]. (8.10)

• Interim individual rationality: players can withdraw once they know their own type:

Eθ−i∈Θ−i [ui (f (θ,θ−i );θi )]≥ ūi (θi ). (8.11)

• Ex post individual rationality: players can withdraw from the mechanism at the end:

ui (f (θ);θi )≥ ūi (θi ). (8.12)

A special kind of mechanism, called the direct-revelation mechanism (DRM), has
a strategy space S = Θ, and players simply report their type to the mechanism with
outcome rule g : Θ→Ω. For the DRM, we have the following definitions:

definition 8.5 A DRM is Bayesian Nash incentive-compatible if truth revelation is
a Bayesian Nash equilibrium, i.e., s∗

i (θi ) = θi , for all θ ∈Θ.

definition 8.6 A DRM is strategy-proof if truth revelation is a dominant-strategy
equilibrium for all θ ∈Θ.
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8.2.3 Revelation principle

The revelation principle states that for any Bayesian Nash equilibrium there corresponds
a Bayesian game with the same equilibrium outcome but in which players truthfully
report their types. The principle allows one to solve for a Bayesian equilibrium by
assuming all players truthfully report their types (subject to an incentive-compatibility
constraint), which eliminates the need to consider either strategic behavior or lying. So,
no matter what the mechanism, a designer can confine attention to equilibria in which
players truthfully report type.

theorem 8.2 For any mechanism M there is a direct, incentive-compatible mecha-
nism with the same outcome.

Proof Consider a mechanism M = (S ,g) that implements f (θ), in a dominant-strategy
equilibrium. In other words, g(s∗(θ)) = f (θ) for all θ ∈ Θ, where s∗ is a dominant-
strategy equilibrium. We construct the direct mechanism M = (S ,g). In contradiction,
we suppose

∃θ′
i 	= θi , s.t. ui (f (θ′

i ,θ−i ),θi ) > ui (f (θi ,θ−i ),θi ) (8.13)

for some θ′
i 	= θi . But because f (θ) = g(s∗(θ)), this implies that

ui (g(s∗
i (θ′

i ),s
∗
−i (θ−i )),θi ) > ui (g(s∗

i (θi ),s∗
−i (θ−i )),θi ), (8.14)

which contradicts the strategy-proofness of s∗ in mechanism M .

The practical implications are obvious for the above theorem. First, incentive-
compatibility is free, i.e., any outcome implemented by mechanism M can be imple-
mented by an incentive-compatible mechanism M ′. Second, fancy mechanisms are
unnecessary, i.e., any outcome implemented by a mechanism with complex strategy
space S can be implemented by a DRM.

8.2.4 Budget balance and efficiency

Before we define budget balance, we first introduce transfers or side payments. Define
the outcome space O =K×RN such that an outcome rule o = (k, t1, ... , tN) defines a
choice k(s)∈K and a transfer ti (s)∈R from player i to the mechanism, given strategy
profile s ∈ S . For example, the utility can be written as

ui (o,θi ) = vi (k,θi )− ti , (8.15)

where vi (k,θi ) is the value of player i and ti is the payment (transfer) to the auctioneer.

definition 8.7 Budget balance introduces constraints over the total transfers made
from the players to the mechanism. Let s∗(θ) denote the equilibrium strategy of a
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mechanism. We have:

• Weak budget balance if:

(a) ex post:
∑

t ti (s∗(θ))≥ 0,∀θ
(b) ex ante: Eθ∈Θ[

∑
t ti (s∗(θ))]≥ 0.

• Strong budget balance if:

(a) ex post:
∑

t ti (s∗(θ)) = 0,∀θ
(b) ex ante: Eθ∈Θ[

∑
t ti (s∗(θ))] = 0.

Obviously, strong budget balance is harder than weak budget balance, and ex post is
harder than ex ante.

Next, we define efficiency and discuss the trade-off between efficiency and budget
balance.

definition 8.8 A choice rule k∗ : Θ→K is ex post efficient if, for all θ ∈Θ, k∗(θ)
maximizes the sum of individual value function,

∑
k∈K vi (k,θi ).

Unfortunately, according to the Green–Laffont Impossibility Theorem [174], if Θ
allows all valuation functions from K to R, then no mechanism can be efficient and
ex post budget balance in dominant strategy. So we can either (i) restrict the space of
preferences, (ii) drop budget balance, (iii) drop efficiency, or (iv) drop dominant strategy.

8.2.5 Groves mechanism

A special mechanism is the Groves mechanism.

definition 8.9 A Groves mechanism M = (Θ,k, t1, ... , tN) is defined by means of a
choice rule,

k∗(θ̂) = argmax
k∈K

∑
i

vi (k, θ̂i ), (8.16)

and transfer rules,

ti (θ̂) = hi (θ̂−i )−
∑
j �=i

vj(k∗(θ̂), θ̂j), (8.17)

where hi (·) is an (arbitrary) function that does not depend on the reported type θ̂i of
player i .

It has been proven that the Groves mechanism is strategy-proof and efficient [175].
The Groves mechanisms is, furthermore, unique, in the sense that any mechanism that
implements efficient choice k∗(θ) in truthful dominant strategy must implement Groves
transfer rules.

8.2.6 Impossibility and possibility

Of the properties discussed so far, some combinations are possible, while others are
impossible. We list some well-known cases in the form of the following theorems:
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theorem 8.3 (Gibbard–Satterthwaite Impossibility Theorem [165, 427]) If agents
have general preferences, and there are at least two agents and at least three different
optimal outcomes over the set of all agent preferences, then a social-choice function is
dominant-strategy implementable if and only if it is dictatorial (i.e., one or more agents
always receives one of its preferred alternatives).

theorem 8.4 (Hurwicz Impossibility Theorem [222]) It is impossible to implement
an efficient, budget-balanced, and strategy-proof mechanism in a simple exchange
economy3 with quasi-linear preferences.

theorem 8.5 (Myerson–Satterthwaite Theorem [348]) It is impossible to achieve
allocative efficiency, budget balance, and (interim) individual rationality in a Bayesian
Nash incentive-compatible mechanism, even with quasi-linear utility functions.

An interesting extension of the Groves mechanism, the dAGVA (or “expected
Groves” [45, 123]) mechanism, demonstrates that it is possible to achieve efficiency
and budget balance in a Bayesian Nash equilibrium, even though this is impossible
in a dominant-strategy equilibrium (Hurwicz Impossibility Theorem). However, the
dAGVA mechanism is not individually–rational, which we should expect from the
Myerson–Satterthwaite Impossibility Theorem.

8.3 Special auctions

In this section we discuss some popular types of auctions and their properties. (In the next
section we will provide the examples of implementation of these auctions in wireless
communication.)

8.3.1 VCG auction

AVickrey auction [256] is a sealed-bid auction in which bidders (players) submit written
bids without knowing the bids of the other bidders. The highest bidder wins, but the price
paid is the second-highest bid. This auction, created by William Vickrey, is strategically
similar to an English auction, and gives bidders an incentive to bid their true value.

If only a single, indivisible good is being sold, the terms “Vickrey auction” and
“second-price sealed-bid auction” are equivalent, and they are used interchangeably.
When multiple identical units (or a divisible good) are being sold in a single auction,
the most obvious generalization is to have all winning bidders pay the amount of the
highest non-winning bid. This is known as a uniform-price auction. The uniform-price
auction does not, however, result in bidders bidding their true valuations, as they do in
a second-price auction, unless each bidder has demand for only a single unit. A gener-
alization of the Vickrey auction that maintains the incentive to bid truthfully is known
as the Vickrey–Clarke–Groves (VCG) mechanism [256]. In the VCG, each player in the
auction pays the opportunity cost that their presence introduces for all the other players.

3 A simple exchange environment is one in which there are buyers and sellers, selling single units of the
same good.
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definition 8.10 The VCG mechanism implements an efficient outcome k∗ =
maxk

∑
j vj(k, θ̂j) and computes transfers

ti (θ̂) =
∑
j �=i

vj(k−i , θ̂j)−
∑
j �=i

vj(k∗, θ̂j), (8.18)

where k−i = maxk
∑

j �=i vj(k, θ̂j).

In other words, the payment equals the performance loss for all other users because
of the inclusion of user i .

For example, suppose two apples are being auctioned among three bidders. Bidder A
wants one apple and bids $5 for it. Bidder B wants one apple and is willing to pay $2
for it. Bidder C wants two apples and is willing to pay $6 to have both of them, but is
uninterested in buying only one without the other. First, the outcome of the auction is
determined by maximizing bids: the apples go to bidder A and bidder B. Next, to decide
on payments, the opportunity cost each bidder has imposed on the rest of the bidders is
considered. Currently B has a utility of $2. If bidder A had not been present, C would
have won and had a utility of $6, so A pays $6–$2 = $4. Currently A has a utility of
$5 and C has a utility of 0. If bidder B had been absent, C would have won and had a
utility of $6, so B pays $6–$5 = $1. The outcome is identical whether or not bidder C
participates, so C does not need to pay anything.

In aVickrey auction with independent private values (IPV), each bidder maximizes his
or her expected utility by bidding (revealing) his or her true valuation.AVickrey auction
is ex post efficient (the winner is the bidder with the highest valuation) under the most
general circumstances; it thus provides a baseline model against which the efficiency
properties of other types of auctions can be compared. The auction is also strategy-proof.
Because of the above strengths, VCG auctions are widely used in wireless networking,
especially in situations where it is important to prevent players from lying.

Despite the Vickrey auction’s strengths, it also has some shortcomings:

• It does not allow for price discovery – that is, discovery of the market price if the
buyers are unsure of their own valuations – without sequential auctions.

• Sellers may use shill bids to increase profit.4

• In iterated Vickrey auctions, the strategy of revealing true valuations is no longer
dominant.

The VCG mechanism has the following additional shortcomings:

• It is vulnerable to collusion by the losing bidders.
• It is vulnerable to shill bidding with respect to the buyers.
• It does not necessarily maximize seller revenues; these may even be zero in a VCG

auction. If the purpose of holding the auction is to maximize profit for the seller rather
than just to allocate resources among buyers, then VCG may be a poor choice.

• The seller’s revenues are non-monotonic with regard to the sets of bidders and offers.

4 A shill is a person who helps another person or organization to sell goods or services without disclosing
that he or she has a close relationship with the seller.
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8.3.2 Share auction

A share auction [505, 51, 324] is concerned with allocating a perfectly divisible good
among a set of bidders. The most common example in the literature comes from the
financial markets (e.g., the auction of treasury notes) [53, 497, 212]. Other examples
include the allocation of emission permits [470] and the sale of electricity [144]. There
are two basic pricing structures in a share auction. In a uniform-price auction, all the
winners (typically more than one) get some portion of the good and pay the same unit
price. In a discriminatory price auction (sometimes called a pay-you-bid auction [51]),
winning bids are filled at the bid price. The references above largely focus on how
different pricing and information structures affect auction results such as the final price,
the seller’s revenue, and the allocation of the divisible good.

Unlike the well-studied single-unit-good auction, in which bidders typically sub-
mit one-dimensional bids, some share auctions allow bidders to submit multiple
combinations of price and quantity as bids (e.g., [53, 497, 470]). This significantly
complicates the auction design since the bidders have large strategy spaces. When
using a share auction to allocate resources such as bandwidth in communication
networks, researchers typically adopt simple one-dimensional bidding rules, as in
[235, 517, 422, 314, 313, 312]. The allocation is proportional to the value of the bids.
Some researchers have focused on developing bounds of efficiency loss in such simple
bidding games: Johari and Tsitsiklis [235] show that with a uniform-pricing scheme
the Nash equilibrium (NE) of a share auction achieves at least 3/4 of the total util-
ity in a socially optimal solution. Sanghavi and Hajek [422] show that the efficiency
loss could be reduced to roughly 1/8 if discriminatory pricing (pay-you-bid) is used.
Yang and Hajek [517] and Maheswaran and Başar [314, 316, 317, 318] advance the
results further by showing that more complex pricing functions can reduce the efficiency
loss to zero under certain conditions on the bidders’ utility functions. Maheswaran and
Başar have considered several network resource-allocation games using share auctions,
focusing on the effects of coalition [313] or the design of decentralized negotiation
methods [311, 312, 315].

Let us consider how a share auction can be used in spectrum sharing. We consider the
case in which there is a measurement point in the network. The aggregated interference
generated by all users at the measurement point should be no larger than a threshold P ,
i.e.,

∑N
i=1 pi ≤ P. Here, pi is the allocated power for the i th user.

In a share auction, users submit one-dimensional bids bi representing their willing-
ness to pay, and the manager simply allocates the available resource P in proportion
to the bids. The users then pay an amount proportional to their performance gain
γi . The manager announces a non-negative reserve bid β. In contrast to the situa-
tion in which the manager submits a reserve bid to extract more revenue from the
other bidders [339], here the main purpose of the reserve bid is to guarantee a unique
desirable outcome of the auction. A share-auction mechanism can be expressed as
follows:

1. The manager announces a reserve bid β ≥ 0 and a price π > 0.
2. After observing β and π, user i submits a bid bi ≥ 0.
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3. The resources are allocated to each user i , whose share pi is proportional to its
bid, i.e.,

pi =
β∑

i bi +β
P. (8.19)

For example, if P is the overall transmitted power, for the interference case we have
the resulting SINR for user i as

γi (p) =
pihii

n0 +
∑

j �=i pjhji
, (8.20)

where hij is the channel gain for user i to receiver j and n0 is the noise level.
4. In a share auction, user i pays Ci = πγi .

A bidding profile is the vector b = (b1, ...,bN) containing the users’ bids. The bidding
profile of user i’s opponents is defined as b−i = (b1, ...,bi−1,bi+1, ...,bN), so that b =
(bi ;b−i ). Typically, each user i submits a bid bi to maximize its surplus function,

Si (bi ;b−i ) = Ui (γi (bi ;b−i ))−Ci .

Here, we have suppressed the dependence on β and π. An NE of the auction is a fixed
point of all users’ best responses.

These auction mechanisms differ from some previously proposed auction-based net-
work resource-allocation schemes (e.g., [235, 314]) in that the bids here are not the same
as the payments. Instead, the bids are signals of willingness to pay. The manager can,
therefore, influence the NE by choosing β and π. This alleviates the typical inefficiency
of the NE, and in some cases allows us to achieve socially optimal solutions.

With a properly chosen price π, the share auction can achieve either fair or efficient
allocation. In a fair allocation, users achieve the performance by some predefined fairness
criteria. In an efficient allocation, the total utility for the network is maximized.

8.3.3 Double auction

In a double auction [156], there are I buyers and N sellers. Each buyer i wants to purchase
xi items, and each seller n wants to sell yn items. The information about xi and yn are
available publicly. A buyer i reports price p(b)

i (i.e., bidding price), while a seller n
reports price p(s)

n (i.e., asking price). These prices are per unit of item. Without loss of
generality, we may assume p(b)

1 ≥ p(b)
2 ≥ ·· · ≥ p(b)

I and p(s)
1 ≤ p(s)

2 ≤ ·· · ≤ p(s)
N . Note

that if two prices are equal, their indexes are interchangeable. Also, each seller and each
buyer can set different prices for different items, with each item being bought and sold
separately.

To determine the trading price in a double auction, the demand quantities from all
buyers are arranged in descending price order, and the supply quantities from all sellers
are arranged in ascending price order (Fig. 8.1). At the trading point T ∗, the aggregate
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Fig. 8.1 Example of ordered demand and supply in a double auction.

demand and supply intersect, so n′− 1 sellers will trade with i ′− 1 buyers. There are
two cases in determining the trading price and trading quantity:

1. The bidding and asking prices satisfy the condition p(b)
i ′ ≥ p(s)

n′ ≥ p(b)
i ′+1 and aggregate

demand and supply satisfy
∑n′−1

n=1 yn ≤
∑i ′

i=1 xi ≤
∑n′

n=1 yn. In this case, the sellers

n ∈ {1, ... ,n′} sell all their items yn at price p(s)
n′ , and the buyers i ∈ {1, ... , i ′} buy at

price p(b)
i ′ . Each buyer buys a quantity

⌊
xi −

∑i′−1
j=1 xj−

∑n′−1
j=1 yj

i ′−1

⌋
, where �x� denotes a

floor function.
2. The bidding and asking prices satisfy the condition p(s)

n′+1≥ p(b)
i ′ ≥ p(s) and aggregate

demand and supply satisfy
∑i ′−1

i=1 xi ≤
∑n′

n=1 yn ≤
∑i ′

i=1 xi . In this case, the buyers

i ∈ {1, ... , i ′} buy at price p(b)
i ′ , and the sellers n ∈ {1, ... ,n′} sell at price p(s)

n′ . Each

seller sells a quantity

⌊
yn−

∑n′−1
j=1 yj−

∑i′−1
j=1 xj

n′−1

⌋
.

However, when a central controller is available in this double auction, an optimization
problem can be formulated to obtain the quantity of items to be traded. Let the reserve
price of each buyer and seller be fixed and denoted by p̂(b)

i and p̂(s)
n , respectively. Let

x̂i ,n and p̂i ,n be the solutions: the quantities buyer i buys from seller n and the trading
price, respectively. The utility for buyer i in a double auction is

U(b)
i =

N∑
n=1

(p̂(b)
i − p̂i ,n)x̂i ,n, (8.21)

and that of seller n is

U(s)
n =

I∑
i=1

(p̂i ,n− p̂(s)
n )x̂i ,n. (8.22)
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To maximize the utility for both the seller and the buyer, an optimization can be
formulated as a linear programming problem, as follows:

max
I∑

i=1

N∑
n=1

x̂i ,n

(
p̂(b)

i − p̂(s)
n

)
, (8.23)

s.t.
I∑

i=1

x̂i ,n ≤ yn,∀n,
N∑

n=1

x̂i ,n ≤ xi ,∀i , x̂i ,n ≥ 0,∀i ,n. (8.24)

The constraints limit the quantities to be traded not to exceed the supply and demand
quantities for seller and buyer, respectively.

8.4 Examples of communication applications

As explained in the previous sections, an auction is a process of selling and buying a
commodity (or service) whose price is undetermined. In an auction process, the bidders
submit their bids (e.g., in terms of bidding price and quantity) to the auctioneer, who
then determines the winning bidder. Then, the commodity is sold at the trading price.
There are three types of auctions: supply auction, demand auction, and double auction
(Fig. 8.2). In a supply auction, multiple sellers offer a commodity to a buyer. In a demand
auction, multiple buyers bid for a commodity being sold by a seller. In a double auction,
multiple buyers bid to buy commodities from multiple sellers.

Seller

Demand

auction Buyers

Supply

auction

Sellers

Buyer

Double

auction

Sellers

Buyers

Bids Ask

Asks Bids

Fig. 8.2 Three types of auction.
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The ingredients of in an auction market are as follows:

• Seller is an entity in the market who wants to sell the commodity. A seller offers the
price (i.e., asking price) and the amount of commodity to be traded by auction.

• Buyer is an entity who wants to buy the commodity. A buyer submits a bid in terms
of price and the amount of the commodity to be bought through the auction.

• Trading/clearingprice is the price of each commodity to be traded in an auctionmarket.
This trading price has to satisfy the asking price from the seller and the bidding price
from the buyer (e.g., higher than or equal to asking price, but lower than or equal to
the bidding price).

In the remainder of this section, we provide examples of the application of auction
theory to cognitive-radio networks (Section 8.4.1) and to communication with physical-
layer security (Section 8.4.2).

8.4.1 Cognitive radio

In a cognitive-radio network, a spectrum auction may be jointly designed within a
resource-allocation framework (e.g., scheduling). An example of such a spectrum auc-
tion is shown in Fig. 8.3 [251]. In this case, the downlink and uplink schedulers will
use information about the auction mechanism from both the network service provider
and the bidding strategy of the user. The user can bid for the spectrum based on quality-
of-service (QoS) requirements, while the network service provider can charge a price
according to the bids from all users.

General framework of a spectrum auction
To support spectrum allocation and pricing, a real-time spectrum-auction framework
was proposed in [161]. In the system model, the seller sells the available spectrum to the
buyers (Fig. 8.4). The seller could be a spectrum owner or a primary user with spectrum
opportunity to be sold. The buyers could be service providers, cognitive-radio users, or
secondary users.

This framework was designed to support a large number of cognitive-radio users
under interference constraints. A multi-unit auction scheme was used to support diverse

Scheduler
Auction

mechanism

Reserve-

price

calculator

Network service provider

Physical layer

User profile

manager

User terminal

Bidding strategy Scheduler

Physical layer

Downlink Uplink

Fig. 8.3 Joint scheduling and spectrum bidding architecture.
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Seller: spectrum owner,

licensed user 

Buyers: service providers,

 cognitive-radio users,

 unlicensed users  

…

Spectrum bids

Fig. 8.4 System model of a spectrum auction.

spectrum demand, resulting from both short-term and long-term traffic load. The objec-
tive is to maximize the auction revenue of the spectrum owner and also the spectrum
utilization. To obtain a solution, a fast auction-clearing algorithm was proposed.

In order to communicate bidding information between the spectrum seller and the
buyer, a bidding language, piecewise linear price-quality (PLPQ), was proposed in [161].
Buyers express their demands in terms of spectrumbandwidth and per-unit price. Bids are
submitted to the seller. In PLPQ, spectrum demand is expressed as a concave piecewise
linear demand function such as

pi (fi ) =−ai fi + bi , (8.25)

where pi is the spectrum price, fi is the spectrum bandwidth, and ai and bi are parameters
of the linear function. In this case, the size of the demand spectrum can be expressed
as a function of price by fi (pi ) = bi−pi

ai
, and the revenue can be expressed as Ri (pi ) =

pi fi (pi ) = bi pi−p2
i

ai
.

The spectrum seller collects the spectrum bids (i.e., spectrum demand) from all buyers,
and an auction-clearing algorithm is used to obtain the optimal clearing price.Twopricing
models were used, namely uniform and discriminatory pricing. In the case of uniform
pricing, the clearing price p is fixed for all users and the spectrum will be sold to the
buyer if bi ≥ p, where bi is the bidding parameter in (8.25). An optimization problem
was formulated to obtain price p such that the revenue is maximized, as follows:

max
∑

{i|bi>p}

bip− p2

ai
, s.t. fi =

bi − p
ai

, fi +
∑

j∈NL(i)

fj ≤ 1. (8.26)

The constraint in (8.26) is the interference, i.e., the sum of the spectrum shares fi and fj
must be less than or equal to one. NL(i) is the set of nodes lying to the left of node i in a
two-dimensional network, and it is used (instead of the set of all neighboring nodes) to
reduce the complexity of optimization.
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In discriminatory pricing, the clearing price could be different for each buyer. In this
case, an optimization problem can be formulated as follows:

max
fi

∑
i

(−ai f 2
i + bi fi ), s.t. − ai fi + bi ≥ 0, fi ≥ 0, fi +

∑
j∈NL(i)

fj ≤ 1, (8.27)

where fi is a function of pi , which is the optimal discriminatory price.
To obtain the optimal solution, approximation algorithms of linear programming [230]

were proposed. For uniform pricing, the feasible region for clearing price p is first
obtained. The algorithm searches for an optimal clearing price which maximizes the
revenue. With discriminatory pricing, the algorithm uses separable programming [210]
to solve a special class of non-linear programs using linear programming. The details of
the derivation can be found in [161].

As for the performance evaluation, it is shown that the discriminatory-pricing model
can achieve higher revenue and higher utilization than a uniform-pricing model. Under
the discriminatory-pricing model, the spectrum broker charges cognitive-radio users
based on their condition. Consequently, the spectrum broker can optimize to achieve
higher revenue and utilization. These two pricing models were also evaluated under
different user behaviors: aggressive, normal, and conservative, with unit price func-
tions defined as follows: p(f ) =−f + 1, p(f ) = 1/2(−f + 1), and p(f ) = 2(−f + 1),
respectively. In the uniform-pricing model, the aggressive user obtains all the spectrum.
Since the clearing price is high, only an aggressive user can afford it. In contrast, with
a discriminatory-pricing model, although an aggressive user obtains the largest portion
of the spectrum, normal and conservative users also obtain part of the spectrum. Using
an approximation algorithm, it was observed that performance is only lower than the
optimal solution by only about 10 percent. However, the optimal solution takes much
longer to compute.

Dynamic spectrum allocation by multi-bid auction
In [255], a one-shot multi-bid auction framework for dynamic spectrum allocation was
proposed. This framework explicitly considers the various wireless services, in the same
or different regions, that could interferewith each other.As in [161], the framework deter-
mines the solution in terms of spectrum bandwidth and the price for service providers,
which bid for the spectrum from the spectrum owner (Fig. 8.4). However, in this frame-
work a service provider submits a bid as a set of two-dimensional bids, rather than the
piecewise linear function of [161]. Consequently the solution space is smaller, which
results in lower computational complexity.

Let the set of bids from service provider i be represented as

Bi = {bi ,1, ... ,bi ,Di}, (8.28)

for i ∈ {1, ... , I}, where Di is the total number of bids from service provider i , and
bi ,d = (qi ,d ,Θi (qi ,d)), where qi ,d denotes the requested spectrum bandwidth, and
Θi (·) denotes the total price the provider is willing to pay for the requested spectrum
bandwidth.
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The profile of the bids from all service providers is denoted by B = {B1, ... ,BI}.
The optimum feasible allocation of spectrum is defined as A∗(B) = {a1, ... ,aI}, where
ai = qi ,d∗

i
,

(d∗
1 , ... ,d∗

i , ... ,d∗
I ) = arg max

(d1,...,dI )

I∑
i=1

Θi (qi ,di ), (8.29)

and qi ,di is an element from the set of feasible allocations B. This solution is obtained
using a simulated annealing algorithm.

The price charged to the service provider is based on an exclusion-compensation
principle (i.e., a second-price auction) [161]. That is, service provider i considers price
ci , which covers the social opportunity cost. This cost quantifies the loss of utility due to
the presence of service provider i . In this case, the set of all bids except that of service
provider i is defined as B−i = {... ,Bi−1,Bi+1, ...}. The optimum feasible spectrum
allocation is defined as

A∗
−i = {a−i∗

1 , ... ,a−i∗
i−1 ,a

−i∗
i+1 , ...a−i∗

I }.

The price for service provider i is then

ci (B) =
∑
j �=i

Θj(a−i∗
j )−Θj(aj). (8.30)

The proposed scheme was evaluated by considering two regions, A and B . In these
regions, there are two service providers and one provider of terrestrial digital video
broadcasting (DVB-T). The ultra wideband (UWB) provider is only in region B . It was
observed that the DVB-T provider pays the highest price since it covers both regions and
its interference limit is low. In addition, the cost for the UWB provider is zero because
this network does not interfere with the other networks, owing to its small coverage area.

Dynamic spectrum allocation by double auction
When multiple sellers (i.e., primary users) and multiple buyers (i.e., secondary users)
are involved in a spectrum auction, a double-auction model can be applied to obtain a
competitive equilibrium solution [232]. The model assumes that all sellers and buyers
are rational, seeking to maximize their payoffs. However, sellers and buyers may not
provide private information, or they may even cheat each other if this can improve the
payoff. Therefore, each seller and each buyer has to develop its own belief regarding the
information from others in order to reach a solution.

First, a static-pricing game model was formulated for spectrum trading. In this case,
the payoff for the primary user i can be expressed as:

Ui =
ni∑

j=1

(
φaj

i
− c j

i

)
x j
i , (8.31)

where ni is the total number of channels of primary user i , φaj
i
is the payment received by

the primary user from selling channel aj
i to the secondary user, c j

i is the cost for primary
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user i of selling channel j , and x j
i is a binary variable indicating whether the channel j

is sold (x j
i = 1) or not (x j

i = 0). Similarly, the payoff for the secondary user k can be
expressed as:

Uk =
N∑

k=1

(
v j
k −φj

)
y j
k , (8.32)

where N is the total number of channels, v j
i is the benefit gained from obtaining channel

j by secondary user k , and y j
k is again a binary variable indicating whether or not

channel j is obtained by secondary user k . Since the primary and secondary users are
rational, optimization problems can be formulated to obtain the payments φaj

i
and φj

such that the payoffs for the primary and secondary users are maximized. To avoid
the complexity resulting from the multi-objective nature of this optimization problem,
competitive equilibrium from double-auction theory can be used to obtain the solution.
This competitive equilibrium determines the price at which the number of channels to
be bought is equal to the number of channels to be sold. In this case, the supply function
is defined as the relationship between the number of channels to be sold and the cost
for the primary users. The demand function is defined as the relationship between the
number of channels to be bought and the benefit to the secondary users.

Since the payoff function for a primary/secondary user depends on the decision of
the secondary/primary user, some primary and secondary users can cheat by posting
incorrect information. In this case, all primary and secondary users must establish their
own beliefs regarding the available information.

The static-pricing game model was also extended to the dynamic case for which there
are multiple periods, and the parameters in the payoff functions for both primary and
secondary users can be varied in each period. The objective functions for both types of
users now include a factor γ, which discounts the payoff in the future. These objective
functions are in the form of the Bellman equation, which can be solved by the standard
dynamic programmingmethod [232].The budget of secondary users for buying a channel
can be integrated into the discounted objective function.

The algorithm for obtaining the solution in the two-user case is presented in [232] as
follows. First, the subcarrier assignment is initialized so that the minimum throughput
requirements of all users are satisfied. Second, the subcarriers are sorted according to
their channel quality. Third, a group of subcarriers is divided into two subgroups, and
these subgroups are assigned to different users. Fourth, the subcarrier assignment is
updated, and the performance is measured. The algorithm stops if the utility cannot be
improved. The convergence of this algorithm was proved.

The performance evaluation of the proposed schemewas comparedwith the theoretical
competitive equilibrium (i.e., perfect knowledge for all users). When the number of
secondary users increases, the total payoff increases. It is observed that the total payoff
obtained from the proposed scheme is slightly smaller than that from the theoretical
model. The overhead of the proposed scheme is compared with the traditional continuous
double auction. It is clear that the overhead from the proposed scheme is much smaller
than that of a traditional double auction, since the belief-update algorithm can reduce
the amount of information exchange.
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Dynamic spectrum allocation by sequential and concurrent auction
The problem of dynamic spectrum access has been formulated as multi-unit, sealed-
bid, sequential, and concurrent auctions [437]. In this case, service providers bid for
the spectrum from a spectrum broker. In a sequential auction, the spectrum bands are
auctioned one by one, while in a concurrent auction all spectrum bands are auctioned at
once. In this spectrum-auction environment there are N bands and I service providers.
These service providers are rational, seeking to maximize their profit, calculated as the
revenue gained from serving the corresponding usersminus the price paid to the spectrum
broker. In each auction round, service provider i submits bid bi to the spectrum broker.
Given the bids from all service providers, the spectrum broker determines the winning
service provider (with the highest bid), and allocates the spectrum band to that service
provider. At the end of an auction round, the spectrum broker broadcasts the maximum
bid for that round. In the next auction round, the winning service provider will decrease
the bid to increase its profit. These steps are repeated until a steady state is reached.

The value of the band for service provider i is denoted by vi . In the case of a
substitutable band, this value is fixed for all bands. The profit for the service provider is

πi =
{

vi − bi , if service provider wins,
0, if service provider loses.

(8.33)

In a sequential auction, the probability-density function of bid b is assumed to be
uniformly distributed, and can be expressed as

f (b) =
1

vmax− bmin
, (8.34)

where vmax is the maximum value of the spectrum band, and bmin is the lowest bid of all
submitted bids. If k bands have already been auctioned, the probability that any bid bj

is less than bi , where j ∈ (I − k − 1), j 	= i , and i ∈ (I − k), is
∫ bi

bmin
f (b)db, or

P(bj < bi ) =
bi − bmin

vmax− bmin
. (8.35)

To win the auction, the condition ∀bj < bi has to be satisfied, and the probability of
service provider i winning the sequential auction is

Pseq
win(i) =

(
bi − bmin

vmax− bmin

)I−k−1

. (8.36)

The expected profit of service provider i is

πi = (vi − bi )
(

bi − bmin

vmax− bmin

)I−k−1

. (8.37)
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The optimal bid to maximize this profit can be obtained by differentiating the expected
profit πi with respect to bid bi , giving

b∗
iseq =

(I − k − 1)vi + bmin

I − k
. (8.38)

In a concurrent auction, the probability of winning is the probability of a bid bi such
that bj < bi for j 	= i . That is, bid bi will win the auction if all I −N other bids are smaller.
The probability of winning the concurrent auction is

Pcon
win (i) =

(
bi − bmin

vmax− bmin

)I−N

. (8.39)

Similarly, the optimal bid for service provider i in a concurrent auction is

b∗
icon

=
(I −N)vi + bmin

I −N +1
. (8.40)

Sequential and concurrent auctions were compared in [437]. The comparison was
divided into three cases: transient-state case 1, transient-state case 2, and the steady state
(defined when all service providers reach fixed bids and cannot unilaterally change the
bids to obtain higher profit). In contrast, in a transient state the service providers adjust
their bids before reaching the steady state. Transient states were divided into two cases,
when no band has been auctioned (transient-state case 1) and when k bands have already
been auctioned (transient-state case 2). In all three cases it was shown that the optimal
bids in a sequential auction are higher than those in a concurrent auction. Therefore,
the spectrum broker will prefer a sequential auction since higher revenue from service
providers can be achieved.

Dynamic spectrum allocation by knapsack auction
Amodel for a spectrumauctionwas proposed in [436], formulated as a knapsack problem.
In the system model, I service providers bid for N frequency bands from the spectrum
broker. Service provider i submits bid bi , which is defined as bi = {xi ,vi}, where xi and
vi are the number of requested bands and the bidding price, respectively. Given the bids
from all service providers, the spectrum broker solves the knapsack problem, defined as
follows:

max
∑
i∈W

vi , s.t.
∑
i∈W

xi ≤N, (8.41)

where W is the set of service providers winning the auction.
For an asynchronous auction, a service provider submits a bid to the spectrum broker

whenever a spectrum band is required (e.g., because of instantaneous load). If the spec-
trum broker has enough spectrum bands, they are immediately allocated to the service
providers. However, if the number of requested bands is larger than the number of avail-
able bands, the knapsack auction in (8.41) is solved to obtain the optimal solution for the
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spectrum broker. For the winning service providers, the spectrum bands will be allocated
for the duration requested in each bid. A similar auction process is used in synchronous
auctions. However, the spectrum bands in that case will be allocated for equal durations
for all service providers.

It was proved in [436] that the revenue generated by service providers in an asyn-
chronous auction cannot be better than that in a synchronous auction for a given set of
bids. This is because, in a synchronous auction, the spectrum band is allocated for a
fixed and equal duration for all service providers. Therefore, revenue can be optimized
in each period. Let us consider an example in which the number of bands is N = 2. At
time slot t, only service provider 1 submits a bid b1 = {1,1} (i.e., 1 band for price 1)
for two time slots. At time slot t +1, service provider 2 submits a bid b2 = {2,5} (i.e.,
2 bands for price 5) for one time slot. In an asynchronous auction, 1 band is allocated
to service provider 1 in each of time slots t and t + 1, while another band is allocated
to service provider 2 in time slot t + 1 only. In this case, both spectrum bands cannot
be allocated in time slot t +1 to service provider 2, whose bidding price is higher than
that of service provider 1. In contrast, in a synchronous auction, 1 band is allocated to
service provider 1, while 2 bands are allocated to service provider 2 in time slot t + 1.
Therefore, the total revenue earned by the spectrum broker in a synchronous auction is
(1× 1) + (2× 5) = 11, which is higher than (1× 1) + (1× 1 + 1× 5) = 7 in a asyn-
chronous auction. Since the solution of the auction is obtained at each time slot, the
spectrum-band allocation can be adjusted according to the bids, and the revenue of the
spectrum broker is higher for a synchronous auction.

Dynamic spectrum allocation by weighted proportional fairness
A spectrum-allocation algorithm based on weighted proportional fairness for an
OFDMA-based cognitive-radio network was proposed in [149]. This algorithm is based
on an asymmetric Nash bargaining solution (ANBS) utility function which captures
the spectrum-sensing contribution of the secondary users. These secondary users are
grouped to cooperate in spectrum sensing and sharing. The user who contributes more
in spectrum sensing will receive a better allocation, while fairness and efficiency can
be achieved for all users. The coordination among secondary users in the same group is
performed by a central base station.

In the system model, for subcarrier n the throughput of the secondary user i is denoted
by τi ,n and its allocation is denoted by xi ,n = 1 (xi ,n = 0 if subcarrier n is not allocated
to user i). This throughput is computed from the channel quality of the secondary user
on that subcarrier, where adaptive modulation is used for transmission. If ωi denotes
the spectrum-sensing contribution of secondary user i , an optimization problem can be
defined as follows:

max
xi ,n

U =
I∏

i=1

(∑
n

xi ,nτi ,n−T (i)
min

)ωi

, (8.42)

s.t.
∑

n

xi ,nτi ,n ≥ T (i)
min,

I∑
i=1

xi ,n = 1,
∑

n

pi ,n ≤ pmax,
I∑

i=1

ωi = 1, (8.43)
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where U is the utility, I is the total number of secondary users, T (i)
min is the minimum

throughput requirement of user i , pi ,n is the transmit power of user i on subcarrier n,
and pmax is the power budget. An algorithm to obtain the solution was presented, and
the convergence of the algorithm was proved, in [149].

In the performance evaluation, the OFDMA system with adaptive modulation was
considered. As the spectrum-sensing contribution of one secondary user increases,
from the optimization formulation those of other users decrease. There is an opti-
mal point where the aggregated throughput is maximized. This scheme was compared
with maximum-total-throughput and max-min-fairness formulations. Intuitively, the
maximum-total-throughput formulation provides the highest throughput, but it is not
fair for the user with low channel quality. On the other hand, the max-min-fairness for-
mulation achieves a fair solution (i.e., the individual throughput of the user is almost
the same), but the total system throughput is not maximized. In the scheme proposed
in [149], which is based on an asymmetric Nash bargain solution, is a compromise
between these formulations. That is, the user with better channel quality will receive
higher throughput, while the throughput of the user with bad channel quality is not sig-
nificantly different.Also, the user who contributes more in spectrum sensing is rewarded
with higher throughput.

Dynamic spectrum allocation by spectrum policy server
A spectrum policy server (SPS) can be used as a broker to allocate spectrum to service
providers. These service providers then use the allocated spectrum to provide wireless
access service to cognitive-radio users. A non-cooperative game has been formulated
for spectrum allocation in this SPS [226]. In this system, the user can accept the service
from the provider based on price and satisfaction with performance. In particular, the
service-acceptance probability by users from provider i is

A(U(r),p) = 1− e−Cuμp−ε

, where U(r) =
(r/k)β

1+ (r/k)β
, (8.44)

where u is the utility (i.e., satisfaction) defined as a function of the transmission rate
r , p is the price of the service, and C , μ, ε, k , and β are constants of this acceptance-
probability function. Basically, when the transmission rate becomes higher, the utility
becomes higher. Therefore, the user will accept the service with higher probability.
However, when the price is high, this acceptance probability becomes low because of
the larger cost for the user. If there is more than one service available, the user will
choose the service with higher acceptance probability.

For service provider i , the profit Pi is defined as

Pi (ri ,pi ) = pi −Fi −Vibi , (8.45)

where Fi is the fixed cost for service provider and Vi is the price per unit of bandwidth
bi charged by the spectrum server. This bandwidth is a function of the transmission rate
ri and the spectral efficiency ci , i.e., bi = ri/ci . Owing to the acceptance probability of
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the user, the expected profit for the service provider becomes P i (ri ,pi ) = A(U(ri ),pi )×
Pi (ri ,pi ).

Each service provider adjusts the service price and the transmission rate to achieve
the highest profit. In this case, a non-cooperative game can be formulated as follows.
The players of this game are the service providers. The strategy of each player is the
price and the offered transmission rate, and the payoff for each player is the resulting
expected profit, defined as follows:

φi ((ri ,pi ), (rj ,pj)) =

⎧⎨⎩
0, if A(U(ri ),pi ) < A(U(rj),pj),
1/2P i (ri ,pi ), if A(U(ri ),pi ) = A(U(rj),pj),
P i (ri ,pi ), if A(U(ri ),pi ) > A(U(rj),pj).

(8.46)

The Nash equilibrium, which is the solution of this non-cooperative game, is defined as
follows:

(r∗
i ,p∗

i ) = arg max
(ri ,pi )

φi ((ri ,pi ), (rj ,pj)). (8.47)

Since there could be multiple service providers in the system, the service selection can
be performed for the user by the spectrum server to reduce the complexity and overhead
of the system. This service selection is referred to as a bidding process, and it works as
follows:

1. Anewuser connects to the spectrumserver and also submits an acceptance-probability
function.

2. Service providers compete with each other to provide service to the user. This compe-
tition is iterated until the Nash equilibrium solution is achieved for the service price
and transmission rate.

3. The winning service provider reports the winning bid, in terms of service price and
transmission rate, to the user. The user then makes a decision on whether to accept
the service based on the acceptance-probability function.

These steps are shown in Fig. 8.5.

User

Spectrum

server 
Service

provider 1 

Service

provider 2 

1. Service request

2. Iterative bidding process

determines winning service provider 3. User evaluates

the offer from the winner  

Fig. 8.5 Iterative bidding through a spectrum server.
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The multiple-user case was also considered. In this case, service providers compete
for each user individually, using the same steps for iterative bidding as in Fig. 8.5. The
spectrum server can maximize its revenue by adjusting the bandwidth allocation to each
user, and an optimization problem can be formulated as follows:

maxRserver (b) =
M∑

m=1

VmAm(U(r),p)Bm(b) s.t.
M∑

m=1

bm ≥ bmax, (8.48)

where b is a vector of bandwidth allocated to each user (i.e., b = [ · · ·bm · · · ]), M is the
total number of users, bmax is the maximum size of the spectrum that can be allocated
to all service providers, and Bm is the transmission rate offered by the winning service
provider (i.e., Bn = r∗

n /cn).
With two service providers, the acceptance probabilities of both providers with com-

petition are higher than without competition. The competition benefits the user since the
price is lower. However, the expected profits of the service providers are lower when
there is competition. In the case of multiple users, the studied scheme was compared
with an equal-bandwidth partition scheme (i.e., the same amount of bandwidth is allo-
cated to each user). When the number of users was varied, the proposed scheme based
on the spectrum server achieved higher expected bandwidth utilization and higher aver-
age acceptance probability because of the game and optimization formulation. From
the performance evaluation, it was also observed that when the cost of unit bandwidth
increases, the service provider with higher fixed costs becomes more competitive in
attracting users, in order to improve its revenue.

Bilateral bargaining in spectrum access
Within a microeconomic framework, dynamic spectrum allocation can be optimized
using the concepts of auction and bargaining [173]. In particular, two algorithms based
on an Anglo-Dutch split-award auction and bilateral bargaining models have been
applied in [173] to short-term and long-term spectrum trading, respectively, among
multiple radio access networks (RANs). In the first algorithm, based on an auction
model, spectrum trading is divided into four stages. In the first stage, service providers
owning RANs submit bids for the auction. These service providers are allocated the
minimum pre-specified amount of available spectrum. In addition, the two service
providers with the highest bid prices are selected to proceed to the second stage. In
the second stage, these two service providers submit additional bids to obtain the
spectrum remaining from the first stage. In the third stage, the spectrum owner allo-
cates the spectrum to maximize the total bids. Finally, in the fourth stage, two service
providers compete with each other to sell their services to the market using the obtained
spectrum.

In the second algorithm, based on a bilateral bargaining model, there are leasing and
renting RANs negotiating for the spectrum to maximize their utilities [173]. In this case,
the leasing RAN submits the asking price while the renting RAN submits the bidding
price. Let c and v denote the cost and the value of the spectrum for leasing and renting
RANs, respectively. Based on asking price pask and bidding price pbid, the trading price



8.4 Examples of communication applications 247

is determined from ptr = pbid+pask
2 , and the profits of these RANs can be expressed as

follows:

Pleasing =
pask + pbid

2
− c , (8.49)

Prenting = v − pask + pbid

2
, (8.50)

for pask≤ pbid. Both leasing and renting RANs search for the optimal asking and bidding
prices to maximize their profits. However, they do not have information about each other:
the leasing RAN does not have perfect information on value v for the renting RAN, and
the renting RAN does not have perfect information on cost c for the leasing RAN.
Therefore, an optimization problem is formulated for the leasing RAN, as follows:

max
pask

Pleasing =
1
2

(
pask +E

[
please

bid (v)|please
bid (v)≥ pask

]
− c

)
×Pr

(
please

bid (v)≥ pask
)
, (8.51)

where p̃lease
bid (v) is an estimated value for the bidding price from the renting RAN, which

is used by the leasing RAN; E
[
p̃lease

bid (v)|p̃lease
bid (v)≥ pask

]
is the expected value of the

estimated bidding price given that this estimated bidding price is larger than or equal to
the asking price; and Pr

(
p̃lease

bid (v)≥ pask
)

is the probability that the estimated bidding
price is larger than or equal to the asking price. Similarly, an optimization problem for
the renting RAN can be formulated as follows:

max
pbid

Prenting = v − 1
2

(
pbid +E

[
p̃rent

ask (c)|pbid ≥ p̃rent
ask (c)

])
×Pr

(
pbid ≥ p̃rent

ask

)
, (8.52)

where p̃rent
ask (c) is the estimated value for the asking price from the leasing RAN, which

is used by the renting RAN. An optimal Bayesian equilibrium, which is considered to
be the solution of this bilateral bargaining model, is defined as follows:

dPleasing

dpask
= 0,

d2Pleasing

dp2
ask

< 0, (8.53)

dPrenting

dpbid
= 0,

d2Prenting

dp2
bid

< 0. (8.54)

Note that the second order is considered for optimality since Pleasing and Prenting are
functions of the single variables pask and dpbid, respectively.

After the RAN obtains the spectrum, it sells this radio resource to users through
auction (i.e., auction between UMTS RAN and UMTS users). Since the UMTS system
was considered, the bidding radio resource is defined as the code in CDMAand the time
frame, which is divided into 15 slots, each of which can be allocated to a user. Each user
has to bid for the radio resource in both uplink and downlink. The bid consists of the
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Fig. 8.6 Bidding message.

amount of radio resource and the bidding price. The bid from each user is submitted to the
service provider by using the bidding message (Fig. 8.6). The service provider allocates
radio resources according to the users’ bids to maximize its revenue. This allocation is
based on a discriminatory auction.

The simulation result shows that the solution of the auction among service providers
for spectrum incurs smaller overhead than that from the scheme without estimation. This
result is similar to that in [232]. For the auction between the UMTS service provider and
the user, the discriminatory-pricing solution of the auction is compared with the uniform-
pricing model.As in [161], the discriminatory-pricing model can achieve higher revenue
than the uniform-pricing model.

8.4.2 Physical-layer security

The design of future wireless networks will have to put a huge effort into security.
The main reason is that future networks will be decentralized and ad hoc in nature,
and, hence, will allow various types of network mobile terminals to join and leave. This
makes the entire network vulnerable andvery sensitive to attack.Because of the broadcast
nature of wireless transmission, anyone within communication range can intercept data
not intended for them. In such a complex environment, current cryptographic methods
with high-level security may not work. This may happen because of the difficulty of
exchanging public keys in such an ad hoc network. Therefore it is of great importance
to investigate the design of decentralized networks with perfect security on a physical
layer. For this reason, physical-layer security is gaining new attention. The goal is a
decentralized system that will protect broadcast data and make it impossible for an
eavesdropper to receive packets even if it knows the encoding and decoding schemes
used by the transmitter and receiver. In systems in which physical-layer security is
studied, the main objective is to maximize the rate of reliable information from the
source to the intended destination, while all malicious nodes are kept as ignorant of that
information as possible. This maximum reliable rate is known as secrecy capacity.

Secrecy capacity work was pioneered by Aaron Wyner, who defined the wiretap
channel and established fundamental results that allowed the creation of almost per-
fectly secure communication without the exchange of private (secret) keys [512]. Wyner
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showed that when an eavesdropper channel is a degraded (weaker) version of the main
channel, the source and destination can exchange perfectly secure messages at a posi-
tive rate. With his scheme, a maximal equivocation (i.e., uncertainty) is induced at the
eavesdropper, i.e., a maximal level of secrecy is obtained. By ensuring that the equivo-
cation rate is arbitrarily close to the message rate, one can achieve perfect secrecy in the
sense that the eavesdropper can now learn almost nothing about source–destination mes-
sages. Follow-up work by Leung-Yan-Cheong and Hellman characterized the secrecy
capacity of the additive white Gaussian noise (AWGN) wiretap channel [289]. In
their seminal paper, Csiszár and Körner generalized Wyner’s approach by consider-
ing the transmission of confidential messages over broadcast channels [118]. Recently,
research in the area of physical-layer security has exploded. There have been consid-
erable efforts to generalize these studies to wireless-channel and multi-user scenarios
(see [206, 289, 293, 357, 383, 440, 294, 172, 133] and references therein). Jamming
[240, 441, 83, 54], long studied to analyze the hostile behavior, of malicious nodes has
been applied to physical-layer security to reduce an eavesdropper’s ability to decode the
source’s information [278]: friendly jamming in this context.

In this section, we use auction theory to investigate the interaction between source–
destination pairs and a friendly jammer.Although the friendly jammer helps by reducing
the rate of data “leaking” to a malicious node, it also reduces the useful data rate from
source to destination. Using well-chosen amounts of power from the friendly jammer,
the secrecy rate5 can be maximized. In the auction defined here, the source–destination
pairs provide bids for the jammer to interfere with the malicious eavesdropper, and thus
to increase the secrecy rate. Our analysis uses the VCG auction model [256].

System model
We consider a network with multiple sources si , destinations di , a malicious eavesdrop-
per node m, and a friendly jammer node J , as shown in Fig. 8.7. The malicious node
tries to eavesdrop on transmitted data from the source nodes. When the eavesdropper
channel from the source to the malicious node is a degraded version of the main source–
destination channel, the source and destination can exchange perfectly secure messages
at a non-zero rate. By transmitting a message at a rate higher than the rate to the malicious
node, the malicious node can learn almost nothing about the message.

Suppose the source si transmits with power Pi . The channel gains from the source to
the destination and from the source to the malicious node are Gsi di and Gsim, respectively.
The friendly jammer J transmits with power PJ

i , and the channel gains from J to the des-
tination and the malicious node are GJdi and GJm, respectively. The large-scale path-loss
model is used with a particular path-loss coefficient. The thermal noise for each channel
is σ2, and the bandwidth is W . The channel capacity from source i to destination i is

C i
1 = W log2

(
1+

PiGsi di

σ2 +PJ
i GJdi

)
. (8.55)

5 The secrecy rate is an achievable rate that is smaller than the secrecy capacity.
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Fig. 8.7 System model. Si are multiple sources, di are multiple destinations, m is a malicious
eavesdropper, and J is a friendly jammer.

The channel capacity from source to the malicious node is

C i
2 = W log2

(
1+

PiGsim

σ2 +PJ
i GJm

)
. (8.56)

We assume that there is no interference from other sources, since only one source at a
time transmits its own data.

The secrecy rate is defined as

Csi = max(C i
1−C i

2,0). (8.57)

We observe that with an increase in jamming power PJ
i , both C1 and C2 are reduced. The

questions are whether Csi can be increased, and how jamming power may be controlled
in a distributed manner. We approach the problem using auction theory.

VCG auction
In the VCG auction model, the jammer asks all sources for their evaluations of its
power, and calculates the optimal power allocation accordingly. Each source pays a
“performance loss” to other sources arising from its own participation in the auction. In
the context of wireless secrecy rate, the performance upper bound can be described as
follows:

• Information: Publicly available information includes the noise density σ2 and the
bandwidth W . Source si knows the channel gains Gsi di and Gsim. The jammer knows
the channel gains GJdi for all i , and can estimate the channel gain GJm when it receives
bids from the sources.
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• Bids: Source si submits ΔCsi

(
PJ

i (bi ;b−i )
)

to the jammer, i.e., the increase in the
secrecy rate as a function of jammer power PJ

i .
• Allocation: The jammer determines the power allocation P = [PJ

1 ...PJ
N ] by solving

the following problem:

P∗ = argmax
P

∑
j∈I

Csj

(
PJ

j

)
. (8.58)

• Payments: For each source si , the jammer solves the following problem:

P∗/i = arg max
P,Pi=0

∑
j

Csj

(
PJ

j

)
, (8.59)

i.e, the total distortion decreases without allocating resources to source i . The payment
for source i is then

ci =
∑

j �=i ,j∈I
Csj

(
P∗/i

j

)
−

∑
j �=i ,j∈I

Csj

(
P∗

j

)
, (8.60)

i.e., the performance loss to all other sources arising from the inclusion of source i in
the allocation.

The resource allocation calculated in (8.58) achieves an efficient allocation, as shown
in [256]. The VCG auction can achieve the efficient allocation in one shot, by allowing
the jammer to gather a considerable amount of information and perform heavy but local
computation.

Although a VCG auction has the desirable social optimality, it is usually computa-
tionally expensive to solve I +1 non-convex optimization problems, where I is the size
of I. To solve a non-convex optimization by the interior point method, a complexity of
O(I 2) is required.As the result, the overall complexity for the performance upper bound
is O(I 3).

8.5 Summary

From the standpoint of auction theory as applied to wireless networking and resource
allocation, the individual user can elect to pay for services such as channels, routes, or
power, with payment, made via a central “bank.” However, this requires more control
than other game-theory approaches. Moreover, in order to achieve particular goals such
as the network’s total benefit, the auction must be designed according to the available
information. Mechanism design is a tool for game and auction design.

Mechanism design is a subfield of microeconomics and game theory that considers
system-wide solutions to problems that involve multiple self-interested players, each
with private information about their preferences. The goal is a social choice function
for distributed systems with private information and rational players. The design criteria
are: efficiency, fairness, revenue maximization, budget balance, and Pareto optimality.
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As discussed in this chapter, there are some basic concepts and theorems for
mechanism design. The revelation principle states that under quite weak conditions
any mechanism can be transformed into an equivalent incentive-compatible, direct-
revelation mechanism [256] that implements the same social-choice function. One of
the most important families of mechanisms is the VCG mechanism, the only type that
is allocatively efficient and strategy-proof [256]. A detailed discussion of mechanism
design can be found in [3].

Beyond the VCG auction, there are many other types of auctions. We have studied the
share auction and the double auction in detail. In a share auction, resources are allocated
to users in proportion to their bids. A double auction is a process of buying and selling
goods in which potential buyers submit their bids and potential sellers simultaneously
submit their asking prices to the auctioneer, who chooses a price p that clears the market:
all the sellers who asked less than p sell and all buyers who bid more than p buy at this
pricep. Beyond those auctions, the sequential auction [437] and themultiple-itemauction
[434, 438, 435] have also attracted much attention recently.

Using auction theory, we have studied several examples of applications in wireless
communication networks. Dynamic spectrum access in cognitive-radio networks can be
formulated as an auction among different secondary users. In physical-layer security, the
friendly jammer’s power can be allocated by auction theory. Many other applications
can be formulated and solved in a similar way.
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9 Cellular and broadband wireless
access networks

In the past two decades, cellular communication has witnessed a significant growth.
Today, millions of mobile users utilize cellular phones worldwide. In essence, a cel-
lular network is designed to provide a large number of users with access to wireless
services over a large area. The basic architecture of a cellular network relies on dividing
a large area (e.g., a city) into smaller areas, commonly referred to as cells. Each cell
typically represents the coverage area of a single base station that is often located at the
center of the cell. By dividing the network into cells, one can ensure a reliable cover-
age and access to wireless services. Despite the emergence of ad hoc networks with no
infrastructure, the cellular architecture remains prevalent in the majority of existing or
soon-to-be deployed wireless networks, because of its proven success. In fact, cellular
communication has been the pillar architecture in key wireless systems, from traditional
2G systems such as GSM to 3G systems such as UMTS, and the emerging 4G and
5G systems. Beyond traditional macrocell-based networks (e.g., 3G and 4G networks),
the use of small cells, covered by low-cost, low-power stations known as femtocell
access points that can be overlaid with existing architectures, has recently become of
central importance in the design of next-generation wireless networks. Thus, cellular
technology is expected to remain as one of the most important paradigms in future wire-
less communication systems. In Chapter 2, we provided a comprehensive introduction
to cellular communication, its key challenges, as well as its past and projected future
evolution.

Broadband wireless access refers to a range of wireless radio systems used primarily to
convey broadband services between users’ premises and core networks.A typical broad-
band wireless access network supports a connection to many user premises within a radio
coverage area. In a way, a broadband wireless network provides a pool of bandwidth that
is shared automatically amongst the network’s users. Broadband wireless networks are
seen as an alternative to many existing wired backhaul and last-mile coverage deploy-
ments such as cable modems, digital subscriber lines (DSL), T- and E-carrier systems,
and optical-carrier technologies. The importance of this technology is obvious, notably
in areas that are sparsely settled across difficult terrain, as well as in areas where running
cables is infeasible. The definition of the term “broadband” has been debated for many
years, but often the term simply implies the capability to deliver a significant bandwidth
to network users, enabling the delivery of a plethora of services and applications. Fueled
by the phenomenal growth of broadband Internet access and Web browsing demands,
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users’ quest for broadband links on the move has been escalating steadily toward per-
vasive broadband connectivity irrespective of locality, mobility, or type of connectivity.
Although broadband wireless access does not fulfill all the requirements for ubiquitous
communication, it nevertheless tackles the growing metropolitan and rural connectiv-
ity gap. In this regard, IEEE introduced a standard, IEEE 802.16, for the development
of broadband wireless access technology. Furthermore, the WiMAX forum has been
set up and given the task of ensuring interoperability and conformance among the sys-
tems and solutions developed by various vendors, based on the IEEE 802.16 standard
for broadband wireless access. In Chapter 2, we presented a detailed and comprehen-
sive introduction to broadband wireless access, IEEE 802.16, and, notably, WiMAX
networks.

The range of applications covered by cellular and broadband wireless access net-
works is very wide and evolving quickly. It includes voice, data, gaming, video, and
a variety of entertainment applications. Next-generation cellular and broadband net-
works are expected to enable their users to explore a varied mix of wireless services,
while efficiently coping with rapid changes in users’ environment and conditions as
these users roam in the network and terminate/establish network connections. In par-
ticular, these networks must efficiently serve a large number of wireless users while
providing seamless connectivity and access to a broad range of services with strin-
gent performance requirements. Consequently, numerous technical challenges arise
such as architecture management, power control, resource allocation, admission con-
trol, handover, interference management, small-cell overlay, and new-node deployment.
Many of these challenges involve the design of models that can accurately capture
the numerous interactions between wireless users. Moreover, it is desirable to design
low-cost, low-complexity, distributed algorithms that can enable devices using the cel-
lular and broadband networks to operate efficiently, optimize their performance metrics,
and meet QoS demands. This need for distributed optimization, efficient operation,
and fair resource allocation in cellular and broadband networks, coupled with their
large-scale nature, is a motivation for the use of game-theoretic techniques for address-
ing some central technical issues. In this chapter, using a variety of tools from game
theory, we tackle the following key technical challenges in cellular and broadband
networks:

• Uplink power control in CDMAnetworks. In the uplink of CDMAnetworks, as the
users operate using the same frequency, it is imperative that they control the transmit
power in such a way as to ensure good performance (e.g., in terms of throughput) while
minimizing interference. Hence, to manage interference and maintain a desired QoS,
it is essential to design low-complexity, distributed algorithms for power control.
In Section 9.1, we address the problem of power control in the uplink of CDMA
cellular networks from different perspectives. First, we study the problem in a single-
cell system, and, then, we analyze a multi-cell system and the additional challenges
and constraints that it incurs with regard to the design of efficient power-control
schemes.

• Resource allocation in OFDMA networks. OFDMA is a promising technology that
is expected to become the standard for multiple access in numerous cellular and
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broadband wireless access networks. A key challenge in an OFDMA system is to
allocate the resources [187] (often considered as the OFDMA subcarriers) among
users in an efficient way. This resource-allocation problem gives rise to interesting
competitive (and cooperative) situations among the users of a wireless OFDMA sys-
tem. In Section 9.2, we analyze these situations and develop game-theoretic models
to address the challenges of resource allocation in single-cell multi-user OFDMA
networks.

• Deployment of femtocell access points. The need for pervasive wireless coverage,
as well as the the high cost incurred in installing wireless equipment such as base
stations, has led to the use of low-cost transceivers known as femtocell access points.
These can be deployed, at a low cost, in conjunction with existing infrastructure such
as cellular or broadband networks. However, their deployment has been accompa-
nied by numerous technical challenges, such as maintaining an efficient co-existence
with existing infrastructure and designing suitable resource-allocation schemes for
the femtocell network. In Section 9.3, we analyze, using non-cooperative Stackelberg
games, the problem of power control in a network in which macrocell base stations
need to co-exist with femtocell access points.

• IEEE 802.16 broadband wireless access. The deployment of broadband wireless
access networks such as IEEE 802.16 entails numerous challenges, including resource
allocation, power control, admission control, and architecture design. In Section 9.4,
we develop game-theoretic tools for addressing a number of these issues. In particular,
we develop non-cooperative game models for bandwidth allocation and admission
control in 802.16 networks. In addition, we show how network-formation games can
be used for efficient relay station deployment in next-generation broadband networks
such as the upcoming IEEE 802.16j standard.

• Vertical handover in heterogeneous wireless networks: With the emergence of
the IEEE 802.21 standard, it is envisioned that next-generation wireless devices will
be able to utilize, simultaneously, a variety of technologies such as cellular, broad-
band, and WiFi. Thus, heterogeneity, in terms of wireless technologies, will be a key
characteristic enabling seamless mobility in next-generation wireless networks such
as 4G and 5G systems. In such heterogeneous networks, the wireless devices need
to decide autonomously which technology to use, given their location and perfor-
mance requirements. This challenging network-selection problem is often referred
to as vertical handover. In Section 9.5, we tackle the vertical-handover problem
in heterogeneous networks, using non-cooperative and Bayesian games. We show
how game theory can be used to enable users to make decisions on which network
to use, in a distributed manner, taking into account their individual optimization
objectives.

9.1 Uplink power control in CDMA networks

In wireless communication systems, mobile users need to adjust their transmit power
in such a way as to respond to the time-varying nature of the channel. In code-division
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multiple-access (CDMA) systems, power control is essential for the efficient operation
of the network. In such systems, the users perform power control for two main reasons:

• The limited battery energy available to mobile users
• The increase in capacity that is possible through interference minimization and

management.

By using power control, CDMA network users aim to achieve a certain SINR level,
independent of channel conditions, while minimizing interference. Much research has
been dedicated to studying uplink power control in CDMAnetworks. In [519], a power-
control scheme was studied in which each user updates its transmit power based on the
total received power at the base station, and it was shown that, using non-cooperative
game theory for uplink power control, one can implement a distributed algorithm that
converges to a Nash equilibrium under a wide variety of interference models. This line
of work, using non-cooperative game theory, was further pursued in [171], where a
utility suited for data services was proposed. In this context, [171] studies how pricing
can improve the efficiency of the resulting equilibria, in the Pareto sense. Following
this seminal work on using non-cooperative game theory for power control in cellular
and wireless networks, the popularity of the approach increased significantly, and it was
applied to numerous scenarios and networks (e.g., see [187] for a comprehensive survey
on power control in CDMA networks).

In this section, we study the uplink power-control problem inwireless CDMAsystems.
First, we study how non-cooperative game theory can be used to model the uplink power-
control problem in single-cell CDMAnetworks. We discuss the existence and properties
of the resulting equilibria. Then, we analyze multi-cell networks using a non-cooperative
game. We highlight the properties of the multi-cell power-control game, and discuss
how pricing can be implemented in a multi-cell CDMA network to achieve equilibrium
efficiency for the power-control game.

9.1.1 Single-cell CDMA networks

In this subsection, we study the problem of uplink power control in single-cell CDMA
cellular networks.

Single-cell uplink power-control game: formulation and equilibrium
Consider a single-cell CDMA system with up to N users. In this network, the number of
users is limited under an admission-control scheme that ensures the minimum necessary
SINR for each user in the cell. The users seek to regulate their transmit power so as to
improve their performance in the uplink. For this purpose, we consider a non-cooperative
strategic game among the network users in which the strategy of any user i is to select
a value for the uplink transmit power pi so as to optimize the following cost function:

ci (pi ,p−i ) = λipi −αi log (1+γi ), pi ≥ 0,∀i , (9.1)
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where p−i is the power profile of all users except i , and γi is the SINR function for user
i , which is given by

γi = L
hipi∑

j �=i hjpj +σ2 , (9.2)

with L = W
R being the spreading gain of the CDMAsystem, where W is the chip rate and

R is the total rate. Hereinafter, it is assumed that L > 1. The parameter hj , 0 < hj < 1, is
the channel gain fromuser j to the base station in the cell, andσ2 > 0 is theGaussian noise
variance. The cost function in (9.1) represents the difference between a pricing function
that assigns a linear price λi per power unit and the benefit that a user draws from a better
SINR, which is assumed to be logarithmic, with αi > 0 a parameter capturing the user’s
level of “desire” for SINR. The parameter αi will be referred to as the benefit parameter.
Note that the linear pricing in (9.1) implies that the benefit (in terms of increased SINR)
that a user receives by increasing its power level is reduced by a linear function of
this power level. Hence, each user pays a price in terms of the power consumed. Such
a pricing scheme ensures that users aim not only to improve their SINR but also to
reduce their energy consumption if possible (which eventually helps in minimizing the
interference in the system).

For notational convenience, we let yi = hipi denote user i’s received power level at
the base station, and ȳ−i =

∑
j �=i yj . Furthermore, we define a parameter ai as follows:

ai � αi hi
λi
− σ2

L .
Consequently, by defining the players, the strategies, and the utilities, we have for-

mulated a strategic non-cooperative power-control game among the CDMA users. This
game is a continuous-kernel game since the strategy spaces (power levels) and the utilities
are continuous (see Chapter 3). In this power-control game, each user i aims to minimize
the cost function in (9.1) given the sum of powers of the other users as received at the
base station, i.e., ȳ−i as well as the noise. Given this strategic game, the next step is to
study and analyze the existence and uniqueness of the Nash equilibrium.

To perform this study, we first derive each user’s best-response function. Using the
first-order condition and invoking the positivity constraint (pi ≥ 0), the best-response
function can be found as [23]:

pi = bi (ȳ−i ,ai ) =

{
1
hi

(ai − 1
L ȳ−i ), if ȳ−i ≤ Lai ,

0, otherwise.
(9.3)

We can see that the best-response function of each user depends not only on user-specific
parameters such as λi , αi , and hi but also on the spreading factor L (which is a network
parameter) and the total power level at the base station,

∑N
j=1 yj . This dependence can

be seen by adding − pi
L to both sides of (9.3) and dividing both sides by (1− 1

L ). The
base station can, in the downlink, provide the user with the total received power level, so
the user can update its best-response function. Using the best-response functions of the
users and the set of fixed-point equations that they yield, the following result holds [23]:

theorem 9.1 In the studied uplink power-control game with N users, let the indexing
be done such that ai < aj ⇒ i > j , with the order being chosen arbitrarily if ai = aj . Let
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N∗ ≤N be the largest integer Ñ with the following condition satisfied:

aÑ >
1

(L+ Ñ − 1)

Ñ∑
i=1

ai . (9.4)

Then, the power-control game admits a unique Nash equilibrium with the property that
users N∗ +1, ... ,N have zero power levels, p∗

j = 0, j ≥N∗ +1. The equilibrium power
levels of the first N∗ users are

p∗
i =

1
hi

⎧⎨⎩ L
L− 1

[
ai −

1
L+N∗− 1

∑
j∈N ∗

aj

]⎫⎬⎭ , i ∈N ∗ = {1, ... ,N∗}. (9.5)

If no Ñ can be found for which (9.4) is satisfied, then there still exists a unique Nash
equilibrium, but this equilibrium assigns zero power to all N users in the network.

Thus, as proven in [23], the modeled game admits a unique Nash equilibrium (in trans-
mit powers), which dictates that the users utilize the powers in (9.5) at the equilibrium.
As long as an integer exists with (9.4) satisfied, this equilibrium would have at least one
user with non-zero power; otherwise, an equilibrium exists in which no user is admitted.
It is interesting to note that condition (9.5) is a function of channel gains, noise, price,
desired utility level, and spreading factor.

Convergence to the Nash equilibrium: update schemes and stability
While the Nash equilibrium of the studied non-cooperative uplink power-control game
has been well characterized in the previous subsection, the next step is to construct
distributed algorithms for reaching the equilibrium. Iterative-update algorithms, inwhich
each user updates its power value until it reaches the equilibrium, are popular in game
theory and communications. In this context, we can devise two interesting schemes, as
described in [23]: a parallel-update scheme and a random-update scheme.

In the parallel-update scheme, at each iteration (assuming discrete time intervals),
all users update their power levels using the best-response function in (9.3). Thus, this
algorithm can be described as

y (k+1)
i = max

(
0,ai −

1
L

∑
j �=i

y (k)
j

)
. (9.6)

It is shown in [23] that, if the following condition is satisfied:

N − 1
L

< 1, (9.7)

then the parallel-update algorithm would be globally stable, i.e., starting from any initial
point, it converges to the unique Nash equilibrium, which is given by

p∗
i = max

(
0,

1
hi

(ai −
1
L

∑
j �=i

hjp∗
j )
)
, pi ≥ 0, ∀i . (9.8)
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The parallel-update algorithm considers that the users update their power levels in
discrete time, in a deterministicmanner. This update scheme can be enhanced by devising
a random-update scheme whereby the users optimize their power levels with a predefined
probability 0 < Πi < 1. In the random-update scheme, at each iteration a set of randomly
picked users (among the N users) update their power levels. This algorithm can be
described as follows:

y (k+1)
i =

⎧⎪⎨⎪⎩
himax

(
0, 1

hi
(ai − 1

L

∑
j �=i

y (k)
j )

)
, with probability Πi ,

y (k)
i , with probability 1−Πi .

(9.9)

It is demonstrated in [23], using the Borel–Cantelli lemma, that the random-update
scheme converges asymptotically under the condition that

N − 1
L

Π̄+ (1−Π) < 1, (9.10)

where Π̄ and Π are, respectively, the upper and lower limits for the update probability
of any user i , i.e., Π < Πi < Π̄. Note that when all of the update probabilities are equal
to 1, (9.10) reduces to (9.7).

In both algorithms, the users are myopic, in the sense that they update their power
levels based on instantaneous parameters, while ignoring the future implications of their
actions. The difference is that, in the random-update scheme, not all users act in every
iteration. Whether a user acts is determined probabilistically. When the probabilities are
equal to 1 for all users, then random update is equivalent to parallel update.

Using simulations, it is shown in [23] that, in a system with no delay and in which all
users have the same initial power, the random-update scheme outperforms the parallel-
update scheme. This is a consequence of the myopic behavior of users, as well as the
inherent randomization in the case of random update. In contrast, the opposite is true for
a system with delay because variations in delay provide sufficient randomization, and
the parallel-update scheme becomes more advantageous as a result of frequent updates.

Pricing strategies at the base station
In order to align the users’ goals with those of the network, it is usually useful to design
adequate pricing strategies. In the considered CDMAsystem, the price λi per unit power
for any user i is determined by the base station. The Nash solution previously computed,
does not by itself guarantee that users who are transmitting, i.e., with non-zero power
levels, will be able to meet their minimum SINR requirements for establishing a con-
nection with the base station. Thus, given that, in different wireless systems, the users
might have to meet different SINR requirements, we discuss, as in [23], the use of two
pricing mechanisms:

• Centralized pricing. The users are divided into multiple classes, depending on the
value of their benefit parameters αi . All users within a class have the same SINR
requirement. The objective of the base station is to set prices for these different classes
such that, at the resulting Nash equilibrium, the SINR targets are met.
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• Decentralized market-based pricing. In this scheme, the base station sets a single
price for all users, while the users choose their benefit parameter αi to satisfy their
quality-of-service requirements. This scheme, in contrast to the centralized scheme,
allows users to compete for the system resources by adjusting their individual αi .

In both approaches, we consider that the base station sets the price proportionally to
the channel gain of the i th user, i.e., λi = kihi with ki a constant. For the centralized
pricing scheme, it is shown in [23] that, when every mobile user has the same SINR
requirement, the following result holds:

theorem 9.2 Consider a network with symmetric users where αi = 1, ∀i , the min-
imum SINR requirement is γ∗ for all users, and the users are charged in proportion
to their channel gain, λi = khi , with the parameter k being user-independent. Then,
in this network the maximum number of users N∗ that the system can accommodate is
bounded by

N∗ <
L
γ∗ +1. (9.11)

Moreover, the user-independent pricing parameter k under which N ≤N∗ users achieve
the SINR level γ∗ is

k =
λi

hi
=

L
σ2

L−γ∗(N − 1)
L(γ∗ +1)

. (9.12)

The proof is presented in [23]. The pricing approach in Theorem 9.2 is equivalent
to a centralized power control in which the base station determines the price in such
a way that the users utilize power levels determined by the unique Nash equilibrium.
The base station can also set the prices so that the SINR requirements of the users are
satisfied. Note that if N > N∗ then all users would fall below their SINR level because
of symmetry. The system can, in this case, decrease the number of users admitted (i.e.,
N) below the threshold N∗, so as to obtain a viable solution.

Although Theorem 9.2 deals with symmetric users having the same SINR require-
ments, this result can easily be extended to the case of multiple service levels and
multiple schemes. To do so, the users can be split into groups or cells, where each group
has the same desired SINR level, i.e., each group has symmetric users. In this case, the
base station can apply the result of Theorem 9.2 to each group, and thus obtain multiple
pricing schemes for the different groups.

The centralized approach discussed so far does not take into account the fact that each
user i can, dynamically, adjust its benefit parameter αi so that it can always maintain a
minimum SINR level γ∗

i , given the interference at the base station. In this case, the base
station can limit aggressive requests for SINR by setting an upper bound ymax on the
received power of any user i , i.e., yi ≤ ymax. This strategy would be implemented by the
base station in order to preserve the network resources. It is demonstrated in [23] that,
for this market-based pricing strategy, given that αi is lower- and upper-bounded, then
by limiting the number of mobiles to Nmax the base station can provide the following
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minimum SINR level γ∗
min:

γ∗
min =

Lymax

σ2 +(Nmax− 1)ymax
. (9.13)

This highlights a tradeoff in the choice of the design parameters Nmax and γ∗
min. If the net-

work wants to provide guarantees of a high SINR level, then it has to sacrifice by limiting
the number of users. Furthermore, the users may implement a distributed admission-
control scheme according to their budget constraints and desired SINR levels. In such
a scheme, if, for a user i , the price necessary to achieve a SINR level exceeds a certain
budget ηi , i.e.,

kγ∗
i

L
(ȳ−i +σ2)≥ ηi , (9.14)

then the user might choose not to transmit at all.
In summary, in this subsection we have formulated the uplink power-control problem

in aCDMAsystemusingnon-cooperative game theory, discussed its solution, and studied
two possible algorithms for finding the equilibrium as well as the impact of pricing on
the game’s solution.

9.1.2 Multi-cell wireless CDMA networks

While we dealt in the previous subsection with the problem of uplink power control in a
single-cell CDMA network, it is also of interest to study the problem within a multi-cell
network. In a multi-cell environment, each mobile terminal experiences interference, not
only from the users within the cell but also from users in other cells. Another important
problem to consider in a multi-cell environment is the base-station assignment problem:
each mobile needs not only to adjust its transmit power but also to select the base
station to which it needs to connect. The problem of power control and base-station
assignment in a multi-cell network has been widely studied in the literature using a
variety of approaches, ranging from game theory to control theory and optimization
[482, 424, 20, 24, 254, 193].Acomprehensive survey of uplink power control in cellular
networks can be found in [106].

In this subsection, we formulate a non-cooperative game for the multi-cell power-
control problem for data services, based on the seminal work of [424]. Furthermore, we
study the properties of the game and discuss possible pricing strategies that can improve
the system performance.

Network model for uplink power control in a multi-cell network
Consider the uplink of a CDMA network with K cells serving N users. We letN the set
of all users and K the set of all base stations. We let hiai and diai denote, respectively,
the path gain and the distance between user i ∈N and base station ai ∈K. The users are
assumed to be stationary, so the path gains do not change. Each user transmits data at a
rate of R bits s−1 over a spectrum of W Hz. In this setting, the SINR γiai of any user i
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at a base station ai ∈K is given by

γiai =
W
R

hiai pi∑
k∈N\{i}

hkai pk +σ2
, (9.15)

where pi is the transmit power of user i and σ2 is the variance of the Gaussian noise.
We assume no base-station diversity, i.e., each user is assigned to a single base station

at a given time. In this setting, each user i ∈N attempts to select a base station ai ∈ K
and a transmit power pi , so as to maximize the following utility function:

ui ,ai (p) =
RL
M

f (γi ,ai )
pi

, (9.16)

where p = [p1, ... ,pN ] is the vector of transmit powers, L is the number of information
bits in a packet of size M bits, and f (·) is an efficiency function that approximates the
probability of successful reception. For this section, we consider that, for a given SINR
γiai , the efficiency function is given by

f (γiai ) = (1− 2Pe(γiai ))
M , (9.17)

where Pe(γiai ) is the bit error rate (BER). The function in (9.17) is an approximation of
the frame success rate, which yields zero utility at zero power. This function depends on
factors such as channel quality, coding, modulation, and packet size. Further discussion
on the selection of the function f (·) can be found in [424]. The utility function in (9.16) is
a ratio between the expected number of bits received correctly and the energy consumed
in transmission. Thus, this utility allows us to measure the performance of a wireless
user in bits per joule.

We can formulate a non-cooperative continuous-kernel game among the users,
whereby the strategy of each user is two-dimensional, as each user aims to select a
base station ai ∈K and a power value pi so as to maximize its utility function in (9.16).
In other words, we have a non-cooperative game among the N users in which each user
i ∈N attempts to solve the following optimization problem:

max
pi ,ai

ui ,ai (pi ,p−i ), (9.18)

where the transmit powers of user i are selected from a convex and compact set with
minimum and maximum power constraints, i.e., p

i
≤ pi ≤ p̄i . Throughout this section,

we assume that p̄i = p̄, ∀i ∈N .
The optimization problems in (9.18) define the studied non-cooperative game.We note

that the user has to select a two-dimensional strategy to optimize his utility. Furthermore,
the vector a = [a1, ... ,aN ] of base-station assignments can be arbitrary. There are a total
of KN different possible base-station assignments. In the remainder of this section, we
discuss two possible assignments: a maximum-received-signal-strength assignment and
a maximum-SINR assignment.
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Power-control game with maximum-received-signal-strength base-station
assignment
To solve the formulated non-cooperative game, we will first assume that, for any user
i , the assigned base station ai is determined by the received signal strength of the base-
station pilot signal, i.e., ai is the base station with the highest channel gain hiai . Thus,
each user i ∈N is assigned to the base station ai ∈K such that

ai = argmax
j∈K

hij ≡ argmin
j∈K

dij . (9.19)

The assignment in (9.19) is equivalent to assigning the user to the closest base station
since we assume a channel gain based only on the distance to the base station. This
base-station assignment based on the received signal strength is fixed and independent
of the utility function. As a result, under a fixed base-station assignment, as in (9.19),
solving the non-cooperative game in (9.18) reduces to choosing the best transmit power,
instead of the original two-dimensional problem. Because of this, in the remainder of
this subsection, for any user i ∈N we drop the subscript pertaining to the base station,
i.e., ui ,ai (p) = ui (p). Unless stated otherwise, we will assume that p

i
= 0, ∀i ∈N .

In this fixed maximum-received-signal-strength base-station assignment, the next
objective is to solve the non-cooperative game and find the Nash equilibrium. First,
it has been shown in [424] that the utility function in (9.16) is quasi-concave. This proof
is done by showing that the local maximum of the function is at the same time a global
maximum. By establishing the quasi-concavity of the utility function in (9.16), the exis-
tence of the Nash equilibrium is guaranteed by Theorem 3.2 in Chapter 3, which states
that, for a continuous-kernel game, a Nash equilibrium exists if the strategy sets (here
the power values) are compact and convex while the utility is continuous in the profile
p of strategies and quasi-concave in the strategy pi .

With the existence of a Nash equilibrium established, the next step is to determine
whether the equilibrium is unique. First, for any given interference vectorp−i and assum-
ing user i is assigned to base station ai as per (9.19), it is found that the power that
maximizes ui (pi ,p−i ) satisfies

f ′(γiai )γiai − f (γiai ) = 0, (9.20)

by the first-order optimality condition (f ′(·) is the first-order derivative of f (·)). Let
γ̃ = γiai be the SINR value satisfying (9.20), which is the same for all i ∈N . The value
of γ̃ depends on parameters such as packet length and modulation. The transmit power pi

that maximizes the utility is, thus, the power that achieves γ̃. However, because of power
constraints, some users might not be able to achieve γ̃ at the equilibrium, so the best
these users can do is to transmit at maximum power p̄. Consequently, the best-response
function for any user i is the value of the power pi that maximizes the utility for a given
interference vector p−i , namely

bi (p−i ) = min

⎛⎝p̄,
γ̃
(∑

k �=i hkai pk +σ2
)

W
R hiai

⎞⎠ . (9.21)
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By showing that the best-response functions for all users i ∈N , as given in (9.21), are
standard functions and using Theorem 3.1 of Chapter 3, it is established, as in [424],
that the Nash equilibrium is unique.

Thus, for the considered power-control game with maximum-received-signal strength
base-station assignment, there exists a unique Nash equilibrium. However, as is often
the case, it is shown in [424] that this equilibrium is inefficient. The main idea is that
there exists a power vector smaller than the equilibrium vector (component-wise) where
users obtain utilities that are higher than those at the equilibrium. As in the single-cell
case in Section 9.1.1, to improve the efficiency at the equilibrium we can introduce a
pricing scheme.

We consider that the base station takes care of pricing. Thus, we define a vector
c = [c1, ... ,cK ] of pricing factors where each element cj denotes the price at a given base
station j ∈K. We consider that each base station charges the users a usage-based price,
i.e., a price proportional to the consumed power. In this case, given the base-station
assignment in (9.19), the non-cooperative game with pricing can be mapped to the case
in which each user i (assigned to base station ai ) solves the following optimization
problem:

max
pi

ui (pi ,p−i )− cai pi , ∀i ∈N . (9.22)

Notice that, under the base-station assignment scheme in (9.19), the base-station
assignment of a user is fixed with or without pricing.

To study the Nash equilibria of the game with pricing, we note that the utility being
optimized in (9.22) is no longer quasi-concavewith the introductionof pricing.Therefore,
we can no longer utilize the existing results for the case of no pricing. Instead, we can
show that the game with pricing is, in fact, a supermodular game. Recall from Chapter 3
that a game is supermodular if the utility function has increasing differences, i.e., is
supermodular. Also note that in Chapter 3 we provided an example of how a power-
control game with pricing can be supermodular in a single-cell network. The following
analysis is similar but applied to multi-cell networks.

In the multi-cell power-control game with pricing, the supermodular property implies
that we need to have increasing differences in (pi ,p−i ), which is true if and only if
∂2ui (p)
∂pi∂pk

≥ 0 for all i 	= k . It is shown in [424], in a straightforward manner, that this
second-order condition is satisfied for all i , j ∈N if γiai ≥ γ̂ for all i , where γ̂ = 2logM .
This constraint on the SINR of a user i can be translated into a lower bound on the
strategy of that user, as

p
i
=

γ̂

⎛⎝∑
k �=i

hkai pk +σ2

⎞⎠
W
R hiai

. (9.23)

Let p denote the power vector corresponding to γiai = γ̂ for all i (assuming that it
exists), and let p̄ denote the power vector corresponding to the maximum power con-
straints. Then, the game having the strategy space that is a compact and convex set with
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minimum power level p
i
and maximum power level p̄ (assumed non-empty) is clearly

supermodular. As discussed in Chapter 3, a supermodular game always possesses Nash
equilibrium. In fact, the set of Nash equilibria for a supermodular game has the smallest
and the largest (component-wise) power vector (in the context of the multi-cell power-
control game).We letE denote the set ofNash equilibria. For themulti-cell power-control
supermodular game, all the equilibria p ∈ E are located such that pS(c) ≤ p ≤ pL(c),
where pS(c) and pL(c) are, respectively, the smallest and largest power vectors. These
vectors are shown in [424] to be non-increasing in the price vectors c. Given this set of
equilibria, an asynchronous and distributed algorithm can be implemented to reach an
equilibrium. The algorithm, as discussed in [424], allows each user to update its power
by maximizing the net utility (with price) at that instance.

We remark that the pricing factors can be set by the base stations in two ways.Aglobal
pricing scheme can be used in which all base stations utilize the same cost factor, i.e.,
cj = c , ∀j ∈ K. The factor can be chosen so as to optimize the overall system utilities,
for all users and all cells. Alternatively, a local pricing scheme can be used in which
each base station j ∈ K chooses a pricing factor proportional to the traffic in its cell.
In this local pricing scheme, the pricing factors at the base stations are different, so
going through all vectors of the form c = [c1, ... ,cK ] to find the best pricing factor is
impractical. Instead, we can utilize, as in [424], a pricing strategy in which each base
station i ∈ K calculates its pricing factor in proportion to the number of users Ni in its
cell, i.e., ci = αNi , where α is a scalar. This choice allows the pricing vector to be varied
by changing the scalar α.

So farwe havefixed the base-station assignment as per (9.19), and studied the resulting
multi-cell power-control game. In what follows, we extend the analysis by re-including
the base-station assignment as part of the strategy space in the non-cooperative game,
as per (9.18).

Power-control game with maximum-SINR base-station assignment
By re-inspecting the optimization problem in (9.18), we can see that the main difficulty
is that the optimization space is two-dimensional: transmit power and base-station selec-
tion. In [424], this difficulty is reduced by showing that, given an interference vector
p−i , for any user i ∈N the following result holds:

max
pi

max
ai∈K

uiai (pi ,p−i ). (9.24)

The result in (9.24) allows us to simplify the joint power and base-station assignment
problem by identifying the base-station assignment as a maximum-SINR assignment.
Then, we select the transmit power that maximizes the utility for a user i , which is
defined as

ui (p) = max
ai∈K

uiai (pi ,p−i ) (9.25)
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Thus the optimization problem equivalent to (9.18) can be written as

max
pi

ui (pi ,p−i ), ∀i ∈N . (9.26)

At the equilibrium of the game as formulated in (9.26), the base-station assignment can
be given as a maximum-SINR assignment, as follows:

ai = argmax
j∈K

uij(p)≡ argmin
j∈K

γij . (9.27)

Theproblem in (9.26), referred to as a power-control continuous-kernel gameunder the
maximum-SINR base-station assignment rule, is shown in [424] to have a utility function
quasi-concave in the transmit power, which shows, using Theorem 3.2 in Chapter 3,
that a Nash equilibrium exists for this game. Furthermore, by showing that the best-
response functions for this game are standard (as in the game with fixed assignment),
the uniqueness of the equilibrium is established. The powers at the equilibrium can be
found as follows. Recall that γiai = γ̃ is the utility maximizer, and suppose that for all
base-station assignments γiai = γ̃ is feasible for all i ∈ N . Since at the equilibrium the
users will attain the same SINR, the base-station assignment that maximizes the utility is
the one that results in minimum transmit powers (such a power vector is shown to exist
in [520]). In case γiai = γ̃ is not feasible for all i , then some terminals will not be able to
reach the utility-maximizing SINR, so they transmit with maximum power pi = p̄ at the
equilibrium. If at the equilibrium the user transmits at maximum power, it follows that
the equilibrium base-station assignment is the assignment with the highest SINR.

As with the base-station assignment case based on the maximum received signal
strength, the Nash equilibrium can be inefficient, and pricing strategies can be imple-
mented to improve this efficiency. For each user i , we can express the power-control
game, under maximum-SINR base-station assignment, as

max
pi

(
ui (pi ,p−i )− cai pi

)
, ∀i ∈N , (9.28)

where ui (pi ,p−i ) is given by (9.25) and ai is given by the assignment in (9.27). For
this game with pricing, finding an analytical proof of the existence of the equilibrium is
complex, as indicated in [424]. However, in [424], simulations were run to assess this
existence, and the results suggest that such an equilibrium does exist. Furthermore, one
can introduce global or local pricing. Under global pricing, as in the game with no pric-
ing, the maximum-SINR and maximum-utility base-station assignment are equivalent.
However, the actual base-station assignment at the equilibrium of the game with global
pricing is possibly different from that for the game with no pricing. With no pricing, the
utility is maximized for all users in the system. With pricing, each user targets a differ-
ent SINR to maximize his net utility, depending on the value of the pricing factor and
the location of the terminal within the system. As a result, the equilibrium base-station
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assignment could be different from the case without pricing. Certainly, with local pricing,
the performance can be further improved, as discussed in [424].

From the simulations in [424] it was observed that, in general, the equilibrium util-
ities for the games with pricing increase as compared with the equilibrium utilities
without pricing, regardless of the base-station assignment rule. Similarly, using pricing,
the equilibrium transmit powers are smaller than those in the no-pricing case. For the
maximum-SINR base-station assignment scheme, local pricing is shown to yield a min-
imum of around 25 percent of improved utility and 25 percent of power savings, relative
to the no-pricing case.

9.2 Resource allocation in single-cell OFDMA networks

OFDMA is a promising multiple-access technique enabling high-data-rate transmission
over wireless radio channels. Because of its potential, OFDMA has been chosen as the
key multiple-access technique for next-generation wireless systems such as LTE [13]
and WiMAX [487, 40]. In OFDMAnetworks, efficient resource allocation, involving bit
loading, transmission power allocation, and subcarrier assignment, can greatly improve
system performance, so it has drawn a great attention in recent research.

Numerous resource-allocation methods have been developed for OFDMA networks
(see [187] and references therein). In its most basic form, the optimal (total-rate-
maximizing) resource allocation under total-power constraints for a single user across
parallel orthogonal channels can be found using the well-known water-filling method
[116]. In single-cell, multi-user systems with a given set of subcarriers allocated to
each user, the water-filling solution can also be applied since resource allocation can be
considered independently for each user [187].

The problem becomes more complicated when dealing with a multi-user environment
in which each user has a different channel and communication link quality. The diffi-
culty stems from the discrete nature of the subcarrier-assignment problem. Nonetheless,
by adaptively assigning subcarriers of various frequencies, one can take advantage of
channel diversity (including independent path loss and fading) among users in differ-
ent locations, i.e., the well-known concept of multi-user diversity. Exploring multi-user
diversity has been shown to improve the efficiency of OFDMA systems under differ-
ent objectives and constraints [187, 507, 477, 522, 83, 401, 508, 260]. Most of these
approaches focus on efficiently maximizing the total transmission rate or minimizing
the total transmitted power under certain constraints. The formulated problems and their
solutions are mainly concerned with efficiency. In resource allocation, another impor-
tant issue that arises when assigning subcarriers is fairness. In many system-optimizing
approaches, users who have high power or who are closer to the base station are usually
given higher benefit, which can be unfair to other users. In this regard, subcarrier-
assignment schemes that can not only improve the system performance but also provide
a fair distribution of resources to the users are of interest. One example in which fair-
ness is considered can be found in [401], where a max-min criterion has been defined
for OFDMA channel allocation. Other fair approaches for OFDMA resource allocation



270 Cellular and broadband wireless access networks

are discussed in [187]. In a nutshell, when dealing with OFDMA channel allocation, it
is imperative to develop a model that jointly considers fairness of resource allocation,
system efficiency, and complexity.

In this section we develop, based on [183], a fair scheme to allocate subcarriers, rate,
and power for a single-cell, multi-user OFDMA system. After presenting the studied
system model, we develop, using bargaining theory, an algorithm for the two-user case
that allows these users to bargain over the subcarrier usage. Then, we study and analyze
a multi-user bargaining algorithm based on optimal groupings of pairs among the users.

9.2.1 OFDMA resource-allocation model

Consider the uplink of a single-cell multi-user OFDMAnetwork with N users randomly
located within the cell. LetN denote the set of all users and K the set of all subcarriers.
The users want to share their transmissions among K different subcarriers, with each
subcarrier having a bandwidth of W . Each user i’s transmission rate Ri is allocated to
different subcarriers, as Ri =

∑K
j=1 rij , where rij is the i th user’s transmission rate in

the j th subcarrier. Define the rate allocation matrix r with [r]ij = rij and the subcarrier
assignment matrix A with [A]ij = aij , where

aij =
{

1, if rij > 0,
0, otherwise.

(9.29)

For single-cell, multi-user OFDMAnetworks, no subcarrier can support the transmis-
sions of more than one user, i.e.,

∑N
i=1 aij = 1,∀j .

By using adaptive modulation, each user i can match each subcarrier’s transmission
rate rij , according to its channel condition. For this purpose, we adopt for M-quadrature
amplitude modulation (MQAM), high spectrum efficiency (without loss of generality).
For MQAM, the BER can be approximated by a function of rate and SNR, as follows:

BERij ≈ c1e
−c2

γij

2
rij −1 , (9.30)

where c1 ≈ 0.2, c2 ≈ 1.5, and γij is the i th user’s SNR at the j th subcarrier, given by

γij =
pijhij

σ2 , (9.31)

where hij is the subcarrier channel gain and pij is the transmit power for the i th user on
the j th subcarrier. The thermal noise power for each subcarrier is assumed to be the same
and equal to σ2. We define a power-allocation matrix p with [p]ij = pij . From (9.30),
without loss of generality, we assume the same BER for all users in all subcarriers. Then
we have

rij = W log2

(
1+

pijhijc3

σ2

)
, (9.32)

where c3 = c2/ ln(c1/BER) with BER = BERij ,∀i , j .
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Fig. 9.1 System model for a single-cell, multi-user OFDMA network.

We make a few assumptions regarding the system studied:

• The channel’s fading is slow and stable within each OFDM frame.
• The channel conditions for different subcarriers for each user are assumed to be

perfectly estimated.
• There exist reliable feedback channels from the base station to the users without any

delay.
• The base station and the mobile users are synchronized, a common assumption (e.g.,

see [183]).

In Fig. 9.1, a three-user example is shown for the considered system with eight sub-
carriers (each subcarrier is occupied by one user). According to the channel conditions,
a user selects an adaptive modulation level and adjusts its rate for a given subcarrier. The
key challenge in this system is to design a subcarrier-allocation scheme while taking into
account the conflicting situation that can arise when a certain subcarrier is good for more
than one user. In this case, the scheme must be able to decide which user should take the
subcarrier that is subject to a conflict of interest. Thus, the objective of this section is to
devise a game-theoretic approach for allowing users to negotiate a subcarrier division
so that each user can obtain its minimal rate while the system’ overall performance is
optimized.

We can see that the users have an incentive to agree on a division of the subcarriers
(since otherwise they cannot communicate), but they are in conflict on how to do so.
This situation is reminiscent of the bargaining situation in Chapter 7. For this multi-user
OFDMA situation, we can formulate a bargaining problem among the users in N that
are bargaining over their rates. In fact, each user i aims to optimize its rate Ri , which is
bounded from above and has a non-empty, closed, and convex support. In this bargaining
problem, we let S denote the set of all feasible rates that satisfy Ri ≥R i

min,∀i , where R i
min
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is aminimum rate for user i (this can also be seen as a feasible range for the rate-allocation
matrices r). To formally define a bargaining problem, we let the vector of minimal rates
Rmin represent the disagreement point. Thus, we have an (S,Rmin) bargaining problem
among the network users, and the objective is to choose an outcome in S that the users
can agree on.

9.2.2 Nash bargaining solution for subcarrier allocation

As previously mentioned, the key conflict in the bargaining problem under consideration
stems from the fact that a competition among the users arises whenever the channel
conditions for a specific subcarrier are good for more than one user. The users thus
compete over subcarriers having good channel gains. We consider that, in addition to
the minimal rate R i

min, each user i has a maximum transmitted power pmax. To solve the
bargaining problem in this model, we need to determine different users’ transmission
functions and power values (for the different subcarriers), i.e., A and P. For this purpose,
one suitable solution would be the Nash bargaining solution (NBS), which, as defined
in Chapter 7, reduces to solving the following optimization problem:

max
A,P

N∏
i=1

(
Ri −R i

min

)
, s.t.

⎧⎪⎨⎪⎩
∑N

i=1 aij = 1,∀j ∈K,
Ri ≥ R i

min,∀i ,∑K
j=1 pij ≤ pmax,∀i ∈N .

(9.33)

Recall that the product
∏N

i=1

(
Ri −R i

min

)
is the Nash product. Note that although one can

consider other criteria such as sum-rate maximization or max-min fairness, the choice of
the Nash bargaining solution is made for two reasons. First, the Nash bargaining solution,
as will be shown later in this section, is a generalized proportional fair solution. Second,
as discussed in Chapter 7, a solution to the Nash bargaining problem, satisfying Nash’s
axioms, is shown to exist and to be Pareto-efficient.

To illustrate the use of the Nash bargaining solution, in Fig. 9.2 we show a two-user
example where Rmin is assumed to be zero. The shaded area represents the feasible range
S for R1 and R2. For the Nash bargaining solution, the optimal point is B at (R̃1, R̃2)
with R1R2 = C̃ , where C̃ is the largest constant for the feasible set S. In a sense, the
Nash bargaining solution implies that, after the users are assigned their minimum rates,
the remainder of the resources would be divided between the users in proportion to the
rates at which the utility can be transferred (see more insights on such an interpretation
in [377]). A geometrical interpretation is that an isosceles triangle ABC can be drawn
with (R̃1, R̃2) as the apex, such that one of its sides is tangent to the set S and the other
side passes by (R1

min,R
2
min), i.e., the origin in this example. Since line BC is also tangent

to the curve R1R2 = C̃ , the ratio with which two rates can be exchanged within the set S
is equal to the ratio of the two rates. In the figure, we also show other possible solutions.
For example, the solution that maximizes the social welfare, i.e., the total rate, occurs at
R∗

1 + R∗
2 = C∗, that is, by definition, the point within the feasible set S where the sum

C∗ of R1 and R2 is maximized. Certainly the Nash bargaining solution has an overall
rate that is slightly smaller than the maximal rate point, but this solution trades off this
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Fig. 9.2 Example of the Nash bargaining solution (NBS) for a two-user OFDMA network.

performance loss in order to provide better fairness. The max-min fairness criterion that
maximizes the worst-case rate is also shown in Fig. 9.2 at the point with R ′

1 = R ′
2 = C ′,

where C ′ is the largest constant for the feasible set S. Clearly, the overall rate for the
Nash bargaining solution is higher than that in the max-min case.

As briefly mentioned in Chapter 7, when the disagreement point is zero, the Nash
bargaining solution coincides with the famous proportional fair distribution of resources,
which is defined as follows:

definition 9.1 A rate distribution is said to be proportionally fair whenever any
change in the distribution of rates results in the sum of the proportional changes in the
utilities becoming non-positive, i.e.,

∑
i

Ri − R̃i

R̃i
≤ 0, ∀Ri ∈ S, (9.34)

where R̃i and Ri are, respectively, the proportionally fair rate distribution and any other
feasible rate distribution for the i th user.

The relation between the Nash bargaining solution and proportional fairness can be
formally drawn via the following theorem [183]:

theorem 9.3 When R i
min = 0,∀i , the Nash bargaining solution coincides with the

proportional fair rate distribution.

Proof The proof is taken from [183]. Taking the logarithm of the Nash product (recall
that the logarithm function is concave and monotone) when R i

min = 0,∀i , the Nash
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bargaining solution is equivalent to

max
r∈S

K∑
i=1

log (Ri ) . (9.35)

Define Ûi = log(Ri ). The gradient of Ûi at the Nash bargaining solution R̃i is ∂Ûi
∂Ri
|R̃i

.
Since the Nash bargaining solution optimizes (9.35), for any point deviating from the
Nash bargaining point, the following optimality condition holds:

∑
i

∂Ûi

∂Ri
|R̃i

(Ri − R̃i ) =
∑

i

Ri − R̃i

R̃i
≤ 0. (9.36)

The above equality implies that, for all feasibleRi ∈S,∀i , different fromNash bargaining
point R̃i , the overall change of benefits is negative, according to the gradients. In fact,
the above equation is the same as the definition of proportional fairness in (9.34).

Thus, proportional fairness is a special case of the Nash bargaining solution when
R i

min = 0,∀i . In practice, a minimum rate is desired by the users, so we focus on the Nash
bargaining solution, which, as already shown, encompasses the proportional fair case.

In [183] it is shown that there exists a unique and optimal solution to (9.33), when the
feasible set satisfying the constraints is not empty. This is shown in two steps. Uniqueness
and optimality are proven when the channel assignment matrix A is fixed. But it is shown
in [183] that the probability of having more than one optimal point is zero for different
channel assignment matrices A.

Using the concept of the Nash bargaining solution, we have studied the outcome of
the modeled bargaining problem. The next step is to devise algorithms for finding this
solution.

9.2.3 Algorithms for reaching the Nash bargaining solution
Two-user case
For the case of two users, i.e., N = 2, we can develop an algorithm to reach the Nash
bargaining solution. As with bargaining in a real market, the idea is to allow two users
to negotiate and exchange their subcarriers for mutual benefits. The main challenge is to
determine how to optimally exchange subcarriers, which can be considered a complex
integer programming problem. To solve this problem, one can useAlgorithm 9.1, which
is developed in [183]. First, all subcarriers are initially assigned and, for each user i , a
positive weight factor �i is computed as follows (ε is a small positive number):

�i =

{
1

Ri−Ri
min

, if Ri ≥ R i
min + ε,

1
ε , otherwise.

(9.37)

Then, the two users’ subcarriers are sorted and a two-band partition algorithm is
applied for them to negotiate the exchange of subcarriers. To achieve the Nash bargain-
ing solution, an intermediate parameter needs to be updated for every iteration. From
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Algorithm 9.1 Two-user algorithm for finding the Nash bargaining solution.
1. Initialization:
Initialize the subcarrier assignment with the minimum rate requirements.
For the Nash bargaining solution, calculate �1 and �2.

2. Sort the subcarriers:
Arrange the indices from largest to smallest

g�1
1j

g�2
2j

.

3. For j = 1, ... ,K − 1
User 1 occupies and water-fills subcarriers 1 to j ;
User 2 occupies and water-fills subcarriers j +1 to K .
Calculate the Nash product in (9.33).

End
4. Choose the two-band partition (the corresponding j) that generates the largest

Nash product satisfying the constraints.
Calculate A, p, R1, and R2.

5. Update channel assignment.
If the Nash product cannot be increased by updating �1 and �2, the iteration ends;
otherwise, update �1 = 1/(R1−R1

min), �2 = 1/(R2−R2
min); go back to step 2.

simulations, as shown in [183], the iterations between steps 2 and 5 converge within
two to three rounds. The algorithm has a complexity of O(N2) for each iteration and
can be further improved by using a binary search algorithm with a complexity of only
O(N logN) for each iteration. Notice that all the iterations in Algorithm 9.1 are per-
formed within the base station, so there is no need for signalling between users and base
stations.

For Algorithm 9.1, we highlight the following result, which is shown in [183]:

proposition 9.1 Algorithm 9.1 is nearly optimal for finding the Nash bargaining
solution in (9.33) with N = 2 users when the SNR of each subcarrier for all users in
(9.31) is much greater than 1 and there exists a feasible solution.

Multiple-user case
For the case in which N > 2, the computational complexity for allocating the subcarriers
is quite high, and for this reason most researchers have approached the problem from
a centralized perspective (see [187, 507, 477] and references therein). To approach the
problem in a distributed manner, we can use an iterative scheme, as in [183], based on
the following steps:

1. The users are grouped into pairs.
2. For each pair, Algorithm 9.1 is applied for the two users to negotiate and improve

their performances by exchanging subcarriers.

After the two steps are completed, the users are regrouped and they renegotiate again
and again until convergence. The remaining key question is how to group users into
pairs. One straightforward approach is to form pairs randomly and let the users bargain
in an arbitrary manner. This is referred to as the random method, and is described in
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Algorithm 9.2 Multi-user subcarrier allocation algorithm.
1. Initialize the channel assignment:
Assign all subcarriers to users.

2. Group the pairs:
If the number of users is even, the users are grouped into coalitions; otherwise, a
dummy user is created to make the total number of users even. No user can exchange
its resource with this dummy user.
• Random method : randomly form groups of two users.
• Hungarian method : form user pairs using the Hungarian algorithm.

3. Bargain within each pair:
Users in each pair negotiate to exchange subcarriers using two-user Algorithm 9.1.

4. Repeat:
Repeat steps 2 and 3 until no further improvement is achieved.

Algorithm 9.2. In the initialization stage, the objective is to assign all subcarriers to
users while trying to satisfy the minimum-rate and maximum-power constraints. If the
user having the best channel conditions has a rate that is higher than or equal to R i

min,
then it is removed from the assignment list. After each user is given a sufficient rate,
the remaining subcarriers are greedily assigned to the users according to their channel
gains. Note that there is no need for the initial assignment to satisfy all the constraints;
these can be satisfied during subsequent iterations (i.e., negotiations).

Despite its straightforward implementation, the convergence speed of the random
method, evaluated by the number of rounds of negotiations, decreases as the number of
users increases.As discussed in [183], this is because most negotiations within arbitrarily
grouped pairs end up with little or no improvement compared with the means the channel
allocation prior to the start of negotiations. Therefore, one must consider an alternative
for grouping the users into pairs. It is shown in [183] that this problem can be mapped
into a well-known assignment problem, as follows [259].

The benefit for the i th user in negotiating with the j th user is defined as bij . Obviously
bii = 0,∀i ∈N because no user would negotiate with itself. From (9.33), the remaining
elements of the benefit matrix b can be expressed as

bij = max(U(R̃i , R̃j)−U(R̂i , R̂j),0), (9.38)

where R̃i and R̃j are the respective rates if the negotiation happens, and R̂i and R̂j are the

original rates. U(Ri ,Rj) �
(
Ri −R i

min

)(
Rj −R j

min

)
is the Nash product. We note that b

is symmetric.
Now, define a N×N assignment matrix X. Each component of this matrix represents

whether or not there is a coalition between two users, as follows:

Xij =
{

1, if user i negotiates with user j ,
0, otherwise.

(9.39)

This matrix is clearly symmetric:
∑N

i=1 Xij = 1,∀j ∈N , and
∑N

j=1 Xij = 1,∀i ∈N .
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Algorithm 9.3 The Hungarian algorithm.
1. Subtract the entries of each row of B by the row minimum, so that each row has at

least one zero and all entries are positive or zero.
2. Subtract the entries of each column by the column minimum, so that each row and

each column has at least one zero.
3. Select rows and columns across which lines are drawn, in such a way that all the

zeros are covered and that no more lines have been drawn than necessary.
4. Test for optimality:

(i) If the number of the lines is N , choose a combination A from the modified cost
matrix in such a way that the sum is zero.

(ii) If the number of the lines is less than N , go to step 5.
5. Find the smallest element that is not covered by any of the lines. Then subtract it from

each entry that is not covered by the lines and add it to each entry that is covered
by a vertical and a horizontal line. Go back to step 3.

The assignment problem involves selecting pairs of users that must negotiate while
maximizing the overall benefit, i.e.,

max
X

N∑
i=1

N∑
j=1

Xijbij , s.t.

⎧⎪⎪⎨⎪⎪⎩
∑N

i=1 Xij = 1, j = 1, ... ,N,∀i ∈N ;∑N
j=1 Xij = 1, i = 1, ... ,N,∀j ∈N ;

Xij ∈ {0,1}, ∀i , j ∈N .

(9.40)

In order to solve (9.40) and obtain the optimal user pairs, one can use the Hun-
garian method as presented in [183]. As the Hungarian method typically deals with
minimization problems, for convenience we map the maximization problem in (9.40)
into a minimization problem. To do so, we define Bij =−bij +max(bij). The Hungarian
algorithm (Algorithm 9.3) can then be used to find the optimal pairs of users.

Thus, in each round of negotiations, the optimal pairsA are determined by the Hungar-
ian method and then the users bargain using the two-user Algorithm 9.1. The algorithm
ends when no bargaining can further improve the performance, i.e., b is equal to a zero
matrix. Since, in each iteration, the optimization function U (i.e., the Nash product) is
nondecreasing in steps 2 and 3, the optimal solution is upper bounded. Consequently, the
multi-user algorithm will always converge, as discussed in [183]. Nonetheless, because
of the non-linearity and non-convexity of the problem in (9.33) and despite the optimal-
ity of the Hungarian method, the algorithm can end up with a local optimum. However,
it is shown in [183] that these local optima can still have a reasonable performance.

The complexity of the Hungarian method is O(N4).As a result, the overall complexity
for each iteration of the studied scheme is O(N2 Klog2K + N4). Since the number of
users is, in general, much smaller than the number of subcarriers, the complexity of the
algorithm is reasonable compared with other methods [183]. Moreover, the practical
implementation of the algorithm requires little or no signalling between users.

In [183], extensive simulations were run to assess the performance of the algorithms
for finding Nash bargaining solutions in the two- and multiple-user cases. From these
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Fig. 9.3 Total rate (Mbps) achieved by the system as the number of users N varies.

simulations, given an OFDMAnetwork with 128 subcarriers over the 3.2 MHz band and
where each user has a minimum rate requirement of R i

min = 25kbs for each i , we show
in Fig. 9.3 the sum of all users’ rates as the the number of users in the system varies.
The figure compares the performances of the Nash bargaining solution, the maximum-
rate solution, and the max-min fair solution. As the number of users increases, the
performance of all three schemes obviously increases. This gain is a result of the multi-
user diversity provided by the independent variation of channels across different users.
The Nash bargaining solution shows a performance comparable to that of the scheme
that maximizes the total rate outperforms the max-min scheme. The performance gap
between the maximum-rate scheme and the Nash bargaining solution becomes smaller as
the number of users increases, since more choices for bargaining pairs become available.

In Fig. 9.4, we show a histogram of the number of rounds necessary for convergence
of the random method and the Hungarian method for a network with eight users. The
Hungarian method converges in about one to six rounds, while the random method
may converge very slowly. The average number of convergence rounds for the random
method is 4.25 times larger than that for the Hungarian method. This is because the
Hungarian method can find, quickly, the best pairs to group during negotiations. Further
simulations in [183] demonstrated the advantages of this algorithm.

In summary, this subsection has showed how one can formulate a bargaining problem
within the context of subcarrier allocation in a single-cell OFDMA network. While the
focus has mainly been on single-cell OFDMAnetworks, game-theoretic approaches can
also be used within the context of multi-cell OFDMA networks. The reader is referred
to [184] for further information on how non-cooperative-game theory and the Nash
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equilibrium solution can be used to solve problems of resource allocation in multi-cell
OFDMA networks.

9.3 Power allocation in femtocell networks

Imperfect network coverage, especially in indoor locations such as buildings and houses,
is a key problem in existing wireless systems such as cellular networks. Traditionally, in
order to solve this problem, the network operatorwould deploy additional base stations to
increase coverage. Because of the high cost of such a deployment, operators are reluctant
to install new base stations, notably in areas that are not too dense. To overcome this
problem, the concept of femtocell access points (FAPs) has recently emerged as a means
to overlay, on existing cellular network technologies (e.g., 2G, 3G, WiMAX), low-power
and low-cost base stations. Femtocell access points are connected by an IP backhaul
network through a local broadband connection such as DSL, cable, or fiber. Femtocell
access points could, for example, be low-cost, plug-and-play devices similar to WiFi
access points.

Various benefits of using FAPs have been identified [99, 521, 250]. First, the deploy-
ment of FAPs improves indoor coverage where the signal of a macro-cell base station
can be weak. Second, FAPs provide high data rates and improved quality of service
to subscribers, while at the same time ensuring longer battery life for mobile devices.
The extended battery life arises from the fact that, in a femtocell environment, mobile
devices do not need to communicate with a distant base station. Finally, from the oper-
ator’s perspective, deploying femtocell access points saves the backhaul cost since FAP
traffic is carried over wired residential broadband connections. In fact, for the operators,
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FAPs can be seen as a new way towards the convergence of landline and mobile services.
For a general survey of this technology, the reader is referred to [99, 521, 250].

Recently, research has turned to deploying femtocell access points in wireless net-
works. In [98], uplink capacity and interference avoidance for two-tier femtocell
networks are considered. Downlink power control in a femtocell network is considered
in [292], where the objective is to minimize the transmit power under signal-to-noise
constraint. Similarly, [100] deals with additional power-allocation approaches in femto-
cell networks. The work in [233] deals with bandwidth partitioning in a femtocell-like
network.

When FAPs are deployed on top of an existing cellular system, one can envision the
emergence of a hierarchical overlay network. In such a hierarchical network, it is of
interest to study the problem of transmit-power control in the downlink. Since FAPs
are expected to operate on the same frequency bands as macrocell base stations, co-
channel interference can impede the overall performance of the network. As the number
of FAPs increases, the accumulated interference becomes a critical issue. To highlight
the importance of power control in such a network deployment, one can consider the
interesting situation in which a mobile user is connected to an FAP while another cell-
edge user is connected to a base station. In this case, there is strong interference from
the base station to the mobile within the coverage of the FAP. As the cell-edge user is
outside the coverage of the FAP, it can only be served by the base station, requiring a large
transmit power. As a result, suitable power-control schemes need to account for the fact
that some users are served by FAPs while others are served by macrocell base stations.

In this section, we adopt the approach of [178] for studying this power-control problem
from a game-theoretic perspective. First, we model the problem as a Stackelberg game.
Then, we discuss the properties of the considered game and its solution. Finally, we
develop a low-complexity algorithm to reach the desired outcome.

9.3.1 Femtocell power control as a Stackelberg game

Consider a system of base-station transceivers and femtocell access points. Let the set
of base-station transceivers be given byM= {1, ... ,M} and the set of femtocell access
points byN = {1, ... ,N}, whereM andN are two disjoint sets. We further assume that
there is a wire-line backhaul connecting the femtocell access points to the base-station
transceivers, enabling them to exchange relevant information. Fig. 9.5 illustrates the
deployment of such FAPs within a wireless cellular network.

For multiple access, we consider that both the base stations and the FAPs utilize
OFDMA, with the spectrum divided in such a way that each transceiver i ∈M∪N
is assigned a set of orthogonal channels Li = {1, ... ,Li}. Each channel has the same
bandwidth Wi . For any i , j ∈M∪N , k ∈Li , l ∈Lj , let hkl

ij be the link gain for channel
l of transmitter j to channel k of receiver i . We assume that the channels are slow, flat-
fading channels. The transmitters estimate the channel gain based on feedback from the
receivers, and the channel state does not change within a given slot. The orthogonality
of the channels of user i ensures that the link gain hkl

ii = 0 for k 	= l , k, l ∈Li . Note that
the orthogonality of the channels does not need to be retained for different users.
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Fig. 9.5 Example of the deployment of femtocell access points within a wireless cellular network.

The noise is assumed to be additive white Gaussian, with power nk
i in channel k of

receiver i . Let the transmit power of transmitter j in channel l be denoted by pl
j . The

interference and noise power as observed by receiver i in channel k is given by

νk
i =

∑
j �=i

∑
l∈Lj

hkl
ij pl

j + nk
i . (9.41)

Normalizing the link gains and noise powers such that hkk
ii = 1 for all i ∈M∪N and

k ∈ Li , the SINR of receiver i in channel k , which equals hkk
ii pk

i
νk

i
, can be simplified as

pk
i

νk
i

=
pk

i∑
j �=i

∑
l∈Lj

hkl
ij pl

j + nk
i
. (9.42)

If all users divide the spectrum in the same manner, that is, the number of channels are
identical, and if the overlapping channels share the same spectrum,1 then we say that the
channel is a parallel Gaussian interference channel. For such a channel we have Li = Lj

for every i , j ∈M∪N , and the link gain hkl
ij = 0 whenever k 	= l . Hence, the SINR of

receiver i at channel k simplifies to

pk
i

νk
i

=
pk

i∑
j �=i h

kk
ij pk

j + nk
i
. (9.43)

Let pi = [p1
i , ... ,p

Li
i ]T be the transmit power vector of transmitter i and ν i =

[ν1
i , ... ,νLi

i ]T be the interference (plus noise) vector of receiver i . The power of each

1 Here we assume that frequency re-use is equal to 1 among users in different cells, along with uniform and
random frequency-hopping patterns, where full overlapping is allowed.
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user i is subject to the total power constraint
∑

k∈Li
pk

i ≤ p̄i , and individual power con-
straint (also known as spectral mask) pk

i ≤ m̄k
i for all i ∈N ∪M and k ∈Li . We assume

that p̄i ≤
∑

k∈Li
m̄k

i for all i , so as to avoid trivial cases. If this inequality does not
hold, then pk

i = m̄k
i for all i and k . Let Pi denote the set of all feasible power vectors of

transmitter i :

Pi =
{
pi ∈

∏
k∈Li

[0,m̄k
i ] :

∑
k∈Li

pk
i ≤ p̄i

}
. (9.44)

We assume that the base stations and FAPs seek to allocate their transmit power so
as to maximize the total throughput. Given the power-allocation vector, from Shannon’s
capacity formula for additive white Gaussian channels, the maximal data rate that user
i can achieve is

Ci = Ci (p1, ... ,pi , ... ,pM+N) = Ci (pi ,ν i )

= Wi

∑
k∈Li

log
(
1+

pk
i

νk
i

)
. (9.45)

In order to tackle the power-control problem using game theory, we utilize the frame-
work of a Stackelberg game as defined in Chapter 3. Recall that in a Stackelberg game a
hierarchy exists between the players in which a subset of the players can be designated
as leaders of the game, i.e., players that announce their strategy before the other players,
known as followers, choose their strategy.

In the studied femtocell deployment model, we consider that the macrocell base sta-
tions are the leaders and the FAPs are the followers in a Stackelberg game. While in
Chapter 3 we dealt mainly with games having a single leader and a single follower, treat-
ment of amulti-leadermulti-follower Stackelberg game follows the same line of analysis.
In essence, in a multi-leader multi-follower Stackelberg game, there exists a competitive
game between the leaders and the followers, a competitive game between the leaders
themselves, and a competitive game between the followers themselves. Nonetheless, the
game maintains a distinct hierarchy between leaders and followers such that the leaders
can anticipate, and take into consideration, the behavior of the followers before making
their own moves. The followers do not have this power to anticipate the leaders’moves.

To model the studied femtocell problem, we consider a Stackelberg game with
complete and perfect information.As already mentioned, the leaders are the set of macro-
cell base-station transceivers M, the followers the set of femtocell access points N .
Therefore, the total set of players in the Stackelberg game isM∪N .

The strategy space of the leaders is given by Pup =
∏

i∈MPi , and any point in Pup

is called a leader strategy. The leaders compete with each other in a non-cooperative
manner in order to maximize their individual throughput, while at all times anticipating
the strategic responses of the followers. This game among the leaders will be referred
to as the upper subgame, and its equilibrium will be referred to as the upper subgame
equilibrium. After the leaders apply their strategies, the followers make their moves in
response to the leaders’strategies. The strategy space of the followers isP low =

∏
i∈N Pi ,

and any point in P low is called a follower strategy. The followers also compete with
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each other in a non-cooperative manner to maximize their own throughput2 and this
competition among the followers is referred to as the lower subgame, with its equilibrium
designated as the lower subgame equilibrium. Finally, the strategy space of the entire
game is given by the Cartesian product P =Pup×P low.

For any user i ∈M∪N , we define the best-response function:

pi = argmax
pi

Ci (pi ,p−i )

= bi (p−i ; p̄i ,m̄i ), (9.46)

where m̄i = (m̄k
i )k∈Li is chosen so as to maximize user i’s capacity function subject to

the power constraints. The notation−i refers to all of the users in the setM∪N except
user i .

We define the lower subgame equilibrium as any fixed point plow∗
= (p∗

1 , ... ,p
∗
N) ∈

P low such that

p∗
i = bi (p∗

−i ,p
up; p̄i ,m̄i ), (9.47)

where pup ∈ Pup is a fixed but arbitrary leader strategy, for all i ∈ N . Note that this
definition is the same as a Nash equilibrium (of the lower subgame).

For any user i ∈M∪N , assuming that the set Li is partitioned into three disjoint
subsets,

• AsubsetAi that contains all channels that are active, i.e., having an optimal (capacity-
maximizing) non-zero power (after water-filling) that is strictly lower than the upper
bound m̄k

i

• A subset Si that contains all active channels that are saturated, i.e., where the power
is equal to the upper bound m̄k

i

• The subset Li \Ai ∪Si of all remaining channels (neither active nor saturated).

Since every user in the lower subgame will myopically maximize their individual
throughput, the best response bi (·) of each user in the subgame will be given by the
following water-filling function:

pi = F (p−i ; p̄i ,m̄i ) (9.48)

= Wi (Ai )ν i + ri (Ai ,Si ),

where Wi (Ai ) is an Li ×Li symmetric matrix whose (k, l)-th member is given by

[Wi (Ai )]kl =

⎧⎪⎨⎪⎩
0 if k or l /∈Ai ,

1
|Ai | if k, l ∈Ai and k 	= l ,
−1+ 1

|Ai | if k, l ∈Ai and k = l ,

2 This can be referred to as the “noisy-neighbors” problem.
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and ri (Ai ,Si ) is an Li -dimensional column vector given by

rk
i (Ai ,Si ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if k /∈Ai ∪Si ,
m̄k

i if k ∈ Si ,

1
|Ai |

(p̄i −
∑

l∈Si
m̄k

i ) if k ∈Ai ,

which is analytically derived in [178]. We note that several algorithms can be used for
finding the elements of sets Ai and Si , as discussed in [178].

By letting blow ≡ (bi (·))Ni=1, we can express the lower subgame equilibrium as any
fixed point of the system-power space p∗ ∈ P such that

p∗ = blow(p∗). (9.49)

Note that the function blow(·) does not impact the upper subgame strategy.
We nowdefine the upper subgame equilibrium as anyfixed pointpup∗ =(p∗

1 , ... ,p
∗
M)∈

Pup such that

p∗
i = bi (p∗

−i ,p
low∗

; p̄i ,m̄i ), (9.50)

whereplow∗ ∈P low is an equilibrium follower strategy conditioned on the upper subgame
strategy, for all i ∈M. Equivalently, let bup ≡ (bi (·))Mi=1; then we can define the upper
subgame equilibrium as the fixed point pup∗ ∈ Pup such that

pup∗ = bup(pup∗;blow(plow∗
;pup∗)). (9.51)

For convenience, the notation can be further simplified by writing the upper subgame
equilibrium in terms of a system-power vector, i.e., as any fixed point p∗ ∈ P such that

p∗ = bup(blow(p∗)). (9.52)

Note that although the function bup(·) acts only on the upper subgame strategy, the
lower subgame equilibrium strategy (the reaction of the followers, in Stackelberg game
terminology) associated with each upper subgame strategy needs to be computed as well,
since the leaders compute their strategies given their knowledge of what the followers
might play.

9.3.2 Multi-leader multi-follower Stackelberg equilibrium

A suitable solution for the formulated hierarchical non-cooperative game between the
base stations and the FAPs is the Stackelberg equilibrium. In such a multi-leader multi-
follower game, the Stackelberg equilibrium is defined as any fixed point (pup∗,plow∗

) =
p∗ ∈ P that satisfies (9.49) and (9.52). In other words, let b : P →P be a composition
of the two vector functions:

b ≡ bup ◦ blow.
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Then we have the Stackelberg equilibrium as any fixed point of the function b,

p∗ = b(p∗), (9.53)

such thatp∗ =(pup∗,plow∗
). This definition of a Stackelberg equilibrium in amulti-leader

multi-follower setting is analogous to the notion of a subgame-perfect equilibrium,which
is a refinement of the Nash equilibrium for dynamic games discussed in Chapter 3.

It is important to note that the best-response function for the lower sub-game,
blow(·) ≡ (Fi (·))Ni=1, where Fi (·) is given by the water-filling function from (9.49),
is a piecewise affine continuous function of p [178]. By assuming the continuity of
the best-response function of the upper subgame bup, we can prove the existence of a
Stackelberg equilibrium in the studied game, using the Schauder Fixed-Point Theorem
stated below [169]:

theorem 9.4 (Schauder Fixed-Point Theorem) Every continuous function from a
convex compact subset K of a Banach space to K itself has a fixed point.

Using the Schauder Fixed-Point Theorem, [178] showed that the following result
holds:

theorem 9.5 In the studied multi-leader multi-follower power-allocation game,
given that the best-response function of the upper subgame is continuous, at least one
Stackelberg equilibrium exists.

Proof The proof is from [178]. Since the best-response functions bup : P → P and
blow : P → P are continuous functions, the composition of these two functions, b =
bup ◦blow, is also continuous. It is also easy to see that P (which is a Cartesian product)
is convex, closed, and bounded, and, being finite-dimensional, it is convex compact.
Since a Stackelberg equilibrium is defined as any fixed point of b(·), using the Schauder
Fixed-Point Theorem we have that the studied game will admit at least one Stackelberg
equilibrium.

From this theorem, we can immediately remark that the following holds [178]:

corollary 9.1 At least one upper subgame and one lower subgame equilibrium
exist.

For instance, it can be shown that the lower subgame equilibrium is, in fact, unique.
It is straightforward to check that, for any fixed leader strategy in Pup, the sum of
capacities

∑
i∈N Ci for the lower game is diagonally strictly concave. Therefore, from

Theorem 3.3 in Chapter 3, for any given leader strategy there exists at most one lower
subgame equilibrium.However, the uniqueness of the upper subgame equilibrium cannot
be guaranteed.

If, however, the leaders also adopt their strategies based on the water-filling function,
assuming the interference vector to be constant, then the Stackelberg equilibrium will
actually coincide with the Nash equilibrium of the whole game in static form (in this case,
there would no longer be any hierarchy). In such a case, the upper subgame would then
be a concave game as well, thus guaranteeing the uniqueness of the Nash equilibrium.
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9.3.3 Algorithm for reaching the Stackelberg equilibrium

Finding, iteratively, thefixed point of the lower subgameusing thewater-filling algorithm
usually yields an unstable system for a random channel gain matrix. In fact, the system
is stable only under specific conditions on the water-filling function.3 Therefore, based
on [178], in order to ensure that a stable system is reached, one can use the following
iterative technique, knownas theMann iterativemethods, which allows aweaker stability
criterion:

pi (t +1) = (1−λ(t))pi (t)+λ(t),Fi (p−i (t)) (9.54)

such that the scalar sequence {λ(t)} satisfies [69]

• λ(t = 0) = 1
• λ(t) ∈ (0,1) for t > 0

•
∞∑
t=0

λ(t) =∞.

In order to reach the lower subgameequilibrium iteratively, one can assume the setP low

to be a uniformly convex Banach space and F (·) to be a quasi-non-expansive operator
on P low (provided that {λ(t)} is bounded away from 0 and 1; see [69, Theorem 4.5]).
The {λ(t)} sequence is generated as

λ(t) =
t

2t +1
, t > 0. (9.55)

It is straightforward to verify that the sequence satisfies the constraints on λ(t) as
limt→∞ λ(t) = 1/2.

In contrast to the lower subgame equilibrium, no simple method is known for com-
puting the upper subgame equilibrium. This is, as discussed in [178], mainly because,
every time the leaders’ strategy is updated, the lower subgame equilibrium needs to be
computed. Such a problem is inherently difficult to solve, although a number of algo-
rithms have been proposed. In [467, Algorithm 1], the authors suggest a Lagrangian
dual approach for computing the best response of a leader. The idea is to approximate
the Lagrangian dual function by locally optimizing the Lagrangian with respect to the
individual frequency bin while keeping the power in other bins constant, for a fixed, dual
variable. This algorithm then updates the dual variable by using the bisection search and
repeats the procedure until convergence is achieved. However, the algorithm is very
sensitive to the initial starting point and the ordering of iterations. Also, since it does
not perform an exhaustive search, it is, at best, suboptimal since it does not decouple
the power allocated in each frequency bin from the interference generated in the other
frequency bins to compute the Lagrangian dual function.

For the case in which both the leaders and the followers use the water-filling function
as their best response, i.e., the case where the Nash equilibrium and the Stackelberg
equilibrium coincide, the equilibrium can be found iteratively as follows. First, the

3 In fact, for the system to be stable, the water-filling function should be a contraction (see [456]).
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upper subgame equilibrium is computed, assuming an initial lower subgame equilibrium.
The lower subgame equilibrium is then computed while keeping the upper subgame
equilibrium fixed. Subsequently, the upper subgame and the lower subgame equilibrium
are iteratively computed until the system-power vector of the whole game converges.As
mentioned earlier, the Mann iterative method is used to obtain the subgame equilibria.
From the simulations in [178] it is seen that, in general, the game without hierarchy yields
a better performance for both the leaders and the followers than the hierarchical case
using [467, Algorithm 1]. This advantage stems from the fact that it is quite difficult, as
mentioned earlier, tofind an algorithm that can compute an optimal solution for themulti-
leader multi-follower game (the algorithm based on [467, Algorithm 1] is suboptimal).

9.4 IEEE 802.16 broadband wireless access networks

Broadband wireless access based on the IEEE 802.16 technology [487] is a promising
technique for last-mile access. As discussed in Chapter 2, the IEEE 802.16 standard
has been proposed to provide high-speed broadband wireless connectivity through a
predefinedQoS framework formultimedia traffic.Even though thephysical-layer specifi-
cations and themedium access control protocol signaling arewell defined in the standard,
the resource-allocation and admission-control policies for the IEEE 802.16 air interface
remain open issues and are the subject of much research work [186, 298, 334, 404].

In the context of IEEE 802.16 broadband networks, because of the existence of differ-
ent classes of services [487], any bandwidth-allocation and admission-control scheme
must explicitly consider each user’s satisfaction level in terms of delay and throughput.
Furthermore, in IEEE 802.16, physical-layer aspects such as adaptive modulation and
coding need to be taken into consideration in optimizing system performance, while
satisfying the users’ QoS requirements. In this respect, a number of approaches for pro-
viding bandwidth allocation and admission control within 802.16 have been studied in
[361, 179, 362, 364].

In this section, we study in detail how non-cooperative game theory can be used to
model the problem of bandwidth allocation and admission control in an 802.16 network,
given the different classes of service. After introducing key performance measures in
IEEE 802.16 networks, we formulate a non-cooperative game for performing QoS-aware
bandwidth allocation and admission control. Beyond resource allocation, this section also
presents a network-formation games-based approach for modeling the network structure
resulting from the deployment of relay stations in next-generation broadband and cellular
networks, notably in the emerging IEEE 802.16j standard.

9.4.1 Resource allocation and admission control

In this subsection, based on [364], we study a QoS-aware bandwidth-allocation and
admission-control method based on queueing analysis and game-theoretic formulation.
First, we present a general overview of the performance measures for resource allocation
in 802.16, and describe the considered model. Then we proceed to study and formulate
the bandwidth-allocation and admission-control game.
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Resource allocation and admission control in IEEE 802.16: performance measures
In the IEEE 802.16 architecture, asmentioned inChapter 2, there are two types of station-
ary stations: subscriber stations (SS) and base stations. The subscriber stations cannot
communicate with one another directly, and the base station governs all communications
in the network. Here, we consider a single base station serving multiple connections,
presumably from different subscriber stations through a TDMA/TDD access mode using
single-carrier modulation (e.g., as in WirelessMAN-SC, which operates in the 10–
66 GHz band and where the signal propagation between a base station and an SS should
be line-of-sight). For each connection, a separate queue with protocol data units (PDUs)
of size X is maintained for buffering the PDUs from the corresponding application. We
consider SSs of the GPC type; that is, a certain amount of bandwidth is reserved for each
connection when bandwidth allocation and connection admission control are performed.
Adaptive modulation and coding is used to adjust the transmission rate adaptively in each
frame according to the channel quality, as per the IEEE 802.16 standard [487]. Here-
inafter, we consider the performance measures for uplink transmission. However, the
same model can be used for analyzing the performance of downlink transmission as
well.

First, in order to capture the peak arrival rate of traffic, we use a Markov modulated
Poisson process (MMPP) to model each source of traffic. MMPP is, in fact, a general
traffic-source model that is able to model multimedia traffic as well as Internet traffic
(further discussion of the MMPP is found in [364]). With MMPP, the PDU arrival rate λs

is determined by the phase s of a Markov chain having a total number of phases S (i.e.,
s = 1,2, ... ,S). An MMPP can be represented by matrices M and Λ, where the former
is the transition probability matrix of the modulating Markov chain, and the latter is the
matrix corresponding to the Poisson arrival rates. These matrices are defined as follows:

M =

⎡⎢⎣m1,1 · · · m1,S
...

...
...

mS ,1 · · · mS ,S

⎤⎥⎦ , Λ =

⎡⎢⎣λ1
. . .

λS

⎤⎥⎦ . (9.56)

The queueing analysis is performed in discrete time; therefore, we consider discrete-
time MMPP (dMMPP), which is equivalent to MMPP in continuous time. In this case,
the rate matrix Λ is represented by the diagonal probability matrix Λa when the number
of PDUs arriving in one frame is a. Note that a∈ {0,1, · · · ,A}, where A is the maximum
batch size for PDU arrival. In this case, we can establish the matrices for an MMPP
traffic source as follows:

Λa = M

⎡⎢⎣fa(λ1)
. . .

fa(λS)

⎤⎥⎦ , ΛA = M

⎡⎢⎣FA(λ1)
. . .

FA(λS)

⎤⎥⎦ , (9.57)

where

fa(λs) =
e−λsT (λsT )a

a!
, Fa(λs) =

∞∑
j=a

fj(λs) (9.58)
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denote, respectively, the probability mass function and the complementary cumulative
probability mass function corresponding to the occurrence of a Poisson events during
time interval T (i.e., one frame duration) with mean rate λs .

For the channel, we consider a Nakagami-m channel model in which the chan-
nel quality is determined by the instantaneous SNR γ at the receiver. With adaptive
modulation, the SNR at the receiver is divided into N + 1 non-overlapping intervals
(N = 7 in the IEEE 802.16 specifications) by thresholds Γn (n ∈ {0,1, ... ,N}), where
Γ0 < Γ1 < ... < ΓN+1 =∞. The channel is said to be in state n (i.e., rate ID n will be
used) if Γn ≤ γ < Γn+1. To avoid possible transmission error, no PDU is transmitted
when γ < Γ0. Note that these thresholds correspond to the required SNR specified in the
IEEE 802.16 standard [487]. With Nakagami-m fading, the probability of using rate ID
n (i.e., Pr(n)) is given by

Pr(n) =
Γ(m,mΓn/γ̄)−Γ(m,mΓn+1/γ̄)

Γ(m)
, (9.59)

where γ̄ is the average SNR, m is the Nakagami fading parameter (m ≥ 0.5), Γ(m) is
the gamma function, and Γ(m,γ) is the complementary incomplete gamma function.

Here, bandwidth b is defined as the number of PDUs that can be transmitted in one
frame using rate ID = 0. For a given amount of bandwidth and the transmission rate
ID, the number of transmitted PDUs can be calculated from the number of information
bits per symbol. For example, with b = 1, if rate ID = 1, two PDUs can be transmitted
in one frame. Similarly, with rate ID = 6, nine PDUs (i.e., 2× 4.5) can be transmitted
in one frame. We assume that the channel for one connection remains stationary over a
frame interval (≤ 2 ms) and all PDUs corresponding to a connection transmitted during
one frame period use the same rate ID.

We can define row vector Db, whose element Dk+1 corresponds to the probability of
transmitting k PDUs in one frame using b units of bandwidth, as

Db =
[
D0 · · · Dk · · · D9×b

]
, (9.60)

where

D(In×2×b) = Pr(n), (9.61)

where In is the number of information bits per symbol corresponding to the transmission
rate ID n, and D0 = 1−

∑9×b
k=1 Dk . With b units of bandwidth, the transmission rate for

a connection is

τ =
9×b∑
k=1

k ×Dk . (9.62)

For each connection, a separate queue with size X PDUs is used for buffering data from
the higher-layer application. The state of a queue (i.e., the number of PDUs in the queue
and the phase of arrival) is observed at the beginning of each frame. A PDU arriving in
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frame f will not be transmitted until the next frame f +1 at the earliest. The state space
of a queue can be defined as

Φ = {(X ,M ), |0≤X ≤ X ,M ∈ {1, ... ,S}}, (9.63)

where X and M represent, respectively, the number of PDUs in the queue and the phase
of MMPP arrival. The transition matrix P for a queue can be expressed as

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p0,0 · · · p0,A
...

. . .
. . .

. . .

pU,0 · · · pU,U · · · pU,U+A
. . .

. . .
. . .

. . .
. . .

px ,x−U · · · px ,x · · · px ,x+A

. . .
. . .

. . .
. . .

pX ,X−U · · · pX ,X

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (9.64)

The element px ,x′ denotes the probability matrix for the case in which the number of
PDUs in the queue changes from x in the current frame to x ′ in the next frame. Here,
U denotes the maximum number of PDUs that can depart within a frame time, and is
given by In× 2× b.

In the matrix P, the first set of rows represents the cases in which the number of
possible PDU departures is larger than the queue size and there is no PDU dropping
effect. The second set of rows represents the cases in which the number of possible PDU
departures is larger than the queue size and there exists a PDU dropping effect. Since
the size of a queue is finite, some of the arriving PDUs will be dropped, owing to the
lack of buffer space. The bottom part, from row X −A+1 to row X , represents cases in
which some of the incoming PDUs are dropped.

Let D(x) denote the transmission probability when there are x PDUs in the queue:

D(x) =
[
D0 · · · DU′

]
, (9.65)

where U ′ = min(x ,U) and

DU′ =

{
DU , if U ′ = U,∑U

k=x Dk , if U ′ = x .
(9.66)

Note that the maximum total PDU transmission rate can be greater than the number of
PDUs in the queue, while the maximum number of transmitted PDUs cannot be larger
than the number of PDUs in the queue.
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The elements in the first and the second parts of matrix P can be obtained as follows:

px ,x−u =
∑

k−j=u

Λj ×
([

D(x)
]
k+1

IS

)
, (9.67)

px ,x+v =
∑

j−k=v

Λj ×
([

D(x)
]
k+1

IS

)
, (9.68)

px ,x =
∑
k=j

Λj ×
([

D(x)
]
k+1

IS

)
, (9.69)

for u = 1, ... ,U ′ and v = 1, ... ,A, where k ∈ {0,1,2, ... ,U ′} and j ∈ {0,1,2, ... ,A}
represent the number of departed PDUs and the number of PDU arrivals, respectively,
and IS is an identity matrix of size S ×S . Note that

[
D(x)

]
k+1 indicates the element at

column k +1 of row vector D(x).
Considering both the PDU arrival and PDU departure events, (9.67), (9.68), and (9.69)

represent the transition probability matrices for the cases in which the number of PDUs
in the queue decreases by u, increases by v , and does not change, respectively.

The bottom part of matrix P ({x = X −A + 1,X −A + 2, ... ,X}) must capture the
PDU dropping effect. Therefore, for x + v ≥ X , (9.68) becomes

px ,x+v =
A∑

i=v

p̂x ,x+i . (9.70)

For x = X , (9.69) becomes

px ,x = p̂x ,x +
A∑

i=1

p̂x ,x+i , (9.71)

where p̂x ,x′ is obtained from (9.67), (9.68), and (9.69) when there is no PDU dropping
effect. Equations (9.70) and (9.71) indicate the case in which the queue will be full if
the number of incoming PDUs is greater than the available space in the queue.

In consequence, to capture the required QoS measures, the steady-state probabilities
for the queue need to be found. In this context, the steady-state probability matrix π

is obtained by solving the equations πP = π and π1 = 1, where 1 is a column matrix
of ones. The matrix π will thus contain the steady-state probabilities for the number of
PDUs in the queue and the phases of the MMPP traffic source. This matrix π can be
decomposed into π(x ,s), i.e., the steady-state probability that there are x PDUs in the
queue and the phase of the MMPP arrival is s , as follows:

π(x ,s) = [π]Sx+s . (9.72)

It follows that the average number of PDUs in a tagged queue is

x̄ =
X∑

x=1

x

(
S∑

s=1

π(x ,s)

)
. (9.73)
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Moreover, we need to define the PDU dropping probability, the probability that an
incoming PDU will be dropped because of the unavailability of buffer space. This can
be derived from the average number of dropped PDUs per frame. Given that there are x
PDUs in the queue and the number of PDUs in the queue increases by v , the number of
dropped PDUs is v − (X − x) for v > X − x , and zero otherwise. The average number
of dropped PDUs per frame is

x̄drop =
S∑

s=1

X∑
x=0

A∑
v=X−x+1

π(x ,s)

⎛⎝ S∑
j=1

[px ,x+v ]s,j

⎞⎠(v − (X − x)), (9.74)

where the term
(∑S

j=1 [px ,x+v ]s,j
)

indicates the total probability that the number of

PDUs in the queue increases by v at every arrival phase. After calculating the average
number of dropped PDUs per frame, we can obtain the probability that an incoming
PDU is dropped:

Pdrop =
x̄drop

λ̄
, (9.75)

where λ̄ is the average number of PDU arrivals per frame,

λ̄ =
A∑

j=1

σΛj1, (9.76)

where σ denotes the steady-state probability of an MMPP source, which can be obtained
by solving σM = σ and σ1 = 1.

Two final important measures that we take into account are the queue throughput and
the average delay. The queue throughput, measuring the number of PDUs transmitted
during one frame, is

η = λ(1−Pdrop). (9.77)

Furthermore, the average delay is defined as the number of frames that a PDU waits
in the queue from its arrival until it is transmitted to the base station. This average delay
is obtained from Little’s law [71] as follows:

d̄ =
x̄
η
, (9.78)

where η is the effective arrival rate at the queue and x̄ is the average number of PDUs
in the queue.

Having formulated the key performance measures, notably the delay and queueing
aspects of the problem, the next step is to provide a game-theoretic analysis.
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A non-cooperative game for bandwidth allocation and admission control
In this subsection, we formulate a non-cooperative two-person non-zero-sum game for
bandwidth allocation and admission control in IEEE 802.16. The key elements of this
game are the following.

• The two players are the base station (or service provider) and any new connection that
receives a service from the base station.

• The strategy of the base station corresponds to allocating a certain bandwidth to the
new connection. Note that a strictly positive allocated bandwidth implies that the base
station accepts the new connection, while a zero bandwidth allocation implies that the
base station rejects the new connection.

• There are two possible strategies for a new connection: to accept or to reject the service
offered by the base station.

• The utility functions are dependent on the service type. The IEEE 802.16 stan-
dard defines the following four service types, each of which has different QoS
requirements:

– Unsolicited grant service (UGS) supports constant-bit-rate (CBR) traffic, for which
a static resource allocation is generally used.

– Real-time polling service (rtPS) supports real-time traffic in which the delay is
an important QoS requirement. The amount of bandwidth required for this type
of service is determined based on the required QoS performance (e.g., delay), the
channel quality, and the traffic arrival rates of the sources.

– Non-real-time polling service (nrtPS) requires a QoS guarantee that is not as strin-
gent as in the rtPS case. This type is suitable for applications such as file transfer
with guaranteed throughput. The bandwidth allocation is also adaptive, as in the
case of rtPS.

– Best-effort service (BE) is used for best-effort traffic with no QoS guarantee.
However, user satisfaction depends on perceived performance measures (e.g.,
transmission rate).

Note that UGS service does not need any adaptive bandwidth allocation.

We note that the considered game is non-cooperative because the decisions are made
by the two players (base station and new connection) independently. The base station
can decide to admit a new connection if the performance of the ongoing connections
does not degrade below a desired level. Similarly, the new connection can accept or deny
the services offered by the base station according to whether its delay and/or throughput
requirements are met.

For the base station, the procedure for establishing its strategies, i.e., deciding on
the amount of bandwidth to allocate to a new connection (including rejecting this
connection), is as follows:

1. In order to allocate bandwidth to a new connection, some portion of bandwidth needs
to be taken from the set of ongoing rtPS (Crt), nrtPS (Cnrt), and BE (Cbe) connections.
The maximum amounts of bandwidth from rtPS (b′

rt), nrtPS (b′
nrt), and BE (b′

be)
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connections are, respectively,

b′
rt =

{
β

(rt)
1 ,

∑
i∈Crt

b(i) < B(rt)
TH ,

β
(rt)
2 ,

∑
i∈Crt

b(i)≥ B(rt)
TH ,

b′
nrt =

{
β

(nrt)
1 ,

∑
j∈Cnrt

b(j) < B(nrt)
TH ,

β
(nrt)
2 ,

∑
j∈Cnrt

b(j)≥ B(nrt)
TH ,

(9.79)

b′
be =

{
β

(be)
1 ,

∑
j∈Cbe

b(j) < B(be)
TH ,

β
(be)
2 ,

∑
j∈Cbe

b(j)≥ B(be)
TH .

Here,β(rt)
1 ,β(rt)

2 ,β(nrt)
1 ,β(nrt)

2 ,β(be)
1 ,β(be)

2 ,B(rt)
TH ,B(nrt)

TH , andB(be)
TH are systemparameters.

In particular, if the amount of bandwidth allocated to rtPS connections is higher than
the threshold B(rt)

TH , the maximum amount of bandwidth taken from Crt is β
(rt)
2 , and β

(rt)
1

otherwise.Asimilar method is used for nrtPS and BE services. Using these thresholds,
we can prioritize bandwidth allocation among rtPS, nrtPS, and BE services. For
example, if the amount of bandwidth used by BE service is larger than that of rtPS and
nrtPS, the portion of the bandwidth for the new connection coming from Cbe should
be larger than the ones coming from Crt and Cnrt. Note that β

(rt)
1 , β

(rt)
2 , β

(nrt)
1 , β

(nrt)
2 ,

β
(be)
1 , and β

(be)
2 are chosen according to the type of new connection. For example,

if the new connection is of type rtPS, a larger amount of bandwidth should come
from Crt.

2. Subsequently, the set of base station strategies can be defined as BS =
{bs0,0,0,bs0,0,1, ... ,bs r ,n,e , ... ,bsb′

rt,b
′
nrt,b

′
be
}, where r , n, and e units of bandwidth (i.e.,

r ∈ {0,1, ... ,b′
rt}, n ∈ {0,1, ... ,b′

nrt}, and e ∈ {0,1, ... ,b′
be}) are taken from rtPS,

nrtPS, and BE connections, respectively, and assigned to a new connection. The total
number of possible strategies is (b′

rt +1)× (b′
nrt +1)× (b′

be +1).
3. After obtaining the amount of bandwidth, the base station needs to decide from

which connections in Crt, Cnrt, and Cbe the bandwidth will be taken. In this case,
the base station can iteratively search for the ongoing connections with the highest
utility. We denote by Br+n+e the row vector pertaining to the remaining amount of
bandwidth allocated to ongoing connections if the base station allocates r + n + e
units of bandwidth to the new connection. Note that B0 denotes the initial amount of
bandwidth of the ongoing connections before the algorithm starts and

∑
∀i [Bk ]i = B ,

(k = {0,1, ... ,b′
rt + b′

nrt + b′
be}), where B is the total amount of bandwidth for rtPS,

nrtPS, and BE connections.
This matrix Br+n+e is obtained as follows:

ih = max
i

(ui ([Br+n+e−1]i )) for r + n + e > 0 , (9.80)

[Br+n+e ]ih = [Br+n+e−1]ih − 1, (9.81)

where ui (·) is the utility function of connection i , and ih is the index of the connection
with the highest utility in Br+n−1.
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For each new connection, the set of strategies can be defined as NC = {nc1,nc2},
where nc1 and nc2 denote the strategies in which the new connection accepts or denies
the service, respectively. Having defined the strategy spaces for the two players, i.e., the
base station and the new connection, we can now zoom in on the utility functions.

For an rtPS connection i , the utility depends on average delay d̄(b(i)).As discussed in
[364], a suitable utility for this type of service would be based on the modified sigmoid
function, which, given a delay requirement dtar, can be expressed as

ui (b(i)) = 1− 1
1+exp

(
−grt× (d̄(b(i))− dtar− hrt)

) , (9.82)

where grt and hrt are two parameters of the modified sigmoid function. While grt indi-
cates the steepness (i.e., sensitivity to delay), hrt represents the center of the curve (i.e.,
satisfaction with the performance as perceived by the users). This utility function is well
suited for rtPS services since its value ranges between zero and one, and it can represent
the case in which the connection is either fully satisfied with the QoS performance or
totally unsatisfied. We also note that the degree of satisfaction can be adjusted through
the function’s slope.

For an nrtPS connection i , the utility depends on the transmission rate τ(b(i)), which
is a function of allocated bandwidth. Given a throughput requirement τtar, the utility for
an nrtPS connection can be expressed as

ui (b(i)) =
1

1+exp(−gnrt× (τ(b(i))− τtar− hnrt))
, (9.83)

where gnrt and hnrt are the parameters of the sigmoid function. We note that the sigmoid
used for the nrtPS implies that whenever the perceived transmission rate is lower than a
particular level, the nrtPS user is unsatisfied with the service.

For BE connections, no strict QoS guarantees are required. Therefore, as in [364], we
consider the following logarithmic utility function in which the utility is an increasing
function of the transmission rate τ(b(i)):

ui (b(i)) = gbe log(1+hbeτ(b(i))), (9.84)

where gbe and hbe are the parameters of the utility function.Note thatwith this logarithmic
utility function, the rate of increase in utility decreases as the transmission rate increases.

The utilities defined so far pertain to each individual connection. From the base
station’s perspective, the utility can represent the total revenue from the ongoing
connections, where the revenue for each connection depends on the QoS performance.

Since we have a two-player non-cooperative game, as studied in Chapter 3, it is useful
to develop the matrix representations of the payoffs. For convenience, and because of
the large number of strategies for the base station, instead of representing the payoffs to
both players for each combination of strategies in a single matrix, we use two matrices
for each player: a matrix that shows the possible payoffs for each strategy of the base
station when the new connection uses strategy nc1 (i.e., accepts a connection), and a
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matrix that shows the possible payoffs for each strategy of the base station when the new
connection uses strategy nc2 (i.e., rejects a connection). This is somewhat similar to the
popular bimatrix representation [377] of a two-player game, with the difference being
that in the bimatrix case a single matrix per player is defined. For the base station, the
payoff matrices Ψbs are defined as follows:⎡⎢⎢⎢⎢⎣

ρbs(bs0,0,0,nc1) ρbs(bs0,0,1,nc1) · · · ρbs(bs0,b′
nrt,b

′
be
,nc1)

ρbs(bs1,0,0,nc1) ρbs(bs1,0,1,nc1) · · · ρbs(bs1,b′
nrt,b

′
be
,nc1)

...
... · · ·

...
ρbs(bsb′

rt,0,0,nc1) ρbs(bsb′
rt,0,1,nc1) · · · ρbs(bsb′

rt,b
′
nrt,b

′
be
,nc1)

⎤⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎣
ρbs(bs0,0,0,nc2) ρbs(bs0,0,1,nc2) · · · ρbs(bs0,b′

nrt,b
′
be
,nc2)

ρbs(bs1,0,0,nc2) ρbs(bs1,0,1,nc2) · · · ρbs(bs1,b′
nrt,b

′
be
,nc2)

...
... · · ·

...
ρbs(bsb′

rt,0,0,nc2) ρbs(bsb′
rt,0,1,nc2) · · · ρbs(bsb′

rt,b
′
nrt,b

′
be
,nc2)

⎤⎥⎥⎥⎥⎦ . (9.85)

Column j of these matrices corresponds to strategy bs r ,n,e , where n =
⌊

j−1
b′

nrt+1

⌋
and

e = j −
⌊

j−1
b′

nrt+1

⌋
(b′

nrt +1)− 1. The elements of this payoff matrix are

ρbs(bs r ,n,e ,nc1) =
∑
∀i

ui ([Br+n+e ]i )+ uc(n)(r + n + e), (9.86)

ρbs(bs r ,n,e ,nc2) = ρbs(bs0,0,0,nc2), (9.87)

where subscript c(n) denotes a new connection. Equation (9.86) is obtained based on the
fact that if the new connection is accepted and is allocated r +n+ e units of bandwidth,
the payoff for the base station becomes the total utility for the ongoing connections after
some portion of bandwidth has been taken away (which results in a decrease in the total
utility for the ongoing connections) plus the utility for the new connection. However, if
the new connection chooses to deny the offered service, the payoff for the base station
is the same as that when the base station rejects the new connection.

The payoff matrices Ψnc for a new connection are defined as follows:⎡⎢⎢⎢⎢⎣
ρnc(bs0,0,0,nc1) ρnc(bs0,0,1,nc1) · · · ρnc(bs0,b′

nrt,b
′
be
,nc1)

ρnc(bs1,0,0,nc1) ρnc(bs1,0,1,nc1) · · · ρnc(bs1,b′
nrt,b

′
be
,nc1)

...
... · · ·

...
ρnc(bsb′

rt,0,0,nc1) ρnc(bsb′
rt,0,1,nc1) · · · ρnc(bsb′

rt,b
′
nrt,b

′
be
,nc1)

⎤⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎣
ρnc(bs0,0,0,nc2) ρnc(bs0,0,1,nc2) · · · ρnc(bs0,b′

nrt,b
′
be
,nc2)

ρnc(bs1,0,0,nc2) ρnc(bs1,0,1,nc2) · · · ρnc(bs1,b′
nrt,b

′
be
,nc2)

...
... · · ·

...
ρnc(bsb′

rt,0,0,nc2) ρnc(bsb′
rt,0,1,nc2) · · · ρnc(bsb′

rt,b
′
nrt,b

′
be
,nc2)

⎤⎥⎥⎥⎥⎦ (9.88)
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where

ρnc(bs r ,n,e ,nc1) = uc(n)(r + n + e), (9.89)

ρnc(bs r ,n,e ,nc2) = 1− uc(n)(r + n + e). (9.90)

Equation (9.89) assigns the payoff, as per the previously defined utility functions, for a
new connection when it accepts the service offered by the base station with r + n + e
units of bandwidth. In case the connection rejects this service because of poor QoS
performance, the payoff is presented in (9.90). This is selected in such a way that, if
r + n + e is large enough to satisfy the target QoS performance, the payoff for denying
the service is low (i.e., it is better for the new connection to accept the offered service).

Given this formulation of a non-cooperative game, in the next subsection we inves-
tigate the possible solution and discuss the algorithm details as well as some results on
performance.

Nash equilibrium of the bandwidth-allocation and admission-control game
For the studied non-cooperative game, theNash equilibrium represents a suitable solution
concept. As discussed in [364] for this game, it is quite complex to analytically study
the existence and uniqueness of the Nash equilibrium. However, to determine the Nash
equilibrium in simulations similar to those in [364], one can utilize the best-response
functions of the players. For the base station, the best-response function BRbs(nc ′

i ), given
that the new connection chooses strategy nc ′

i (which is either to accept or to reject the
connection), is

BRbs(nc ′
i ) = max

bsr ,n,e

(ρbs(bs r ,n,e ,nc ′
i )) . (9.91)

For a new connection, we can define the best-response function BRnc(bs ′
r ,n,e), given

that the base station chooses strategy bs ′
r ,n,e , as follows:

BRnc(bs ′
r ,n,e) = max

nci

(
ρnc(bs ′

r ,n,e ,nc i )
)
. (9.92)

Recall from Chapter 3 that the pair of strategies (bs∗
r ,n,e ,nc∗

i ) is a Nash equilibrium if
and only if bs∗

r ,n,e = BRbs(nc∗
i ) and nc∗

i = BRnc(bs∗
r ,n). Certainly, for this strategy pair

the following holds:

ρbs(bs∗
r ,n,e ,nc∗

i )≥ ρbs(bs ′
r ,n,e ,nc∗

i ), (9.93)

ρnc(bs∗
r ,n,e ,nc∗

i )≥ ρbs(bs∗
r ,n,e ,nc ′

i ), (9.94)

for any other strategies bs ′
r ,n,e and nc ′

i .
For admission control, a new connection is accepted by the base station if there exists a

Nash equilibrium that maximizes the utility for the base station, and is rejected otherwise.
To reach a Nash equilibrium, when it exists, one can use the best-response strategies of
the players, as discussed in [364] using simulations. For bandwidth allocation, if the new
connection is accepted, the base station takes r , n, and e units of bandwidth from the
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groups of rtPS, nrtPS, and BE connections, respectively, and assigns r + n + e units of
bandwidth to the new connection.

Thus, the operation of the network will be as follows. When a new connection is
initiated, the base station invokes the bandwidth-allocation and admission-control algo-
rithm. In this case, the new connection informs the base station of the connection’s type
(i.e., rtPS, nrtPS, or BE), traffic source parameters, and its QoS (i.e., delay or through-
put) requirement. Then, the base station establishes a set of strategies and computes the
expected payoff corresponding to each strategy. Next, the game is solved to obtain the
Nash equilibrium, which is then used to make a decision on whether the connection
will be rejected or accepted as well as on the amount of bandwidth assigned to a new
connection (if accepted). This bandwidth-allocation and admission-control algorithm is
shown in Fig. 9.6, as per [364].

In [364], extensive simulations were run to assess the performance of this algorithm.
Figures 9.7(a) and 9.7(b) show the payoffs to both the base station and a new connection

New connection arrives
Search for a set of candidate

ongoing connections from 

which to take bandwidth

Formulate the

set of strategies

Obtain Nash equilibrium

by using best response

Result of Nash equilibrium

Allocate bandwidth based on

the strategy that maximizes

the utility for the base station

Accept

Reject

Fig. 9.6 Bandwidth-allocation and admission-control procedure.
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Fig. 9.7 Payoff for (a) the base station, and (b) a new connection, for the case when a new connection is
accepted.
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for the case in which the base station accepts the new connection (with b′
rt = b′

nrt = b′
be =

10). The results in these figures are obtained using the best-response functions and the
matricesΨbs in (9.85) andΨnc in (9.88), respectively. This case corresponds to a scenario
in which, from the perspective of the base station, accepting a new connection yields a
higher payoff than rejecting it. Similar results can be seen in [364] for the case where
there is no Nash equilibrium, in which the payoff in accepting the new connection is
higher than that resulting from rejecting the new connection (i.e., it is better for the base
station to reject the connection). Finally, the reader is referred to [364] for additional
simulation results and insights on the properties and performance advantages of the
game-theoretic approach.

9.4.2 Relay-station deployment in IEEE 802.16j

In themost recentWiMAXstandard, the IEEE802.16j, a newnode, the relay station (RS),
has been introduced to improve the network’s capacity and coverage [11]. One important
motivation for deploying RSs is that it enables the use of advanced communication
techniques such as cooperative communication (i.e., cooperative relaying), which can
significantly improve the performance for thewireless users.This has also encouraged the
incorporation of relay-station nodes in other important next-generationwireless networks
(beyond 802.16j), such as LTE-Advanced [7].

For an efficient deployment of RSs in next-generation networks, several key technical
challenges need to be addressed at both the uplink and downlink levels. For the downlink
of 802.16j networks, in [296] the authors study the optimal placement of one RS that
maximizes the total rate of transmission. This optimal RS placement is further studied in
[297] for multiple RSs, aiming to maximize throughput using the concept of dual relay-
ing. Moreover, the work in [524] provides an algorithm for finding the optimal locations
of the BS and the RSs, thus minimizing the cost for deployment of a full-scale IEEE
802.16j network. In [429], the authors study the capacity gains and resource utilization
in a multi-hop LTE network in the presence of RSs. Furthermore, the performance of
different relaying strategies in an LTE-Advanced network is studied in [389]. Resource-
allocation and network-planning techniques for 802.16j networks in the presence of RSs
are proposed in [369]. Other aspects of RS deployment in next-generation networks are
considered in [490, 506, 474, 285, 410, 414].

Most of these contributions focus on the performance-assessment and operational
aspects of RS deployment in next-generation multi-hop networks such as 802.16j and
LTE-Advanced. Beyond these aspects, one challenging area that is of central interest
in the design of next-generation broadband wireless networks is the distributed forma-
tion of the network architecture that will connect the base stations, relay stations, and
mobiles in the network. In particular, we note that the introduction of the RS strongly
impacts the network architecture of next-generation networks such as IEEE 802.16j and
LTE-Advanced, which will be governed by a tree architecture connecting the base sta-
tion to its subordinate RSs. Efficient design of the tree topology in 802.16j and similar
networks is a challenging problem, notably because the RSs can be nomadic or mobile.
ExistingWiMAX and LTE standards do not provide any algorithm for the tree formation,
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although they state that both distributed and centralized approaches may be used. One
contribution to tackling this problem in 802.16j networks has been made in [285] using
a centralized approach. However, this work neither provides a clear algorithm for the
tree formation, nor considers cooperative transmission or multi-hop delay. In addition,
a centralized approach can yield some significant overhead and complexity, namely in
networks with a rapidly changing environment caused by RS mobility or incoming traffic
load. Distributed approaches for the tree formation, using game theory, are derived in
[410, 414].

In this section, based on the work in [414], we tackle the problem of forming the
tree architecture in 802.16j-like multi-hop networks, in a distributed manner. First, we
describe the studied model and formulate it as a network-formation game. Then, we
develop an algorithm for network formation, and study its performance in a simulated
environment.

Network-formation game for uplink tree formation
Consider the uplink of an IEEE 802.16j (or LTE-Advanced) network with M RSs (fixed,
mobile, or nomadic) and one base station. The RSs transmit their data in the uplink to
a central base station through multi-hop links, so a tree architecture needs to form, in
the uplink, between the RSs and their serving base station. In an 802.16j network, this
tree architecture is imposed in the standard [11]. Once the uplink network structure is
formed, mobile stations (MSs) can connect to the network by selecting a serving RS
or by directly connecting to the base station. In this context, we consider that the MSs
deposit their data packets to the serving RSs using direct transmission. Subsequently,
the RSs in the network that received the data from the external MSs can act as source
nodes, transmitting the received MS packets to the base station through one or more hops
in the formed tree, using cooperative transmission. The considered direct transmission
between an MS and its serving RS enables us to consider a tree-formation algorithm that
can be easily incorporated into new or existing wireless networks without the need for
coordination with external entities such as the MSs.

Toperformcooperative transmission between theRSs and the base station,we consider
a decoded relaying multi-hop diversity channel, i.e., decode-and-forward relaying as
required by the IEEE802.16j standard (see [414] for further information on themulti-hop
diversity channel that is used in the model). In this relaying scheme, each intermediate
node on the path between a transmitting RS and the BS combines, encodes, and re-
encodes the received signal from all preceding terminals before relaying (decode-and-
forward). Formally, every MS k in the network constitutes a source of data traffic that
follows a Poisson distribution with an average arrival rate λk . With such Poisson streams
at the entry points of the network (theMSs), for everyRS, the incoming packets are stored
and transmitted in a first-in first-out (FIFO) fashion, and we consider that we have the
Kleinrock independence approximation [71, Chapter 3], with each RS being an M/D/1
queueing system.4

4 Any other queueing model (e.g., M/M/1) can also be accommodated.
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Fig. 9.8 Example of a tree topology formed using a distributed network-formation game.

With this approximation, the total traffic that an RS i receives from the MS that it is
serving is a Poisson process with an average arrival rate of Ti =

∑Li
l=1 λl , where Li is

the number of MSs served by RS i . Moreover, RS i also receives packets from RSs that
are connected to it, with a total average rate Ri . For these Ri packets, the sole role of RS
i is to relay them to the next hop. In addition, any RS i that has no assigned MSs (Li = 0
and Ti = 0), transmits HELLO packets, generated with a Poisson arrival rate of η0, in
order to maintain its link to the BS as active during periods of no actual MS traffic. An
illustrative example of this model is shown in Fig. 9.8.

For modeling the interactions among the RSs seeking to form the uplink tree struc-
ture, as in Fig. 9.8, network-formation games, which are a branch of coalitional graph
games, provide a suitable framework, as discussed in Chapter 7. For the considered
tree-formation model, we formulate a network-formation game, with the RSs being the
players. The result of the interactions among the RSs is a directed graph G (V,E) with
V = {1, ... ,M + 1} denoting the set of all vertices (M RSs and the base station) and E
denoting the set of all edges (links) between pairs of RSs. Each link between RSs i and
j , denoted (i , j) ∈ E , corresponds to an uplink traffic flow from RS i to RS j .

For the considered model, it is useful to define the notion of a path as follows:

definition 9.2 A path between two nodes i and j in the graph G is defined as a
sequence of nodes i1, ... , iK such that i1 = i , iK = j , and each directed link (ik , ik+1)∈G
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for each k ∈ {1, ... ,K − 1}. We denote the set Qi as the set of all paths from node i to
the BS, and thus |Qi | represents the number of paths from node i to the BS.

As the 802.16j standard imposes a tree structure between the RSs and the base station,
we adopt the following convention throughout the remainder of this book:

convention 9.1 Each RS i is connected to the BS through at most one path, and
thus |Qi | ∈ {0,1}, ∀ i ∈V . Hence, we denote by qi ∈Qi the path between any RS i and
the BS.

This convention is also reasonable in the context of other next-generation networks such
as LTE-Advanced, because it will be common that, in the uplink, each RS communicates
with its serving base station over a single path.

For the RSs’network-formation games, we delineate the possible actions or strategies
that each RS can take in the network-formation game. The strategy space of each RS
i consists of the RSs (or the base station) that i wants to connect to. Consequently, the
strategy of an RS i is to select the link that it wants to form from the available strategy
space. We note that an RS i cannot connect to an RS j that is already connected to i , in
the sense that if (j , i) ∈ G , then (i , j) /∈ G .

Formally, for a current network graph G , letAi = {j ∈V \{i} | (j , i)∈G} be the set of
RSs fromwhichRS i has already accepted a link (j , i), andSi = {(i , j)|j ∈V\({i}

⋃
Ai )}

be the set of links corresponding to the nodes (RSs or the base station) with which RS i
wants to connect (note that RS i cannot connect to RSs that are already connected to it,
i.e., RSs in Ai ). In consequence, the strategy of an RS i is to select the link si ∈ Si that
it wants to form, i.e., choose the RS that it will connect to. Based on Convention 9.1, an
RS can be connected to at most one other node in our game, so selecting to form a link si
implies that RS i will replace its previously connected link (if any) with the new link si .

Having clearly defined the players and the strategies of the RS network-formation
game, the next step is to introduce a suitable utility that can capture the objectives of
the RSs. In the considered model, each RS aims to optimize the tradeoff between the
achieved packet success rate from transmitting data to the base station and the delay
incurred by multi-hop transmission. Although longer hops can, in most cases, yield an
improved packet success rate because of bit error rates from cooperative transmission,
this gain comes at the cost of an increased delay from using more hops (using more
hops can also increase the likelihood of passing through a congested RS). Hereinafter,
we consider that the RSs are utilizing voice over IP (VoIP) services, in which optimizing
the tradeoff between packet success rate and delay is significantly important.5 For VoIP
services, given the delay and the packet success rate (which is a function of the bit error
rate), an appropriate utility function can be defined using the concept of the R-factor,
which links the delay and the packet loss to voice quality, as follows [483]:

ui (G ) = Ωa− ε1τi ,qi (G )− ε2(τi ,qi (G )−α3)H −υ1

−υ2 ln(1+100υ3(1− ρi ,qi (G ))), (9.95)

5 The analysis done in this subsection can readily be extended to other types of services by using a different
utility (e.g., see [410]).
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where τi ,qi is the multi-hop delay (given by the Kleinrock approximation; see [410])
expressed in milliseconds; 100(1− ρi ,qi ) represents the packet loss percentage, with
ρi ,qi being the packet success rate achieved by RS i over path qi , which is a function
of the packet size and the bit error rate achieved when using the previously described
decode-and-forward cooperative-transmission scheme (we consider only the packet loss
due to errors, ignoring packet loss due to overloaded links). The remaining parameters
are constants: Ωa = 94.2, ε1 = 0.024, ε2 = 0.11, ε3 = 177.3, H = 0 if τi ,qi < ε3, and
H = 1 otherwise. The parameters υ1, υ2, and υ3 depend on the voice speech codec. The
relationship between the R-factor and VoIP service quality is such that as the R-factor
increases, voice quality improves. For different voice codecs, different R-factor ranges
provide an indication of voice quality varying from poor, low, medium, high, to best as
the R-factor increases.

Thus, in the formulated RS network-formation game, each RS attempts to find the
strategy (next hop) that maximizes its R-factor. Each strategy profile adopted by the
relay stations maps into a formed network graph G , which yields a different utility for
each RS, as per (9.95).

Now thatwehave formulated the network-formationgamebyclearly defining the play-
ers, their strategies, and their utilities, the next step is to develop a distributed algorithm
for forming the network.

Network-formation algorithm
Before delving into the details of the algorithm for the considered game, we highlight
the following property, based on [414]:

proposition 9.2 Any network graph G resulting from a dynamics applied to the
studied network-formation game is a connected, directed tree structure rooted at the BS.

This property can be seen by inspecting the utility in (9.95), where we notice that if
an RS i is not connected to the base station through direct transmission or other multi-
hop paths (Qi = ∅), we have ρi ,qi = 0, as all packets are lost (no packet reaches the
base station). As a result, the last term in (9.95) is maximized, and the whole utility
is minimized (the delay is also infinite if Qi = ∅). Hence, a disconnection by any RS
drastically decreases its utility and there is no incentive for any RS to disconnect from the
base station. Consequently, any graph G formed in the considered RS network-formation
game is a connected graph, i.e., a tree rooted at the base station.

Because of the high disconnection cost, if an RS is unable to find any partner suitable
for forming a link, it will connect to the base station by direct transmission. Thus, our
network initially starts with all the RSs connected to the base station (star topology),
before engaging in the network-formation game. Denote by Gsi ,s−i the graph formed
when RS i plays a strategy si ∈ Si , while all other RSs maintain their vector of strategies
s−i = [s1, ... ,si−1,si+1, ... ,sM ]. We define the best response for an RS as follows:

definition 9.3 A strategy s∗
i ∈ Si is a best response for an RS i ∈ V if

ui (Gs∗
i ,s−i )≥ ui (Gsi ,s−i ), ∀si ∈ Si . (9.96)
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Thus, the best response for RS i is to select the link that maximizes its utility, given that
the other RSs maintain their vector of strategies. Notice that this is similar to the standard
definition of a best response in non-cooperative games (see Chapter 3), but in network-
formation games a key feature is that the strategy profile maps to a network graph.

By using the different properties of the RS network-formation game, we can con-
struct, as in [414], a distributed network-formation algorithm using the best responses
of the RSs. In this algorithm, the RSs are assumed to be myopic, in the sense that they
aim at improving their payoffs considering only the current state (graph), without tak-
ing into account the future evolution of the network. The network-formation algorithm
under consideration is composed of several rounds with each round consisting mainly of
twophases: a fair-prioritizationphase and a tree-formationphase. In the fair-prioritization
phase, a priority function is used to assign a priority to each RS. In the tree-formation
phase, an iterative procedure is developed in which the RSs act by increasing priorities.

Therefore, each round of the considered algorithm begins with the fair-prioritization
phase, in which each RS is assigned a priority depending on its actual perceived bit error
rate: RSs with higher bit error rates are assigned higher priorities. The motivation behind
this procedure is to fairly give RSs that are experiencing a bad channel an advantage in
selecting their partners, for the purpose of improving their performance. Thus, the RSs
experiencing bad channel conditions (high bit error rates) can select their partners out
of a larger space of strategies during the tree-formation phase (recall that an RS cannot
choose to connect to an RS that is already connected to it). Other priority functions can
also be used, and in general, a random priority function can be defined.

Following prioritization, the RSs start selecting their strategies sequentially in order
of priority. During its turn, each RS i chooses to play its best response s∗

i ∈ Si in order
to maximize its utility at each round given the current network graph resulting from
the strategies of the other RSs. The best response of each RS can be seen as a replace
operation, whereby the RS will replace its current link to the BS with another link that
maximizes its utility (if such a link is available).

Multiple rounds consisting of the above two phases will be run until convergence to
the final tree structure G †, where the RSs can no longer improve their utilities using best
responses. The studied algorithm is summarized as Algorithm 9.4.

The stability of the final graph G † is given using the concept of a Nash network,
defined as follows:

definition 9.4 A Nash network is a network graph G in which no node i can improve
its utility by a unilateral change in its strategy si ∈ Si .

A Nash network, in the context of RS network formation, is a network in which no RS
has an incentive to unilaterally decide to replace its current link with another link, given
that the other RSs do not change their connections. In a Nash network, each link selected
by an RS i ∈ V is a best response to the graph formed by the other RSs, i.e., the graph
with vertices V \ {i}. Algorithm 9.4 is based on best-response interactions, so when it
converges it will reach a Nash network as per [414, Lemma 1].

Although, in this setting, an analytical proof for the convergence of the algorithm is
complicated because of the characteristics of the game (R-factor-based utility function
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Algorithm 9.4 Network-formation algorithm.
Initial State

All the RSs are connected in a start network rooted at the base station.
Two Phases in each round of network formation:

Phase 1, fair prioritization:
Prioritize the RSs from the highest to the lowest current bit error rate.

Phase 2, myopic tree formation:
The RSs take action sequentially by priority:

a) Each RS i plays its best response s∗
i , maximizing its utility (R-factor).

b) The best response s∗
i of each RS is a replace link operation through which

an RS i splits from its current parent RS and replaces it with a new RS that
maximizes its utility.

Multiple rounds are run until convergence to the final Nash tree G †, where no RS
can improve its utility by a unilateral change of strategy.

and discrete strategies), using simulations it is shown in [414] that the algorithm does
indeed converge to a Nash network for the considered simulation setting. Note that,
in cases where the algorithm does not converge (e.g., when no Nash network exists),
one can impose a restriction on the RSs, such as forbidding them to visit certain graphs
or excluding some deviations, in order to guarantee convergence. Alternatively, in the
non-convergent case, the RSs can be allowed to utilize multiple graphs, i.e., to cycle
periodically between a fixed number of tree structures.

Figure 9.9 shows the tree that forms among M = 10 RSs deployed within the coverage
area of a single base station. The network-formation game starts with the star topology in
which all RSs are connected directly to the base station. Prior to the presence of theMSs in
the network (only HELLO packets present), the RSs interact and converge to a final Nash
tree structure, shownby the solid lines in thefigure.Thisfigure clearly shows how theRSs
connect to their nearby partners, forming the tree structure. Upon deployment of 50 MSs
in the network, the RSs adapt to this incoming traffic by forming a new tree structure
shown by the dashed lines in Fig. 9.9. To adapt to the incoming traffic, each RS can, in a
distributed manner, take a decision to change its current connection in the network.As an
example, when the MSs are deployed, RS 3 can no longer accommodate the traffic gener-
ated by RS 2 as this drastically decreases its utility.As a result, RS 2 takes the decision to
disconnect from RS 3 and improve its R-factor by connecting directly to the base station.
Similarly, RS 7 disconnects from RS 10 and connects directly to the base station. More-
over, RS 9 finds it beneficial to replace its link to RS 5 with a link to the less-loaded RS 6.

In Fig. 9.10, we show the average achieved utility per MS as M , the number of
RSs in the network, increases. The results are shown for the studied network-formation
algorithm, for a star topology in which each RS is directly connected to the base station
and for the scenario in which no RSs exist in the network. In this figure, we clearly see
that as the number of RSs in the network increases, the performance of the network-
formation case as well as for the star topology improves. However, for the star topology
the rate of improvement is much slower than for network formation. In addition, network
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formation presents a clear performance advantage, increasing with the number of the
RSs, and reaching up to 40.3 percent and 42.8 percent (at M = 25 RSs) relative to the
star topology and the no-RSs case, respectively. Also, this figure highlights the fact that,
owing to the delay cost for transmission over multi-hop networks, a significant number
of RSs must be deployed within the coverage area of a single base station in order to
benefit from performance gains.

In summary, in this subsection we have showed how, based on [414], network-
formation games can be used to construct the tree topology that will govern the
architecture of next-generation networks such as IEEE 802.16j and LTE-Advanced,
in the presence of RSs. Future extensions of this model can tackle various aspects of
network topology formation in next-generation networks such as devising a probabilis-
tic approach to network formation, expanding the analytical results on convergence by
choosing alternate stability or algorithmic concepts (e.g., pairwise stability or interactions
that are not based on best responses), or imposing a structure on the current utility func-
tion. Further extensions can consider coalitional graph game concepts such as the bal-
anced core introduced in [205] to characterize the architecture of next-generationwireless
networks.

9.5 Network selection in multi-technology wireless networks

In recent years, the wireless market has been served by a variety of technologies (GSM,
UMTS, HSDPA, WiMAX, LTE, WiFi). Because each technology possesses advantages
and drawbacks, the deployment of multiple technologies in adjacent locations is increas-
ing. Moreover, with the emergence of the norm IEEE 802.21 [9, 472], radio access
equipment is becoming multi-standard, offering the possibility of connecting, concur-
rently, using a number of technologies. Hence, heterogeneity in terms of network types
and capabilities is a key characteristic of emerging wireless networks. An example of
a heterogeneous wireless network with three different access technologies is shown in
Fig. 9.11. It is expected that future wireless devices will be able to switch between dif-
ferent networks with different technologies, this capability is often referred to as vertical
handover.

Vertical handover reflects an important paradigm shift towards next-generation wire-
less (e.g., 4G) networks where seamless mobility across heterogenous technologies and
services becomes a possibility [140, 468, 155, 246]. Because of this heterogeneity,
dynamic network selection (i.e., vertical handover) is required not only to achieve seam-
less mobility, but also to support quality-of-service improvement and load balancing. For
example, one key characteristic of 4G networks is the possibility of vertical handover
between wireless LAN and cellular communication (e.g., UMTS or CDMA2000). In
such a case, a suitably equipped wireless device would be able to exploit the benefits
both of wireless LANs (high throughput) and of cellular technology (ubiquitous cover-
age) for Internet access, for example. IEEE 802.21 addresses the technical aspects of
handover between cellular, GSM, GPRS, 802.16, 802.11, Bluetooth, and WiFi [9, 472].

Vertical handover in heterogeneous wireless networks can be grouped into two
categories: network-driven selection and user-driven selection. In a network-driven
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Fig. 9.11 Example of a heterogeneous wireless network with three different technologies.

approach, the selection decision is made on the network side, e.g., by the service provider
or network operator. Such a scheme is suitable for tightly integrated environments in
which a central controller distributes traffic flows among different networks. In a user-
driven approach, the users can, individually and in a distributed fashion, take choose
the network that is best suited to their objectives. As a result, a user-driven vertical-
handover scheme does not require any centralized coordination or the integration of
additional inter-networking protocols among the different wireless technologies.

The interest in vertical handover spawned a variety of research activities tackling its
technical challenges, notably for the user-driven scheme [529, 526, 109, 120, 531, 68,
63, 365, 114]. In [529], vertical handover between wireless WAN and wireless LAN is
implemented and tested using a connection manager that can detect condition changes.
Guidelines for efficient optimization of the performance of vertical handover between
cellular networks and wireless LANs are presented in [526]. An opportunistic vertical-
handover scheme that reduces packet in loss timeVoIPservices is studied in [109] using a
two-state Markov model that exploits the on-off characteristics of voice traffic. Providing
vertical handover between IEEE 802.11 and IEEE 802.16 is studied in [120, 531] on
the basis of a variety of quality-of-service metrics. Additional approaches for network
association and vertical handover are found in [68, 63, 365, 114].

Vertical handover is inherently a decentralized operation, as each usermust take a deci-
sion on which network type to use, depending on its QoS needs and service requirements.
This has encouraged the development of approaches based on game theory to tackle the
network-selection problem in heterogeneous, next-generation wireless networks. We
study this problem using the approach in [131].

We start by formulating a non-cooperative game for network association in wireless
networks. Then, we study the solution of the game and develop an algorithm for finding
this solution.
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9.5.1 Network selection as a non-cooperative game

In this subsection, we tackle the problem of network selection (vertical handover) in
heterogeneous wireless networks using a non-cooperative-game model with complete
information. First, we formulate the problem of vertical handover in a multi-technology
network as a non-cooperative game. We then discuss the possible solutions of this game.
Finally, we study a non-cooperative-game model where network selection and resource
allocation are jointly considered.

Network selection as a non-cooperative game with complete information
Consider a wireless network in which two access points, each belonging to a differ-
ent standard (e.g., HSDPA, WiMAX, WiFi, cellular, etc.), coexist. In this network, we
consider N users that are able to monitor both standards and to select the best stan-
dard to connect to, depending on their quality-of-service requirements. We also assume
that there are MAC schedulers at every access point (or base station), which, over an
intermediate time scale, allow each user to use a channel and transmit according to
the number of users connected to a given base station, and to its own channel condi-
tions. For any user i connected to an access point or base station r , the throughput is
given by

Tir =
cir

Nr
, (9.97)

where Nr is the number of users connected to access point r and cir = log(1+γir )
is referred to as the coupling coefficient, the throughput that user i could achieve if it
were connected on its own to the base station (γir = hir Pi

σ2 is the SNR of user i , with Pi

being the transmit power of user i , hir the channel gain from user i to base station r ,
and σ2 the variance of the Gaussian noise). This formula is strictly valid in the round-
robin scheduling case, although the functional form of the user-perceived throughput
on the instantaneous SNR and system load N are similar to those in other scheduling
systems (e.g., proportional fair). Note that in some cases (e.g., when user throughput is
averaged over several time windows) cir should represent the ergodic capacity instead
of the instantaneous Shannon capacity; however, this case is beyond the scope of the
analysis in this section.

In this model, the key problem is to determine which user will connect to which
network standard (out of the two considered network types), i.e., we have a vertical-
handover problem. Clearly this suggests the use of a non-cooperative-game model for
the users.

Formally, we define a non-cooperative game (in strategic form) with the following
components:

• The players are the users in the set N .
• The strategy of each user i ∈N can be represented by variable σi , where σi = +1 if

user i selects standard 1, and σi =−1 if user i selects standard 2.
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• The utility for each user i is given by the throughput (9.97). In light of the definition
of a user’s strategy, (9.97) can be rewritten as:

ui (σ) =
1
N

(
ci1(1+σi )

1+m
+

ci2(1−σi )
1−m

)
, (9.98)

where ci1 and ci2 represent, respectively, the coupling coefficients when user i selects
the first or second standard, and m = 1

N

∑N
i=1 σi is a value referred to as the aggregate

strategy.

In this game, each user aims to select the wireless standard that can maximize its
utility as given in (9.98). We investigate the possibility of finding mixed-strategy Nash
equilibria. A mixed strategy in this game denotes a probability distribution over the
two possible pure strategies σi = +1 and σi =−1. This would mean that user i would
select the first technology with a certain probability p1

i and the second technology with
a probability p2

i = 1− p1
i . Each user would then aim to find the probability distribution

that maximizes its expected payoff.
As discussed in Chapter 3, a mixed-strategy Nash equilibrium always exists. Hence,

the key question is how to devise a scheme to reach a mixed-strategy Nash equilibrium
for the modeled vertical-handover game.

Dynamics of the vertical-handover non-cooperative Game
In this subsection, we develop a scheme to describe how the users reach a mixed-strategy
Nash equilibrium. We can utilize the approach in [131], where each user keeps track of
the performance it could have achieved at each time t when selecting any standard r .
The game is iterated allowing the users to keep track of their strategies’performance and
to choose the one that performs best for them. Each player keeps a recursive score,

U r
i (t +1) = U r

i (t)+ ur
i (t), r = 1,2, (9.99)

where ur
i (t) is the payoff, as per (9.98), that user i would have received at time t if it

had used standard r , r = 1,2. In this model, each user can, at time t, use standard r with
probability pr

i (t), as given by the exponential logit model:

p1
i (t) =

1
1+ e+ηΔUi (t)

, p2
i (t) = 1− p1

i (t) =
1

1+ e−ηΔUi (t)
, (9.100)

where ΔUi = U1
i − U2

i and η is parameter that controls the users’ learning rate.
Considering a continuous time limit, we can derive the dynamics of the system:

dpr
i

dt
= ηpr

i (u
r
i (t)−〈ui (t)〉), r = 1,2, (9.101)

where 〈·〉 denotes an averaging over the strategies pr
i of user i . Equation (9.101) is

reminiscent of the standard replicator dynamics equation used in evolutionary games, as
discussed in Chapter 6. It is well known that the stable points of this equation are Nash
equilibria. Thus, by adhering to the selfish scheme of selecting the wireless standard that
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yields the greatest individual payoff with a probability that depends on the disparity of
the payoffs, the users eventually converge to a steady state that is a Nash equilibrium.

To analyze the performance of vertical handover based on the mixed-strategy Nash
equilibrium as given by (9.100), a variety of simulationswere run in [131]. In essence, the
results show that the network reaches a mixed-strategy Nash equilibrium in a relatively
small number of iterations, i.e., the vertical-handover game converges quickly.Moreover,
compared to the case with no handover as well as to another dynamic vertical-handover
algorithm, it is seen that using the studied game-theoretic framework yields the best
performance, at the cost of an increased vertical-handover rate.Another interesting result
is that theNash equilibrium is reasonably efficient in that it achieves about 87.3 percent of
the performance of the global optimal case, i.e., the social welfare (aggregate throughput)
maximizing case. In essence, by formulating the vertical handover as a non-cooperative
game, we see that, even though users do not communicate with one another and act on the
basis of a completely selfish agenda, they quickly learn to perform with an unexpected
efficiency. In fact, their performance closely rivals the (exponentially hard to calculate)
optimal distribution, which maximizes the aggregate throughput and would be difficult
to implement even within a centrally controlled network. Future studies could extend the
work to multiple technologies, as discussed in [131], as well as taking into account the
cost of vertical handover (in terms of additional delay or reduced throughput efficiency).

We highlight that in this section, it is assumed that all users have complete information
on the game in terms of payoffs, load, downlink SNR, etc. In the next subsection, we
investigate a model for vertical handover with incomplete information.

9.5.2 Network selection with incomplete information

Most of the existing work on vertical handover assumes that users have complete infor-
mation on one another. Within a game-theoretic framework, this implies that each user is
perfectly aware of the behavior and decisions of the other users. In practice, although the
users can make a best response to the current state of the network, they lack the ability
to predict the behaviors of others based on past actions. In this case, it is appropriate to
utilize a non-cooperative game with incomplete information, i.e., a Bayesian game, as
explained in Chapter 4. In particular, we adopt the approach of [263], where a Bayesian
game-based approach is formulated by considering a vertical-handover game in which
the users have different bandwidth requirements. Since the preference (i.e., utility) for
a mobile user is private information, each user has to make a network selection given
only the distribution of the preferences of other users.

In the rest of this section,we describe the studied network-selectionmodel, formulate it
as a static Bayesian game, and study its possible dynamics.We conclude by investigating
the impact of different system parameters on the performance of the studied game in a
practical setting.

Network selection as a Bayesian game
Consider a service area in the coverage of a heterogeneous wireless environment con-
sisting of multiple access networks types (e.g., WLAN, WiMAX, 3G). Without loss of
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generality, we consider a service area a with three access networks, similar to the one
shown in Fig. 9.11. N users are deployed, with each user periodically receiving beacon
signals from the base stations (or access points) of the available access networks. We
let Ci denote the set of candidate access networks for user i . Each user i can choose
to connect to any network in its candidate set Ci . Hereinafter, we assume that all users
in area a have the same candidate access set Ci = C, which consists of K = |C| access
networks, where | · | is the cardinality of a set operator.

Each access network k employs a fixed-price scheme setting a price pk per connection
per unit of time for using its network. Furthermore, all users accessing the same network
are considered to be sharing, equally, the available bandwidth. Thus, the bandwidth of
user i received from network k is τ k

i = Bk
Nk

, where Bk is the available bandwidth of
network k and Nk is the total number of users choosing network k in service area a, with
N =

∑
k∈C

Nk .

Each user needs to select the most appropriate network, given its own objectives. For
this purpose,we can formulate a non-cooperative gamewith incomplete information, i.e.,
a Bayesian network-selection game. In this game, we will use the minimum bandwidth
requirement, which is private information to represent the type of a user. Furthermore, the
uncertainty of the minimum bandwidth requirement will be taken into account. Formally,
the studied Bayesian network-selection game has the following components:

• The players are the N users in service area a.
• The action of any user is to select an access network k from the candidate access

set C. Let Δ = {y =
[
y1 · · · yk · · · yK

]T ∈ RK
+|
∑
k∈C

yk = 1} denote the set

of probability distributions over the actions, where yk represents the probability of
choosing network k .

• The type of any user i is the minimum bandwidth requirement bi ∈ Γ, where Γ is the
type space. We assume that all users of a particular type have the same probability
distribution with a probability density function denoted by f (bi ).

• The strategy of any user i , si : Γ→Δ, is a mapping from the type space to the action

distribution set. si (bi )=
[
s1
i (bi ) · · · sk

i (bi ) · · · sK
i (bi )

]T
represents the probability dis-

tribution over the actions given the Bayesian strategy si and the minimum bandwidth
requirement bi , where sk

i (bi ) is equal to yk . For simplicity, hereinafter we use si (bi )
and si interchangeably. The set of all strategies is denoted by Ω.

• For the underlying Bayesian network-selection game, we let πi denote the expected
payoff for user i , which is defined as the utility received from the bandwidth minus
the connection fee. Later, when we deal with the evolutionary process, the handover
cost needs to be considered, and the instantaneous payoff for user i at decision epoch
m will be denoted by πi (m).

Given the above-formulated Bayesian game, let us look more closely at a possi-
ble utility function. The instantaneous utility for user i in selecting network k can be
expressed as

πk
i =

{
u(τ k

i )− pk , τ k
i ≥ bi ,

−pk , τ k
i < bi ,

(9.102)
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for i ∈ {1,2, ... ,N} and k ∈ C, where u
(
τ k
i

)
= α log

(
1+βτ k

i

)
. In particular, u(τ k

i ) is
a concave function representing the utility that user i can extract, given an allocated
bandwidth τ k

i , from network k , and pk is the price charged by network k (i.e., the
connection fee). The utility function in (9.102) implies that, whenever the minimum
bandwidth requirement of a user i cannot be met (i.e., the received bandwidth is less
than the threshold bi ), the payoff for the user becomes equal to the negative value of the
price paid for the connection. Otherwise, the utility in (9.102) monotonically increases
as the allocated bandwidth increases. This utility function is used in many applications
on the Internet (e.g., elastic services using transmission control protocol (TCP)) [263].

Let δ = {s1,s2, ... ,sN} denote the strategy profile in the considered Bayesian network-
selection game, which is the set of strategies adopted by the N users. For ease of
presentation, the strategy profile can be represented as δ = {si ,s−i}, where si is the
strategy of user i and s−i represents the vector of strategies of all users except user i .
Similarly, the set of types of all users can be denoted as {bi ,b−i}, where b−i is the vector
of types of all users except user i .

The expected number of users choosing network k , given all other users’ strategies
s−i and types b−i , is

ik(s−i ,b−i ) =
N∑

j=1,j �=i

sk
j (bj), (9.103)

and the expected number of users choosing network k containing all possible type
combinations is expressed as

ik(s−i ) =
∫
b1

...
∫
bj

...
∫
bN

ik(s−i ,b−i )
N∏

j=1

f (bj)dbN ...dbj ...db1, (9.104)

for j 	= i . Therefore, if user i chooses to access network k , the total number of users
expected to choose network k becomes

l(Nk) = 1+ ik(s−i ). (9.105)

Given all other users’ strategies, the bandwidth allocated to user i by network k is

τ k
i (s−i ) =

Bk

l(Nk)
. (9.106)

Let Φk
i (s−i ,bi ) denote the probability that user i satisfies the minimum bandwidth

requirement by choosing network k , given all other users’ strategies s−i . Φk
i (s−i ,bi )

can be defined as

Φk
i (s−i ,bi ) = Pr[τ k

i (s−i ) > bi ]. (9.107)

If user i chooses network k , the expected payoff to user i can be expressed as

πk
i (s−i ,bi ) = Φk

i (s−i ,bi )
(
u(τ k

i (s−i ))− pk
)
− [1−Φk

i (s−i ,bi )]pk . (9.108)
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In (9.108) we have the expected payoff to the users for the formulated Bayesian network-
selection game. Nonetheless, the formulated game is static, in the sense that the users
make their decisions only once. For vertical handover, it is of interest to allow the users to
adapt their network-selection decisions over time. To accurately model the dynamics of
network selection,we consider an evolutionary process inwhich the staticBayesian game
evolves over time. For this dynamic process, which is performed iteratively, we need to
consider the cost of handover (e.g., due to delay and loss). Thus, at any decision epoch
m− 1, if a user decides to perform a handover, i.e., to switch its selected network from
k(m−1) to k(m) (at decision epoch m), with k(m) 	= k(m−1), then a cost ci is incurred
by user i .As a result, in the dynamic network-selection process, the instantaneous payoff
to user i at decision epoch m can be expressed as

πi (m) =

{
π

k(m)
i , k(m) = k(m− 1),

π
k(m)
i − ci , k(m) 	= k(m− 1).

(9.109)

Nash equilibrium of the static Bayesian game
Wenow investigate theNash equilibria of the static Bayesian network-selection game.To
find a Nash equilibrium, the expected payoff to user i , considering the action distribution
y and the strategy si , are derived. From (9.108),

πi (y,s−i ,bi ) =
∑
k∈C

πk
i (s−i ,bi )yk . (9.110)

According to (9.110), πi (si ,s−i ,bi ) can be written as

πi (si ,s−i ,bi ) =
∑
k∈C

sk
i (bi )πk

i (s−i ,bi ). (9.111)

Therefore, the expected payoff for user i , given strategy profile {si ,s−i}, can be
expressed as

πi (si ,s−i ) =
∫

Γ
πi (si ,s−i ,bi )f (bi )dbi

=
∫

Γ

∑
k∈C

sk
i (bi ){Φk

i (s−i ,bi )
(
U (τ k

i (s−i ))−Pk
)

−
(
1−Φk

i (s−i ,bi )
)
Pk}f (bi )dbi . (9.112)

Let r(s−i ) denote the best response of user i given other users’ strategies s−i . For
every type of user i , the best response is

ri (s−i ,bi ) = argmax
y∈Δ

πi (y,s−i ,bi ). (9.113)

Recall from Chapter 4 that a strategy profile δ∗ is a Bayesian Nash equilibrium if and
only if nouser canbenefit by unilaterally changing its strategy, or even just an actionunder
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a certain type. Formally, a strategy profile δ∗ = {s∗
i ,s∗

−i} is a Nash equilibrium if and
only if ∀si ∈Ω, πi (s∗

i ,s∗
−i )≥ πi (si ,s∗

−i ) for all i ∈ {1,2, ... ,N}, and s∗
i (bi ) = ri (s∗

−i ,bi )
for every i and bi . Next we discuss how this equilibrium can be obtained for the studied
network-selection game.

Bayesian Dynamics of network selection
While in the previous subsections we formulated the static Bayesian game for vertical
handover, in this subsection we develop strategies by which the game can evolve over
time. The evolutionary strategy that will be studied is based on the process of Bayesian
best-response dynamics common for modeling the behavior of Bayesian games. We also
inspect how this process can be utilized to obtain the Bayesian Nash equilibrium. To
derive a process of network selection based on Bayesian best-response dynamics, we
first define two important operators:

• The operator e : Ω → Δ is a mapping from the set of all strategies to the set of
probability distributions over the actions.

• The operator g : Ω→Δ is a mapping from the set of probability distributions over
the actions to the set of all strategies.

We note that these two operations are not specific to any user i , since this network-
selection game is symmetric (i.e., the action set and type distribution are identical for
every user in the same area). Thus, for notational convenience and because of symmetry,
the strategy of any user i will be denoted by s instead of si . Furthermore, for studying
the dynamics of the considered network-selection game, the following definitions are
needed:

definition 9.5 Let e(s) denote the aggregate network-selection distribution induced
by a Bayesian strategy s ∈ Ω. This aggregate network-selection distribution can be
expressed as

e(s) = (e(s)1,e(s)2, ... ,e(s)K ) , (9.114)

where e(s)k =
∫
Γ sk(b)f (b)db,k ∈ C denotes the proportion of users in a service area

choosing network k under strategy s .

definition 9.6 The best response g(x) corresponding to the social aggregate

network-selectiondistributionx=
[
x1 · · · xk · · · xK

]T
, where xk represents the aggregate

proportion of users choosing network k , can be expressed as

g(x) = argmax
y∈Δ

π(y,x,b), (9.115)

where π(y,x,b) is the payoff obtained under the selection distribution y, the social
aggregate distribution x, and the minimum bandwidth requirement b.

According to Definition 9.5, the aggregate distribution x can be induced by certain
Bayesian strategies. Therefore, πi (y,s−i ,bi ) is equivalent (i.e., after operation e) to
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π(y,x,b) in the underlying static Bayesian game. For the dynamics (i.e., considering the
handover cost), π(y,x,b) can be obtained jointly from (9.108), (9.109), and (9.110). In
fact, it is easy to see the equivalence between the best response r(s−i ) defined in (9.113)
and the best-response correspondence g(x) in the underlying static game.

In games with complete information, it is often the case that the best response can
contain multiple strategies. In contrast, in a Bayesian setting such as the considered
Bayesian best-response dynamics, if the type distribution is sufficiently diverse and
smooth, then the best response g(x) returns a single value (and, hence, is a function).
Hereinafter, we assume that g(x) yields a single value.

According to Definitions 9.5 and 9.6, each Bayesian strategy s induces the network-
selection distribution e(s), and the best response to the distribution can be expressed as
g(e(s)). The definition of Bayesian best-response dynamics for the considered vertical-
handover game is, thus [263]:

definition 9.7 For the considered network-selection game, the Bayesian best-
response dynamics is described by the law of motion in the space of Bayesian strategies,
as follows:

ṡ = g(e(s))− s. (9.116)

For continuity of (9.116), the L1 norm is used to measure the distances of Bayesian
strategies. Furthermore, the rest points of the Bayesian best-response dynamics form the
set of Bayesian Nash equilibria. In [263], using the Lipschitz continuity property, it is
shown that the existence and uniqueness of the solution to the Bayesian best-response
dynamics of the network-selection game are guaranteed.

Aggregate best-response dynamics for network selection
Because of the complexity in analyzing the Bayesian best-response dynamics in the L1

space, as an alternative one can apply the aggregate best-response dynamics, defined as
follows for the considered vertical-handover game:

ẋt = γ(e(g(xt))− xt), (9.117)

where xt is the aggregate network-selection distribution at time t, and γ is the learning
rate representing the proportion of users adjusting their strategies towards their best
response to the current network-selection distribution at each selection epoch. Operators
e(·) and g(·) have the same definitions as in the Bayesian best-response dynamics, i.e.,
(9.114) and (9.115), respectively.

We let x(m) denote the social network-selection distribution at selection epoch m.
Notice that x(m) is different from xt . x(m) is a network-selection distribution point that
is the weighted best response (i.e., considering the learning rate) to x(m− 1), while xt

describes the path from x(m− 1) to x(m).
As with the Bayesian best-response dynamics, if the type distribution is sufficiently

diverse and smooth, g(x) is single-valued and Lipschitz-continuous [263]. Therefore,
the solution to the aggregate best-response dynamics exists and is unique, as proven in
[263]. The rest points (i.e., solution points of (9.117)) of the aggregate dynamics for
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the Bayesian vertical-handover game constitute the set of equilibrium network-selection
distributions. A one-to-one correspondence is established between the Bayesian Nash
equilibrium and the equilibrium distribution of aggregate best-response dynamics as
discussed in [263], which enables an analysis of the Bayesian dynamics through the
aggregate dynamics.

For a given initial aggregate network-selection distribution x(0), the best-response
Bayesian strategy g(x(0)) can be obtained from (9.115), and e(g(x(0))), the expected
network-selection distribution induced byg(x(0)), can be calculated according toDefini-
tion 9.5. To reach the equilibrium distribution, many iterations of network selection need
to be performed to construct a convergence trajectory. Within an epoch, xt describes the
path from the initial distribution state to a best-response distribution.At the next selection
epoch, this best-response distribution is considered as the initial state. Therefore,

x(m) = γe(g(x(m− 1)))+ (1−γ)x(m− 1), (9.118)

where γ is the learning rate.
Having formulated the dynamics of the studied game, we next study various properties

of the game, based on simulation results from [263].

Impact of system parameters on the equilibrium distributions
To get some insight into the performance of the formulated Bayesian game in a practical
heterogeneous network, we use the simulation setup of [263]. In this setup, we consider
the coverage area a of an IEEE 802.11b access point which is also in the coverage area
of an IEEE 802.16 cell and of a CDMA-based cellular network cell, as in Fig. 9.11.
Area a is totally overlapped as shown in Fig. 9.11. The parameters of the networks are
found in [263]. In particular, in this subsection we are interested in the impact of system
parameters (e.g., learning rate γ and handover cost ci ) on the equilibrium distributions.

First, in Fig. 9.12, we present the phase portrait and the convergence prop-
erty of the aggregate best-response dynamics for the considered network-selection
game. The network-selection distribution states are mapped from three-dimensional
space to a triangle in two-dimensional space. The vertices A, B, and C represent
the selection distributions

[
x1 = 1 x2 = 0 x3 = 0

]
,
[
x1 = 0 x2 = 1 x3 = 0

]
, and[

x1 = 0 x2 = 0 x3 = 1
]
, respectively. The phase portrait shows solution trajectories

of the aggregate dynamics, with convergence to equilibrium distributions from different
initial states. For example, starting from an initial state D , the dynamics follows a trajec-
tory composed of linear orbits toward the best responses, finally reaching equilibrium
distribution. The equilibrium distributions correspond to the cyclically stable set, which
may have one or multiple points.

Figure 9.13 shows the adaptation of network selection for different handover costs,
using the WiMAX network as an example. The handover cost is due to handover delay
or packet loss. When this cost is small (e.g., ci = 0.05), users are more willing to churn
to another network if the payoff is higher (e.g., because of larger allocated bandwidth
or cheaper price). For example, for ci = 0.05, the proportion of users choosing WiMAX
access network fluctuates. When the handover cost is large (e.g., ci = 0.25), users have
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Fig. 9.12 Phase portrait of aggregate best-response dynamics.
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Fig. 9.13 Impact of handover cost on dynamics.

no incentive to switch even if the new allocated bandwidth is larger or the price is lower.
Thus, the proportion of users choosing to churn to other networks is much lower for
large costs.

We highlight how price affects the equilibrium in Fig. 9.14 by varying the price for
the WLAN connection.As the price increases, the proportion of users choosing WiMAX
and cellular increases. In this case, the proportion of users choosing the cellular access
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Fig. 9.15 Impact of learning rate on dynamics.

network is smaller than that of WiMAX, owing to the smaller capacity of the cellular
network. It is worth noting that even in the case where the price of WLAN is zero, some
users would still prefer another network at a higher price because of their QoS needs.
In this example, with a low price the WLAN quickly becomes congested, which drives
users to less congested technology.

In Fig. 9.15, we show how the selection of a particular technology (e.g., WiMAX in
this figure) is affected by variations in the learning rate. When the learning rate is low, the
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impact of the adjusted strategies on the aggregate network-selection distribution is small,
and variations in the solution trajectory are small. In contrast, at high learning rates, wide
fluctuations are observed in the trajectory, before it converges to the equilibrium.

9.6 Summary

Cellular and broadband access networks are set to continue dominating the wireless
industry in the next few years, whether it be through traditional systems such as 3G
networks and WiMAX or through upcoming technologies such as 5G and femtocell
networks. These networks confront a number of technical challenges arising from com-
petitive and cooperative behavior from wireless devices, making them candidates for
modeling using game-theoretic tools. Game theory provides analytical techniques suit-
able for tackling key problems such as resource allocation, network formation, admission
control, network selection, and others. This chapter has showed that concepts such as
the Nash equilibrium, the Stackelberg equilibrium, and network-formation games pro-
vide useful approaches to characterizing the outcome of a variety of problems such as
allocation of subcarriers in OFDMA multi-cell networks, power control in CDMA net-
works, bandwidth allocation in IEEE 802.16 networks, and architecture formation in
multi-hop next-generation wireless networks. With the emergence of novel technologies
such as green communication, interference alignment, heterogeneous technologies, and
femtocell deployment, it is expected that game-theory-based models will become more
abundant, notably in the context of communication problems involving user interaction,
resource allocation, fairness, and distributed optimization.
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IEEE 802.11 wireless local area networks (WLANs) have been widely deployed in many
places for both residential and commercial use. The IEEE 802.11 standard supports two
major configurations – i.e., the point – coordination function (PCF) and the distributed-
coordination function (DCF). With PCF, the transmission in the network is based on a
central node (i.e., an access point). Client nodes listen to the channel and wait for the
signal from the access point. Once permission is sent by the access point, the client node
can start data transmission. On the other hand, with DCF, the nodes employ carrier-sense
multiple-access with collision avoidance (CSMA/CA) for MAC protocol. Each node
can transmit independently, based on the availability of the channel. In particular, with
CSMA/CA, the nodes listen for the channel status. If the channel is busy, the node defers
its transmission by waiting for a backoff period. If a node senses a channel is idle, it will
wait for a certain period of time and start transmission. In this case, multiple nodes can
start transmissions at the same time, which results in collision. The colliding nodes will
wait for the backoff period, and then sense for transmission again. To avoid performance
degradation arising from packet collision, the backoff period can be adjusted, according
to a specific rule, on the basis of the congestion level in the network (e.g., the rate
of packet collisions). The IEEE 802.11 standard specifies a rule for the CSMA/CA
protocol so that the network can work efficiently. However, if this rule is modified by the
user (e.g., setting a smaller contention window), although this user will receive higher
throughput, it will degrade the performances of other users. This conflict situation can
be analyzed using game theory. Also, many radio-resource-management issues in IEEE
802.11-based WLAN can be optimized using game theory – for example, power and
rate control, access point selection, and service/access pricing. The equilibrium solution
(e.g., Nash) can provide stable solution for a WLAN users.

In this chapter, we review the game models developed to analyze the performance of
WLANs with rational users and service providers. These models have been developed
to deal with the following issues:

• MAC protocol design.AWLAN user can modify the CSMA/CAprotocol to achieve
higher throughput. However, this will degrade performance for other users. This con-
flict situation is studied in [88, 103, 119], where static and dynamic game models are
formulated. While users can strategically choose the size of the contention window
or the channel-access probability, a solution in terms of equilibrium strategy can be
obtained to ensure efficient and fair throughput for the users in a WLAN.
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• Access point selection. In some areas, multipleWLAN access points may be available
(e.g., commercially operated by service providers or network operators). A rational
userwill select the access pointwith the lowest cost and/or the highest throughput. In an
uncoordinated environment, the transient and steady-state behavior of such users can
be studied using game theory [442, 366] (e.g., an evolutionary game). With this game
model, the access point’s owner (i.e., the service provider) can adjust the parameters
(e.g., the service price) so that revenue is maximized.

• Admission control.Because of the limited radio resource, an admission-controlmech-
anism is required for WLAN to ensure that the quality-of-service (QoS) performance
for the user will not be degraded below an acceptable level. A non-cooperative game
model is formulated for making decisions on admission control [268]. The benefits for
both service providers and new users are taken into account. In particular, the revenue
of the service provider is maximized, and the new user is satisfied with the received
QoS performance.

• Service pricing.With commercialWLANaccess, a service provider needs to optimize
the price charged to the user in order to maximize revenue. Users with different appli-
cations have different preferences for service and QoS performance. In the absence
of knowledge about the preferences of the users, a game with incomplete information
can be formulated to obtain perfect Bayesian equilibrium for the price charged by the
service provider [344].

10.1 MAC protocol design

IEEE 802.11-based WLAN employs the carrier-sense multiple-access with collision
avoidance (CSMA/CA) protocol [72]. This protocol relies on random packet transmis-
sion for the wireless channel shared among multiple active users. IEEE 802.11-based
WLAN can operate efficiently and flexibly when users follow the CSMA/CA protocol
strictly. For example, users must perform a binary exponential backoff process before
starting transmission, to avoid congestion of the network. However, with the emergence
of the programmable IEEE 802.11 adaptor [399], users can override the CSMA/CA
protocol to maximize their performance in a WLAN.

In [88], the stability and efficiency of aWLAN with a greedy user (i.e., a cheater [272])
are studied. This greedy user aims to modify the programmable network adaptor [454]
by changing the backoff mechanism to gain higher throughput (e.g., fixed and smaller
contentionwindow size). Different types of games are formulated to analyze the behavior
of the greedy user and the performance of the network. First, the case of non-cooperative
users (i.e., both normal users with standard CSMA/CAprotocol and cheaters with modi-
fied protocol) is considered. The Nash equilibria of the cheaters in this single-stage (i.e.,
one-shot) game are investigated. Then the case of cooperative users is considered. The
Pareto-optimal strategy of the cheaters is defined, and the equilibria of a dynamic game
are analyzed. An algorithm to reach such an efficient strategy is proposed. It is shown
that, with cooperative behavior by the users, system throughput is higher. However, the
individual throughput of any user may not be maximized because the cooperation may
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not be credible. Therefore, detection and punishment mechanism for non-cooperative
users is introduced.

In the system model, there are N wireless nodes (i.e., active WLAN users). All nodes
always have data to transmit (i.e., they are infinitely backlogged). All nodes operate on
CSMA/CAwith distributed coordination function (DCF) mode [14]. Ncht out of N nodes
are the cheaters, where the binary exponential backoff mechanism is overridden, and a
fixed contention window Wi is used for cheater i . In the following game formulation,
the players are the users in the WLAN. The strategy is the size of the contention window,
and the payoff is the throughput, denoted by ri .

10.1.1 Static game

First, the static game with a cheater in an IEEE 802.11-based WLAN is considered. In
this game, all players make their decisions (i.e., choice of the size of the contention
window Wi ) simultaneously. The game is assumed to be played only once. The payoff
(i.e., throughput) to node i with the standard CSMA/CA protocol can be determined
from [72]:

ri =
Psuc

i L
PsucTsuc +PcolTcol +P idlTidl

, (10.1)

where Psuc
i is the probability that any node successfully transmits the packet and Psuc =∑

k Psuc
k .L is the average size of a packet.P idl =

∏
k(1−τk) is the probability of a channel

being idle, where τk is the access probability of node k . Pcol = 1− P idl −
∑

k Psuc
k

is the probability of collision. Tsuc is the average time duration of successful packet
transmission, and Tidl is the average duration for a channel to be idle. Tcol is the average
time of collision. However, the cheater will have a fixed contention window, so the model
used to obtain the throughput of the CSMA/CA protocol is extended. In this case, the
throughput for cheater i becomes

ri =
τ acc
i ci ,1

τ acc
i ci ,2 + ci ,3

, (10.2)

where ci ,1, ci ,2, and ci ,3 are positive constants and τ acc
i is the access probability. To max-

imize throughput ri , the contention window can be adjusted. As an approximation, Wi

is assumed to be a continuous variable. Then the first-order derivative of the throughput
expression can be expressed as

∂ri
∂Wi

=
ci ,1ci ,3

(τ acc
i ci ,2 + ci ,3)

2
−2

(Wi +1)2
. (10.3)

It is observed that this first derivative is always negative. Thus, the throughput of
the cheater monotonically increases as Wi decreases. In non-cooperative environment,
the cheater will always choose the smallest contention window to achieve the highest
throughput (i.e., Wi = 1). This result is verified by simulation.
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Based on the throughput (i.e., payoff) expression, the Nash equilibria of the game
among cheaters can be studied. Let Wi ∈ {1, ... ,Wmax} the strategy of cheater i and
W−i = (W1, ... ,Wi−1,Wi+1, ... ,WNcht) denote the strategies of all cheaters except
cheater i . Ncht is the total number of cheaters, and Wmax is the largest size of the
contention window. Since the throughput ri is a monotonically decreasing function of
Wi , the best response will be Wi = 1. Therefore, the Nash equilibrium is defined as
W ∗ = (W ∗

1 , ... ,W ∗
Ncht

) for ∃i such that Wi = 1. In this case there are multiple Nash equi-
libria, characterized by the condition that any cheater selects the size of the contention
window to be 1. There are two types of Nash equilibria:

• One cheater with contention window of 1. In this case, cheater i with Wi = 1 and
Wj > 1 for j 	= i will receive the highest throughput (i.e., ri > 0) since it can transmit
before the other cheaters with its larger contention window. However, other cheaters
j with any Wj > 1 will receive zero throughput rj = 0, since they will never succeed
in the contention.

• More than one cheater with contention window of 1. In this case, the throughput of
all cheaters will be zero, since collision always occurs for cheaters i and j for which
Wi = Wj = 1.

Since there are multiple Nash equilibria, in order to maximize the throughput of the
WLAN the Nash equilibrium for which there is a single cheater i with Wi = 1 is selected.
It is clear that although this Nash equilibrium yields the highest network throughput, it
is totally unfair since only one cheater can enjoy this throughput. Therefore, a fair and
efficient solution is introduced.

To achieve a fair and efficient solution, Pareto optimality and a bargaining game [154]
are adopted. In a bargaining game, the disagreement point is defined as r0 =(r0

1 , ... , r0
Ncht

).
The threat point is a set of strategies by which the cheaters obstruct one another, so
r0 = (0, ... ,0). The solution of this bargaining game is

r� = (r�
1 , ... , r�

Ncht
) = arg max

r=(r1,...,rNcht )

Ncht∏
i=1

(ri − r0
i ), (10.4)

for r ≥ r0
i . Although, in this bargaining game, the set of feasible payoffs to all cheaters

is not compact and convex, the solution r� is unique, Pareto-optimal, and fair.

10.1.2 Dynamic game

Since a bargaining solution is desirable, a method to allow the cheaters to reach this
strategy is studied in the context of a dynamic game [160]. Assuming that the game is
played for infinitely long, and that the players (i.e., cheaters) make decisions based on
past outcomes, the utility for cheater i is

Ji = ri − zi , (10.5)

where zi is a penalty function, defined as zi = ki (τi−τ), where τi is the access probability
and ki and τ are positive constants. With decision variable τi , an optimization problem
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can be defined as follows:

max
0≤τi≤1

=
τici ,1

τici ,2 + ci ,3
− ki ×

{
(τi − τ), if τi > τ ,
0, if τi ≤ τ .

(10.6)

γ∗
i , the solution of ∂Ji

∂τi
= 0, is

γ∗
i =

1
ci ,2

(√
ci ,1ci ,3

ki
− ci ,3

)
. (10.7)

It is found that the strategy,

τi =

⎧⎨⎩
0, if γ∗

i < 0,
γ∗

i , if 0≤ γ∗
i ≤ 1,

1, if γ∗
i > 1

(10.8)

is a unique Nash equilibrium of a dynamic game for Tsuc = Tcol. To reach the Nash
equilibrium strategy – i.e., τ∗

i = 1 − 1
αi

– a the gradient-based algorithm [70] is
introduced as follows:

αi [t +1]) = αi [t]−φ(τ∗
i [t]− τ) , (10.9)

where φ is the step size and αi [t] is a value of α at iteration t. The convergence of
this algorithm can be demonstrated by showing that the function f (αi [t]) = αi [t]−
φ(τ∗

i [t]− τ) is a contraction mapping.
Moving this Nash equilibrium to the Pareto-optimal point is performed as follows. In

the first step, an arbitrary access probability τi is selected, and the algorithm in (10.9)
is used to obtain the Nash equilibrium. At this equilibrium, one cheater i will decrease
its τi by a small value. This triggers the other cheaters to run the algorithm in (10.9) to
reach a new Nash equilibrium. These cheaters compare their new and previous payoffs.
If the difference is small, the cheaters stop moving the Nash equilibrium since the set of
strategies is already close to Pareto-optimal.

10.1.3 Deviation detection and penalization

To avoid any cheater deviating from the Pareto-optimal strategy, each cheater applies a
deviation and penalization mechanism to the deviating cheater. In general, a cheater can
deviate from the Pareto-optimal strategy by reducing the size of the contention window
to achieve higher throughput. To detect such a deviation, a cheater observes a difference
in throughput compared with other cheaters. Because of the broadcasting nature of the
CSMA/CA protocol, the cheater measures an average throughput of the other cheaters
during a certain time period (i.e., observation-time window size Tobs). If the throughput
of any cheater is different from other cheaters by more than a tolerance margin κ, then
this cheater is identified as a deviating cheater.

Once a deviation is detected, the deviating cheater will be penalized by the other
cheaters in the network, using selective jamming. In this case, the packet from the
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deviating cheater will be jammed by one the other cheaters. In particular, by observing
the net allocation vector (NAV) information in the packet from the deviating cheater,
the penalizing cheater transmits a signal to jam this packet at the data field for a certain
number of bits so that the receiver of the deviating cheater cannot receive the packet
correctly. In thisway, the throughput of the deviating cheater is decreased.The duration of

jamming is Tjam =
(

rj
ri
− 1

)
Tobs, where rj and ri are the throughputs of the deviating and

penalizing cheaters, respectively. Once the deviating cheater observes the penalization,
it will increase the size of the contention window so that the strategy becomes Pareto-
optimal again.

10.1.4 Related work

In [253], the problem of backoff attack in IEEE 802.11-based WLAN is studied. In this
work, the user can be honest, greedy, or selfish. The minimum sizes of the contention
windows of honest, greedy, and selfish users are those in the standard, 1, and 2, respec-
tively. The repeated game is formulated to ensure that the users behave properly such
that the received throughput is maximized and is fair for each user. The strategy – i.e.,
cooperation via randomized inclination to selfish/greedy play (CRISP) – is proposed to
achieve this objective. In [102], a repeated non-cooperative game is presented, and the
users apply a Tit-for-Tat (TFT) strategy to avoid deviation from the efficient solution.
It is found that there are multiple Nash equilibria in this game in which an efficient
equilibrium can be selected. Both single-hop and multi-hop networks are considered in
this game [253].

10.2 Random-access control

The CSMA/CAprotocol is based on random access, in which the user randomly accesses
the channel. This randomness depends on the congestion in the network. In particular,
users observe the level of congestion (e.g., collision probability or the average number
of idle slots) and adjust the channel-access probability accordingly. The problem of
random access by multiple users is formulated as a non-cooperative game [103, 119]. In
this case, the dynamics of the access probability for user i can be expressed in the form
of a feedback system with function Fi (·), as follows:

τi [t +1] = Fi (τi [t],qi [t]), (10.10)

where τi [t] is the access probability at time t, qi [t] is a vector of the measured congestion
level in the network, and τ [t] is a vector of the access probabilities of all users. As
shown in (10.10), access probability is adjusted as a function of congestion level. If
all users are rational, access probability τi has to be determined – e.g., to be Nash
equilibrium – so that the network is stable. The random-access control game can be
formulated as follows. The players are the users in the network. The strategy is the
access probability τi , and the payoff is the utility minus cost. The payoff can be defined
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as ui (τ ) = Ui (τi )− τiCi (qi [t]), where Ui (τi ) is the utility function (e.g., throughput)
and Ci (qi [t]) is the cost due to congestion. The general random-access game model is
presented in [103], where Ci (qi [t]) = qi (i.e., cost is the congestion measure). It is shown
that there is a channel-access probability vectorτ ∗ =

[
τ∗
1 · · · τ∗

i · · · τ∗
N

]
which is theNash

equilibrium. N is the total number of users in the network. This Nash equilibrium τ ∗ is
a non-trivial equilibrium if τ∗

i satisfies the following condition:

∂ui (τ∗
i ,τ−i )
∂τi

= 0, ∀i , (10.11)

where τ−i is the vector of access probabilities of all users except user i . This non-
trivial Nash equilibrium can achieve efficient and fair performances for all the users.
In this case, the utility function U (·) must be twice continuously differentiable, strictly
concave, and increasing. Also, there must exist positive constants μ and ξ such that
1
μ ≥

1
U ′′

i (τi )
≥ 1

ξ . Finally, the inverse function (U ′
i )

−1(Ci (qi )) maps any qi into any
point within the strategy space of τi for all users.

10.2.1 Choice of utility function

In [119], various utility functions are summarized for this access-control game. For the
homogeneous-user case [208], the utility function is defined as

Ui (τi ) = τi + e−ζ log(1− τi ), (10.12)

where ζ satisfies the condition 1− ζ = ηe−ζ , and η = 1−Tslot/Tcol, where Tslot and
Tcol are the slot duration and average collision duration, respectively. In this case, the
measured congestion level qi is determined as a function of idle probability, which is
obtained by solving the following equation:

(1− τi )(1− qi ) =
φ

φ+1
= e−ζ , (10.13)

where φ = e−ζ

1−e−ζ . It is shown that there exist an infinite number of equilibria for this
game. In this case, a refinement of the utility function is introduced so that this game has
a unique, non-trivial Nash equilibrium.

For heterogeneous users [392], the weight ωk is assigned to the class k whose Uk

denotes the set of users in this class. The fairness constraint can be defined for traffic
classes k and j such that

τk(1− τj)
ωk

=
τj(1− τk)

ωj
. (10.14)

The utility function of user i in class k is defined as

Uk,i (τk) = 1− ωkζ

α+1
(1− τk)α+1, (10.15)
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where α > 0 and ζ is defined in the same way as for the homogeneous case. The cost is
defined as

Ck,i (qi ) =

∑K
j=1 qk,iωj/τj

qk,0τk
, (10.16)

where K is the total number of classes, and qi is a vector of qk,i . The probability of
an idle slot is qk,0 =

∏
k(1− τk)|Uk |, qk,i ≈ ζke−ζ , and ζk = |Uk |ωk∑K

j=1 |Uj |ωj
ζ. In this case,

there is a non-trivial equilibrium in this game for τi < 1/N , where N is the total number
of users.

Alternatively, the payoff function can be defined as

Ui (τ ) = Ui (τi )− τi

∏
j �=i

(1− τj). (10.17)

In this case, the cost to the user is a function of received throughput. It is shown that this
game is a supermodular game. That is, the payoff function Ui (τi ,τ−i ) has increasing
differences in (τi ,τ−i ). As a result, this game possesses at least one Nash equilibrium.
In addition, for the utility function

Ui (τi ) =
1
ai

(
(ai − 1)bi

ai
ln(aiτi − bi )− τi

)
, (10.18)

where ai and bi are constants, there could be a condition such that the game has a unique,
non-trivial Nash equilibrium.

10.2.2 Dynamics of a random-access game

The above discussion is based on a static game model. In [119], the dynamics of a
random-access game model is analyzed. In this case, three distributed strategy-update
mechanisms are considered for the users.

Best response.The best response is the simplest strategy-update mechanism.All users
choose the best response in each iteration t, i.e.,

τi [t +1] = max
(
argmax

τ
Ui (τ ,τ−i [t])

)
. (10.19)

However, if there is more than one best response for the access probabilities, the largest
probability will be chosen. In this case, at the steady state, if stationary point is reached,
this pointwill be aNash equilibrium. In addition, for a supermodular game it is guaranteed
that this best-response strategy update converges towards the Nash equilibrium.

Gradient play. In gradient-play strategy update, all users adjust their access prob-
abilities in a specific direction [153]. This direction, Mi (·), depends on the measured
congestion level of the network. The strategy update is

τi [t +1] = Mi (τi [t]+φi [t](U ′
i (τi [t])−Ci (qi (τ [t])))) , (10.20)
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where φi [t] = φ[t] is the step size. The convergence of this gradient-play strategy update
(e.g., given step size) is proved (e.g., in [153]) by evaluating the smallest eigenvalue of
the Jacobian of utility and cost functions. It can be shown in [119] that this game has a
unique, non-trivial Nash equilibrium.

Jacobi play. In Jacobi-play strategy update, all users adjust access probabilities
towards the best-response strategy [273], i.e.,

τi [t +1] = M (τi [t]+φi [t](Bi (τ [t])− τi [t])) , (10.21)

where Bi (·) is the best response of user i . For φi [t] = 1, this Jacobi-play update becomes
the best-response strategy update. However, for φi [t] < 1, it can still be shown (e.g., as
in [273]) that the sequence of τi [t] is non-increasing and that the update converges to
the Nash equilibrium.

10.2.3 Extension with propagation delay and estimation error

In addition to the above basic strategy-update mechanisms, their dynamics under prop-
agation delay and estimation error can also be analyzed. With propagation delay, the
information on network congestion used to update the strategy at time t is the result of
measurement by user i at time t̂i for 0≤ t̂i ≤ t. The best-response strategy update is

τi [t +1] = Bi (τ [t̂i ]) = max
(
argmax

τ
Ui (τ ,τ−i [t̂i ])

)
. (10.22)

Again, it can be shown that the best-response strategy update with a propagation delay
of t− t̂i will converge to the Nash equilibrium under certain conditions. Similar results
are observed for gradient-play and Jacobi-play strategy-update mechanisms.

In general, the congestion level is estimated from conditional collision probability
by observing the idle slots between transmissions. In particular, each user updates n =
βn +(1−β) Tidl

Ttrans
, where β is the estimation weight and Tidl is the number of idle slots

during Ttrans transmission. Then the conditional probability is qi =
1−(n+1)τi

(n+1)(1−τi ))
. Because

of estimation error, the cost becomes

Ĉi (qi (τ [t])) = Ci (qi (τ [t]))+wi [t], (10.23)

where wi [t] is the estimation error for player i . Again, it can be proved, based on
evaluation of the smallest eigenvalue of the Jacobian of the payoff function, that
the gradient-play and Jacobi-play strategy-update mechanisms with estimation error
converge to the Nash equilibrium.

10.2.4 Related work

A similar game model has been developed for the Aloha protocol [307, 227, 107, 108,
372], which is a fundamental of the CSMA/CA protocol. In [307], non-cooperative-
game and Stackelberg-game models are proposed to obtain equilibrium channel-access
probability for slotted Aloha. The selfishness of the user in accessing the channel is
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also considered. In [227], a one-shot, random-access game model is introduced for
heterogeneous and selfish users in a network with slottedAloha protocol.Also, necessary
and sufficient conditions for the Nash equilibria are derived. The game model with
channel capture is considered in [108].

10.3 Rate selection for VoIP service on WLAN

To support voice service in WLAN using voice over IP (VoIP), the QoS guarantee for
data transmission is crucial [286, 97, 449]. In [502], game theory is applied to competi-
tion between VoIP users for channel access in a WLAN environment. The user selects
the transmission rate through the codec and forward error correction (FEC) mode [439].
In this case, if the high-quality codec is selected, although the quality of voice is better,
the communication requires higher bandwidth; consequently, congestion can occur. This
congestion can degrade the performance of the communication. Therefore, in a competi-
tive environment, VoIPusers must select equilibrium strategies to maximize their payoff,
which is defined as the QoS performance of VoIP. This adaptation of the transmission
rate is referred to as end-user congestion control. In [502], experiment, simulation, and
an analytical model based on evolutionary-game theory are used to analyze the con-
sequences of a situation in which all users are allowed to freely choose transmission
rate. Controlled laboratory experiments have shown that the aggregated rate (i.e., total
transmission rate for all users) is close to the capacity of the WLAN, even though the
users are non-cooperative.

10.3.1 Game formulation

The evolutionary-game formulation of rate selection can be described as follows. The
players are the VoIP users, and the strategies are the transmission rates in which the user
can select the codec and FEC modes accordingly. The payoff is the voice quality. Let
N denote the total number of VoIP users. S is a set of actions or strategies (i.e., a set
of available codec and FEC modes) in which the total number of modes is K = |S|.
The state of the game can be defined as n = (n1, ... ,nl , ... ,nK ), where nl is the number
of users choosing strategy l . The total number of states is (N+K−1)!

N!(K−1)! . Given a state
n, the utility function Ui (l ,n) of user i using strategy l can be determined. To obtain
equilibrium, a continuous-time Markov chain whose state is n can be established as
in [327]. Let n(l ,m) = (n1, ... ,nl − 1, ... ,nm +1, ... ,nK ) denote the state when the user
changes strategy from l to m. The transition rate of the Markov chain from state n to
n(l ,m) is

α(n→ n(l ,m)) =⎧⎪⎪⎨⎪⎪⎩
nlφ(Ui (m,n(l ,m))−Ui (l ,n)) , if (Ui (m,n(l ,m)) > Ui (l ,n))

and(Ui (l ,n) > γ) ,
Ex, if Ui (l ,n)≤ γ,
ε, otherwise.

(10.24)
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In this case, the user does not have complete information about the voice quality. There-
fore, the user will gradually adapt the strategy to that with higher payoff. The rate
of changing strategy is proportional to the difference between current strategy l and
new strategy m. The user can make a mistake with small rate ε by changing strategy
from l to m even though Ui (l ,n) > Ui (m,n(l ,m)). In addition, owing to the strict
QoS requirement of VoIP, the user will not tolerate poor voice quality. In particular,
if the payoff of the current strategy l drops below a threshold γ (i.e., the tolerance
level), the user randomly switches to another strategy m with rate Ex. This is referred to
as the exploration rate. Also, if the voice quality is too poor, the user can stop accessing
the channel (i.e., quit the game). Strategy l = 0 corresponds to this case. Again, the
rate at which the user stops using VoIP is proportional to the difference between the
current payoff and the threshold γ. The user starts using VoIP again given strategy
l with probability Pretry(l). The transition rate from state n to n(0,m) is denoted by
n0RPretry(m), where n0 is the number of users who have temporarily stopped using
VoIP service and R is the retrial rate. At the steady state (i.e., t →∞) and ε→ 0, the
Nash equilibria can be determined as the subset of the state spacewith non-zero stationary
probability [327].

10.3.2 Payoff function

In the above evolutionary-game model, the Nash equilibria can be determined given
the payoff function. In [502], a method for quantifing the payoff function based on
experiment and simulation is proposed. A mean opinion score (MOS) is used to deter-
mine the voice quality. The MOS is obtained from laboratory measurement and network
simulation. With this MOS from experiment and simulation, a random neural network
(RNN) [341] is trained under various settings to estimate the MOS. The major steps are
shown in Fig. 10.1.

First, the wireless channel performances (e.g., loss rate, delay, jitter) are estimated
for all states of the Markov-chain model of this game. The traffic of voice flow is
generated by a Tangram-II Traffic Generator [130]. Then, in an experiment, the lost
packet, mean loss burst size, jitter, and packet delay are measured. In addition, given

Wireless channel model

(loss rate, mean burst size,

delay, jitter)

QoS estimation with RNN 

Rate selection

(evolutionary game)

State

Fig. 10.1 Major steps in estimating QoS performance of VoIP service.
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the same settings, a simulation is performed to validate the experimental result and to
expand the evaluation to a variety of scenarios.As a result, there will be more data to train
the RNN.

Then, the QoS performance, in terms of MOS, for VoIP is estimated. This MOS is
a subjective quality score that ranges between 1 (unacceptably poor) and 5 (excellent).
In the experiment, the method of pseudo-subjective quality assessment (PSQA) [122] is
used. In the first step of PSQA, the choice of system parameters that affect the transmis-
sion quality is made. These parameters are the performance measures for the wireless
channel (i.e., loss rate, mean loss burst size, jitter, and delay) and the codec and FEC
modes. In the second step, subjective assessment test is performed, and in the third step
the results are used to train and validate the RNN. The output of the RNN is MOS. The
training data are obtained from the experiment based on the VoIP tool – i.e., VivaVoz,
which supports eight codec rates and two FEC modes. The subjects (e.g., students) in
the experiment carry on a conversation and provide MOS data on voice quality. This
data is processed to obtain the MOS.

The performance evaluation is carried out using experiment, simulation, and analytical
modeling. In the first experiment, the subjects (i.e., users) speak freely. They can change
the codec rate and FEC mode (i.e., strategy) to maximize perceived voice quality. The
experiment ends when no users change strategy within a given period of time. The final
strategy adopted by all users is referred to as the convergence point of the behavioral
experiment. This experiment is based on the fact that the users change strategy asyn-
chronously with incomplete information. In this case, users know only their own voice
quality. However, with these constraints, it is found that the convergence point results
in a total transmission rate close to that of the effective network capacity. This result
shows that even in an environment without coordination, rational users will perform so
that an efficient state (i.e., the network resource is almost fully utilized) is reached.Also,
congestion is avoided by user adaptation without any intervention from a centralized
controller.

10.4 Access-point selection

IEEE 802.11-based WLAN is deployed to provide commercial Internet access in many
places.Also, in one place, there could be multiple available IEEE 802.11-basedWLANs.
Therefore, the issue of access-point selection arises [442]. In this case, the users can
search for the access point that provides a WLAN connection with the best performance
(i.e., the highest signal strength or the highest data rate) and the lowest cost. Without the
standard protocol in IEEE 802.11, it has been shown [207] that all users with infinite-
backlog traffic to transmit will have the same throughput. Therefore, multihoming of
users is introduced to split the data transmission to multiple access points [17]. With
this multihoming capability, users can take advantage of the diversity of channel quality,
to maximize their throughput. The general system model of access-point selection with
multihoming of the user is shown in Fig. 10.2. In this system model, there are multiple
access points that can be accessed by multiple groups of users (i.e., populations). The
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Access point 1 Access point 2 Access point 3

User group 1 User group 2

Fig. 10.2 Access-point selection in IEEE 802.11-based WLAN.

payoff for the user is defined as the difference between the utility from throughput and
the charged price.

10.4.1 Formulation of a population game

In [442], it can be assumed that the user’s station has a single interface that can connect
to one access point at a time. Therefore, multihoming means connecting to each access
point during different time intervals. Both transmission-control protocol (TCP) and user-
datagram protocol (UDP) are considered for the transport-layer protocol. Therefore, the
connection time interval is the session duration for TCPand UDPconnections. Naturally,
a user’s connection time that yields a higher transmission rate or has a lower price will
be longer. A multihoming protocol is proposed for the user to connect to each access
point. In this case, the price charged to the user depends on channel occupancy; this is
called cost-price charging. With a population game, it is shown that this multihoming
of WLAN users under cost-price charging is efficient (i.e., the network throughput is
maximized).

A population game [421] with a continuum player set (i.e., an infinite number of
players) can be described as follows. There are K classes (i.e., groups) of users. Each
class can correspond to a group of users in the same geographical location. Class k has
a (population) mass d̂k . The set of strategies for a class k player is denoted by Sk =
{1, ... ,Sk}, where Sk is the number of available access points. The strategy distribution
(i.e., the fraction of time) that the users in a group select access point i is denoted by
ni

k , and the vector nk is defined as nk =
[
n1

k · · · ns
k · · · n

Sk
k

]
, where

∑Sk
i=1 ni

d = d̂k . The

vector of strategy distributions for all classes is n =
[
n1 n2 · · · nK

]
. This vector n

is referred to as the state of the system. The payoff for the user in any class depends on
this system state. Let the payoff function for users from class k selecting access point i
be ui

k(n). The total payoff for the users in class k is then uk =
∑Sk

i=1 ui
k(n)ni

k .
Given the rationality of users, the multihoming protocol will make a decision on the

strategy distribution for each available access point, and this decision will be based on the
current estimate of the utility. The decision adaptation of the multihoming protocol can
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be modeled by replicator dynamics [211]. With replicator dynamics, the rate of change
for a strategy distribution – i.e., ṅs

k
ns

k
for users in class k selecting access point s – is

ṅs
k = ns

k

(
us

k(n)− 1

d̂k

Sk∑
i=1

ni
ku

i
k(n)

)
, (10.25)

where ṅs
k is the derivative of ns

k with respect to time t, i.e., ṅs
k = dns

k
dt . In particular,

replicator dynamics is defined for evolutionary success. This success is a function of
the difference between the fitness of strategy s and the average fitness of all strategies.
The dynamics defined in (10.25) will maintain the fixed size of the population, i.e.,∑Sk

i=1 ni
k = d̂k .

Alternatively, the dynamics of strategy distribution can be modeled using Brown–von
Neumann–Nash (BNN) dynamics [84].With BNN dynamics, the excess marginal payoff
for strategy s relative to the average payoff to users in the same class is computed from

γs
k = max

(
us

k(n)− 1

d̂k

Sk∑
i=1

ni
ku

i
k(n),0

)
. (10.26)

BNN dynamics is defined as

ṅs
k = d̂kγ

s
k − ns

k

Sk∑
j=1

γs
j . (10.27)

The difference between BNN and replicator dynamics is that BNN allows extinct strate-
gies (i.e., strategies s with ns

k = 0) to be revived. This capability is matched by the actual
system, since a user can try a different access point (even though there is nobody using
that access point) to determine the possibility of higher payoff.

Then, given the dynamics of strategy distribution, the payoff for a user has to be
defined. This payoff is a function of throughput and cost. However, throughput depends
on the transport layer-protocol, which could be UDP or TCP. For both protocols, the
throughput per unit mass of users (in bits per second) in class k selecting access point s
has the same form:

r s
k (ns) =

ηk∑K
j=1 μjns

j

, (10.28)

where ηk and μk are constants. The exact throughput expressions for UDP and TCP
protocols can be obtained from [261] and [85, 269], respectively. The payoff function
is then

us
k(n) = r s

k (n)−C s
k (n), (10.29)

where C s
k (n) is the cost for users in class k , i.e.,

C s
k (n) = ψs

k(n)
K∑

i=1

Rs
i ,k(n), (10.30)
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and ψs
k is the occupancy factor. Rs

i ,k is the total throughput that users in class k receive
when connecting to access point s and the system state is n, i.e., Rs

i ,k(n) = ns
i r

s
i (n).

Given the payoff function us
k(n) and either BNN or replicator dynamics, the equilibrium

system state n can be obtained by the standard method of solving differential equations.
It is observed that with the cost-price mechanism C s

k (n), the revenue obtained in a cell
by access points is identical to the total throughput. Also, the system throughput R(n) =∑S

s=1

∑K
i=1 ns

i r
s
i (n) is the potential function [71]. Therefore, the stationary points of the

dynamics are asymptotically stable, and also maximize the throughput. In addition, it
is proved that the stationary point selected by replicator dynamics will be a Wardrop
equilibrium. For BNN dynamics, the stationary point is also a Wardrop equilibrium.

10.4.2 Price of anarchy

In general, a Wardrop equilibrium can be inefficient (e.g., payoff is not maximized). This
is referred to as theprice of anarchy.However, in the populationgamewith amultihoming
protocol, the stationary point denoted by n∗ is efficient. With either replicator or BNN
dynamics, the stationary point satisfies the condition ṅs

k = 0, which indicates that either
us

k(n
∗) = 1

d̂k

∑Sk
i=1 ni∗

k ui
k(n

∗) or ns∗
k = 0. These conditions indicate that the users in

class k will receive identical payoffs from all access points if the equilibrium strategy is
applied. This stationary point is also the solution of the constrained optimization problem
defined as follows:

max
S∑

s=1

K∑
i=1

ns
i r

s
i (n), (10.31)

s.t.
Si∑

j=1

nj
i = d̂i , i ∈ {1, ... ,K}. (10.32)

In particular, the stationary point maximizes the total system throughput. Therefore,
anarchy has no price in this multihoming protocol.

10.4.3 Access pricing

The pricing of wireless access with a multihoming protocol is considered here.All access
points are assumed to be owned by the same ISP. The actual mass of users in the system
is defined as a function of the price ps for access point s (i.e., there are different prices
for different access points). The prices will not only determine the total number of users,
but will also partition the subgroup of users selecting different access points. Users in
class k will select access point s if ps ≤ Λk , where Λk is a threshold value [443]. The
payoff per unit mass of users becomes

us
k(n) = r s

k (n)−C s
k (n)− ps . (10.33)

The objective of the ISP is to maximize its profit, which is total revenue minus cost. The
cost is assumed to be identical to the actual throughput. The profit function of the ISP
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can be expressed as

Fmul(p) =
S∑

s=1

ps

K∑
i=1

ns
i , (10.34)

where p =
[
p1 · · · ps · · · pSk

]
is a vector of prices. This profit function is evaluated with

and without a multihoming protocol. Without a multihoming protocol, a user in class k
selects the access point with the lowest price pmin(k). This is referred to as unihoming.
In this case, the total profit is

Funi(p) =
K∑

i=1

pmin(i)d̂i , (10.35)

and d̂i = 0 if pmin(i) > Λi . It can be shown that the profit of the ISP from the system with
a multihoming protocol is higher than that with unihoming, as follows. The profit with
a multihoming protocol is Fmul(p) =

∑S
s=1 ps

∑K
i=1 ns

i . It can be shown that

S∑
s=1

ps

K∑
i=1

ns
i ≥

S∑
s=1

K∑
i=1

pmin(i)ns
i =

K∑
i=1

pmin(i)

S∑
s=1

ns
i (10.36)

=
K∑

i=1

pmin(i)d̂i = Funi(p). (10.37)

In addition, the throughput with multihoming is equal to or higher than that with
unihoming. To achieve maximum profit, there are multiple solutions for price p. The
pricing solution p∗

s that achieves the highest throughput can be selected.

10.4.4 Related work

User churning behavior in wireless networks can be modeled using an evolutionary-
game framework [170]. The stochastic evolutionary-game model based on the Markov
chain is studied in [366]. Mobility arising from users’ arrival in and departure from
the service area is also considered. Competitive and cooperative pricing schemes are
proposed whose solutions are the Nash equilibrium and the optimal solution, respec-
tively. While the Nash equilibrium maximizes individual profit given the price offered
by the other service provider, the optimal solution maximizes the total profit of all ser-
vice providers. Similarly, in [367], an evolutionary game is applied to the problem of
network selection in a heterogeneous wireless network, where different options (i.e.,
WLAN, cellular network, and broadband wireless access) are available to users. A rein-
forcement learning algorithm for network selection is introduced to achieve evolutionary
equilibrium. A user association game is proposed to analyze user behavior in choosing
an access point [138]. The Nash equilibrium is identified in this association game, with
an iterative algorithm being used WLAN users to converge to the Nash equilibrium.
To improve the efficiency of the Nash equilibrium, different social cost schemes are
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introduced in [138], and the prices of anarchy are analyzed for these schemes. A user-
network association game for IEEE 802.11-based WLAN and 3G UMTS hybrid cell can
be found in [262].

10.5 Admission control

Admission control is important for wireless networks, since it can be used to avoid net-
work congestion. In particular, admission control limits the number of ongoing users
in the network so that performance can be maintained above the requirement or the
users’ satisfaction can be maximized. In [268], non-cooperative admission control for
IEEE 802.11-based WLAN is proposed. The system model considers differentiated ser-
vices [176] based on the enhanced distributed coordination function (EDCF). There are
K classes in total, and the number of ongoing users in class k is denoted by nk . The rate
of data transmission in class k is denoted by rk . The user connects to a particular access
point owned by one service provider. If the network is not congested (i.e., it is in an
under-loaded condition), admitting new users will not affect performance for ongoing
users. If the network is congested and a new user is admitted, the performance for ongo-
ing users will be degraded, and the access point may lose revenue since some ongoing
users could leave the system. Because of this tradeoff situation, the service provider must
have a proper admission-control policy to maximize its revenue. The new user must also
make a decision, so that satisfaction is maximized.

10.5.1 Two-player game formulation

The non-zero-sum game with two players is formulated in [268] for admission control
in WLAN. The players are the access point (i.e., the service provider) and the new user.
The strategies of the access point are to accept or to reject the request from a new user
to connect to the access point. The strategies of the new user are to stay or to leave
the current access point. The payoff for the access point is the revenue from new and
ongoing users. The payoff for the user is the satisfaction. The payoff matrix for the access
point is

Leave Stay
Admit R +(Rk −O)−Ok R +(Rk −O)
Reject R −Ok R

, (10.38)

where the access point and the new user take row-wise and column-wise strategies,
respectively, and

• R is the total revenue of the access point from ongoing users.
• Rk is the revenue gained from admitting a new user in class k .
• Ok is the revenue loss if a user from class k leaves the access point.
• O is the potential revenue loss from all classes at the access point.
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The payoff matrix for the new user is

Leave Stay
Admit Uk −Yk Uk −D(Bk)
Reject Vk −Yk Vk −D(Bk)

, (10.39)

where

• Uk is the satisfaction if the new user is admitted.
• Vk is the dissatisfaction if the new user is rejected, for Uk > Vk .
• Yk is the dissatisfaction if a user in class k leaves the access point.
• D(Bk) is the QoS dissatisfaction ratio for a user in class k .
• Bk is the bandwidth violation ratio,

Bk =

⎧⎨⎩
rk − ρk/nk

rk
, if ρk/nk ≤ rk ,

0, if ρk/nk > rk ,
(10.40)

where rk is the required rate, ρk is the effective bandwidth for class k [267], and ρk/nk

is the effective bandwidth per user. The QoS dissatisfaction ratio D(Bk) indicates the
inclination for a user in class k to leave the current access point because of the bandwidth
violation ratio Bk . This QoS dissatisfaction ratio is D(Bk) = 1−S(Bk), where S(Bk) is
the QoS satisfaction ratio for the received QoS performance, i.e., 0≤ S(Bk)≤ 1. This
QoS satisfaction ratio is approximated by a sigmoid function, defined as

S(Bk) =
1

1+ e−αk (βk−Bk )
, (10.41)

where αk and βk are constants to control, respectively, the shape and location of the curve
for users in class k . An example of this sigmoid function is shown in Fig. 10.3. In this
case, the revenue loss due to the admission of user in class k is O =

∑K
k=1 nkD(Bk)Ok .
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Fig. 10.3 Example of a sigmoid function.
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10.5.2 Interpretation of payoff

From the payoff matrix in (10.38), if the access point admits a new user but a new user
decides to leave the system (i.e., row 1 and column 1), the payoff for the access point is
the revenue gained from ongoing and new users minus the possible loss of revenue from
ongoing and new users leaving the system. If the access point admits a new user and the
new user decides to stay (i.e., row 1 and column 2), the payoff for the access point is
the revenue gained from ongoing and new users minus only the loss from ongoing users
leaving the system. If the access point rejects a new user and the new user decides to
leave (i.e., row 2 and column 1), the payoff for the access point is the remaining revenue
from ongoing users minus the loss of revenue from the new user. Finally, if the access
point rejects a new user but the new user decides to stay (i.e., row 2 and column 2), the
payoff is only the revenue from ongoing users. The payoff in (10.39) for the new user
can be derived in a similar way. However, in this case, if the new user decides to stay,
the dissatisfaction D(Bk) has to be taken into account.

With the above non-cooperative game formulation, there is at least one Nash equilib-
rium for the admission-control game played between the access point and the new user.
The proof is based on the domination of strategy si or sj . A strategy si is said to dominate
strategy sj if si yields a higher payoff regardless of the nature of sj . There are three cases
in the proof of the existence of Nash equilibria: Rk > O , Rk = O , and Rk < O . For
Rk > O , the admitting strategy of the access point dominates the rejecting strategy, so
the access point will always admit a new user. In this case, a new user will decide to stay
if Uk−Yk > Uk−D(Bk), i.e., the dissatisfaction due to leaving the system is lower. For
Rk = O , all combinations of strategies of the access point and the new user are possible.
The solution depends on the specific values of the parameters. For Rk < O , the rejecting
strategy dominates the admitting strategy, so the access point will always reject a new
user.

In [268] a simulation was performed to evaluate the effectiveness of the proposed non-
cooperative admission control. In this case, the network which was nearly overloaded
was emphasized. It was shown that admission control can successfully avoid congestion
of the network. In addition, the impact of the bandwidth violation ratio was extensively
investigated.

10.6 WiFi access-point pricing

Since IEEE 802.11-based WLAN has become common for commercial Internet access
(e.g., in airports and libraries), the pricing ofWLANconnection has become an important
issue. Two major pricing models adopted by WiFi-based WLAN service providers are
the direct-payment and aggregator models. In the direct-payment model, the user pays a
price directly to the service provider for the WLAN connection. In the aggregator model,
a broker (i.e., the aggregator) rents WLAN access points from service providers. The
user subscribes to the aggregator. The aggregator is responsible for providing the user
with access to all rented access points, and for billing the users. Money paid by the user
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to the aggregator is distributed to the WLAN service providers according to the actual
usage by the user. Naturally, the aggregator model is not preferred by either the service
provider or the user. Either the user has to pay a higher price or the service provider
receives lower revenue, since some money has to be given to the aggregator. However,
the aggregator model has remained popular because of the absence of an effective pricing
scheme in the direct-payment model. In particular, in the direct-payment model the user
may not trust the service provider, and vice versa. For example, if a prepaid scheme is
used (i.e., the user pays the service provider before connecting and transferring data at
the access point), the service provider may cheat by not delivering the contracted service
to the user. On the other hand, if a post-pay scheme is used (i.e., the user pays after
connecting and transferring data at the access point), the user may cheat by not paying
the service provider.

10.6.1 Pricing scheme for direct payment

In [344], a dynamic-game model is used to find the equilibrium strategy for the user and
the service provider such that direct payment is viable. In this game, the connection to
the access point and payment by the user are divided into multiple periods (e.g., with
a length of one minute). When the user connects to the access point, a corresponding
payment will be made at the end of the time slot. This technique of micropayment [335]
is adopted to minimize transaction overhead. In the system model under consideration,
a single access point and one user are considered, and are the players (Fig. 10.4).

After the user connects to the access point, the service provider proposes an access
price pt for the period t. This price is the strategy of the service provider. The user’s
strategy is to either accept the price and connect to the access point or to reject it and
stay disconnected. If the user decides to reject, the game ends. The user’s utility is
U (T ,ψ), where T is the actual number of periods of connection and ψ is the intended
connection duration (i.e., the maximum number of periods of connection to the access
point). In this utility function, T is a decision variable, which can be determined from
the decision of the user to remain connected or to disconnect in the current period.
ψ is random, which determines the type of the user. Again, the user knows the exact
value of ψ at the beginning of the game. However, only the probability distribution
of ψ is known by the service provider. Given the utility function U (T ,ψ), the payoff
for the user is Uuser = U (T ,ψ)−

∑T
t=1 pt . The payoff for the service provider is the

Access point

User

Accept/reject

Price

Fig. 10.4 System model for WiFi access-point pricing.
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total revenue obtained from the user in all periods, i.e.,
∑T

t=1 pt . In this incomplete-
information environment, a perfect Bayesian equilibrium (PBE) is the solution of this
dynamic game with a finite time horizon.As in the general case, the players have perfect
recall of all strategies used.

10.6.2 User with Web browsing

First, a dynamic game for a user with a Web browsing utility function is considered.
With Web browsing, the user’s utility is a function of the connection duration T . The
utility function is defined as

U (T ,ψ) = umin(T ,ψ), (10.42)

where u is the utility per period, which is random in each game. Therefore, this utility u
is also the type of the user. Again, the user knows the exact value of u at the beginning
of the game, but the service provider knows only its distribution.Assuming that u and ψ

are independent, the perfect Bayesian equilibrium (PBE) can be described as follows:

• The user connects to the access point in period t if and only if t ≤ ψ and u > pt . This
is referred to as the myopic strategy.

• The service provider charges a non-decreasing sequence of prices such that pt ∈
argmaxp pPr(u > p), where Pr(u > p) is the probability of u > p.

For the service provider, the strategy selection depends only on the probability distri-
bution of u. It is found in [344] that the PBE for the service provider is to choose a
single value of p∗ for the entire sequence of prices, i.e., pt = p∗ for all t. (This result is
counter-intuitive, since if the service provider observes that the user accepts price pt−1,
the better strategy would presumably be to change pt > pt−1.)

This model of two players is also extended in [344] to three players with a reseller
(Fig. 10.5). The reseller is introduced, for example, to extend the service area to the
user. In this case, the user requests connection to the reseller. The reseller then contacts
the root access point, and the access point replies with the price ct to be charged to the

ResellerUser Root access point

Request connection Request connection

Propose price ct

Propose price pt

Accept/reject
Accept/reject

Fig. 10.5 WiFi access point pricing in a multi-hop network.
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reseller. The reseller can accept or reject this price ct . If the reseller accepts the price ct ,
the charging price pt will be calculated and then proposed to the user. The user decides
to accept or reject the price. Again, the connection duration of the user is random, with
only the user knowing its exact value, while the reseller and the access point know
only the probability distribution. The user’s payoff is again the utility minus the cost:
U (T ,ψ)−

∑T
t=1 pt , where T is the number of periods of connection by the user. The

reseller’s payoff is the difference between the revenue gained from the user and the
cost paid to the access point, i.e.,

∑T
t=1(pt − ct). The access point’s payoff is simply

the revenue gained from the reseller, i.e.,
∑T

t=1 ct . Let the reseller’s history be defined
as follows: ht =

{
(ct̂ ,pt̃); t̂ = {1, ... , t}, t̃ = {1, ... , t− 1}

}
. The strategy of the access

point is ct , the strategy of the reseller is pt(ht), and the strategy of the user is to accept
or reject the offered price pt . With this three-player game, the PBE can be described as
follows:

• The user adopts a myopic strategy, i.e., connects to the reseller if and only if u > pt

for t ≤ ψ.
• The reseller chooses price p∗(c) such that p∗(c) ∈ argmaxp(p − c)Pr(u > p) and

p∗(c ′)≥ p∗(c) for c ′ > c .
• The access point chooses the non-decreasing price sequence ct ∈ argmaxc

(cPr(u > p∗(c))).

In this case, the reseller’s strategy depends only on the current price ct proposed by the
access point.

Note that this three-player model is similar to that of a Stackelberg game. In particular,
the follower (i.e., the reseller) changes strategy pt according to the strategy ct of the
leader (i.e., the access point). Also, the user changes strategy, accepting or rejecting the
proposed price according to pt . With this knowledge, the leader can seek the strategy ct

that maximizes its payoff. In this case, at PBE the access point will receive a share of
the revenue from the user which is not less than that for the reseller [344].

10.6.3 User with file transfer

Here, a game model for a user with file transfer is considered. Without a reseller, the user
connects to the access point until the file is completely downloaded. The utility function
for the user is

U (T ,ψ) =
{

0, if T < ψ,
uψ, if T = ψ,

(10.43)

for T ≤ ψ. Again, the type of user is determined by u and ψ, where u is the utility per
unit of file length. u ∈ [l ,h] with 0 ≤ l ≤ h, where l and h are, respectively, the lower
and upper bounds of utility per unit of file length, and ψ ∈ {1, ... ,ψmax}, where ψmax is
the maximum file length. The PBE can be described as follows:

• The user accepts price pt = 0 for t < ψ. When t = ψ, the user accepts the price if in
all previous periods the user connects to the reseller and uψ > pt . This is referred to
as the pessimistic strategy for the user.
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• The service provider charges

pt =
{

0, if t < t∗,
u∗t∗, otherwise,

(10.44)

where (u∗, t∗) ∈ argmax(u,t) utPr(u > ũ,ψ = t), and ũ is constant.

10.6.4 Model for uncertain application

Here, a dynamic game is developed for the case that the service provider does not know
whether the user uses Web browsing or file transfer. The service provider knows only
the probability x for the user to use Web browsing and 1− x to use file transfer. This
model is referred to as the Bayesian model, which considers two periods of the game
(i.e., ψ = 2). Three observations can be made about this special game structure:

• For x ∈ [0,0.516], the strategies s∗
Se and s∗

Us of the service provider and the user are
PBE.The strategy of the service provider, s∗

Se =(p∗
1 ,p∗

2 ), is the price charged in periods
1 and 2, which can be obtained as follows [344]:

p∗
1 (x) =

4− 5x
2(1− x)(4− x)

, p∗
2 (x) =

4− 3x
2(1− x)(4− x)

. (10.45)

The strategy s∗
Us of the user depends on the usage. If the user uses Web browsing (i.e.,

s∗
Us(web)), then the user in period 1 if and only if p1 < u, and in period 2 if and only if

the user decides to connect in period 1 and p2 < u (i.e., myopic strategy). If the user
uses file transfer (i.e., s∗

Us(file)), then the user will connect in period 1 if and only if
p1 + p̂2 < 2u for p̂2 = p∗

2 , and in period 2 if and only if the user connects in period 1
and p2 < 2u.

• For x ∈ [0.382,1], strategies s+
Se and s+

Us of the service provider and the user are PBE.
For the service provider, s+

Se = (0,1/(2− x)). For the user with Web browsing, a
myopic strategy is applied, i.e., s+

Us(web) = s∗
Us(web). For the user with file transfer,

the pessimistic strategy is applied. In particular, the user connects in period 1 if and
only if p1 = 0, and in period 2 if and only if the user connects in period 1 and 2u > p2.

• For x > 0, there is no PBE if the service provider charges a constant price p1 = p2.

Perfect Bayesian equilibria for the above observations are shown in Fig. 10.6. As
observed, this game possesses multiple equilibria for x ∈ [0.382,0.516]. Note that this
range [0.382,0.516] is obtained from the numerical analysis in [344].

In summary, when the game between the service provider (i.e., the access point’s
owner) and the user is played for a finite number of periods, a PBE can be obtained for
the direct-payment model. The PBE depends on the utility function of the user. For Web
browsing, it is found in [344] that the service provider can charge a constant price to
the user. If the price pt is smaller than the utility per period of user u, then the user will
accept the price. On the other hand, for a file-transfer utility function, the service provider
charges a zero price in the initial periods and a constant price in the later period. It is
noted that the Web-browsing utility function is more practical for actual use by the user.
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Fig. 10.6 Perfect Bayesian equilibria given probability x of user to use file transfer.

10.7 Summary

In IEEE 802.11-based WLAN, it is typical for users to be rational, seeking to achieve
the highest benefit from data transmission. Various game-theoretic models have been
developed the behavior of the users and service providers WLAN. First, as IEEE 802.11-
based WLAN uses the CSMA/CA protocol for medium access control, the user can
modify the protocol (e.g., change the contention window) to gain higher throughput.
However, thismodificationwill impact the performance of other users. Therefore, a game
model for rational users was developed to analyze network performance.Access-point or
network selection by users was formulated as the game. Since the users are rational, they
will connect to the access point that yields the highest benefit (e.g., throughput minus
cost). Equilibrium of access-point selection determines the average number of users in
each network and, hence, the performance can be obtained from the game model.WLAN
with a service provider as the owner was then considered.While users pay for connection
to the WLAN access point, the service provider can decide to admit the user for service
or not. If there are many ongoing users in the network, performance will be degraded. A
gamemodel between the newuser and the service provider can be established to obtain an
equilibrium admission-control policy. To this end, a game model for the pricing scheme
for WLAN service was presented. The equilibrium price for a service provider to charge
users can be determined for different applications (e.g., Web browsing or file transfer).



11 Multi-hop networks

Recent advances in wireless communication have made possible the large-scale
deployment of wireless networks, which consist of small, low-cost nodes with simple
processing and networking capabilities. In order to reach the desired destination such
as the data sink, transmissions depending on multiple hops are necessary. As a result,
the optimization of routing is a critical problem that involves many aspects such as link
quality, energy efficiency, and security. Moreover, the nodes may not be willing to fully
cooperate. For example, from the node’s perspective, forwarding the arriving packets
consumes its limited battery power, so it may not be in the node’s interest to forward
all arriving packets. But doing so will adversely affect network connectivity. Hence, it
is crucial to design a distributed-control mechanism that encourages cooperation among
participating multi-hop nodes.

This chapter studies game-theoretic approaches to routing in multi-hop networks.
We first introduce important models and examples of routing games. We provide
two detailed examples, a repeated-routing game and a hierarchical-routing game for
enforcing cooperation. Finally, we list other approaches from the literature.

11.1 Routing-game basics

A network is given by a directed graph G = (V ,E ), with vertex set V and edge set
E (either directed or undirected). A set {(s1,d1), ... , (sK ,dK )} consists of source–
destination vertex pairs, which we also call commodities. Each player is identified with
one commodity. Different players can originate from different source vertices and pass
information to different destination vertices. We use Pi to denote the si − di paths of
a multi-hop network. We consider only networks in which Pi 	= ∅,∀i , and we define
P =

⋃K
i=1 Pi .We allow the graph G to contain parallel edges, and a vertex can participate

in multiple source–destination pairs.
Each edge e of a network has a cost function ce . The cost functions are often assumed

to be non-negative, continuous, andmonotonous.All of these assumptions are reasonable
in wireless applications. Notice that the cost of each edge is determined by both nature
(such as the link quality) and players’actions. For example, the cost represents a quantity
that increases with the network congestion (when players utilize the edge too much).
The utility for a player Ui is usually formulated as the sum of the cost over the selected
paths, and depends on the flows.
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In the routing game of a multi-hop network, the strategy si for each player is to
choose the optimal flow (for example with the minimal overall cost). The flow is a
non-negative vector indexed by the set P of source–destination paths. There are two
constraints on the flows and paths. First, a player can select multiple source–destination
paths for transmission. The summation of flows over different paths is equal to the
player’s source–destination rate. Second, for each vertex, the sum of the input flows
and the flow generated by this vertex is equal to output flows. This is similar to the
Kirchhoff’s circuit laws [111].

In such a routing game, several independent decision-makers (players) interact in
order to form a network graph. Depending on the goals of each player, the final network
flows result from individual players’ decisions. Denote by Gsi ,s−i the graph G formed
when player i plays a strategy si while all other nodes maintain their strategies s−i =
[s1, ... ,si−1,si+1, ... ,sK ]. To analyze the outcome of such a game, we can first define the
best response for a player and then the Nash equilibrium, as follows:

definition 11.1 A strategy s∗
i is the best response for a player i if Ui (Gs∗

i ,s−i ) ≥
Ui (Gsi ,s−i ),∀si . Therefore, the best response for player i is to make the selection of the
flow that optimizes its utility, given that the other players maintain their strategies. The
Nash equilibrium is the stable point at which no player can unilaterally improve its
performance by changing its own strategy alone.

Next, we give an example of Braess’ paradox [136] and its applications in wireless
networks, to show how to formulate the game in a multi-hop network. Braess’ paradox
states that adding extra capacity to a network, when the moving entities selfishly choose
their route, can in some cases reduce the overall performance. This is because the Nash
equilibrium of such a system is not necessarily globally optimal. Formally, the paradox
is stated as follows [136]:

For each point of a road network, let there be given the number of cars starting
from it, and the destination of the cars. Under these conditions, one wishes to estimate
the distribution of traffic flow. Whether one street is preferable to another depends not
only on the quality of the road, but also on the density of the flow. If every driver
takes the path that looks most favorable to him, the resultant running times need
not be minimal. Furthermore, it is indicated by an example that an extension of the
road network may cause a redistribution of the traffic that results in longer individual
running times.

The reason for this is that, in a Nash equilibrium, drivers have no incentive to change
their routes. If the system is not in a Nash equilibrium, selfish drivers must be able to
improve their respective travel times by changing the routes they take. In the case of
Braess’ paradox, drivers will continue to switch until they reach the Nash equilibrium,
despite the reduction in overall performance.

Now consider the network shown in Fig. 11.1 as an example, in which 4000 drivers
wish to travel from Start to End. The travel time in minutes on the Start–A road is the
number of travelers T divided by 100, and on Start–B it is a constant 45 minutes (similar
to the other roads). If the dashed road does not exist (so the traffic network has four
roads in total), the time needed to drive the Start–A–End route with A drivers would be
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Fig. 11.1 Example of Braess’ paradox.

A
100 + 45, and the time needed to drive the Start–B–End route with B drivers would be
B

100 + 45. If one route is shorter than the other, this would not be a Nash equilibrium
because any rational driver would switch from the longer route to the shorter route. As
there are 4000 drivers, the fact that A+B = 4000 can be used to solve that A = B = 2000
when the system is at equilibrium, and therefore each route takes 2000

100 +45 = 65 minutes.
Next, we suppose that the dashed line is a road with a very small travel time, of

approximately 0 minutes. In this situation, all drivers will choose the Start–A–B path,
because Start–A–B will take 40 minutes at worst, while Start–B is always 45 minutes.
Upon reaching A, every rational driver will elect to take the “free” road to B and con-
tinue to End, as A–End is always 45 minutes, while A–B–End is at worst 40 minutes.
Each driver’s travel time is 4000

100 + 4000
100 = 80 minutes, an increase from the 65 minutes

required when the fast A-B road did not exist. No driver has an incentive to switch,
as the two original routes (Start–A–End and Start–B–End) are both now 85 minutes. If
every driver were to agree not to use the A–B path, all drivers would benefit, reducing
their travel times by 15 minutes. However, because any single driver will always benefit
by taking the A–B path, the socially optimal distribution is not stable, and so Braess’
paradox occurs.

We now consider a wireless network scenario in which the Braess’paradox occurs.We
consider a single-cell network with two access points (APs) to which a number of mobile
users (terminals) are connected, as shown in Fig. 11.2.Assume that the first access point,
denoted by AP1, offers a fixed rate rF and that the rate offered by the second access point,
denoted by AP2, offers a rate rV (n) that depends on the number of users connected to
it. An example of such a system in practice would be a network that has two types of
access points. The first type is an access point that uses an orthogonal, multiple-access
scheme (e.g., TDMA) in which each user gets a fixed rate. The second type is an access
point that offers a variable rate that depends on the number of users connected to it.
An example of such an access point could be based on a CDMA system, in which the
more users that are connected to the system, the greater is the interference. This leads to
a lower signal-to-interference-and-noise ratio (SINR) and therefore to a lower rate. We
can show that if we try to improve the system by allowing an intersystem connection,
i.e., a connection between the two types ofAPs, it may eventually lead to a performance
that is worse than in the original system. This happens because of the selfishness of
the users, and it is similar to the original Braess’ paradox that was studied in transport
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AP 1
rF

AP 2
rV (n)

Fig. 11.2 Single cell with two different access points, one offering a fixed rate rF and the other offering a
rate rV (n) that depends on the number n of users connected to it.

networks, in which adding a new fast road may not necessarily improve the throughput
of the vehicles.

Finally, there are different ways to enforce cooperation in the wireless multi-hop net-
work. In the rest of this section, we study some literature. Since the distributed nodes
do not have exact information about the others, they act selfishly to optimize their own
performances. This leads us to apply a game-theory approach [377] to the routing prob-
lem [403, 52]. In [274], repeated-game theory is applied to routing problems. In [182],
the authors propose a repeated-game framework for multiple access using cartel main-
tenance. A Tit-for-Tat solution is proposed in [338] for multi-hop wireless networks. In
[309], multiple-access resource allocation is studied using a game-theory approach. In
[32], the authors consider a less aggressive punishment policy, in which the node uses
the minimum forwarding probability among its neighborhoods as its forwarding proba-
bility after detecting the misbehavior. Felegyhazi et al. [147] consider a model to show
cooperation among participating nodes and provide sufficient conditions on the network
topology under which each node employing the punishment strategy results in a Nash
equilibrium. Srinivasan et al. [464] provide a mathematical framework for cooperation
in ad hoc networks, which focuses on the energy-efficient aspects of cooperation. In
[337], the authors focus on the properties of the cooperation-enforcement mechanisms
used to detect and prevent selfish behavior of nodes in an ad hoc network. They show
that the formation of large coalitions of cooperating nodes is possible when a mech-
anism similar to CORE [336] is used. In [336] and [86], the authors define protocols
that are based on a reputation system. In [30, 527], evolutionary dynamics and potential
games are studied for non-cooperative routing. In [358, 359], a game-theoretic model is
proposed for collaborative protocols in selfish, tariff-free, multi-hop wireless networks.
A dynamic Bayesian game approach is studied in [373] for routing in wireless ad hoc
networks.
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11.2 Cooperation enforcement and learning using a repeated game

For multi-hop networks with packet forwarding, distributed control to enforce coopera-
tion for nodes’ packet-forwarding probabilities is essential for maintaining connectivity.
In this section, we study a self-learning repeated-game framework [188] to optimize
packet-forwarding probabilities of distributed users. The framework has two major steps.
First, an adaptive repeated-game scheme ensures cooperation among users for the cur-
rent cooperative packet-forwarding probabilities. Second, a self-learning scheme tries
to find better cooperation probabilities. Some special cases are analyzed to evaluate the
framework. From the simulation results, the framework demonstrates the near-optimal
solutions in both symmetrical and asymmetrical networks.

11.2.1 System model and problem formulation

In multi-hop networks, packet forwarding is essential for distributed users to get con-
nected to destinations. Suppose there are K users. The kth user has a total of Nk routes
for its packet transmission. We assume that the routes are determined and known. Define
Iik as the set of the nodes on the i th route for the kth user. Suppose each user is willing
to forward other users’ packets with a probability of αi . For each user, the successful
transmission or reception of one packet will have the benefit G , and forwarding others’
packets will cost F per packet. Suppose the kth user transmits its packet with a proba-
bility of P i

k to the i th route. Obviously, we have
∑Nk

i=1 P i
k = 1. So the utility function Uk

for the kth user is

Uk =
Nk∑
i=1

P i
kGΠ(αj , j ∈ Iik)−FαkBk , (11.1)

where Π is the successful transmission probability, which is a function of the packet-
forwarding probabilities αj along the routes. Bk is the forward-request probability from
other users. The first term on the right-hand side of (11.1) is the average benefit for
the kth user, which depends on other users’ willingness to forward packets. The second
term is the cost of forwarding other users’ packets, which depends on the user’s own
willingness to do so.

We can formulate this problem as a non-cooperative game (Chapter 3) in which each
user adjusts its forward probability to maximize its own utility function:

max
0≤αk≤1

Uk(αk ,α−k), (11.2)

where α−k = [α1, ... ,αk−1,αk+1, ... ,αK ]T denotes the other users’ packet-forwarding
behaviors. At the Nash equilibrium every user will select a utility-maximizing strategy
given the strategy of every other user.

Unfortunately, the Nash equilibrium for the packet-forwarding game is usually
α̂k =0, ∀k , because each user’s benefit depends on the other users’ willingness to for-
ward, and does not depend on its own behavior, while the user’s cost depends solely on
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its willingness to forward. So each user will greedily drop its packet-forwarding prob-
ability to reduce the cost and increase the utility. However, if all users do not forward,
drop to successful packet-transmission probabilities might zero is, the benefit for users
zero, and the system shuts down. That is, if the users play non-cooperatively and reach
Nash equilibrium, all users’ utilities might be zero, while if they cooperate and maintain
a positive packet-forwarding probability, they can benefit.

The problem is to design a method of enforcing cooperation among users. We want to
find the best packet-forwarding vector such that the utilities of all users are strictly better
than those at the Nash equilibrium, design a mechanism to enforce such cooperation
among users, and use the repeated game (Chapter 3) to solve the problem.

For a T-period repeated game, at each period t the moves of all players during periods
1, ... , t − 1 are known to every player. β is the discount factor. The total discounted
payoff for each player is

∑T
t=1 βt−1Uk(t), where Uk(t) denotes the payoff to player k

in period t. If T =∞, the game is referred to as an infinitely repeated game. The average
payoff to player k is then

Ūk = (1−β)
∞∑
t=1

βt−1Uk(t). (11.3)

11.2.2 Self-learning cooperation-enforcing framework

The basic idea for the studied algorithm is to let distributed users learn the optimal packet
transmission probability step by step, while within each step the strategy of a repeated
game is applied to ensure cooperation among the users. For simplicity, we omit the user
index. A block diagram of the algorithm is shown in Fig. 11.3.

During initialization, all users play a non-cooperative game, and all users are balanced
in an inefficient Nash equilibrium α̂. We set the time counter at n = 0, the punishment
time at T = 0, and the trigger threshold at V = α̂.

In the next step, we play a repeated-game strategy. If all users play cooperatively,
every user will get a positive benefit. However, from (11.1), if any user deviates from
cooperation by playing non-cooperatively and other users still play cooperatively, the
non-cooperative user will have higher benefit, while the others will suffer with lower
benefit because of this user’s greediness. In order to prevent users from deviating, the
repeated-game strategy provides a punishment mechanism. The basic idea is that each
user checks whether the utility function is lower than the threshold V . If so, this means
some user may have deviated; therefore, this user also chooses to play non-cooperatively,
for a period T . In this case, the greedy user’s short-term benefit is eliminated by the long-
term punishment. If all users consider the long-term payoff to be (11.3), which is true
under the assumption of rational users, then none of them will have an incentive to
deviate from cooperation.

The repeated-game scheme with parameters (V ,T ) for all users is explained in detail
as follows. Each user’s utility U is compared with the threshold V . If U < V , i.e.,
someone has deviated, the time counter n is set to zero, the punishment time is increased
by 1, and the user plays non-cooperatively for a period T . Since we assume that all
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Fig. 11.3 Self-learning repeated-game framework.

users are rational, with increasing T the benefit of a one-time deviation will eventually
be eliminated. Finally, no user wants to deviate, and U ≥ V . At this point, the counter
n starts increasing. If the system is stable in cooperation for a period N , a predefined
constant, the algorithm assumes that cooperation has been enforced, and moves to the
next step.

In the next step, the algorithm tries to self-learn the optimal forward probabilities
by modifying α, with the goal of optimizing the performances. The simplest way is to
randomly generate α∈ [0,1], where different users may have different α. In the next time
slot, all users observe whether their performances become better. If they do not, then
α is changed to the previous value. Otherwise, each user selects its packet-forwarding
probability as α, updates its threshold to the current benefit V = U , calculates the change
in utility

ΔU = U(new α)−U(α̂), (11.4)

and calculates the change ΔD in benefit. If the network is symmetric, the optimal
punishment time is

T =
ΔD
ΔU

, (11.5)

where T is the estimated punishment time that prevents deviation. Then the algorithm
goes back to the repeated-game case to update the punishment time T such that all users
are willing to cooperate.
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Notice that during the first time slot after α is modified, all users will act cooperatively,
since deviation eliminates the chance of future utility improvement. In the repeated-game
step, the benefit of instantaneous deviation is eliminated sooner or later, as long as the
discount factor β is close enough to 1. Thus T will converge to some value. In the self-
learning step, if the new α are not good for all users, the original value of α is restored.
If the new α are good, cooperation can be enforced in a future repeated-game step. So
the framework will converge.

In summary, the framework uses the threat of punishment to maintain cooperation for
the current α, and tries to learn whether there is a better value of α for cooperation.

11.2.3 Asynchronous network

In the previous analysis, we assumed the networks were synchronous, i.e., each user’s
utility could be observed instantaneously whenever other users deviated. This might not
be true in a real network. Here we discuss the problem introduced by asynchronous
networks and some possible solutions.

When a network is asynchronous, deviations by users will be detected by other users
with some time delay. The problem is that when the punishment period is over, the users
may return to the cooperation phase at different times. This may trigger some users to
continue punishment because they cannot distinguish between users who are deviating
and those who are still in the punishment phase. This will make the network fluctuate,
and the punishment time T cannot converge. In order to solve such a problem, we study
a modification to the repeated-game step of the framework.

This is shown in Fig. 11.4, where an extra step is added at the end of the punishment
period. After switching back to cooperation, the user will wait for time T ′ and then
observe whether others deviate. This time T ′ is reserved for the other users to return to
cooperation, and its value is determined by the scale and topology of the network. If the
value of T ′ is too small, the network will not be stable, and the punishment period will
always prevail because some users’ delayed return to cooperation will trigger others’
new punishment periods. If the value of T ′ is too large, it gives opportunities for greedy
users to deviate to gain benefits without being detected by other users. Hence, there are
tradeoffs in the choice of T ′.

The other concern occurs during the step when α is modified after the system is stable,
n > N . The message for all users to modify α can be implemented by protocols such as

No Yes

Cooperate,

wait T �

n =0, T =T + 1

Punish, TDeviation?

Fig. 11.4 Modified repeated-game step.
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flooding. This message will take time to arrive at each node. In order to check whether the
system becomes better, a user needs to wait for a period of time that may be similar to T ′.

11.2.4 Case analysis and performance evaluations

We analyze two cases: symmetrical networks and asymmetrical networks. Some sim-
ple examples are given, and analytical optimal results are deduced. Simulations are
conducted to evaluate performance.

First, we analyze the characteristics of a symmetric network. The topology of such a
network is symmetric, so the resulting Nash equilibrium and the optimum of the packet-
forwarding probabilities should be the same for all users, i.e., α̂k = α̂j , αk = αj , ∀k, j . In
general, networks are asymmetric. However, at the edges of networks, where some nodes
may equally access the networks, a symmetrical topology may exist, and symmetric
analysis can be applied.

As an example of a synchronous symmetrical network, consider the network in
Fig. 11.5. In this network, there are six fixed routes: 1 � 4, 2 � 5, and 3 � 6. All
destinations are three hops away from the source, and we consider the node’s utility
function as the reward obtained from successfully transmitting or receiving a packet.
We assume that forwarding of others’ packets consumes resources such as energy, and
therefore contributes a cost (negative reward) to the utility function. The utility functions
for each of the nodes in Fig. 11.5 are represented as follows:

U1 = 2G [1− (1−α2α3)(1−α5α6)]−F [α1 +α1α2],

U2 = 2G [1− (1−α1α6)(1−α3α4)]−F [α2 +α2α3],

U3 = 2G [1− (1−α1α2)(1−α4α5)]−F [α3 +α3α4],

U4 = 2G [1− (1−α2α3)(1−α5α6)]−F [α4 +α4α5],

U5 = 2G [1− (1−α1α6)(1−α3α4)]−F [α5 +α5α6],

U6 = 2G [1− (1−α1α2)(1−α4α5)]−F [α6 +α1α6],

1 2

3

45

6

Fig. 11.5 Example of a symmetric network.
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whereαi is the probability that node i iswilling to forward others’packets,G is the reward
for successfully transmitting and receiving a packet, and F is the cost of forwarding oth-
ers’ packets. We assume that nodes are greedy and rational but not malicious; that is,
every node chooses its forwarding probability to maximize its own utility function. If
we consider the Nash equilibrium obtained non-cooperatively from (11.2), it is in each
node’s best interest to select zero forwarding probability (i.e., αk = 0, ∀k) to mini-
mize its forwarding cost in the utility function. However, the overall network becomes
disconnected as all of the nodes act in a non-cooperative manner.

Note that, because of the symmetry of the network in Fig. 11.5, the optimal forwarding
probability and the corresponding utility for each node will also be symmetric. We omit
subscripts for simplicity. If we consider the system-wide optimal solution to maximize
everybody’s utility, we can formulate the problem as

max
0≤α≤1

U = 2G (2α2−α4)−F (α+α2). (11.6)

Differentiating the above equation,

∂U
∂α

= 8G (α−α3)−F (1+2α) = 0, (11.7)

α3−
(

1− F
4G

)
α+

F
8G

= 0, (11.8)

0≤ α≤ 1. (11.9)

The optimal forwarding probability in the symmetrical network can be obtained by
solving (11.8). Figure 11.6 shows the effects of forwarding probability α on the utility
function for different normalized forwarding costs, F/G . We also show the optimal
forwarding probabilities for different cases. It is obvious that as the cost F for forwarding
is smaller than the transmitting/receiving reward G , the optimal forwarding probability
will approach unity and the corresponding utility will also be high. On the other hand,
when F/G is large, each node has a lower incentive to forward the others’ packets, and
utility is low. This is reasonable because when the cost for forwarding is very large, it is
better for the node to save the energy for its own transmission.The goal of the cooperation
mechanism design is to establish an incentive for the nodes to avoid the non-cooperative
solution and to achieve a system-wide optimal forwarding probability. It is also worth
mentioning that not every positive packet-forwarding probability will generate a larger
utility than the full non-cooperation case, in which the packet-forwarding probability is
zero. For example, when F/G = 1, the utility is higher than zero only when α≥ 0.37.
Thus, in the self-learning step, if α is less than 0.37, the system will have a worse
performance than with non-cooperation.As a result, the new α will be discarded and the
original α will be restored.

In Fig. 11.7, we show simulation results for utility and packet-forwarding probability
over time, with F/G = 1 and N = 200. Initially, α = 0 because of non-cooperative
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transmission. Then the system tries to find a better packet transmission rate. When
it finds a better solution, all users adopt their α to that value. However, because the
punishment period T is not adjusted to an optimal value, deviation can have bene-
fits, so there exists a period during which the utility and α switch from cooperation to
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Fig. 11.8 Example of an asymmetrical network.

non-cooperation. During this period, T is increased until everybody realizes that there
is no benefit from deviation because of the long period of punishment. If the system is
stable for time N , a new α is attempted, to check if performance can be improved. If
so, the new value is adopted; otherwise the original value is restored. Thus the packet-
forwarding probability is adjusted until an optimal solution is found, and the learned
utility function is a non-decreasing function over time. Notice that users are less reluc-
tant to deviate when α is close to the optimal solution. This is because the benefit
of deviation becomes smaller and users already have the estimated punishment time
according to (11.5).

Practical networks in nature are generally asymmetric.We now turn our attention to the
performance of the framework in asymmetrical networks.An example of a synchronous
asymmetrical network is shown in Fig. 11.8. Nodes 1 and 6 act as sinks for information.
The right-pointing arrows indicate flow directions for which node 6 is the sink. In this
case, nodes 1 to 5 want to transmit to node 6. Similarly, the left-pointing arrows indicate
flow directions for which node 1 is the sink. In this case, nodes 2 to 6 want to transmit
to node 1. We formulate the utility functions for nodes 1 to 6 as follows:

U1 = 2Gα2α3α4α5,

U2 = G [1+α3α4α5]−F [2α2 +α2α3 +α2α3α4 +α2α3α4α5],

U3 = G [α2 +α4α5]−F [2α3 +α2α3 +α3α4 +α3α4α5],

U4 = G [α5 +α2α3]−F [2α4 +α3α4 +α4α5 +α2α3α4],

U5 = G [1+α2α3α4]−F [2α5 +α4α5 +α3α4α5 +α2α3α4α5],

U6 = 2Gα2α3α4α5.

It is obvious that the non-cooperative solution for each node is to use zero forwarding
probability. Notice that, because of the symmetry in the network flow, nodes 2 and 5, and
nodes 3 and 4, have the same forwarding probabilities, respectively. Moreover, node 1’s
utility and node 6’s utility are totally dependent on the other nodes’ packet-forwarding
probabilities. So the optimization parameters are α2 (α2 = α5) and α3 (α3 = α4) only.
Since nodes 2 and 4 have their own optimization goals, from a system-optimization point
of view this is a multiple-objective optimization. To quantify the optimality, we need
to use the concept of Pareto optimality (a Pareto-optimal outcome cannot be improved
upon without hurting at least one node).

In Fig. 11.9, we show the Pareto-optimal region and the simulated results for the
framework. The x-axis and y-axis are α2 and α3, respectively. Here, the system tries
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Fig. 11.9 Pareto-optimal region and the simulated results.

to find a new packet-forwarding probability over the course of 250 trials. Any point
within the shaded area is Pareto-optimal. Most of the simulated points are within this
region, with very few points being located outside (a result of the failure to find the
optimal packet-forwarding probability within 250 trials). We can see that the framework
is effective in finding the Pareto optimum for asymmetrical networks.

Overall, we have studied a self-learning repeated-game framework for packet-
forwarding networks. Cooperation among users for packet forwarding is obtained by
threat of future punishment, while the optimal packet-forwarding probability for each
user can be studied distributively. From the simulation results for symmetrical and asym-
metrical networks, we can see that the framework can effectively find solutions close
to the optimal solutions in a distributed way. This framework may impact the design of
future communication networks such as wireless networks, and wired networks, ad hoc
networks, sensor networks.

11.3 Hierarchical routing using a network-formation game

In this section, we study a game-theoretic approach to the distributed formation of the
hierarchical network architecture connecting the nodes in the uplink of a wireless multi-
hop network. Existing literature focuses on the performance assessment of hierarchical
multi-hop networks given an existing topology. Here we investigate the problem of the
formation of this topology amongnodes seeking to send data in the uplink to a central base
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station through multi-hop. We model the problem as a hierarchical network-formation
game, dividing the network into different hierarchy levels whereby the nodes belonging
to the same level engage in a non-cooperative Nash game for selecting their next hop
[416]. For a solution, we study the hierarchical Nash equilibrium for a sequence of
multi-stage Nash games, which can be found analytically by backward induction. To find
this equilibrium, we study a distributed myopic-dynamics algorithm based on fictitious
play, in which each node computes the mixed strategies that maximize its utility, which
represents the probability of successful transmission over the multi-hop communication
path in the presence of interference.

In the literature, hierarchical multi-hop network architectures have become an essen-
tial aspect of emerging communication networks. For instance, while cellular-based
communication has been the leading architecture in the past decade, recent advances
such as distributed multi-hop communication have imposed a hierarchical architec-
ture on many next-generation wireless networks. In fact, hierarchical structures have
become ubiquitous in broadband networks [11], cognitive-radio networks [368], wire-
less local area networks (WLANs) [7], cellular networks [300], and sensor networks. In
this regard, several IEEE workgroups have included hierarchical architectures in recent
standards. For example, the IEEE 802.16j mobile multi-hop relay (MMR) task group
introduced a hierarchical tree architecture as the base architecture in the next-generation
IEEE 802.16 WiMAX family of broadband networks [11]. Moreover, IEEE 802.11s
has standardized tree-based routing in mesh-based WLANs [7]. In [238], a theoretical
framework for a hierarchical routing game is proposed. In [124], given a wireless tree
network, the authors propose a low-complexity cooperative protocol that improves the
average throughput of multi-hop upstream transmissions. The authors in [296] study
the optimal deployment (that maximizes the throughput) of a single relay station for
two-hop transmission in a hierarchical IEEE 802.16j network. In [297], the performance
of multi-hop relaying is studied when dual relaying is performed. The authors in [453]
study the resource-allocation problem for a multi-hop hierarchical cognitive network
in the presence of an existing hierarchical topology. Other aspects of hierarchical wire-
less networks, such as routing and the optimal deployment of nodes, are discussed in
[300, 524, 370, 395].

11.3.1 System model and game formulation

Consider a network of N users (or nodes) transmitting data to a central base station (BS)
in the uplink direction. Let N denote the set of nodes in the network. To improve
their performance, the nodes can transmit through other nodes, i.e., multi-hop transmis-
sion. Hence, the final architecture governing the network is a hierarchical architecture,
whereby each node i ∈ N is connected to one or more nodes in N . For this purpose,
we separate the nodes into l hierarchical levels (or stages1) according to some criterion,
for example, geographical distance to the BS (other criteria may also be used along with
the studied algorithm). For multiple access at every hop, we consider a CDMA-based

1 We use the terms “level” and “stage” interchangeably.
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transmission. Let L = {1,2, ... , l} denote the set of levels in the network, which are
ordered in such a way that the nodes at level h1 are farther away from the BS than nodes
at level h2 when h1 < h2,∀h1,h2 ∈ L. The nodes belonging to a hierarchy level h ∈ L
form a setNh ⊂N . The differentNh,h∈L are mutually exclusive sets, i.e.,Ni ∩Nj = ∅
for i 	= j , i , j ∈ L, and ∪l

k=1Nk =N . We denote by nh = |Nh| the number of nodes at
level h.

The objective is an algorithm that allows the nodes at each level to select their next
hops, in a distributed manner. To model these interactions among the nodes seeking to
form the uplink tree structure, network-formation games provide a suitable framework
[228, 190]. In such games, several independent decision-makers interact to form a net-
work graph G = (N ,E), where N is the set of nodes or vertices and E is the set of
directed edges. The essence of network formation is to find the best set of directed edges
among all possible configurations. Instead of an exhaustive search, we aim at a network-
formation scheme that allows distributed decision-making at each node. Depending on
the goals of each node, a final network graph forms as a result of individual nodes’ deci-
sions. Thus, we model the uplink tree-formation problem as a network-formation game
for finding the directed uplink edges through which the nodes can transmit to the BS.
An illustration of the studied model is shown in Fig. 11.10 for a network of nine users
divided into three levels.

For each level h ∈ L, a strategic game in normal form is defined by Ξh =
〈Nh, (Ai ,h)i∈Nh , (Ui ,h)i∈Nh〉, whereNh is the set of players (nodes) of the game,Ai ,h is
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Fig. 11.10 Example of the hierarchical network model.
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the set of actions of a player i ∈Nh, and Ui ,h is the utility function of a player i ∈Nh.
In the uplink network-formation game, the action space Ai ,h of a node i ∈Nh is given
by Ai ,h = Nh+1, so |Ai ,h| = |Nh+1| = nh+1. At the last stage, h = l , Al is simply the
singleton set, comprising the BSs. We denote by (ai ,m) ∈ Am the node at level m + 1
chosen by i ∈ Nh at level h. If i ∈ Nh and m = h, we call the choice (ai ,m) made by
node i direct. If m > h, we call the choice (ai ,m) indirect as the choice of node i at a
higher level is made via other intermediate nodes. For example, when m = h + 1, the
choice (ai ,m) is indirectly made by (ai ,h), which is directly chosen by i at level h.
For m < h, we assume that (ai ,m) = i , the node itself. With this notation, the average
SINR of any node k ∈ Nm, denoted by (ai ,m− 1) (k is any node selected by node
i ∈ Nh at level m), received at node (ai ,m), the direct choice of node i , is given by
[519, 478]

Γ(ai ,m)
(ai ,m−1) = S ·

P(ai ,m−1) · g (ai ,m)
(ai ,m−1)

I (ai ,m)
(ai ,m−1)

, (11.10)

where P(ai ,m−1) is the transmit power of node (ai ,m− 1), S is the spreading factor,

and g (ai ,m)
(ai ,m−1) = κ ·

(
D(ai ,m)

(ai ,m−1)

)−μ

is the channel gain between the node at level m and

its selected node at level m + 1, with D(ai ,m)
(ai ,m−1) being the distance between the nodes

(ai ,m−1) and (ai ,m), μ the path-loss exponent, and κ the path-loss constant. I (ai ,m)
(ai ,m−1),

the intra-level interference (and noise) perceived by (ai ,m−1) at (ai ,m) from nodes at
level m +1 that are connected to (ai ,m), is given by

I (ai ,m)
(ai ,m−1) = σ2

m +
∑

k∈N (ai ,m)
m \{(ai ,m−1)}

Pk · g (ai ,m)
k . (11.11)

Here, σ2
m is the Gaussian noise variance at level m, the summation represents the inter-

ference from the other nodes at level m that are connected to node (ai ,m) (N (ai ,m)
m is

the set of players at level m connected to (ai ,m)), Pk is the transmit power of node k ,

and g (ai ,m)
k = κ ·

(
D(ai ,m)

k

)−μ

is the channel gain between k and (ai ,m). We define the

following utility function Ui ,h of a node i ∈ Nh from the starting stage h to the final
stage l :

Ui ,h =
l∏

m=h

Pr(ai ,m)
(ai ,m−1), (11.12)

where Pr(ai ,m)
(ai ,m−1), the probability of the average received SINR at node (ai ,m) from node

(ai ,m−1) being larger than a target ν(ai ,m−1) (desired by (ai ,m−1)), i.e., the probability
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of successful transmission for a single hop, is given by the following approximation (in
a Rayleigh fading channel) [391]:

Pr(ai ,m)
(ai ,m−1) = e

−
ν(ai ,m−1)

Γ
(ai ,m)
(ai ,m−1) , (11.13)

where ν(ai ,m−1) is the target received SINR at (ai ,m), and Γ(ai ,m)
(ai ,m−1) is given by (11.10).

Hence, the utility functionUi ,h :
∏l

m=h

(∏nm
j=1Am

)
→ [0,1] of player i ∈Nh corresponds

to the multi-hop probability of successful transmission from the starting stage h to the
final stage l . Note that the utility for a player i depends on its own strategies as well as
the strategies of its parent nodes in the tree. In a nutshell, the action of any node at level
m is to choose a node at level m +1, and the corresponding utility is dependent on the
actions of the nodes at level m +1.

Moreover, we consider that each node requires a certain amount of money to be paid
for offering its services, i.e., we consider a pricing scheme in the network. Let c(ai ,m) be
the cost that node i ∈Nh has to pay per unit of traffic if i transmits through (ai ,m)∈Am.
If m = h, the cost is direct; otherwise, it is said to be indirect. We consider only direct
costs, i.e., c(ai ,m) = 0 if m 	= h. When m = h, a cost is incurred if a connection is made.
Hence, the nodes pay only to the nodes at the next level. Thus, the utility function U i ,h

to transmit from h to l for unit traffic becomes

U i ,h =
l∏

m=h

e−ν(ai ,m−1)/Γ(ai ,m)
(ai ,m−1)

c(ai ,h)
, (11.14)

which corresponds to the success rate per unit of money. By taking the natural logarithm
of both sides in (11.14), we get

Ũi ,h =−
l∑

m=h

ν(ai ,m−1)

Γ(ai ,m)
(ai ,m−1)

−c̃(ai ,h)=
l∑

m=h

ũi ,m−c̃(ai ,h), (11.15)

where ũi ,m is the stage utility, defined by ũi ,m :=− ν(ai ,m−1)

Γ(ai ,m)
(ai ,m−1)

, and c̃(ai ,h) = lnc(ai ,h). There-

fore, in the transformed game Ξ̃h = 〈Nh, (Ai ,h)i∈Nh , (Ũi ,h)i∈Nh〉, each node i at the level
h attempts to optimize

max
(ai ,h)∈Ah

Ũi ,h. (11.16)

Since all nodes inN attempt to choose an action to optimize their payoffs at the level
where they belong, Ũi ,h, the utility for i ∈ Nh at level h, is dependent on Ũj ,h+1, the
utility obtained by j ∈ Nh+1, at the next level h + 1, which is an outcome of the game
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Ξh+1, in which each player j at level h +1 solves

max
(aj ,h+1)∈Ah+1

Ũj ,h+1. (11.17)

This dependence on the next level is not present at the last stage, Ξ̃l , where each node
k ∈Nl optimizes

max
(ak ,l)∈Al

Ũk,l = max
(ak ,l)∈Al

[ũk,l − c̃(ak ,l)]. (11.18)

As an example of this formulation, for the network in Fig. 11.10 we have N1 =
{1,2,3},N2 = {4,5,6},N3 = {7,8,9},A1 = {4,5,6},A2 = {7,8,9}, andA3 = {BS}.
From the chosen connections, we observe that (a1,1) = 4,(a2,1) = 6,(a3,1) = 6,
(a4,2) = 7,(a5,2) = 8,(a6,2) = 8, and (a7,3) = (a8,3) = (a9,3) = BS. The utility
for node 1 at level 1 is given by Ũ1,1 = ũ1,1 + ũ1,2 + ũ1,3− c̃4 with each ũi ,m given by
its definition as previously mentioned.

11.3.2 Hierarchical network-formation game solution

To solve the game presented, the network-formation game is defined by a sequence of
non-cooperative Nash games {Ξ̃h}h=1,...,l . We denote by (ai ,h)∗ the optimal action cho-
sen at level h by a player i ∈Nh directly. Let (a,h)∈

∏nh
k=1Nh be an action profile at level

h, i.e., (a,h) = [(ai ,h)]i∈Nh . For convenience, we denote (a−i ,h) = [(aj ,h)]j �=i ,j∈Nh ,
hence (a,h) = [(ai ,h), (a−i ,h)]. Given a level l ′ between the initial level h and the
final level l , we define the Nash equilibrium of the hierarchical network-formation game
{Ξ̃h}h=1,...,l as follows:

definition 11.2 Let {Ξ̃h}h=1,...,l be a hierarchical network-formation game. An
action profile (ai ,h)∗ ∈Ah+1, for i ∈Nh and h ∈L is a hierarchical Nash equilibrium if

Ũi ,h((ai ,h)∗, (a−i ,h)∗)≥ Ũi ,h((ai ,h), (a−i ,h)∗),∀i ∈Nh, (ai ,h) ∈Ah+1,h ∈ L.
(11.19)

The action profile (a,h)∗ is said to be a stage-h Nash equilibrium, and the payoff at the
equilibrium Ũ∗

i ,h((a,h)∗) is called the stage-h optimal payoff to player i .

The hierarchical Nash equilibrium is thus defined as a solution to the multi-stage
non-cooperative game, in which each node plays only once and no node, at any level
of hierarchy, can unilaterally deviate and improve its utility given that the computed
strategies of the other nodes at all stages remain fixed. Note that in (11.19) we shorthand
the dependence of the payoff of Ũi ,h into the actions at its own level, as the the choices
of actions made by a node at its own level directly determine the utility.
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To find the Nash equilibrium defined in (11.19), the game at a particular stage l ′ can
be decomposed as follows:

Ũ∗
i ,l′ = max

(ai ,l′)∈Al′
Ũi ,l′

= max
(ai ,l′)∈Al′

⎡⎣ l∑
m=l′+1

ũ∗
(ai ,l′),m +

ν(ai ,l′−1)

Γ(ai ,l′)
(ai ,l′−1)

− c̃(ai ,l′)

⎤⎦
= max

(ai ,l′)∈Al′

⎡⎣Ũ∗
(ai ,l′),l′+1 +

ν(ai ,l′−1)

Γ(ai ,l′)
(ai ,l′−1)

− c̃(ai ,l′)

⎤⎦ , (11.20)

for all i ∈Nl′ , where Ũ∗
(ai ,l′),l ′+1 is the stage l ′ +1 optimal payoff to (ai , l ′). The payoff

of the game at the last stage is

Ũ∗
i ,l =

νi ,l−1

Γ(ai ,l)
(ai ,l−1)

− c̃(ai ,l)∗ , (11.21)

where {(ai , l)∗, i ∈Nl} is a hierarchical Nash equilibrium at level l . Note that Γ(ai ,l)
(ai ,l−1)

depends (through the interference term) on the actions of all the nodes at level l at the
hierarchical Nash equilibrium, i.e., ((a1, l)∗, (a2, l)∗, ... , (anl , l)

∗).
Hence, by (11.20), we can obtain the Nash equilibrium of the game by starting with

the final stage l ′ = l and solving the game iteratively by backward induction to stage
l ′ = h. Such a decomposition of the game into stages is possible because the players at
each level are different from each other, and the game at level l ′ is independent of the
games at levels k < l ′ (in contrast, the game at l ′ is dependent on the higher levels k > l ′

through the utility). In a nutshell, we can proceed as follows for solving the hierarchical
network-formation game:

proposition 11.1 Consider a network-formation game {Ξ̃h}h=1,...,l . An action pro-
file (ai ,h)∗ ∈Ah+1, for i ∈Nh and h ∈L, is a hierarchical Nash equilibrium if and only
if it solves (11.20) recursively from stage h = l backwards to stage h = l ′.

Thus, Proposition 11.1 provides an analytical way to solve for the hierarchical Nash
equilibrium using backward induction.

As the Nash equilibrium in pure strategies may not exist, we generalize the above
concepts to the case in which the nodes at every level use mixed strategies, since the
mixed Nash equilibrium always exists [58]. Let pi ,l ′ ∈ P i ,l ′ be the mixed strategies of
the i th player at stage l ′, where

P i ,l′ =

{
pi ,l′ ∈Rnl′

∣∣∣∣ ∑
(ai ,l′)∈Al′

pi ,l′
(ai ,l′)

= 1, pi ,l ′
(ai ,l′)

≥ 0,∀(ai , l ′) ∈Al′

}
, i ∈Al′ .

definition 11.3 Let {Ξ̃h}h=1,...,l be a hierarchical network-formation game. A
mixed-strategy profile pi ,h∗

(ai ,h) ∈ P i ,h, for i ∈ Nh and h ∈ L, is a hierarchical Nash
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equilibrium in mixed strategies if the following nh conditions are satisfied:∑
(a1,h)∈Ah

· · ·
∑

(anh ,h)∈Ah

p1,h∗
(a1,h)p

2,h∗
(a2,h) · · ·p

nh,h∗
(anh ,h)Ũi ,h

≥
∑

(a1,h)∈Ah

· · ·
∑

(anh ,h)∈Ah

p1,h
(a1,h)p

2,h∗
(a2,h) · · ·p

nh,h∗
(anh ,h)Ũi ,h,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·∑
(a1,h)∈Ah

· · ·
∑

(anh ,h)∈Ah

p1,h∗
(a1,h)p

2,h∗
(a2,h) · · ·p

nh,h∗
(anh ,h)Ũi ,h

≥
∑

(a1,h)∈Ah

· · ·
∑

(anh ,h)∈Ah

p1,h∗
(a1,h)p

2,h∗
(a2,h) · · ·p

nh,h
(anh ,h)Ũi ,h,

∀i ∈Nh,h ∈ L.

The mixed-strategy profile pi ,h∗ is said to be a mixed stage-h Nash equilibrium, and the
payoff at the equilibrium, i.e.,

Û∗
i ,h =

∑
(a1,h)∈Ah

· · ·
∑

(anh ,h)∈Ah

p1,h∗
(a1,h)p

2,h∗
(a2,h) ...p

nh,h∗
(anh ,h)Ũi ,h,

is called the stage-h optimal payoff to player i .

We can use a decomposition similar to that in (11.20) to show that the mixed Nash
equilibrium can also be found by backward induction from the final stage to the initial
stage h.

11.3.3 Hierarchical network-formation algorithm

To find the hierarchical Nash equilibrium, we study a dynamics algorithm that allows a
distributed formation of the hierarchical network structure. The dynamics assume that
each node is myopic, in the sense that the nodes aim to improve their payoffs con-
sidering only the current and previous states of the network. The network-formation
algorithm consists of three phases: hierarchy formation, hierarchical fictitious play, and
data transmission. In the first phase, the hierarchy in the network is formed. We con-
sider a distance-based hierarchy whereby each hierarchy level corresponds to the area
between two circles centered at the BS and with constant radii, with the uppermost level
corresponding to the area within a circle centered at the BS with a specified radius. This
hierarchy divide can be performed by the BS, and is assumed to be fixed throughout the
network operation. Once the hierarchy is formed, Phase I continues by allowing each
player belonging to a certain level l is allowed to select its nearest neighbor in level l +1.
Hence, the initial network consists of a nearest-neighbor algorithm with predetermined
hierarchy levels.

Once the network is initiated, the next phase of the algorithm, the actual network-
formation process, starts. To form the network in Phase II, we use fictitious play [159]
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at each stage l ′ ∈ L to find the mixed Nash equilibrium at that level. Let pi ,l ′
(ai ,l′)

(k)
be the empirical probability that a player i ∈ Nl′ , i = 1,2, ... ,nl′ at a certain level
l ′ chooses an action (ai , l ′) ∈ Al ′ at the kth iteration of the algorithm. Denote by

pi
l′(k) = [p1,l′

(a1,l′)
(k), ... ,pn′

l ,l
′

(an′
l
,l′)(k)] an nl′-dimensional vector of player i’s empirical

mixed strategy at time k . At each iteration, the players update their strategy pi
l′(k) as

follows:

pi
l ′(k +1) = pi

l′(k)+
1

k +1

(
vi

l′(k)−pi
l ′(k)

)
, (11.22)

where vi
l′(k) = [v i

(ai ,l′)(k)](ai ,l′)∈Al′ is an nl ′-dimensional vector with vai ,l′(k) = 1 if at
time k the i th player chooses the action (ai , l ′), and vai ,l′(k) = 0 otherwise. Since a player
chooses only one action at each step, vi

l′(k) is a vector with the entry that corresponds
to the chosen action (ai , l ′) being 1, while the remaining terms are equal to 0.

In the hierarchical fictitious-play phase, the action (ai , l ′) of the i th node at time k is
the best response to the observed empirical strategies of the opponents. Let p−i

l ′ (k) =
[pj

l′(k)]j∈Nl′ ,j �=i ; let qi ,l ′(k) denote the action taken by the i th node at time k , given by
qi ,l ′(k) = argmax(ai ,l′)∈Al′ gi ((ai , l ′),p−i ); and let ql ′(k) = [qi ,l ′(k)]i∈Nh , where

gi ((ai , l ′),p−i
l′ ) = Ep−i (Ũ(ai ,l′),l′)

=
∑

(a1,l′)∈Al′

· · ·
∑

(ai−1,l′)∈Al′

∑
(ai+1,l′)∈Al′

· · ·
∑

(an′
l
,l′)∈Al′

p1,l′
a1,l′ , ... ,p

i−1,l′
ai−1,l′ ,p

i+1,l ′
ai+1,l′ , ... ,p

nl′ ,l
′

anl′ ,l′Ũ(ai ,l′),l′(k), (11.23)

and U(ai ,l′),l′(k) is the payoff at step k , which is dependent on the payoff matrix
U(ai ,l′),l′+1(k) at step k , i.e.,

Ũ(ai ,l′),l′(k) = Ũ(ai ,l′),l′+1(k)+
νi ,l′−1

Γ(ai ,l′)
(ai ,l′−1)(ql′(k))

− c̃(qi ,l′ (k)),

and at the terminal stage

Ũi ,l(k) =
νi ,l

Γ(ai ,l)
(ai ,l−1)(ql(k))

− c̃(qi ,l (k)). (11.24)

The optimal actionqi ,l ′(k) taken at iteration k determines the vectorvi
l′ at the following

iteration and, hence, allows us to update the empirical frequency. This iterative process
continues until the empirical frequencies converge to the hierarchical Nash equilibrium.
Note that it is well known that whenever fictitious play converges, it converges to a
Nash equilibrium [159, 445]. Hence, in our model, by using fictitious play at every
level, we ensure that our algorithm reaches the mixed Nash equilibrium at every level
when it reaches a steady state (consequently, the network converges to a hierarchical
Nash equilibrium). In general, fictitious-play algorithms have been proven to converge
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Algorithm 11.1 Hierarchical network-formation algorithm.
Phase I: Hierarchy formation

a) The network is divided into l hierarchy levels, e.g., based on the distance to
the BS.

b) Each node at a level l ′ selects the nearest neighbor in level l ′ +1 (initial network
state).

Phase II: Hierarchical fictitious play
The nodes engage in a hierarchical network-formation game.

repeat (iteration k)
a) Each node i ∈N selects its best response based on the payoffs and empirical

probabilities of the opponents in iteration k − 1, as in (11.23).
b) Node i updates its mixed strategies based on (11.22).

until convergence to the hierarchical Nash equilibrium.
Phase III: Data transmission

The hierarchical Nash architecture is formed, and each node at level l ′ transmits to
the BS using the nodes (strategies) at level l ′ + 1 with different probabilities over
time (mixed strategies).

in almost all cases, and many modification schemes have also been proposed to ensure
convergence [159, 445].

Upon convergence of Phase II to a hierarchical Nash equilibrium, the nodes are ready
to start their transmission, in the last phase of the algorithm. In this phase, the nodes
have already computed their mixed strategies, so they choose their next hop based on
the probabilities that resulted from Phase II. Note that although the nodes mix between
different actions with different probabilities, at any given time the network is structured
into a tree architecture rooted at the BS. The algorithm is summarized asAlgorithm 11.1.

The network-formation Algorithm 11.1 can be implemented in a distributed fashion.
For hierarchy formation, the BS can broadcast this information to all the nodes at the
beginning of all time, so the remaining phases of the algorithm can be performed with
no further reliance on the BS (since the hierarchy is fixed, and based on distance). For
instance, for the hierarchical fictitious-play algorithm, at every time k , each node i at a
level l ′ needs only to know the payoffs to its parent nodes, i.e., the nodes at level l ′′ > l ′

that link node i to the BS, from the previous time instant k − 1, as well as the empirical
probabilities of the nodes competing with i at the same level l ′. This information can be
easily gathered by the nodes by observing the past actions of their opponents, as well as
the payoffs to the players at the next level, in a distributed manner, without relying on
the BS. The last phase of the algorithm is simply a transmission phase, in which each
node sends its data to the BS through multi-hop, and uses the mixed strategies resulting
from hierarchical fictitious play.

11.3.4 Simulation results and analysis

For simulations, the following network is set up: the BS is placed at the origin of a
2km× 2 km square with the nodes randomly deployed in the area around the BS. We
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Fig. 11.11 Snapshot of a tree topology formed using the algorithm with ten randomly deployed nodes in
three hierarchy levels. For each node, the solid arrows show the strategies with largest
probabilities, while the dashed arrows indicates the remaining strategies.

consider three levels of hierarchy, as follows. The first level consists of nodes randomly
deployed in the area between two circles centered at the BS and with radii 0.6 km and
1 km; the second level consists of nodes randomly deployed in the area between two
circles centered at the BS and with radii 0.3 km and 0.6 km; and the third level consists
of nodes randomly deployed within the area of a circle centered at the BS with radius
0.3 km. The nodes’ transmit power is set to Pi = 10 mW, ∀i ∈N , the target SINR is set
to νi = 10 dB, ∀i ∈N , the noise level is set to σ2 =−90 dBm for all levels, the path-loss
constant is set to κ = 1, while the path-loss exponent is set to μ = 3. The spreading factor
is set to S = 64, which is typical for data services in the uplink of CDMA networks
[478]. The pricing parameter is set to ci = 1, ∀i ∈N .

In Fig. 11.11, we randomly deploy N = 10 nodes within the BS area, with n1 = 4 nodes
in the first hierarchy level, and n2 = n3 = 3 nodes in the second and third hierarchy levels.
The network-formation game starts with the nearest-neighbor tree, whereby, within the
same level, each node is connected to the nearest node in the next level with a probability
of 1. Figure 11.11 shows the hierarchicalNash network resulting fromour algorithm,with
the solid arrows indicating the strategies of each node that have the highest probability
of selection, and the dashed arrows indicating the remaining strategies with non-zero
probability. On the one hand, as a result of the network-formation game, nodes 3, 5, and
6 choose to connect to their nearest neighbors in the next hierarchy level (respectively,
nodes 6, 10, and 9) with a probability of 1. On the other hand, nodes 1, 2, and 7 choose
between two different strategies with different probabilities, while node 4 mixes between
three strategies. For instance, nodes 1 and 2 choose their mixed strategies in such a way
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Fig. 11.12 Convergence of the mixed strategies of node 4 from Fig. 11.11.

that a high probability is given for connecting to the nearest node, i.e., node 7, while a
small probability is given to a connection with node 5. Furthermore, although node 4
is at an almost equal distance from both node 5 and node 6 (node 6 is slightly closer
to node 4 than node 5), it chooses to connect to node 6 with a probability of 0.5565,
which is much higher than the probabilities of 0.1658 and 0.2783 with which node 4
selects nodes 5 and 7, respectively. This choice by node 4 is justified by the fact that this
node attempts to minimize the interference with nodes 1 and 2 that may occur at nodes
5, and 7. Figure 11.11 summarizes how the different nodes in a wireless network select
mixed strategies and self-organize into a hierarchical Nash network.

Figure 11.12 provides an insight into the convergence time of the algorithm. In this
figure, we show the probabilities of all three strategies of node 4 from Fig. 11.11 as
the number of iterations increases. Node 4 starts by being connected with its nearest
neighbor, node 6, with a probability of 1. As the network-formation game evolves,
Node 4 adapts its mixed strategies by decreasing the probability of selecting node 6
and increasing the probabilities of selecting nodes 5 and 7. The mixed strategies finally
converge toward probabilities of 0.1658, 0.5565, and 0.2783 for connecting to nodes 5,
6, and 7, respectively. The convergence is ensured at around 25 iterations; hence, the
convergence time of the algorithm is quite reasonable.

Overall, we have studied a distributed hierarchical network-formation game approach
for the construction of the uplink network topology in a wireless multi-hop network. For
this purpose, the network is divided into a number of hierarchy levels, in which the nodes
belonging to the same level play a non-cooperative Nash game. To solve the game and
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find the network topology, we have studied an equilibrium concept, the hierarchical Nash
equilibrium, which is the solution to a series of multi-stage Nash games using backward
induction among the stages. To reach this equilibrium, a myopic fictitious-play-based
algorithm is studied which allows the nodes to compute their mixed strategies in a dis-
tributed manner. With the studied algorithm, the nodes self-organize into a hierarchical
multi-hop architecture, while improving their utility in terms of the probability of suc-
cessful transmission in the presence of interference. The hierarchical network-formation
game can be extended to other applications such as multi-hop cognitive radio and sensor
networks.

11.4 Other typical approaches

Beyond the two examples discussed in the previous sections, here we study typical
approaches described in the literature. First, in a price-based approach, each hop has a
price and the game outcome is controlled between the source–destination pair and the
intermediate hops. Second, an auction-based approach is studied to ensure that users
reveal their information truthfully for network cooperation, because this will bring them
the best payoffs. Finally, an evolutionary-game approach is applied to the dynamic
behavior of distributed nodes.

11.4.1 Price-based solution

In [301], a price-based reliable routing game in a wireless network of selfish users is
studied. Each node is characterized by the probability of reliably forwarding a packet,
and each link is characterized by the cost of transmission. The objective is to form a
stable and reliable routing path between a given source–destination pair. The pricing
mechanism involved in this routing game is destination-driven and source-mediated:
for each successfully delivered packet, the destination node pays the source, which in
turn compensates all nodes that participated in routing the packet. We first formulate
the problem, then solve it using polynomial-time algorithms to obtain an efficient Nash
equilibrium routing path.

The wireless network is modeled as an undirected graph G (V ,E ), where V denotes all
the nodes in the network and E represents the link set. Each node vi in V has a reliability
parameter Ri , which represents the probability that it will forward the packet. Each edge
eij = (vi ,vj)∈ E has a link cost Ci ,j . We assume the source and destination nodes have a
reliability of 1. The destination node gives the source a payment G for every successfully
transmitted packet, and the source gives a payment p to any intermediate node along the
selected route.

In the game, all nodes except the destination are players. For each node vi , its strategy is
an n-tuple si = (si ,1,si ,2, ... ,si ,n) where si ,j = 1 if node vj is vi ’s next hop in the route, and
si ,j = 0 otherwise. Each strategy–tuple has at most one 1, i.e.,

∑n
j=1 si ,j = 1,∀i . If node

vi ’s strategy–tuple contains all zeros, node vi does not participate in the game.The system
strategy profile (si )i∈I contains all players’ strategies in the network. There is either no
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path from the source to the destination, or exactly one path P = (src ,v1,v2, ... ,vh,dst),
where h denotes the number of hops in between. The utility for the source is

usrc =
{

0, no route,
(G − hp)

∏
vi∈P Ri −Csrc,v1 , otherwise.

(11.25)

The source’s utility is the expected income minus the link set-up cost for the first hop. The
source’s expected income is the destination payment minus the payments to all of the
intermediate nodes, times the probability that the packet will be delivered over this route.
For every other intermediate node vi , the utility is

uvi =
{

0, if no route through vi ,
p
∏vh

vi
Ri −Cvi ,vi+1 , otherwise.

(11.26)

The utility for each intermediate routing node equals the expected payment that it obtains
from the source node, times the ongoing route reliability minus the transmission cost per
packet to its next-hop neighbor. If the node does not participate in the routing, it gains
(and loses) nothing.

For the game described above, the outcome is given by the following lemma [301]:

lemma 11.1 If a path exists and it is a Nash equilibrium, then every node on the path
must have a non-negative payoff.

Having defined the game, we now solve it using some simple algorithm, first
simplifying the utility functions. For each intermediate node to have a positive payoff,

n∏
k=i

Rk ≥
Ci ,i+1

p
. (11.27)

Taking inverse and log operations,

n∑
i=1

log
1
Rk
≤ log

p
Ci ,i+1

. (11.28)

Define rk = log 1
Rk

, ci ,i+1 = log p
Ci ,i+1

, and csrc,nbr = log G−hp
Csrc,v1

. Then the new utility
functions can be written as

ũvi =
n∑

k=i

rk − ci ,i+1, and ũsrc =
n∑

k=1

rk − csrc,nbr . (11.29)

Because of the linear form of the above utility functions, we can employ some modified
Dijkstra’s algorithms [301] to efficiently solve the price-based routing-game problem.

11.4.2 Truthfulness and security using auction theory

In this subsection, we provide an example from [39, 137] demonstrating the use of
auction theory (Chapter 8) for the routing problem in multi-hop networks. The source
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(S) – destination (D) pair builds up the underlying graph N = (V ,E ,w) by some routing
discovery algorithms, where V is the set of vertices, E is the set of edges, and w is the set
ofweights. Then, the shortest pathSP is computed fromS toD , sayS ,vδ(1), ... ,vδ(k),D .2

Let |SP| denote the total cost of the shortest path SP . In order to compute the VCG pay-
ments (Chapter 8) to the intermediate nodes vδ(1), ... ,vδ(k), the destination also computes
for each node vδ(i),1≤ i ≤ k , the shortest path SP−vδ(i) from S to D that does not contain
node vδ(i) as an intermediate node. The VCG payment Mδ(i) for intermediate node vδ(i)

is then defined as

Mδ(i) � |SP−vδ(i) |− |SP|+ cδ(i)Pmin
δ(i),δ(i+1). (11.30)

In other words, Mδ(i) is the difference between the cost of the shortest path from S to D
without node vδ(i), and the cost of the shortest path from S to D without the cost incurred
by vδ(i). The term cδ(i)Pmin

δ(i),δ(i+1) in the payment corresponds to the cost incurred by
node vδ(i). The difference |SP−vδ(i) | − |SP| is the (always non-negative) premium paid
to node vδ(i).

Figure 11.13 shows an example of how to calculate the payments. In this small network,
consisting of six nodes, the costs are written on the edges. The most cost-efficient path
from source S to destination D is SP = S ,v2,v3,D , with |SP| = 5 + 2 + 3 = 10. The
shortest path without node v2 is SP−2 = S ,v1,v4,D , with cost |SP−2|= 7+3+4 = 14.
The shortest path without node v3 is SP−3 = S ,v2,v4,D , with cost |SP−2| = 5 + 3 +
4=12. According to (11.30), the VCG payments are M2 = 14− 10 + 2 = 6, M3 =
12− 10+3 = 5.

Source node S has to send the data messages to node v2 and incurs a cost of 5. In
the source model, the source also needs to pay amounts M2 and M3 to nodes v2 and v3,
respectively, for their forwarding service, resulting in an overall cost of 5+6+5 = 16 for
source S . On the other hand, if there exists a central-bank model, the source only pays the
true cost to the intermediate nodes. This results in an overall cost of 5+2+3 = 10. Then
the intermediate nodes receive their premiums from the central bank, which collects

2 If there is more than one shortest path, then the destination randomly chooses one of them.
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them evenly from all network nodes. This is the problem of over-payment in the VCG
auction.

11.4.3 Evolutionary-game approach

In [37], an evolutionary-game model for traffic routing is presented for an IEEE 802.16
multi-hop wireless backhaul network. In this case, the channel quality between relay
stations can fluctuate because of fading. Therefore, the users (i.e., players) at the source
node have to be able to observe, learn, and change the routing strategy to achieve the most
reliable path from source node to destination node (e.g., an Internet gateway). Therefore,
the strategy of the player is the path to be selected. An example of a network is shown in
Fig. 11.14. The objective of a user is to minimize the end-to-end packet error rate (PER)
by sampling the quality of the path from the physical layer.

An IEEE 802.16 multi-hop wireless backhaul network is modeled as a graph, where
K is a set of paths and V is a set of nodes. λk denotes the traffic rate of path k , and the
normalized rate xk = λk∑

k∈K λk
. This variable xk can be considered as the proportion of the

population of users to choose path k , and a vector can be defined as x = [x1 ...xk ...xK ],
where K = |K| is the total number of paths. Note that the capacity of path k is denoted
Ck , where 0≤ λk ≤ Ck .

The payoff of this routing evolutionary game is based on the reliability of the path.
Since the system model considers IEEE 802.16 operating on the frequency spectrum
above 10 GHz, rain attenuation, denoted by a, is an important factor in packet error.
In this case, the PER can be defined as an increasing function of a: PER = f (a). As a
result, the most reliable path is the path with the smallest rain attenuation. The users
perform traffic routing by periodically and randomly sampling different paths, and the
PER is measured and compared among these sampled paths. If a lower value of PER
than the currently selected path is found, the user switches to the new path. In this case,
the sampling rate (i.e., to measure PER) is denoted as rk(x), given the current state x.
The probability that the user switches from path k to path k ′ is denoted pk→k′ , and the
number of users switching from path k to k ′ is

∑
k′∈K,k′ �=k

xk rk(x)pk→k′ = xk rk(x)
∑

k′∈K,k′ �=k

pk→k′ = xk rk(x)(1− pk→k). (11.31)

Path 1

Path 2

Path 3

Source Destination

Fig. 11.14 Example of IEEE 802.16 multi-hop wireless backhaul network, where K = 3 paths.
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As the inflow to path k is
∑

k′∈K,k′ �=k xk′rk′(x)(1− pk′→k), the replicator dynamics of
routing the evolutionary game can be expressed as follows:

ẋk =
∑

k′∈K,k′ �=k

xk′rk′(x)pk′→k − xk rk(x)(1− pk→k) (11.32)

=
∑
k′∈K

xk′rk′(x)pk′→k − xk rk(x). (11.33)

Given the sampling mechanism, the user switches from path k to path k ′ if the rain
attenuation of this path is smaller, i.e., ak > ak′ . Given that this rain attenuation is
a random variable with a continuously differentiable cumulative distribution function
φ(a), the conditional probability that the user will switch from path k to path k ′ can be
expressed as

φ(ak − ak′) = Pr(ak − ak′ > 0|ak > 0,ak′ > 0), (11.34)

where Pr(ak − ak′ > 0|ak > 0,ak′ > 0) is the probability of event ak − ak′ > 0 given
ak > 0 and ak′ > 0. The closed-form expression of φ(ak−ak′) is provided in [37]. Then,
the probability of switching paths is

pk→k′ =
{

xk′φ(ak − ak′), if k 	= k ′,
1−

∑
l �=k,l∈K xlφ(ak − al), if k = k ′.

(11.35)

If rk(x) = 1, the replicator dynamics can be simply expressed as

ẋk = xk

∑
k′∈K,k′ �=k

xk′ (φ(ak′ − ak)−φ(ak − ak′)) . (11.36)

Given this replicator dynamics, the stability of the equilibrium is analyzed. With a
rain fading condition, only one route will be an evolutionarily stable strategy, based on
the fact that two paths cannot have exactly the same rain attenuation. In particular, the
probability of ak = ak′ for k 	= k ′ approaches zero. Then, Lyapunov’s first method is
applied to evaluate the stability of the strategy that corresponds to the path with the
smallest rain attenuation. In addition, the convergence rate of the replicator dynamics is
investigated. Although the investigation is performed for a specific network (i.e., with
five paths between source and destination), a similar result is expected for the general
case. That is, the algorithm to sample and switch the path converges faster for the higher
frequency and for the longer distance between nodes in the path (e.g., as shown in
Fig. 11.14). This is because rain attenuation is larger for higher frequency and longer
distance.As a result, the users can observe this effect easily and switch to the better path.

11.5 Summary

In this chapter, we have studied the formulation of games for multi-hop wireless net-
works. The game is defined by the players (e.g., source–destination pairs), the strategies
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(e.g., packet-forwarding probability), and the utilities (representing not only each node’s
performance but also the interactions with other nodes). A simple Braess’ paradox and
its application to wireless networks were studied to show that network performance can
be greatly degraded because of the greediness of distributed users. To overcome this
problem, we studied two examples in detail. First, a repeated-game approach was inves-
tigated to maintain cooperation using the threat of future punishment. A learning aspect
was also introduced, for finding better cooperation points. Second, a network-formation
game approach was studied for hierarchical routing, fitting for multi-hop networks with
a common sink (such as cellular relay networks or sensor networks). Finally, three other
typical approaches – price-based, auction-based, and evolutionary-game-based – were
briefly studied.



12 Cooperative-transmission networks

Cooperative communication has attracted significant recent attention as a transmission
strategy for future wireless networks. It efficiently takes advantage of the broadcast
nature of wireless networks to allow network nodes to share their messages and transmit
cooperatively as a virtual antenna array, thus providing diversity that can significantly
improve system performance. Cooperative communication can be applied in a variety
of wireless systems and networks. In the research community, a considerable amount
of work has been done in this area for networks such as cellular, WiFi, ad hoc/sensor
networks, and ultra wideband (UWB). These ideas are also working their way into
standards; e.g., the IEEE 802.16 (WiMAX) standards body for future broadband wireless
access has established the 802.16j relay task group to incorporate cooperative relaying
mechanisms into this technology. Most existing work on cooperative communication
concentrates on the physical (PHY) and medium access control (MAC) layers of wireless
networks, examining issues such as capacity improvement, power control, and relay
selection. The impact on the higher layers, such as routing in the network layer, has not
been fully investigated yet.

The merits of cooperative transmission at the physical layer have been well explored.
However, the impact of cooperative transmission on the design of the higher layers is
not well understood yet. Specifically, the issues for various layers are:

• Physical layer. Objectives include optimizing the capacity region, minimizing the
bit error rate (BER), and improving the link quality by power control.

• MAC layer. Relay selection and channel allocation, i.e., among all possible relays
and channels, can improve the source–destination link.

• Routing layer.Themain problem is route selection.With cooperative communication,
link quality can be improved using relays. So, the optimal route selection depends not
only on the nodes of the links but also on the relays.

• Application layer. For multimedia transmission, relays can forward some coded
and processed information instead of relaying only the original bits. The destina-
tion can improve the reconstructed voice/image/video quality because of the nature
of multimedia data.

This chapter considers the impact of cooperative communication on these layers
over a range of wireless-network scenarios, and offers insights into the vertical inte-
gration of wireless networks by cross-layer optimization. The goals of this chapter are
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to provide an understanding of the impact of cooperative communication and to provide
new perspectives on system optimization based on the game-theoretic point of view.

Some basic cooperative-communication protocols are examined in Section 12.1,
followed by a literature review and brief discussion of the impact of cooperative
communication on the various layers of wireless networks. Four case studies are pre-
sented: non-cooperative games for relay selection and power control in Section 12.2;
auction-theory-based resource allocation in Section 12.3; cooperative transmission using
cooperative games inMANETinSection 12.4; and routing problems in generalmulti-hop
networks in Section 12.5.

12.1 Basics of cooperative transmission

In this section, we classify the currently known cooperative-transmission (CT) protocols,
and briefly review the state of the the art in cooperative communication, including its
impact on different layers.

12.1.1 Cooperative-transmission protocols

To illustrate the basic idea of cooperative transmission, a highly simplified topology
with one source node, two relay nodes, and one destination node is shown in Fig. 12.1.
Cooperative transmission is conducted in two phases. In Phase 1, the source broadcasts
a message to the destination and relay nodes. In Phase 2, relay nodes send information

Source 
Relay 2 

DestinationRelay 1 

S

ri 

d
(combining)

Phase 1

Phase 1 Phase 2

irY

X

dY

irX

i
rY

Fig. 12.1 Cooperative-communication system model.
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to the destination (in different time slots or on different orthogonal channels), and the
destination combines the messages from the source and relays. It has been shown that
the capacity region of this communication channel can be significantly increased by such
techniques, and that the performance gain of cooperative transmission is proportional to
the number of relays in the Rayleigh fading case [279]. Here, we denote the source node
as s , the relay nodes as ri , and the destination node as d . In Phase 1, the signals Yd and
Yri received at the destination d and relay ri , respectively, can be expressed as

Yd =
√

PsGs,dX + nd (12.1)

and

Yri =
√

PsGs,ri X + nri , (12.2)

where Ps is the transmit power from the source, X is the unit-energy information symbol
transmitted by the source in Phase 1, Gs,d and Gs,ri are the channel gains from s to d , and
from s to ri , respectively, and nd and nri are samples from independent (discrete-time)
additive white Gaussian noise (AWGN) processes, independent of X . Without loss of
generality, we assume that the noise power, denoted by σ2, is the same for all the links.

A number of different types of cooperative-communication protocols have been
developed in the literature. We describe several of the most relevant of these here.

Direct transmission
Without the relay nodes’ help, the signal-to-noise ratio (SNR) from s to d can be
expressed as

ΓDT
s,d =

PsGs,d

σ2 , (12.3)

and the capacity of the direct-transmission channel is

Rs,d = W log2

(
1+ΓDT

s,d

)
, (12.4)

where W is the bandwidth used for information transmission.

Amplify-and-forward (AF) cooperative transmission
In Phase 2, relay i amplifies Yri and forwards it to the destination with transmitted power
Pri . The received signal at the destination is

Y i
r =

√
Pri Gri ,dXri + n′

d , (12.5)

where

Xri =
Yri

|Yri |
(12.6)
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is the energy-normalized transmitted signal from the source to the destination in Phase 1,
Gri ,d is the channel gain from relay i to the destination, and n′

d is the received noise in
Phase 2. Substituting (12.2) into (12.6), we can rewrite (12.5) as

Y i
r =

√
Pri Gri ,d(

√
PsGs,ri Xs + nri )√

PsGs,ri +σ2
+ n′

d . (12.7)

Using (12.7), the relayed SNR at the destination for the source, assisted by relay node
i , is given by

ΓAF
s,ri ,d =

Pri PsGri ,dGs,ri

σ2(Pri Gri ,d +PsGs,ri +σ2)
. (12.8)

Therefore, by (12.4) and (12.8), the channel capacity, assuming maximal ratio combining
(MRC) at the destination, is given by

RAF
s,ri ,d =

1
2
W log2

(
1+ΓDT

s,d +ΓAF
s,ri ,d

)
. (12.9)

If multiple relay nodes (say, i ∈ L, where |L|= N) are available to help the source, then
we have

RAF
s,L,d =

1
N +1

W log2

⎛⎝1+ΓDT
s,d +

∑
ri ∈L

ΓAF
s,ri ,d

⎞⎠ . (12.10)

Here, the 1
2 in (12.9) and the 1

N+1 in (12.10) arise because the relays need extra orthogonal
channels for transmission.

Decode-and-forward (DF) cooperative transmission
Here, the relay decodes the source information in Phase 1 and relays it to the destina-
tion in Phase 2. The destination combines the direct-transmission information with the
relayed information. The achievable rate in this case can be calculated by the following
maximization:

RDF
s,ri ,d = max

0≤ρ≤1
min{R1,R2}, (12.11)

where

R1 = log2

[
1+ (1− ρ2)

Ps,dGs,ri

σ2

]
(12.12)

and

R2 = log

(
1+

PsGs,d

σ2 +
Pri Gri ,d

σ2 +
2ρ
√

PsGs,dPri Gri ,d

σ2

)
. (12.13)
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Estimate-and-forward (EF) cooperative transmission
Here, in Phase 2, the relay sends an estimate of the received signal of Phase 1. The desti-
nation uses the relay’s information as side information to decode the direct transmission
of Phase 1. From [115] and [249], the channel capacity resulting from this approach can
be written as

REF
s,ri ,d = W log2

(
1+ΓDT

s,d +ΓEF
s,ri ,d

)
, (12.14)

where

ΓEF
s,ri ,d =

PsPri Gs,ri Gri ,d

σ2[Pri Gri ,d +Ps(Gs,d +Gs,ri )+σ2]
. (12.15)

Coded cooperation
This type of cooperative-transmission protocol integrates relay cooperation with channel
coding [219]. Instead of exactly repeating the received information, the relay decodes
the partner’s transmission and transmits additional parity symbols (e.g., incremental
redundancy) according to a certain overall coding scheme. The destination receiver
conducts channel decoding by concatenating the data from the direct transmission and
relay transmission, so that the channel gain can be obtained.

Distributed space-time coded cooperation
Space-time coding has been shown to significantly improve the link performance in
multiple-input multiple-output (MIMO) systems. Distributed space-time cooperative
diversity protocols [280] exploit the spatial diversity among a collection of distributed
nodes that relay messages for one another, in such a manner that the destination terminal
can combat the fading. Those relays can fully decode the transmission from the source
and then encode the data using a space-time code to cooperatively relay to the destination.
At the destination, the space-time code implemented by the source and relays can achieve
full diversity.

Incremental relaying [279]
Here, the destination broadcasts ACK (acknowledgment) or NACK (negative acknowl-
edgment) information after Phase 1. The relay retransmits only after receiving a NACK.
In this way, the bandwidth efficiency can be greatly improved, since the only band-
width increase occurs when the direct-transmission link fails. But the gain comes with
additional implementation costs for the feedback mechanism.

Cognitive relaying [417, 220]
Cognitive radio is a revolutionary paradigm with high spectral efficiency involving
wireless communication in an occupied spectrum without interfering with existing band
occupants. Cooperative-communication protocols can help cognitive users reduce the
detection time for a clear spectral band, and thus increase their agility. On the other hand,
relays can monitor the spectrum cognitively so as to improve the source–destination link.
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12.1.2 State of the art and impact on different layers

Cooperative transmission began as a physical-layer protocol [279, 432, 433], and most
work in this area focuses on its merits in the physical layer. However, the impact of coop-
erative transmission on the design of the higher layers is obviously also of importance,
although it is not yet well understood. We now briefly discuss the impact of cooperative
communication on different layers. Specifically, we list only a limited number of sources,
dividing the discussion as follows:

• Capacity analysis and new cooperative communication protocols: The major concerns
here are to analyze how much gain cooperative transmission can bring to a link and to
the overall network [466, 214, 213], and how to implement cooperative transmission
under practical constraints [219, 221, 249].

• Relay selection and power control: When there are several relays, a question arises as
to which one to select for a given retransmission.After relay selection, the next issue is
how limited power resources should be distributed over sources and relays [306, 534].
These questions have also been addressed in systems using multi-user detection [192]
and orthogonal frequency-division multiplexing (OFDM) [181].

• Routing protocols: Cooperative transmission can provide extra routes for network
protocols so that network performance can be significantly improved. These can
be traditional routes [518, 248] or cooperative routes [225]. It has been shown
that network lifetime can be significantly improved via such considerations [190].
Multi-hop cooperative transmission can be considered as a special case of routing
[82, 290, 418, 75].

• Distributed resource allocation: Game-theoretic approaches are natural for distributed
cooperative resource-allocation problems, as the individual nodes can use only local
information to optimize cooperative communication [494]. Moreover, as shown in
[189], cooperative-game theory and cooperative transmission can be used to improve
packet-forwarding networks with selfish nodes.

• Others: Cooperative transmission has been considered jointly with other problems
such as source coding [177] and energy-efficient broadcasting [319].

12.2 Non-cooperative game for relay selection and power control

In this section, we propose a Stackelberg game-theoretic framework [494, 495] for
distributive resource allocation over multi-user cooperative-communication networks to
improve system performance and stimulate cooperation. Two main resource-allocation
questions about cooperative multi-user wireless networks remain unanswered. First,
among all the distributed nodes, which one can best help relay and improve the source’s
link quality? Second, for the selected relay nodes, how much power do they need to
transmit? Both questions need to be answered in a distributed way.

To answer these questions, we employ a special kind of non-cooperative game, the
Stackelberg game [459], to jointly consider the benefits of source nodes and relay nodes
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in cooperative communication. The game is divided into two hierarchical levels: the
source node plays a buyer-level game and the relay nodes play a seller-level game. Each
player is selfish and wants to maximize its own benefit. Specifically, the source can be
viewed as a buyer which aims to maximize its benefit at the least possible cost. Each relay
can be seen as a seller who aims to earn the payment. The payment not only covers their
forwarding cost but includes as much extra profit as possible. Then we derive expressions
for the proposed game outcomes.We analyze howmany relay nodeswould be selected by
the source to participate in the sale process, after the relay nodes announce their optimal
prices. In addition, we optimize how much service the source should buy from each
relay node. From the seller’s point of view, the relay nodes set a corresponding optimal
price per unit of service, such as relay power, so as to maximize its own benefit. From
the simulations, because of competition by other relays and selections by the source,
the relays have to set a price which will attract the source, so as to optimize their utility
values. The source optimally selects the relays and their relaying power, while the relays
set prices that can maximize their utilities.

12.2.1 Relay-selection and power-control problem

For the system model, we use the amplify-and-forward (AF) cooperative protocol as an
example.Other cooperative protocols such as decode-and-forward (DF) can be applied in
a similar way. The relay nodes help the source node by relaying the received information
to the destination. The receiver at the destination combines the directly received signal
from the source node and the relayed signals from the relay nodes, using techniques such
as maximal ratio combining (MRC). This process can be described in two phases.

In Phase 1, without the relay nodes’ help, the signal-to-noise ratio (SNR) that results
from direct transmission from the source s to the destination d is

Γs,d =
PsGs,d

σ2 , (12.16)

where Ps is the transmit power, Gs,d is the channel gain, and σ2 is the noise variance.
The rate of non-cooperative transmission at the output is

Rnc
s,d = W log2

(
1+

PsGs,d
σ2

Γ

)
, (12.17)

where Γ is a constant for the capacity gap. Without loss of generality, we assume that the
noise variance is the same for all links. We also assume the channels are constant over
each power-control interval.

In Phase 2, we consider the SNR at the destination that results from relay ri relaying
source s’s data to the destination. If Xs,ri is the transmitted signal from source s to relay
ri , the received signal at relay ri is

Rs,ri =
√

PsGs,ri Xs,ri + η, (12.18)
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where η ∼N(0,σ2) and σ2 is the noise variance. Relay ri amplifies Rs,ri and relays it to
the destination, where the received signal is

Rri ,d =
√

Pri Gri ,dXri ,d + η, (12.19)

where

Xri ,d =
Rs,ri

|Rs,ri |
(12.20)

is the transmitted signal from relay ri to the destination, and the signal is normalized to
have unit energy. Substituting (12.18) into (12.20), we can rewrite (12.19) as

Rri ,d =

√
Pri Gri ,d(

√
PsGs,ri Xs,ri + η)√

PsGs,ri + η2
+ η. (12.21)

Using (12.21), the relayed SNR for the source s , which is helped by relay ri , is

Γs,ri ,d =
Pri PsGri ,dGs,ri

σ2(Pri Gri ,d +PsGs,ri +σ2)
. (12.22)

Therefore, by (12.16) and (12.22), the rate at the output of MRC via relay ri in AF is

RAF
s,ri ,d = W log2

⎛⎜⎝1+

PsGs,d
σ2 + PrPsGri ,dGs,ri

σ2(PrGri ,d+PsGs,ri +σ2)
Γ

⎞⎟⎠ . (12.23)

If there are N relays helping the source, then

RAF
s,r ,d = W log2

⎛⎜⎜⎜⎝1+

PsGs,d
σ2 +

N∑
i=1

Pri PsGri ,dGs,ri

σ2(Pri Gri ,d+PsGs,ri +σ2)

Γ

⎞⎟⎟⎟⎠ . (12.24)

12.2.2 Stackelberg-game approach

To explore the cooperative diversity for a multi-user system, from (12.24), the following
fundamental questions need to be answered: (1) Which relay nodes should be included?
(2) What is the optimal power Pri ? To answer these questions, we employ Stackelberg
games for buyers and sellers, as follows.

The source can be modelled as a buyer, aiming to maximize its benefit at the least
possible cost. The utility function of the source can be defined as

Us = aΔRtot −M, (12.25)

where

ΔRtot = Rs,r ,d −Rs,d (12.26)



12.2 Non-cooperative game for relay selection and power control 383

denotes the total rate increment with the relay nodes helping transmission, a denotes the
gain per unit of rate increment at the MRC output, and

M = p1Pr1 + p2Pr2 + · · ·+ pNPrN (12.27)

represents the total payment paid by the source to the relay nodes. In (12.27),pi represents
the price per unit of power sold by relay node i to the source s , and Pri denotes how
much power the source would like to buy from relay ri when the price from that relay is
announced.

We assume the number of relay nodes is N . Without loss of generality the parameter
a in (12.25) can be set to 1. The optimization problem, or the buyer’s game, can be
formulated as:

max
{Pri }

Us = ΔRtot −M, (12.28)

s.t. {Pri} ≥ 0.

Each relay ri can be seen as a seller aiming to earn a payment which not only covers its
forwarding cost but as much extra profit as possible. We introduce the parameter ci , the
cost of power for relaying data, to correctly reflect the relays’ judgements about whether
they can actually profit by the sale. Then relay ri ’s utility function can be defined as

Uri = (pi − ci )Pri , (12.29)

where ci is the cost per unit of power in relaying data, pi has the same meaning as in
(12.27), and Pri is the source’s decision to optimize Us as described in (12.28). It is
obvious that the optimal pi depends not only on each relay’s own channel condition to
the destination but also on its counterpart relays’ prices. So in the sellers’ competition, if
one relay asks a higher price than the source expects after jointly considering all relays’
prices, the source will buy less from that relay or even disregard it. On the other hand, if
the price is too low, the profit obtained from (12.29) will be unnecessarily low. So there
is a tradeoff for setting the price. Without loss of generality, set ci = c in (12.29) and the
optimization for relay ri , or the seller’s game, is:

max
{pi}≥0

Uri = (pi − c)Pri , ∀i . (12.30)

Thus, the ultimate goals of the above two games are to decide the optimal pricing
pi to maximize the relays’ profits Uri , the actual number of relays who will finally
get selected by the source, and the corresponding optimal power consumption Pri to
maximize Us . Notice that the only signals required between the source and each relay
are the price pi and the information about how much power Pri to buy. Consequently,
the proposed two-level game approach leads to distributed resource allocation for the
cooperative-communication network. The outcome of the games will be shown in detail.

Let us make some observations about the Us function with respect to {Pri}. When
Pri is close to 0, less help is received from the relay, so Us should be close to 0. As Pri

increases, relays sell more power to the source, so a greater rate increment is obtained,
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and Us increases. If Pri increases further, the rate increment will saturate but the cost will
continue to grow; hence the utility for the source Us begins to decrease. If the selling
prices pi , i = 1,2, ... ,N have been announced, then from the first-order optimization
condition, the following conditions must hold at the optimal point:

∂Us

∂Pri
= 0, i = 1,2, ... ,N. (12.31)

For simplicity, define C = 1+ PsGs,d
σ2Γ and W ′ = W

ln2 . Then, by (12.24) and (12.17),

ΔRtot =Rs,r ,d −Rs,d

=W log2

⎛⎜⎜⎜⎝C +

N∑
i=1

Pri PsGri ,dGs,ri

σ2 (Pri Gri ,d +PsGs,ri +σ2)
Γ

⎞⎟⎟⎟⎠−W log2 C

=W log2

⎛⎜⎜⎜⎝1+

N∑
i=1

Pri PsGri ,dGs,ri

σ2 (Pri Gri ,d +PsGs,ri +σ2)
ΓC

⎞⎟⎟⎟⎠
=W log2

(
1+

ΔSNRtot

ΓC

)
= W ′ ln [1+ΔSNR ′

tot ]

=W ′ ln
[
1+

N∑
i=1

Γ′
ri ,d

]
,

(12.32)

where

ΔSNR ′
tot =

N∑
i=1

Pri PsGri ,dGs,ri

σ2 (Pri Gri ,d +PsGs,ri +σ2)
ΓC

(12.33)

and

Γ′
ri ,d =

Γri ,d

ΓC
=

PsGs,ri
(Γσ2+PsGs,d )

1+

⎡⎣(
Ps Gs,ri +σ2

Gri ,d

)

Pri

⎤⎦ =
Ai

1+
Bi

Pri

=
AiPri

Pri +Bi
, (12.34)

with Ai = PsGs,ri
(Γσ2+PsGs,d ) and Bi = PsGs,ri +σ2

Gri ,d
. Substituting (12.27) and (12.32) into (12.31),

we have

∂Us

∂Pri
=

W ′(
1+

N∑
k=1

AkPrk
Prk +Bk

) AiBi

(Pri +Bi )
2 − pi = 0, (12.35)
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i.e.,

W ′(
1+

N∑
k=1

AkPrk
Prk +Bk

) =
pi

AiBi
(Pri +Bi )

2 . (12.36)

So
pi

AiBi
(Pri +Bi )

2 =
pj

AjBj

(
Prj +Bj

)2
, (12.37)

Prj =

√
piAjBj

pjAiBi
(Pri +Bi )−Bj . (12.38)

After some manipulation, we have

Γ′
rj ,d =

Aj

1+ Bj

Prj

= Aj −
√

pjAiBi

piAjBj

AjBj

(Pri +Bi )
, (12.39)

so

ΔSNR ′
tot =

N∑
i=1

Γ′
ri ,d

=
[
A1−

√
p1AiBi

piA1B1

A1B1

(Pri +Bi )

]
+
[
A2−

√
p2AiBi

piA2B2

A2B2

(Pri +Bi )

]
+ · · ·+

[
Ai −

AiBi

Pri +Bi

]
+ · · ·+

[
AN −

√
pNAiBi

piANBN

ANBN

(Pri +Bi )

]
=

N∑
j=1

Aj −
√

AiBi

pi

1
Pri +Bi

N∑
j=1

√
pjAjBj .

(12.40)

Substituting (12.40) into (12.36), we have a quadratic equation in Pri :(
1+

N∑
j=1

Aj

)[√
pi

AiBi
(Pri +Bi )

]2

−
N∑

j=1

√
pjAjBj

[√
pi

AiBi
(Pri +Bi )

]
−W ′ = 0.

(12.41)

The generalized solution for the optimal power consumption from each relay node is
then

Pri =−Bi +

√
AiBi

pi

2

(
1+

N∑
j=1

Aj

)
⎡⎢⎢⎣ N∑

j=1

√
pjAjBj

+

√√√√(
N∑

j=1

√
pjAjBj

)2

+4

(
1+

N∑
j=1

Aj

)
W ′

⎤⎥⎥⎦ .

(12.42)
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This solution may be negative for some relay’s high price or bad location, so the
optimal price is modified as follows:

P∗
ri = max(Pri ,0) = (Pri )

+, (12.43)

where Pri is the solution of (12.42).
Substituting (12.42) into (12.30), we have

max
{pi}>0

Uri = (pi − c)Pri (p1, ... ,pi , ... ,pN). (12.44)

Note that this is a non-cooperative game, and there exists a tradeoff between the price pi

and the relay’s utility Uri . If the relay asks a relatively low price pi at first, the source will
buy more power from this cheaper seller, and Uri will increase as pi grows. As pi keeps
growing, the source will come to think it is no longer profitable to buy power from this
relay and Pri will shrink, resulting in a decrease in Uri . Thus, there is an optimal price
for each relay to ask, and it is also affected by other relays’ prices, since the source only
chooses the most beneficial relays.

From this analysis and the necessary conditions, it follows that

Pri (p1, ... ,pi , ... ,pN)+ (pi − c)
∂Pri (p1, ... ,pi , ... ,pN)

∂pi
= 0, i = 1,2, ... ,N. (12.45)

Solving (12.45) for N unknowns pi , we have

p∗
i = p∗

i (σ2,{Gs,ri},{Gri ,d}), i = 1,2, ... ,N. (12.46)

The problem in (12.46) can be solved by a numerical method such as sequential quadratic
programming (SQP) [353].

Substitute (12.46) into (12.42) to see whether Pri is positive. If it is negative, then
the source will disregard this relay, and only the remaining relays constitute the actual
relaying subset. Re-solve (12.35) by changing the set of relay nodes to this subset, re-
solve for the new p∗

i , and check Pri until all are non-negative. Then we can obtain the
final optimal prices p∗

i to maximize the relays’utilities Uri , the number of relays selected
by the source, and the corresponding optimal power consumption P∗

ri to maximize Us .
To evaluate the performance of this scheme and decide what price each relay should

ask and how much power the source should buy from each relay, we performed simu-
lations for multiple relay systems. The simulation results for one-relay, two-relay, and
multiple-relay cases are described below.

For the one-relay case, there is one source–destination pair and one relay in the net-
work. The destination was located at (0,0), the source at (1,0), and the relays uniformly
distributed over the 2D area: (x ,y) ∈ [−2,3]× [−1,1]. The propagation loss factor was
set to 2, the noise level, σ2 = 10−4 the capacity gap Γ = 1, and the cost per unit of power
c = 0.05.

For the two-relay case, the coordinates of the source and the destination were (1,0)
and (0,0), respectively. Relay 1 was fixed at (0.5,0.25) and relay 2 moved along the
line from (−2,0.25) to (3,0.25). Other settings were the same as for the one-relay case.
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Fig. 12.2 Optimal relay prices when relay 2 moves.

In Fig. 12.2 we show the optimal price that each relay should ask to maximize its
profit. We observe that even though only relay 2 moves, the prices of both relays change,
because the two relays compete and influence each other in the Stackelberg game. When
relay 2 is close to the destination at (0,0), it needs very little power to relay the source’s
information, so it sets a very high price, hoping to get more profit. When relay 2 is close
to the source at (1,0), it is well suited to help the source transmit. Consequently, in
order to attract the source to buy its service, relay 1 must reduce its price. When relay
2 is far away, its price will drop because it is less competitive compared to relay 1 at
location (0.5,0.25). When its utility is less than 0, relay 2 will quit the competition. At
that moment, relay 1 can slightly increase its price, since there is no competition, but it
cannot increase it too much, otherwise relay 2 will rejoin the competition.

As shown in Fig. 12.3, the source will cleverly buy different amounts of power from
each relay. When relay 2 moves away from the source, P∗

r2 gradually decreases. When
relay 2 moves too far away from the source or the destination, the source will not choose
relay 2.When relay 2 is close to the destination, its price as shown in Fig. 12.2 is too high,
and the source will not buy power from it.When relay 2 quits the competition, relay 1 will
increase its price, although the source will buy slightly less (this suppresses the incentive
of relay 1 to ask for arbitrarily high price in the absence of competition). Note that when
relay 2 moves to (0.5,0.25), the same location as relay 1, the power consumptions and
prices of both relays are the same, because the source now treats them equally.

In the multiple-relay simulations, the coordinates of the source and the destination
were (1,0) and (0,0), respectively, and the relays were randomly located within the
range [−2,3] on the x-axis and [−2,2] on the y -axis. In Fig. 12.4, we observe that as the
total number of available relays increases, the source achieves a higher utility. However,



388 Cooperative-transmission networks

−2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

4

x coordinate of relay 2

P
ow

er
Relay 1
Relay 2

Fig. 12.3 Optimal power consumption by two relays when relay 2 moves.
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Fig. 12.4 Optimal source utility and average money transfer vs. number of relay nodes.

the competition among relays becomes more severe, which leads to a lower average
payment from the source.

In summary, we have applied a game-theory approach to distributive resource allo-
cation over multi-user cooperative-communication networks, to determine which relays
will be selected and how much power will be used for relaying in the AF cooperative
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scenario. We applied a Stackelberg game to jointly consider the benefits of different
types of nodes. The proposed scheme not only helps the source choose relays at optimal
locations but also helps the competing relays ask a reasonable price tomaximize their util-
ities. From the simulation results, relays close to the source play a more important role in
increasing source utility, so the source prefers to buy power from them. In order to attract
more consumption from the source, a relaymight adopt a “low-price, high-market” policy
to further increase its utility value. It is also easy to use the current structures as building
blocks in large-scale wireless ad hoc networks to stimulate cooperation among nodes.

12.3 Auction-theory-based resource allocation

In order to maximize the performance of the cooperative-transmission network, we
need to consider the global channel information, including between source–destination,
source–relay, and relay–destination. Most existing work in this area is based on central-
ized control, which requires considerable overhead for signalling andmeasurement.As in
the previous section, we focus on designing distributed resource-allocation algorithms
for cooperative networks. In particular, we want to answer the following questions:
(1) “When to relay,” i.e., when is it beneficial to use the relay? (2) “How to relay,” i.e.,
how should the relay allocate resources among multiple competing users?

We answer these two questions by designing an auction-based framework (see
Chapter 8) for cooperative resource allocation. Auctions have recently been intro-
duced into several areas of wireless communications (e.g., time-slot allocation [469]
and power control [134, 217]). The idea is closely related to the auction mechanisms
proposed in [217], where the authors considered distributed interference management in
a cognitive-radio network without a relay.

We consider two network objectives here: fairness and efficiency. Either might be
difficult to achieve even in a centralized fashion. This is because users’ rate increases
are non-smooth and non-concave in the relay’s transmission power, and thus the cor-
responding optimization problems are non-convex. We study two auction mechanisms,
the SNR auction and the power auction, which achieve the desired network objectives
in a distributed fashion under suitable technical conditions. In both auctions, each user
decides “when to relay” based on a simple threshold policy that is locally computable.
The question of “how to relay” is answered by a simple weighted proportional allocation
among users who use the relay. Simulation results show that the power auction achieves
an average of 95 percent of the maximum rate increase in a two-user network over a
wide range of relay locations. The SNR auction achieves a fair allocation among users
but leads to a much lower total rate increase. This reflects a fairness efficiency tradeoff
that can be exploited by a system designer.

12.3.1 Resource-allocation objectives

We focus our discussion on the amplify-and-forward (AF) cooperative protocol [279].
Other cooperation protocols can be analyzed in a similar fashion. There are one relay
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node r and a set I =(1, ..., I ) of source–destination pairs. We also refer to pair i as user
i , which includes source node si and destination node di .

For each user i , the cooperative transmission consists of two phases. In Phase 1, source
si broadcasts its information to both destination di and the relay r . The received signals
Ysi ,di and Ysi ,r at destination di and relay r are given by

Ysi ,di =
√

Psi Gsi ,di Xsi + ndi (12.47)

and
Ysi ,r =

√
Psi Gsi ,rXsi + nr , (12.48)

where Psi represents the transmit power of source si , Xsi is the transmitted information
symbol with unit energy at Phase 1 at source si , Gsi ,di and Gsi ,r are the channel gains
from si to destination di and to relay r , respectively, and ndi and nr are additive white
Gaussian noises. Without loss of generality, we assume that the noise level σ2 is the same
for all of the links. We also assume that the channels are stable over each transmission
frame.

The signal-to-noise ratio (SNR) at destination di in Phase 1 is

Γsi ,di =
Psi Gsi ,di

σ2 . (12.49)

For AF cooperative transmission, in Phase 2 relay r amplifies Ysi ,r and forwards it to
destination di with transmitted power Pr ,di . The received signal at destination di is

Yr ,di =
√

Pr ,di Gr ,di Xr ,di + n′
di
, (12.50)

where

Xr ,di =
Ysi ,r

|Ysi ,r |
(12.51)

is the unit-energy transmitted signal that relay r receives from source si in Phase 1, Gr ,di

is the channel gain from relay r to destination di , and n′
di

is the received noise in Phase 2.
Substituting (12.48) into (12.51), we can rewrite (12.50) as

Yr ,di =

√
Pr ,di Gr ,di (

√
Psi Gsi ,rXsi ,di + nr )√

Psi Gsi ,r +σ2
+ n′

di
. (12.52)

Using (12.52), the relayed SNR at destination di , with the help of the relay, is

Γsi ,r ,di =
Pr ,di Psi Gr ,di Gsi ,r

σ2(Pr ,di Gr ,di +Psi Gsi ,r +σ2)
. (12.53)

If user i performs only the direct transmission in Phase 1 (i.e., not using the relay), it
achieves a total information rate of

Rsi ,di = W log2 (1+Γsi ,di ) , (12.54)
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where W is the signal bandwidth. On the other hand, if user i performs the transmissions
in both phases 1 and 2, it achieves a total information rate at the output, assumingmaximal
ratio combining, of

Rsi ,r ,di =
1
2
W log2 (1+Γsi ,di +Γsi ,r ,di ) . (12.55)

The coefficient 1
2 is used to model the fact that cooperative transmission will occupy

one out of two phases (e.g., time, bandwidth, code). SinceΓsi ,r ,di is the extra SNR increase
compared with the direct transmission, we also denote

�SNRi � Γsi ,r ,di . (12.56)

Based on (12.54) and (12.55), the rate increase that user i obtains by cooperative
transmission is

�Ri = max{Rsi ,r ,di −Rsi ,di ,0} , (12.57)

which is non-negative since the source can always choose not to use the relay and
thereby obtain zero rate increase.�Ri is a function of the channel gains of the source–
destination, source–relay, and relay–destination links, as well as of the transmission
power of the source and the relay. In particular, �Ri is a non-decreasing, non-smooth,
and non-concave function of the relay transmission powerPr ,di , as illustrated in Fig. 12.5.

We assume that the source transmission power Psi is fixed for each user i , as is
the relay’s total power P . The relay determines the allocation of its transmission
power among users, Pr � (Pr ,d1 , ...,Pr ,dI ), such that the total power constraint is not
violated, i.e.,

Pr ∈ Pr �
{

Pr

∣∣∣∣∣∑
i

Pr ,di ≤ P,Pr ,di ≥ 0,∀i ∈ I
}

. (12.58)

We consider two different network objectives: efficiency and fairness. An efficient
power allocation Pefficient

r maximizes the total rate increase of all users by solving the

Pr,di

ΔRi (Pr,di
)

Fig. 12.5 Rate increase as a function of relay transmission power.
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following problem:

max
Pr ∈Pr

∑
i∈I
�Ri (Pr ,di ) . (12.59)

In many cases, an efficient allocation discriminates against users who are far away
from the relay. To avoid this, we also consider a fair power allocation Pfair

r , which solves
the following problem:

min
Pr ∈Pr

c (12.60)

s.t.
∂�Ri (�SNRi )

∂ (�SNRi )
= c ·1{�SNRi>0},∀i ∈ I.

Here 1{·} is the indicator function. The idea behind (12.60) is that, for all users that
choose to use the relay, the corresponding �SNRi should be maximized subject to the
same marginal utility among these users. This can be translated into the minimization of
the common marginal utility, because of the concavity of�Ri in terms of�SNRi (within
the appropriate region). As an example, when Γsi ,di , the direct-transmission SNR, is the
same for all users i , the constraint in (12.60) means that�SNRi is the same for all users
with positive rate increases.

We notice that a fair allocation needs to be Pareto-optimal, i.e., no user’s rate can
be increased without decreasing the rate of another user. However, an efficient or fair
allocation need not fully utilize the resource at the relay, i.e.,

∑
i∈I Pr ,di can be less

than P . This could happen, for example, when a relay is far away from all users so that
allowing it to transmit half of the time only decreases the total achievable rate. This
is very different from most previous network resource-allocation problems (including
[217]), in which the network performance is maximized only if the resource is fully
utilized.

Since �Ri (Pr ,di ) is non-smooth and non-concave, it is well known that (12.59) and
(12.60) are NP-hard to solve in a centralized fashion. Next, we propose two auction
mechanisms that can (approximately) solve these problems in a distributed fashion under
suitable technical conditions.

12.3.2 Share-auction approach

An auction discussed in more detail in Chapter 8, is a decentralized market mechanism
for allocating resources in an economy.An auction consists of three key elements: (1) the
good, or the resource to be allocated; (2) an auctioneer, who determines the allocation
of the good according to the auction rules; (3) a group of bidders, who want to obtain the
good from the auctioneer. The interactions and outcome of an auction are determined by
the rules, which include four components: (1) the information the auctioneer and bidders
know before the auction starts; (2) the bids submitted to the auctioneer by the bidders;
(3) the allocation determined by the auctioneer based on the bids; (4) the payments by
the bidders to the auctioneer as functions of bids and allocations.
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In the cooperative network considered here, it is natural to design auction mechanisms
in which the good is the relay’s total transmit power P , the auctioneer is the relay,
and the bidders are the users. One well-known auction mechanism that achieves an
efficient allocation is the Vickrey–Clarke–Groves (VCG) auction [256]. However, the
VCG auction requires the relay to gather global network information from the users,
and solves I +1 non-convex optimization problems. This might be too complicated for
real-time implementation. To overcome this limitation, we propose two simpler share
auctions, the SNR auction and the power auction. The main advantages of the two
proposed auctions are the simplicity of bids and allocation. The rules of the two auctions
are described below, with the only difference being in payment determination.

• Information: Besides the public and local information (i.e., W ,P,σ2,Psi ,Gsi ,di ), each
user i also knows the channel gains Gsi ,r and Gr ,di , either through measurement or by
explicit feedback from relay r . The relay announces a positive reserve bid β > 0 and
a price π > 0 to all users before the auction starts.

• Bids: User i submits bid bi ≥ 0 to the relay.
• Allocation: The relay allocates transmit power according to

Pr ,di =
bi∑

j∈I bj +β
P. (12.61)

• Payments: In an SNR auction, source i pays the relay Ci = π� SNRi . In a power
auction, source i pays the relay Ci = πPr ,di .

A bidding profile is defined as the vector b = (b1, ...,bI ), containing the users’ bids.
The bidding profile of user i’s opponents is defined as b−i = (b1, ...,bi−1,bi+1, ...,bI ),
so that b = (bi ;b−i ) . User i chooses bi to maximize its payoff,

Ui (bi ;b−i ,π) =�Ri (Pr ,di (bi ;b−i ))−Ci (bi ;b−i ,π) . (12.62)

For notational simplicity, we omit the dependence on β and other system parameters.
If the reserve bid β = 0, then the resource allocation in (12.61) depends only on

the ratio of the bids. A bidding profile kb (for any k > 0) leads to the same resource
allocation as b, which is not desirable in practice. That is why we need a positive reserve
bid. However, the value of β is not important as long as it is positive. For example, if we
increase β to k ′β, then users can just scale b to k ′b, which leads to the same resource
allocation. For simplicity, we will choose β = 1 in all the simulations.

The desirable outcome of an auction is a Nash equilibrium (NE), which is a bidding
profile b∗ such that no user wants to deviate unilaterally, i.e.,

Ui
(
b∗

i ;b∗
−i ,π

)
≥Ui

(
bi ;b∗

−i ,π
)
,∀i ∈ I,∀bi ≥ 0. (12.63)

Define user i’s best response (for fixed b−i and price π) as

Bi (b−i ,π) =
{

bi

∣∣∣∣bi = argmax
b̃i≥0

Ui

(
b̃i ;b−i ,π

)}
, (12.64)
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which in general could be a set. An NE is also a fixed-point solution of all users’ best
responses. We would like to answer the following four questions for both auctions: (1)
When does an NE exist? (2) When is the NE unique? (3) What are the properties of the
NE? (4) How can the NE be reached in a distributed fashion?

SNR auction
Let us first determine the users’ best responses (e.g., (12.64)) in the SNR auction, which
clearly depend on the price π. For each user i , there are two critical price values, πs

i and
π̂s

i , where

πs
i � W

2 ln2
(

1+Γsi ,di +
PGr ,di Psi Gsi ,r

(Psi Gsi ,r+PGr ,di +σ2)σ2

) , (12.65)

and π̂s
i is the smallest positive root of

g s
i (π) � π (1+Γsi ,di ) − W

2

(
log2

(
2π ln2

W
(1+Γsi ,di )

2
)

+
1

ln2

)
. (12.66)

Both πs
i and π̂s

i can be calculated locally by user i .

theorem 12.1 In an SNR auction, user i’s unique best-response function is

Bi (b−i ,π) = f s
i (π)(b−i +β) . (12.67)

If π̂s
i > πs

i , then

f s
i (π) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞, π ≤ πs
i ,(

Psi Gsi ,r +σ2
)
σ2

PGr ,di Psi Gsi ,r

W
2π ln2

− 1−Γsi ,di

− (Psi Gsi ,r +PGr ,di +σ2)σ2
, π ∈ (πs

i , π̂
s
i ) ,

0, π ≥ π̂s
i .

(12.68)

If π̂s
i < πs

i , then f s
i (π) =∞ for π < π̂s

i and f s
i (π) = 0 for π ≥ π̂s

i .

First consider the case in which π̂s
i > πs

i , where Bi (b−i ,π) is illustrated in Fig. 12.6.
The price π̂s

i determines when it is beneficial for user i to use the relay. With any price
larger than π̂s

i , user i cannot obtain a positive payoff from the auction no matter what
bid it submits, and thus it should simply use direct transmission and achieve a rate of
Rsi ,di . As a result, Bi (b−i ,π) is discontinuous at π̂s

i . When π ∈ (πs
i , π̂

s
i ), user i wants to

participate in the auction, and its best response depends on how much other users bid
(b−i ). When the price is smaller than πs

i , user i becomes so aggressive that it demands a
large SNR increase that could not be achieved even of all the resource were allocated to it.
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This is reflected in an infinite bid in (12.68). Now consider the case in which π̂s
i < πs

i .
User i either cannot obtain a positive payoff or cannot achieve the desired SNR increase,
and thus the best response is either 0 or∞.

Combining (12.61) and (12.68),we know that if anNEexists, the relay power allocated
for user i is

Pr ,di (π) =
f s
i (π)

f s
i (π)+1

P, (12.69)

and
∑

i∈I
f s
i (π)

f s
i (π)+1 < 1. The strict inequality is due to the positive reserve bid β.

Next we need to find the fixed point of all users’ best responses, i.e., the NE. A trivial
case would be π̂s

i ≤ πs
i for all users i , in which case there exists a unique all-zero NE,

b∗ = 0. The more interesting case would be the following:

definition 12.1 A network is SNR-regular if there exists at least one user i such that
π̂s

i > πs
i .

theorem 12.2 Consider an SNR auction in an SNR-regular network. There exists a
threshold price πs

th such that a unique NE exists if π > πs
th; otherwise no NE exists.

Unlike the result in [217], the unique NE in Theorem 12.2 might not be a continuous
function of π, because of the discontinuity of the best-response function, as shown in
Fig. 12.6. This observed in the simulation results to be discussed later. In particular, the
unique NE could be all-zero for any price π > πs

th, even if the network is SNR-regular.
It can be seen that the “marginal utility equalization” property of a fair allocation

(i.e., the constraint in (12.60)) is satisfied at the NE of the SNR auction. However, there
always exists some “resource waste” since some power will never be allocated to any
user because of the positive reserve bid β. However, by choosing a price π larger than,
but very close to, πs

th, we could reduce the resource waste to a minimum and approximate
the fair allocation. Formally, we define a reduced feasible set parameterized by δ as

Pδ
r �

{
Pr

∣∣∣∣∣∑
i

Pr ,di ≤ P (1− δ) ,Pr ,di ≥ 0,∀i ∈ I
}

. (12.70)

π

Bi (b−i, π)

πs
i π̂s

i

Fig. 12.6 User i’s best response in the SNR auction if πs
i < π̂s

i .
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Then we can show the following:

theorem 12.3 Consider an SNR auction in an SNR-regular network, where f s
i (π) is

continuous at πs
th for each user i , and greater than zero for at least one user. For any

sufficiently small δ, there exists a price πs,δ under which the unique NE achieves the fair
allocation Pfair

r with a reduced feasible set Pδ
r .

A sufficiently small δ makes sure that we deal with a regime in which f s
i (π) is con-

tinuous for any user i . This is also desirable in practice since we want to minimize the
amount of resource wasted.

Power auction
The best-response function in a power auction is nonlinear and complicated in general.
However, in the special case of low SNR where Γsi ,di and�SNRi (bi ,b−i ) are small for
all i , i.e.,

W log2 (1+Γsi ,di +�SNRi (bi ,b−i )) ≈ W
ln2

(Γsi ,di +�SNRi (bi ,b−i )) , (12.71)

Bi (b−i ,π) has a linear form similar to that in (12.68). For each user, we can similarly
define f p

i (π), πp
i , π̂

p
i , and gp

i (π) as in the SNR-auction case. One key difference here is
that the value of π̂p

i depends on the relationship between Gsi ,di and Gsi ,r . If Gsi ,di > Gsi ,r ,
then π̂p

i = 0 and user i never uses the relay. If Gsi ,di < Gsi ,r , then π̂p
i is the smallest

positive root of gp
i (π). Details are omitted because of space limitations.

In terms of the existence, uniqueness, and properties of the NE, we have the following:

definition 12.2 A network is power-regular if π̂p
i > πp

i for at least one user i .

theorem 12.4 Consider a power auction in a power-regular network with low SNR.
There exists a threshold price πp

th > 0 such that a unique NE exists if π > πp
th; otherwise

no NE exists.

theorem 12.5 Consider a power auction in a power-regular network with low SNR,
where f p

i (π) is continuous at πp
th for each user i , and greater than zero for at least one

user. For any sufficiently small δ, there exists a price πp,δ under which the unique NE
achieves the efficient allocation Pefficient

r with a reduced feasible set Pδ
r .

Distributed iterative best-response updates
The final question we want to answer is how the NE can be reached in a distributed fash-
ion. Consider the SNR auction as an example. It is clear that the best-response function
in (12.68) can be calculated in a distributed fashion with limited information feedback
from the relay. However, each user does not have enough information to calculate the
best response of other users, which prevents it from directly calculating the NE. Never-
theless, the NE can be achieved in a distributed fashion if we allow the users to iteratively
submit their bids based on best-response functions.
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Suppose users update their bids b(t) at time t according to the best-response functions
as in (12.67), based on other users’ bids b(t− 1) in the previous time t− 1, i.e.,

b(t) = Fs (π)b(t− 1)+ fs (π)β, (12.72)

where both b(t) and b(t− 1) are column vectors, Fs (π) is an I -by-I matrix whose
(i , j)th component equals f s

i (π), and fs (π) = [f s
1 (π) , ..., f s

I (π)]′.

theorem 12.6 If there exists a unique non-zero NE in the SNR auction, the best-
response updates in (12.72) globally and geometrically converge to the NE from any
positive b(0).

Similar convergence results can be proved for the power auction.

Simulations
We first simulate various auction mechanisms for a two-user network. As shown in
Fig. 12.7, the locations of the two sources (s1 and s2) and two destinations (d1 and d2)
are fixed at (200m,−25m), (0m, 25m), (0m,−25m), and (200m, 25m), respectively. We
fix the x coordinate of the relay node r at 80m and its y coordinate varies within the
range [−200m, 200m]. In the simulation, the relay moves along a line. The propagation
loss factor is set to 4, and the channel gains are distance-based (i.e., time-varying fading
is not considered here). The source transmit power is Psi = 0.01W for all user i , the
noise level is σ2 = 10−11 W, and the bandwidth is W = 1 MHz. The total power of the
relay node is set to P = 0.1W.

In Fig. 12.8, we show the total rate increases achieved by two users in three auctions.
The VCG auction achieves the efficient allocation by solving three non-convex opti-
mization problems by the relay. For both the SNR auction and the power auction, the
resource allocation depends on the choice of price π (but is independent of the reserve
bid β). Every point on the curve represents an allocation in which the price is adjusted
so that the total resource allocated to both users is more than 0.99P (unless this is not

y (m)

(200,25)

(0,−25) (200,−25)

(0,25)

Relay trajectory

(80,−200)

(80,200)

x (m)

s1

s2

d1

r

d2

Fig. 12.7 A two-user cooperative network.
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Fig. 12.8 Total rate increase vs. relay location (y -axis) for three auctions.

possible). The power auction achieves a performance very close to that of the VCG
auction. At those locations where the VCG auction achieves a positive rate increase, the
power auction achieves a rate increase with an average of 95 percent of that achieved
by the VCG auction. The SNR auction achieves smaller total rate increases but leads to
fair resource allocations when both users use the relay (as can be seen in Fig. 12.9).

In Fig. 12.9, we show the individual rate increases of both users in the SNR auction
and the power auction. The individual rate increases in the VCG auction are similar to
those in the power auction and thus are not shown here. First consider the power auction.
Since the relay-movement trajectory is relatively closer to source s2 than to source s1,
user 2 achieves an overall better performance compared with user 1. In particular, user 2
achieves a peak rate increase of 1.35 bits Hz−1 when the relay is at location 25m (y -axis),
compared with a peak rate increase of 0.56 bits Hz−1 achieved by user 1 when the relay
is at location −25m. Things are very different in an SNR auction, where the resource
allocation is fair. In particular, since the distance between source and destination is the
same for both users in our simulation, both users achieve the same positive rate increases
when they both use the relay. This is the case when the relay is between locations−60m
and 10m. At other locations, users just choose not to use the relay since they cannot
get equal rate increases while also obtaining a positive payoff. This shows the tradeoff
between efficiency and fairness.

Summary
Cooperative transmission can greatly improve communication system performance by
taking advantage of the broadcast nature of wireless channels and cooperation among
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Fig. 12.9 Individual rate increase vs. relay location (y -axis) for the SNR auction and the power auction.

users. We have studied two share-auction mechanisms, the SNR auction and the power
auction, to distributively coordinate the relay power allocation among users. The exis-
tence and uniqueness of the Nash equilibrium are proven in both auctions. Under suitable
conditions, the SNR auction achieves a fair allocation, while the power auction achieves
a more efficient allocation. Simulations for both two-user and multiple-user networks
have been used to demonstrate the effectiveness of the auction mechanisms. In particular,
the power auction achieves an average of 95 percent of the maximum rate in the two-user
case under a wide range of relay locations, and the SNR auction leads to a performance
improvement having small variation among users.

12.4 Cooperative transmission using a cooperative game in MANET

In wireless packet-forwarding networks with selfish nodes, applications of a repeated
game can induce the nodes to forward each other’s packets, so that the network perfor-
mance can be improved. This cooperation arises because nodes depend on each other
for packet forwarding. However, the nodes on the boundary of such networks cannot
benefit from this strategy, as the other nodes do not depend on them. This problem is
sometimes known as the curse of the boundary nodes. In this section, following [189], an
approach to this problem based on coalitional games is discussed, in which the boundary
nodes can use cooperative transmission to help the backbone nodes in the middle of
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the network. In return, the backbone nodes are willing to forward the boundary nodes’
packets. We will discuss the stability of such coalitions using the concept of a core. Then
two types of fairness, namely the min-max fairness using nucleolus and the average
fairness using the Shapley function, are described. Finally, we discuss a protocol that
uses both repeated games and coalitional games. Simulation results show how boundary
nodes and backbone nodes form coalitions according to different fairness criteria.As we
will see, the proposed protocol can improve network connectivity by about 50 percent,
compared with pure repeated-game schemes.

12.4.1 Selfishness in packet-forwarding networks

In wireless networks with selfish nodes, such as ad hoc networks, the nodes may not
be willing to fully cooperate to accomplish the overall network goals. Specifically for
the packet-forwarding problem, forwarding of other nodes’ packets consumes a node’s
limited battery energy. Therefore, it may not be in a node’s best interest to forward
others’ arriving packets. However, refusal to forward others’ packets non-cooperatively
will severely affect network functionality and thereby impair a node’s own performance.
Hence, it is crucial to design a mechanism to enforce cooperation for packet forwarding
among greedy and distributed nodes.

The packet-forwarding problem in ad hoc networks has been extensively studied in
the literature. The fact that nodes act selfishly to optimize their own performance has
motivated many researchers to apply game theory [377, 347] in solving this problem.
Broadly speaking, the approaches used to encourage packet forwarding can be catego-
rized into two general types. The first type makes use of virtual payments. Pricing [117]
and credit-based methods [536] fall into this first type. The second type of approach
is related to personal and community enforcement to maintain long-term relationships
among nodes. Cooperation is sustained because defection against one node causes per-
sonal retaliation or sanction by others. Watchdog and pathrater are proposed in [320] to
identify misbehaving nodes and deflect traffic around them. Reputation-based protocols
are proposed in [86] and [337]. In [33], a model is considered to show cooperation among
participating nodes. Packet-forwarding schemes using Tit-for-Tat schemes are proposed
in [464]. In [182], a cartel-maintenance framework is constructed for distributed rate
control for wireless networks. In [188], self-learning repeated-game approaches are
constructed to enforce and improve cooperation. Some recent work using game the-
ory to enhance energy-efficient behavior in infrastructure networks can be found in
[334, 331, 332, 333].

A wireless packet-forwarding network can be modeled as a directed graph G (L,A),
where L is the set of all nodes and A is the set of all directed links (i , l), i , l ∈ L. Each node
i has several transmission destinations which are included in set Di . To reach destination
j in Di , the available routes form a depending graph G j

i whose nodes represents the
potential packet forwarding nodes. The transmission from node i to node j depends on
a subset of the nodes in G j

i for packet forwarding. Notice that this dependency between
nodes can be mutual. In general, this mutual dependency is common, especially for
backbone nodes at the center of the network. Next, we will discuss how to make use of
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this mutual dependency for packet forwarding using a repeated game, and then examine
the curse of the boundary nodes.

Repeated games for mutually dependent nodes
A repeated game is a special type of dynamic game, one that is played multiple times.
When nodes interact by playing a static game numerous times, the game is called a
repeated game. Unlike a static game, a repeated game allows a strategy to be contingent
on past moves, thus allowing reputation effects and retribution, which give possibilities
for cooperation. The game is defined as follows:

definition 12.3 A T -period repeated game is a dynamic game in which, at each
period t, the moves during periods 1, ... , t−1 are known to every node. In such a game,
the total discounted payoff for each node is

∑T
t=1 βt−1ui (t), where ui (t) denotes the

payoff to node i at period t, and β is a discount factor. β is a measure of 0≤ β ≤ 1 the
node’s patience or on the other hand how important the past affects the current payoff.
If T =∞, the game is referred as an infinitely repeated game. The average payoff ui to
node i is then

ui = (1−β)
∞∑
t=1

βt−1ui (t). (12.73)

It is known that repeated games can be used to induce greedy nodes in communication
networks to show cooperation. In packet-forwarding networks, if a greedy node does not
forward the packets of other nodes, it can enjoy benefits such as power saving. However,
this node will be punished by the other nodes in the future if it depends on the other
nodes to forward its own packets. The benefit of greediness in the short term is offset
by the loss associated with punishment in the future. So the nodes will prefer to act
cooperatively if they are sufficiently patient. From the Folk Theorem, below, we infer
that in an infinitely repeated game, any feasible outcome that gives each node a better
payoff than the Nash equilibrium [377, 347] can be obtained.

theorem 12.7 (Folk Theorem [377, 347]) Let (û1, ... , ûL) be the set of payoffs from
a Nash equilibrium and let (u1, ... ,uL) be any feasible set of payoffs. There exists an
equilibrium of the infinitely repeated game that attains any feasible solution (u1, ... ,uL)
with ui ≥ ûi ,∀i as the average payoff, provided that β is sufficiently close to 1.

In the literature of packet-forwarding wireless networks, the Folk Theorem is demon-
strated in several approaches. Tit-for-Tat [33, 464] is proposed so that all mutually
dependent nodes have the same set of actions. A cartel-maintenance scheme [182] has
closed-form optimal solutions for both cooperation and non-cooperation.Aself-learning
repeated-game approach is proposed in [188] for individual distributed nodes to study
the cooperation points and to develop protocols for maintaining them.

Curse of the boundary nodes
However, packet-forwarding networks display the so-called curse of the boundary nodes.
The nodes at the boundary of the network depend on the backbone nodes in the middle
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Fig. 12.10 Example of the curse of the boundary nodes.

of the network to forward their packets. On the other hand, the backbone nodes do not
depend on the boundary nodes. As a result, the backbone nodes do not worry about
retaliation or lost reputation as a result of not forwarding the packets of the boundary
nodes.An example is shown in Fig. 12.10. Suppose node 1 needs to send data to node 3,
and node 2 needs to send data to node 0. Because node 1 and node 2 depend on each
other for packet forwarding, each is obliged to do so because of the possible threat of
retaliation from the other. However, if node 0 wants to transmit to node 2 and node 3, or
node 3 tries to communicate with node 0 and node 1, the nodes in the middle have no
incentive to forward the packets because of their greediness. Moreover, this greediness
cannot be punished in the future since the dependency is not mutual. This problem is
especially severe for the nodes on the boundary of the network.

On the other hand, if node 0 can form a coalition with node 1 and help node 1’s
transmission (for example by reducing the transmit power of node 1), then node 1 has an
incentive to help node 0 transmit.A similar incentive arises for node 3 to form a coalition
with node 2. We call nodes like 1 and 2 backbone nodes, while nodes like 0 and 3 are
boundary nodes. In the following subsection, we examine how coalitions can be formed
to address the above issue using cooperative transmission.

12.4.2 Cooperative transmission using a coalitional game

In this subsection, we first study a cooperative-transmission technique that allows nodes
to participate in coalitions. Then, we formulate a coalitional game with cooperative
transmission. Furthermore, we investigate the fairness issue and consider two types of
fairness definitions. Finally, a protocol for packet-forwarding using repeated games and
coalitional games is constructed.

Coalitional game formation for boundary nodes
Here we study possible coalitions between the boundary nodes and the backbone nodes,
in situations where the boundary nodes can help relay information of the backbone nodes
using cooperative transmission. We first define some basic concepts.

definition 12.4 A coalition S is defined as a subset of the total set of nodes N =
{0, ... ,N}. The nodes in a coalition want to cooperate with each other. The coalition
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form of a game is given by the pair (N,v), where v is a real-valued function called the
characteristic function. v(S) is the value of the cooperation for coalition S , with the
following properties:

• v(∅) = 0.
• Super-additivity: if S and Z are disjoint coalitions (S

⋂
Z = ∅), then v(S)+ v(Z )≤

v(S
⋃

Z ).

A coalition states the benefit obtained from cooperation agreements. However, we
still need to examine whether the nodes are willing to participate in the coalition. A
coalition is called stable if no other coalition will have the incentive and power to upset
the cooperative agreement. Such a division of v is called a point in the core, which is
defined as follows:

definition 12.5 A payoff vector U = (U0, ... ,UN) is said to be group-rational (or
efficient) if

∑N
i=0 Ui = v(N). A payoff vector U is said to be individually rational if the

node can obtain a benefit which is not less than it would obtain if acting alone, i.e.,
Ui ≥ v({i}), ∀i . An imputation is a payoff vector satisfying the above two conditions.
(Note that this definition is a restatement of Definitions 7.4–7.6 but in a different context.)

definition 12.6 An imputation U is said to be unstable through a coalition S if
v(S) >

∑
i∈S Ui , i.e., the nodes have an incentive for coalition S and upset the proposed

U. The set C of a stable imputation is called the core:

C = {U :
∑
i∈N

Ui = v(N) and
∑
i∈S

Ui ≥ v(S), ∀S ∈N}. (12.74)

In the economics literature, the core gives a reasonable set of possible shares. A
combination of shares is in the core if there is no subcoalition in which its members may
gain a higher total outcome than the combination of shares of concern. If a share is not
in the core, some members may be frustrated and may think of leaving the whole group
with other members to form a smaller group.

In the packet-forwarding network shown in Fig. 12.11, we first assume one backbone
node to be the source node (node 0) and the nearby boundary nodes (node 1 to node
N) to be relay nodes. (We will discuss the case of multiple source nodes later.) If no

Inner nodes

Boundary nodes

Phase 2 

Phase 1 
s

d

s

d

Curse of the boundary nodes Coalition cooperative transmission

Fig. 12.11 Cure for the curse of the boundary nodes.
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cooperative transmission is employed, the utilities for the source node and the relay
nodes are

v({0}) =−Pd , and v({i}) =−∞,∀i = 1, ... ,N. (12.75)

With cooperative transmission and a grand coalition that includes all nodes, the utilities
for the source node and the relay nodes are

U0 =−P0−
N∑

i=1

αiPd , (12.76)

Ui =−Pi

αi
, (12.77)

where αi ≥ 0 is the ratio of the number of packets that the backbone node is willing to
forward for boundary node i , to the number of packets that the boundary node i relays
for the backbone node using cooperative transmission. Here we use negative power as
the utility so as to be consistent with conventions in game-theory literature. Smaller αi

means the boundary nodes have to relay more packets before realizing the rewards of
packet forwarding. The other interpretation of the utility is as the average power per
transmission for the boundary nodes.1 The following theorem gives conditions under
which the core is not empty, i.e, in which the grand coalition is stable:

theorem 12.8 The core is not empty if αi ≥ 0, i = 1, ... ,N , and αi are such that
U0 ≥ v({0}), i.e,

N∑
i=1

αi ≤
Pd −P0

Pd
. (12.78)

Proof First, any relay node will get−∞ utility if it leaves the coalition with the source
node, so no node has an incentive to leave the coalitionwith node 0. The inclusion of relay
nodes will increase the received SNR monotonically, so P0 will decrease monotonically
with the addition of any relay node.As a result, the source node has an incentive to include
all the relay nodes, as long as the source power can be reduced, i.e., U0 ≥ v({0}). A
grand coalition is formed and the core is not empty if (12.78) holds.

The concept of the core defines the stability of a utility allocation. However, it does
not define how to allocate the utility. For the proposed game, each relay node can obtain
different utilities by using different values of αi . Next, we study how to achieve min-max
fairness and average fairness.

Min-max fairness of a game coalition using the nucleolus
We introduce the concepts of excess, kernel, and nucleolus [377, 347]. For a fixed char-
acteristic function v , an imputation U is found such that, for each coalition S and its

1 Notice that we omit the transmitted power needed to send the boundary node’s own packet to the backbone
node, since it is irrelevant to the coalition.
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associated dissatisfaction, an optimal imputation is calculated to minimize the maximum
dissatisfaction. The dissatisfaction is quantified as follows:

definition 12.7 The measure of dissatisfaction of an imputation U for a coalition S
is defined as the excess:

e(U,S) = v(S)−
∑
j∈S

Uj . (12.79)

Obviously, any imputation U is in the core if and only if all its excesses are negative
or zero.

definition 12.8 A kernel of v is the set of all allocations U such that

max
S⊆N−j ,i∈S

e(U,S) = max
T⊆N−i ,j∈T

e(U,T ). (12.80)

If nodes i and j are in the same coalition, then the highest excess that i can make in a
coalition without j is equal to the highest excess that j can make in a coalition without i .

definition 12.9 The nucleolus of a game is the allocation U that minimizes the
maximum excess:

U = argmin
U

(max e(U,S), ∀S). (12.81)

The nucleolus of a game has the following property: in coalitional form, it exists and
is unique. The nucleolus is group-rational and individually rational. If the core is not
empty, the nucleolus is in the core and kernel. In other words, the nucleolus is the best
allocation under the min-max criterion.

Using the above concepts, we prove the following theorem to show that the optimal
αi in (12.76) have min-max fairness.

theorem 12.9 The maximal αi to yield the nucleolus of the proposed coalitional
game is given by

αi =
Pd −P0(N)

NPd
, (12.82)

where P0(N) is the required transmitted power of the source when all relays transmit
with transmitted power Pmax .

Proof Since for any coalition other than the grand coalition, the excess will be −∞,
we need only consider the grand coalition. Suppose the min-max utility is μ for all
nodes, i.e.,

μ =−Pi

αi
. (12.83)
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From (12.78) and since Ui is monotonically increasing with αi in (12.77), we have

αi =
Pi∑N
i=1 Pi

· Pd −P0

Pd
. (12.84)

Since P0 for SNR is a monotonically increasing function of Pi , to achieve the maximal
αi and μ, each relay transmits with the largest possible power Pmax . Notice here that
we assume the backbone node can accept an arbitrarily small power gain to join the
coalition.

Average fairness of a game coalition using the Shapley function
The core concept defines the stability of an allocation of payoff, and the nucleolus
concept quantifies the min-max fairness of a game coalition. Next, we study another
average measure of fairness for each individual, the Shapley function [377, 347].

definition 12.10 A Shapley function φ is a function that assigns to each possible
characteristic function v a vector of real numbers, i.e.,

φ(v) = (φ0(v),φ1(v),φ2(v), ... ,φN(v)), (12.85)

where φi (v) represents the worth or value of node i in the game. There are four Shapley
axioms that φ(v) must satisfy:

1. Efficiency axiom:
∑

i∈N
Φi (v) = v(N).

2. Symmetry axiom: If node i and node j are such that v(S
⋃
{i}) = v(S

⋃
{j}) for every

coalition S not containing node i and node j , then φi (v) = φj(v).
3. Dummy axiom: If node i is such that v(S) = v(S

⋃
{i}) for every coalition S not

containing i , then φi (v) = 0.
4. Additivity axiom: If u and v are characteristic functions, then φ(u+v) = φ(v +u) =

φ(u)+φ(v).

There exists a unique function φi , the Shapley function, satisfying the Shapley axioms.
Moreover, the Shapley function can be calculated as

φi (v) =
∑

S⊂N−i

(|S |)!(N −|S |)!
(N +1)!

[v(S ∪{i})− v(S)]. (12.86)

Here |S | denotes the cardinality of set S and N = {0,1, ...N}.

The Shapley function can be interpreted as follows. Suppose one backbone node plus
N boundary nodes form a coalition. The nodes join the coalition in random order, so
there are (N +1)! different ways that the nodes might be ordered in joining the coalition.
For any set S that does not contain node i , there are |S |!(N − |S |)! different ways to
order the nodes so that S is the set of nodes who enter the coalition before node i . Thus,
if the various orderings are equally likely, |S |!(N − |S |)!/(N + 1)! is the probability
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that, when node i enters the coalition, the coalition of S is already formed. When node
i finds S ahead of it as it joins the coalition, then its marginal contribution to the worth
of the coalition is v(S ∪{i})− v(S). Thus, under the assumption of randomly ordered
joining, the Shapley function of each node is its expected marginal contribution when it
joins the coalition.

Here, we consider the case in which the backbone node is always in the coalition and
the boundary nodes randomly join the coalition. We have v({0}) =−Pd and

v(N) = Pd −P0(N)−
∑
i∈N

αiPd , (12.87)

which is the overall power saving. The problem here is to find a given node’s αi that
satisfies the average fairness. This is addressed in the following theorem:

theorem 12.10 The maximal αi that satisfies the average fairness with the physical
meaning of the Shapley function is given by

αi =
Ps

i

Pd
, (12.88)

where Ps
i is the average power saving with random entering orders, given by

Ps
i =

1
N

[Pd −P0({i})]+
∑N

j=1,j �=i [P0({j})−P0({i , j})]
N(N − 1)

+ · · · . (12.89)

Proof The maximal αi is determined by the following conditions:⎧⎨⎩
αi

αj
= φi

φj
,

v(N)≥ 0.
(12.90)

The first equation in (12.90) is the average fairness according to the Shapley function,
and the second relation in (12.90) is the condition for a non-empty core. As with min-max
fairness, we assume that the backbone node can accept arbitrarily small power gain to
join the coalition.

If boundary node i is the first to join the coalition, the marginal contribu-
tion for power saving is 1

N [Pd − P0({i}) − αiPd ], where 1
N is the probability. If

boundary node i is the second to join the coalition, the marginal contribution is∑N
j=1,j �=i [P0({j})+αj Pd−P0({i ,j})−(αi+αj )Pd ]

N(N−1) . By means of some simple derivations, we can
obtain the Shapley function φi as

φi =−αiPd +
1
N

[Pd −P0({i})]+
∑N

j=1,j �=i [P0({j})−P0({i , j})]
N(N − 1)

+ · · · , (12.91)
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Table 12.1 Packet-forwarding protocol using repeated games and coalitional games.

1. Route discovery for all nodes
2. Packet-forwarding enforcement by the backbone nodes, using threat of future punishment in

repeated games
3. Neighbor discovery by the boundary nodes
4. Coalitional-game formation
5. Packet relay for the backbone nodes with cooperative transmission
6. Transmission of the boundary nodes’ own packets to the backbone nodes for forwarding.

and then we can obtain

αi =
[Pd −P0(N)]Ps

i

Pd
∑N

j=1 Ps
j

. (12.92)

Since

Pd −P0(N) =
N∑

j=1

Ps
j , (12.93)

we prove (12.88).

Notice that different nodes have different values of Ps
i , owing to their channel con-

ditions and their ability to reduce the backbone node’s power. Compared with min-max
fairness in the previous subsection, average fairness using the Shapley function gives
different nodes different values of αi according to their locations.

Using the above analysis, we now develop a packet-forwarding protocol based on
repeated games and coalitional games, based on Table 12.1.

First, all nodes in the network undergo route discovery. Then each node knows who
depends on it and on whom it depends for transmission. Using this route information, the
repeated games can be formulated for the backbone nodes. The backbone nodes forward
the other nodes’ information, because of the threat of future punishment if these packets
are not forwarded. Because of the network topology, some nodes’ transmissions depend
on the others while the others do not depend on these nodes. These nodes are most often
located at the boundary of the network. In the next step, these boundary nodes try to find
their neighboring backbone nodes, and try to form coalitions with the backbone nodes, so
that the boundary nodes can be rewarded for transmitting their own packets. Cooperative
transmission gives an opportunity for the boundary nodes to pay some “credits” first to
the backbone nodes for the rewards of packet forwarding in return. On the other hand,
competition among the backbone nodes prevents the boundary nodes from being forced
to accept the minimal payoffs.

In the numerical study, we model all channels as additive white Gaussian noise chan-
nels having a propagation factor of 3; that is, power falls off spatially according to an
inverse-cubic law. The maximal transmitted power is 10 dBm and the thermal noise
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Fig. 12.12 (a) α for different channels and numbers of nodes, min-max fairness; (b) P0 for different
channels and numbers of nodes, min-max fairness.

level is −60 dBm. The minimal SNR γ is 10 dB. In the first setup, we assume the back-
bone node is located at (0m,0m), and the destination is located at either (100m,0m) or
(50m,0m). The boundary nodes are located on an arc with angles randomly distributed
from 90◦ to 270◦ and with distances varying from 5 m to 100 m.

In Fig. 12.12(a), we study min-max fairness and show the average αi over 1000
iterations as a function of distance from the relays to the source node. Because of
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the min-max nature, all boundary nodes have the same αi . When the distance is
small, i.e., when the relays are located close to the source, αi approaches 1

N . This
is because the relays can serve as virtual antennas for the source, and the source
needs very low power for transmission to the relays. When the distance is large, the
relays are less effective and αi decreases, which means that the relays must trans-
mit more packets for the source to earn the rewards of packet forwarding. When the
destination is 50 m, the source–destination channel is better than that at 100 m. When
N = 1 and the source–destination distance is 50 m, the relays close to the source
have larger αi and the relays farther away have lower αi than in the 100 m case. In
Fig. 12.12(b), we show the corresponding P0 for the backbone node. We can see that
P0 increases when the distances between the boundary nodes and the backbone node
increase.

If we consider the multiple-backbone (multiple-core) case with min-max fairness,
Figs. 12.12(a) and 12.12(b) provide guidelines for the boundary nodes in selecting
a backbone node with which to form a coalition. First, a less crowded coalition is
preferred. Second, the nearest backbone node is preferred. Third, for N = 1, if the
source–destination channel is good, the closer backbone node is preferred; otherwise,
the farther one can provide larger αi .

Next, we investigate average fairness using the Shapley function. The simulation
setup is as follows. The backbone node is located at (0m,0m) and the destination is
located at (−50m,0m). Boundary node 1 is located at (20m,0m) and (50m,0m),
respectively. Boundary node 2 moves from (5m,0m) to (100m,0m). The remain-
ing simulation parameters are the same. In Fig. 12.13(a), we show maximal αi for
two boundary nodes. We can see that when boundary node 2 is closer than boundary
node 1 to the backbone node, α2 > α1, i.e., boundary node 2 can help relay fewer
packets for backbone node 1 before being rewarded. The two curves for α1 and α2

for the same boundary node 1 location cross at the boundary node 1 location. The
figure shows that the average fairness using the Shapley function gives greater rewards
to the boundary node whose channel is better and who can help the backbone node
more. When boundary node 2 moves from (20 m, 0 m) to (50 m, 0 m), α1 becomes
smaller, but α2 becomes larger. This is because the backbone node must depend more on
boundary node 2 for relaying. However, the backbone node will pay less for the bound-
ary nodes. Notice that αi at the crossover point is lower. This is because the overall
power for the backbone node is high when boundary node 2 is far away, as shown in
Fig. 12.13(b).

We have studied a coalitional-game approach to providing benefits to selfish nodes in
wireless packet-forwarding networks using cooperative transmission, so that the bound-
ary nodes can transmit their packets effectively. We have used the concepts of coalitional
games to maintain stable and fair game coalitions. Specifically, we have studied two fair-
ness concepts: min-max fairness and average fairness. A protocol has been constructed
using repeated games and coalitional games. From simulation results, we have seen how
boundary nodes and backbone nodes form coalitions according to different fairness cri-
teria. We can also see that network connectivity can be improved by about 50 percent,
compared to the pure repeated game approach.
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Fig. 12.13 (a) αi of average fairness for different user locations; (b) P0 of average fairness for different user
locations.

12.5 Cooperative routing

In this section, we study the impact of cooperative communication on the network layer
for general wireless networks. Then, we briefly discuss the current standard development
for IEEE 802.16j WiMAX relay networks.
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12.5.1 Cooperative-routing algorithms

In the network layer, routing algorithms select multi-hop links between a source and
destination with minimal cost in terms such as overall power, or with maximal gain in
terms such as throughput. For each hop, metrics can be defined to cover such information
as bandwidth, delay, hop count, path cost, load, reliability, and communication cost. A
routing metric is a value used by a routing algorithm to determine whether one route per-
forms better than another. Then a routing algorithm, such as the shortest-path algorithm
(e.g., Dijkstra’s algorithm), can find the optimal route among all possible connections
from the source to the destination.

With cooperative transmission, the cooperative-routing problem has been recently
considered in the literature [518, 248, 290, 457, 306]. Most of the current cooperative-
based routing algorithms, such as cooperation along the minimum-energy non-
cooperative path (CAN) [248], progressive cooperation (PC) [248], and cooperative
routing along truncated non-cooperative route (CTNCR) [518], are implemented in two
consecutive steps. First, a non-cooperative route is constructed using any shortest-path
routing algorithm. Second, cooperative-communication protocols are applied on some
or all of the nodes along the established route. In fact, these routing algorithms do not
fully exploit the merits of cooperative transmission, since the optimal cooperative routes
might not be along non-cooperative routes.

One simple example is shown in Fig. 12.14, in which a regular grid topology is
studied. To illustrate the routes selected by different routing schemes, we assume that
the source is node 0 and the destination is node 7. The shortest-path routing algorithm
chooses one of the possible shortest routes. For instance, the chosen shortest route is
{(0,1), (1,5), (5,6), (6,7)}, where (i , j) denotes the direct-transmission mode from node
i to node j . Figure 12.14(a) shows the route chosen by the shortest-path routing algo-
rithm, where the solid line between each two nodes indicates the direct-transmission
mode. The cooperative route based on the shortest-path algorithm applies cooperation
among each three consecutive nodes on the shortest route, and the resulting route is
{(0,1,5), (5,6,7)}, where (x ,y ,z) denotes the cooperative-transmission mode between
sender x , relay y , and destination z . Figure 12.14(b) shows the route chosen by this
routing algorithm. The solid lines indicate the sender–destination transmissions and the

8 9 10 11

4 5 6 7

0 1 2 3

8 9 10 11

4 5 6 7

0 1 2 3

8 9 10 11

4 5 6 7

0 1 2 3

s s s

d d d

(a) (b) (c)

Fig. 12.14 (a) Shortest-path route; (b) cooperative route based on shortest path; (c) optimal cooperative
route.
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dashed lines indicate the sender–relay and relay–receiver transmissions. Finally, we find
that the optimal cooperative route is given by {(0,5,1), (1,2,6), (6,11,7)}, as shown
in Fig. 12.14(c). In this example, we can see visually the difference between the routes
chosen by the optimal cooperative-routing algorithm and by the cooperative-routing
algorithm based on the shortest path.

The above example provides a motivation for proposing a one-step cooperative-
routing algorithm, where the routing decision is based directly on cooperative
transmission. The design process can be summarized as follows:

1. The one-hop cost function is to be designed while considering cooperative transmis-
sion. The cost function can be the cost for traditional direct transmission, or the cost
to the source and relays together for cooperative transmission. A particular quality of
service (QoS) needs to be guaranteed. The major challenge for the cooperative cost
function is the relay selection, which is a complicated integer-optimization problem.
Some heuristics need to be designed to reduce computational complexity and still
achieve near-optimal performance.

2. The optimal route is then defined as the route which requires the minimum overall
cost. Any routing algorithms can be utilized to calculate the optimal route.

In [225], the one-hop cost is defined as the power while a certain bit error rate (BER) is
ensured. The heuristic is to select only one relay. It is shown that this one-step algorithm
outperforms the two-step algorithms [518, 248] by about 10 percent.

12.5.2 WiMAX IEEE 802.16j

Here, we discuss the impact of cooperative transmission on wireless-network standards.
WiMAX, based on the IEEE 802.16 standard for wireless metropolitan area networks
(WMANs), is expected to enable broadband speeds over wireless networks at a cost that
enables mass-market adoption, and thereby make the vision of pervasive connectivity
a reality. WMANs are designed for relatively large-scale networks such as a large cor-
porate or university campus, or an entire city. The IEEE 802.16 standard has helped to
pave the way for WMAN technology globally and, since its first inception, has been
expanded considerably. Next, we discuss one of these expansions related to cooperative
transmission.

Current deployments of IEEE 802.16 standards suffer from problems such as limited
spectrum, low signal-to-interference-plus-noise ratio (SINR) at cell edges, coverage
holes due to shadowing, and non-uniformly distributed traffic loads. To address these
issues, the IEEE instituted work on the standard 802.16j mobile multi-hop relay (MMR)
in 2006 [8, 4]. The basic idea behind MMR is to allow WiMAX base stations to impose
a demanding performance requirement on relay stations (RSs). These relays will serve
functionally as aggregating points on behalf of the base station (BS) for traffic collection
from, and distribution to, multiple mobile stations (MSs) associated with the relays,
and thus naturally incorporate a notion of “traffic aggregation.” On the one hand, this
approach will of course reduce the bandwidth available to users in the cells involved
in relaying packets. On the other hand, it is an elegant way to reduce costs and extend
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Fig. 12.15 Three types of IEEE 802.16j relay stations. Shaded areas indicate enhanced zones.

network coverage into areas where connecting a base station directly to the network via
a fixed-line connection is economically or technically unfeasible. The goal is to enhance
the coverage, throughput, and system capacity of existing IEEE 802.16 networks by
specifying multi-hop relay capability and functionality of the relay stations and base
stations. Some of the design requirements of IEEE 802.16j are as follows:

• Backwards compatibility with the existing structure
• Definition of relay frequency and channel bandwidth
• Support from relays for network entry of mobile stations
• Support of QoS and hybrid automatic repeat request (ARQ)
• Support of handover and mobility
• Deployment of multiple antennas for the relay link
• Support of multiple hops between base station and mobile station
• Enhancement of link reliability.

According to various network scenarios, there are three types of WiMAX relay
stations, as follows (see Fig. 12.15):

• Fixed relay stations (FRSs): permanently installed at fixed locations
• Nomadic relay stations (NRSs): location fixed for periods of time, but can be moved

around; used for situations such as special events
• Mobile relay stations (MRSs): for use in mobile environments.

It is anticipated that there will be no change to WiMAX subscriber devices used with the
above WiMAX relay stations. However, 802.16 BS is being updated to support MMR
functions and to be backward-compatible with the current version of WiMAX subscriber
services. Figure. 12.16 shows the frame structure for IEEE 802.16j in order for the frames
to transmit between the BS and the destination through the relay stations. In this example,
a message from the BS can be forwarded to the destination through three relay stations.
However, this brings the following challenges for the network design.
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Fig. 12.16 IEEE 802.16j frame structure with relay stations.

• System configuration/management. To optimally deploy the relay stations, the net-
work topology needs to be known. Moreover, for dynamic scenarios with mobile relay
stations, neighbor detection is necessary. A relay path management process (such as a
path-selection algorithm and path recovery) can eliminate coverage holes. For areas
with high subscriber densities, congestion control at the network level needs to be
implemented.Also, connection management determines how the BS can be connected
to the destination nodes. Finally, QoS provisioning needs to be considered, especially
for multimedia payloads.

• Network entry, bandwidth management, and scheduling. When a node enters the
network, admission-control synchronization, ranging, and authorization need to be
implemented. When nodes request bandwidth, the BS and RS need to perform band-
width allocation. The scheduling of packets from the BS, RSs, and mobile users can be
difficult to implement centrally if the number of relays is large. In this case, distributed
scheduling is preferred.

• Data delivery. For MAC protocol data unit (PDU) processing, information is
delivered as a unit among peer entities of a network and may contain control
information, address information, or data. The transmitted data can be classified as uni-
cast/multicast/broadcast data. To ensure successful delivery of data, ARQ or hybrid
ARQ processes are needed. Finally, if the receiver can combine the data in differ-
ent frames, cooperative-communication techniques can also be used to improve the
communication links.
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Table 12.2 Comparison of repeater, MMR, and BS.

Conventional repeater MMR Base station

Concept Dummy repeater Smart repeater Radio access station
Function Amplify and forward Decode and forward Encode and decode
Cost Low Reasonable High
Coverage Narrow–wide Narrow–wide Wide
Performance Severe degradation Mild degradation No degradation
Resource management Controlled by BS Collaborative with BS Self-controlled
Interference Unmanaged Managed by BS Self-managed

• Mobility management. Algorithms need to be constructed for MS handover and
MRS handover to support mobility. This can be intra-MMR-cell handover, in which
only oneMMR-BS participates, or inter-MMR-cell handover, which involvesmultiple
MMR-BS.

A comparison of MMS with conventional repeaters and base stations is shown in
Table 12.2.

In summary, 802.16j is under development for coverage extension and throughput
enhancement for existing WiMAX. There are many open issues related to MMR sys-
tems, such as system configuration and management, network admission, bandwidth
management, scheduling, data delivery, and mobility management.

12.6 Summary

Overall, cooperative communication has attracted considerable attention as a transmit
technology for future wireless networks, as it efficiently takes advantage of the broadcast
nature of wireless networks, and exploits inherent spatial and multi-user diversities by
treating cooperative relays as virtual antenna arrays. Most work in this area focuses on
how to improve link quality in the physical layer, while cross-layer issues have been less
well studied.

The cross-layer impact of cooperative communication lies in the fact that it offers
a new degree of freedom for traditional communication problems. For example, for
power control, the relay’s power can determine the performance at the destination. With
different power-control strategies, rate adaptation can be adjusted to fully use spectrum.
With limited spectrum and multiple users, relay selection and channel allocation address
the problems of multiple access and spectrum access. Moreover, in the network layer,
the routing metrics can be significantly different from traditional ones under cooperative
transmission, since routes with cooperative users can greatly improve performance. The
impact of cooperative communication can also be seen in the application layer, with
applications such as cooperative video transmission [177, 271].

In this chapter, we have concentrated on exploring the impact of cooperative transmis-
sion using game theory. Specifically, we have examined the cases of ad hoc networks,
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sensor networks, and general networks. The key point to be made is that, by using coop-
erative transmission, new methods can emerge to improve network performance. Game
theory provides a natural means for the distributed implementation of such network
improvement. We have provided several examples of how to formulate the game for
cooperative transmission over different layers to improve wireless network design.
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Cognitive radio [201] is a new paradigm for designing wireless communication systems
which aims at enhancing the utilization of the radio-frequency spectrum. The motivation
for cognitive radio arises from the scarcity of the available frequency spectrum. Emerg-
ing wireless applications will increase spectrum demand from mobile users. However,
most of the available radio spectrum has been allocated to existing wireless systems,
and only small portions of the radio spectrum can be licensed to new wireless appli-
cations. Nonetheless, a study in [143] by the spectrum policy task force (SPTF) of
the Federal Communications Commission (FCC) shows that there are also many fre-
quency bands which are only partly occupied or largely unoccupied. For example,
spectrum bands allocated to cellular networks in the USA [325] reach their highest uti-
lization during working hours, while they remain unoccupied from midnight until early
morning.

The major factor that leads to inefficient use of radio spectrum is the spectrum licens-
ing scheme itself. In traditional spectrum allocation, based on a command-and-control
model, where radio spectrum allocated to licensed users (i.e., primary users) is not used,
it cannot be utilized by unlicensed users (i.e., secondary users) or applications [87].
Because of this static and inflexible allocation, legacy wireless systems operate only on
a dedicated spectrum band, and cannot adapt the transmission band according to the
changing environment. For example, if one spectrum band is heavily used, they cannot
change to other bands which are lightly used. Because of the current static spectrum
licensing scheme, spectrum holes or spectrum opportunities arise (Fig. 13.1). Spec-
trum opportunities are defined as frequency bands, allocated to primary users, which at
some locations and times are not utilized by these primary users, and could therefore be
accessed by secondary users [201].

To improve the efficiency and utilization of the available spectrum, new spectrum
licensing models have been introduced. The idea is to make spectrum access more flex-
ible by allowing secondary users to access the radio spectrum under certain conditions.
There are three major spectrum-licensing models [533]: common-use, exclusive-use,
and shared-use models. In the common-use model, the spectrum is open to all users.
This model is already in use in the ISM band [287], e.g., through the IEEE 802.11
standard. In the exclusive-use model, a primary user can grant access to a partic-
ular frequency band to a secondary user for a certain period of time [199]. This
model is more flexible than the traditional command-and-control spectrum-licensing
model, since the type of use and the licensee can be dynamically changed. In the
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Fig. 13.1 Spectrum opportunities.

shared-use model, primary users are allocated frequency bands which are opportunisti-
cally accessed by secondary users. Spectrum access by secondary users is transparent
to the primary users. There are two approaches to spectrum access in the shared-use
model: spectrum underlay and spectrum overlay. Spectrum underlay constrains the
transmission power of secondary users so that they operate below the interference
limit for primary users. Spectrum overlay (or opportunistic spectrum access) allows sec-
ondary users to identify and exploit spectrum opportunities defined in space, time, and
frequency.

However, since legacy wireless systems were designed to operate on dedicated fre-
quency bands, they cannot utilize the improved flexibility of this shared-use spectrum
licensing scheme. For this reason the concept of cognitive radio has been introduced. The
main goal of cognitive radio is to provide adaptability to wireless transmission through
dynamic spectrum access, implemented using software-defined radio (SDR) [340]. In
this way, the performance of wireless transmission can be optimized, and the utilization
of the frequency spectrum can be enhanced. The major functionalities of a cognitive-
radio device include spectrum sensing, spectrum management, and spectrum mobility.
Through spectrum sensing, information on the target radio spectrum (e.g., type and cur-
rent activity of the primary user) is obtained. Different spectrum-sensing techniques
have been developed, e.g., energy detection, matched-filter detection, cyclostation-
ary detection, and wavelet detection [525]. This information is then exploited by the
spectrum-management function to determine spectrumopportunities andmake decisions
on spectrum access. If the status of the target spectrum changes, the spectrum-mobility
function can change the operational parameters (e.g., frequency bands).

Since with cognitive radio primary and secondary users will be more adaptive, they
can adjust the transmission parameters for their benefit. Therefore, interaction among
users becomes more important and affects transmission performance significantly. For
example, in the spectrum-underlay approach, power control is important for secondary
users, not only for maximizing the transmission rate but for maintaining interference
below target levels. In this chapter, the following game models, developed to analyze
the performance of cognitive-radio networks with rational primary and secondary users,
are reviewed.
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• Cooperative spectrum sensing. The performance of spectrum sensing can be
improved by cooperation among secondary userswho can formcoalitions (i.e., groups)
and share individual sensing results. With more information from the coalition, deci-
sions on spectrum sensing can be made more accurate. A coalitional-game model is
formulated to obtain stable coalitional structures (Section 13.1).

• Power allocation/control. As with the power-control problem in cellular (e.g.,
CDMA) systems, spectrum access based on the underlay approach requires secondary
users to choose the proper transmit power to maximize spectrum utilization and trans-
mission rate. Unlike that in the traditional cellular system, the power-control problem
in cognitive radio imposes strict constraints on interference to the primary users.When
secondary users are non-cooperative in choosing transmit power, a non-cooperative
game can bemodeled to obtain theNash equilibrium, given the interference constraints
(Section 13.2).

• Medium access control. For the spectrum-overlay approach based on the shared-
use model, medium access control is important to secondary users for detecting and
accessing spectrum opportunities. Especially in multi-channel environments, channel
selection/allocation to avoid congestion among secondary users can be formulated as
a non-cooperative game (Section 13.3). If secondary users are cooperative, channel
selection/allocation can be formulated as a bargaining game to achieve an efficient
and fair Nash bargaining solution.

• Decentralized dynamic spectrum access. Since a centralized controller may not
exist in the cognitive-radio environment, rational secondary users have to implement
a decentralized dynamic spectrum-access algorithm which takes account of historical
information on the primary users and other secondary users. A decision to access
the spectrum is then made accordingly (Section 13.4). With the ability to learn, this
decentralized algorithm can converge to a correlated equilibrium.

• Cheat-proof strategies open spectrum sharing. Secondary users can maintain
cooperation by reporting true private information for spectrum access to optimize
performance. However, some secondary users may deviate from cooperation to gain a
higher benefit. If secondary users interact among each other (e.g., to choose transmit
power) repeatedly, a punishment mechanism can be implemented to avoid deviation.
A repeated game can be applied to analyze the cooperation and deviation behavior of
secondary users.

• Spectrum leasing and cooperation. Secondary users can help the primary user to
relay data in order to improve performance (i.e., using cooperative diversity tech-
niques). In return, the primary user may allow secondary users to transmit on its
licensed spectrum.AStackelberg game model is formulated for this situation, in which
the primary user as leader chooses the size of the time-share for secondary users. The
secondary users as followers choose the transmit power (from the primary user) so
that benefit is maximized for the allocated time-share. Also, with multiple secondary
users, a non-cooperative game model can be used to obtain the Nash equilibrium for
transmit power (Section 13.7).

• Service provider competition for dynamic spectrum allocation.Aservice provider
can buy spectrum from a regulator and use this spectrum to provide service to users.
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AStackelberg gamemodel is formulated for this situation, inwhich the service provider
as leader chooses the price to maximize profit. The users as followers then determine
the demand which maximizes their utility, given the quality of service and price from
the service provider (Section 13.8).

13.1 Cooperative spectrum sensing

In cognitive radio, cooperative spectrum sensing is developed to improve the per-
formance of spectrum-opportunity detection [484]. In cooperative sensing, multiple
secondary users/nodes collaborate by exchanging information (e.g., sensing results) on
the spectrum owned by primary users/nodes. These results are combined to identify
spectrum opportunities. Cooperative spectrum sensing can lead to more accurate deci-
sions by secondary users than independent sensing, especially when the signal from a
primary user shows fading or shadowing. One approach to cooperative spectrum sensing
is based on a centralized fusion center, which collects individual sensing results from
each secondary user in the network. The fusion center then processes these results, e.g.,
using the OR rule [491], to obtain a final sensing decision (e.g., on whether primary
users are accessing the target spectrum). In addition, on the basis of spatial diversity in
cooperative sensing, the error probability, due to fading on the control channel used to
exchange sensing results between secondary users and the central fusion center, can be
improved [530].

Group formation by secondary users for spectrum sensing and communication with
a fusion center play an important role in the performance of cooperative sensing. For
example, with the OR rule, if a group contains few secondary users, the detection prob-
ability (i.e., the probability that a primary user is reported to be accessing the channel)
will be low. However, if a group contains many secondary users, although the detection
probability is high, so is the false-alarm probability (i.e., the probability that the fusion
center reports the detection of primary users when in fact no primary users are accessing
the spectrum). This false-alarm event results in low utilization of the spectrum, since
secondary users will defer spectrum access as the result of a wrong sensing decision.
A coalitional-game model is formulated in [413] to obtain a stable group formation of
secondary users for cooperative spectrum sensing. Also, a distributed algorithm based
on split-and-merge is introduced and its stability analyzed.

In the rest of this chapter we explain in detail how game theory is applied to cognitive-
radio networks. Some notation is summarized in Table 13.1.

13.1.1 System model

In a cognitive-radio network, there areN secondary users (i.e., transmitters) and aprimary
user (Fig. 13.2). The set of all secondary users is denoted by N = {1, ... ,N}. Each
secondary user senses the target spectrum in order to detect the presence of the primary
user. An energy detector is used [164]. For secondary user i , given Rayleigh channel
fading, the individual detection probability Pdet

i and individual false alarm probability
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Table 13.1 Notation in game models for cognitive-radio networks.

Notation Description

C Set of channels
δ Discount factor
Fm Profit to service provider m
h Channel gain
γ Average SNR
M Set of primary users
N Total number of secondary users
N Set of secondary users
pm Spectrum price from service provider m
Pi Transmit power of secondary user i
P suc, Pcol Probabilities of successful transmission and collision
φ Learning rate
σ2 Noise power
x Channel allocation or channel-access decision
y Channel status (idle or occupied by primary user)

Coalition 1 

Coalition 2

Coalition 3 

Primary user 

Coalition head

Coalition head

Coalition head

Secondary users

Fig. 13.2 Coalition formation by secondary users for cooperative spectrum sensing.
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where b is the time-bandwidth product, γthr is the energy-detection threshold, Γ(·, ·) is
the incomplete gamma function, and Γ(·) is the gamma function. γP,i indicates average
SNR of the received signal from the primary user to secondary user. In this case, the
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probability of misdetection by secondary user i is simply Pmis
i = 1−Pdet

i . In general,
given a particular parameter of spectrum sensing (e.g., the threshold γthr of the energy
detector), there is a tradeoff between detection probability and false-alarm probability. In
particular, as the detection probability increases (e.g., through a decrease in the value of
γthr), the false-alarm probability will increase.Although interference for the primary user
decreases, spectrumutilizationwill be low.This issue has been investigated, e.g., in [491].

13.1.2 Coalitional-game formulation

Tooptimize the performance of cooperative spectrumsensing, secondary users (i.e., play-
ers) can form coalitions (Fig. 13.2).The decision by a secondary user to join or leave
any coalition is the strategy. In each coalition S ⊂ N , there is a coalition head (i.e.,
the local fusion center), which collects sensing results from the secondary users in the
same coalition and makes a decision using the OR rule on whether the primary is present.
The coalition head is the secondary user with the lowest misdetection probability Pmis

i .
The error probability for the transmission of a sensing result from secondary user i ∈ S
to the coalition head k ∈ S is, from [413],

Perr
i ,k =

1
2
− 1

2

√
γ i ,k

1+γ i ,k
, (13.3)

where γ i ,k is the average SNR in transmitting the sensing result to the coalition head.
With cooperative spectrum sensing based on the OR rule, the coalition misdetection
probability Qmis

S and coalition false-alarm probability Q fal
S for coalition S with coalition

head k are

Qmis
S =

∏
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Pmis

i (1−Perr
i ,k )+ (1−Pmis

i )Perr
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)
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∏
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i Perr
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)
, (13.5)

where the sensing result is assumed to be one bit of data. It is observed that as the
number of secondary users in the coalition increases, the misdetection probability will
decrease while the false-alarm probability will increase. Also, if the secondary users are
independent, the distributed algorithm for forming a coalitionwould have tominimize the
misdetection probability (or equivalently to maximize the detection probability) while
the false-alarm probability is maintained below a threshold α.

The utility Ui (S) of secondary user i in coalition S is assumed to be identical to the
value v(S) of a coalition S ⊂N . The utility and value are a function of the detection
and false-alarm probabilities:

v(S) = Qdet
S −C (Q fal

S ), (13.6)
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Fig. 13.3 Example of logarithmic barrier-penalty cost function.

where C (Q fal
S ) is a cost function of the false-alarm probability. This cost function is

defined as the logarithmic barrier-penalty function:

C (Q fal
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, Q fal
S < α,

∞, Q fal
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Note that this cost function depends on both the channel quality between secondary and
primary users and the number of secondary users in the coalition. An example of this
cost function with α = 0.1 is shown in Fig. 13.3. It is found in [413] that this coalitional
game of cooperative spectrum sensing has a non-transferable utility.

To compare various coalition settings, a comparison relation is defined. Let S =
{S1, ... ,Sl} and R = {R1, ... ,Rm} be two collections (i.e., partitions) of the coalition.
ForR�S, collectionR is preferred to collectionS, or

∑m
i=1 v(Ri ) >

∑l
i=1 v(Si ). In this

case, the utility for secondary user j in coalitionRj forRj ∈R isUj(R)=Uj(Rj)= v(Rj).
In particular, all secondary users in the same coalition will have the same misdetection
and false-alarm probabilities. In addition, the Pareto order is considered. Pareto order
can be defined forR�S as:

vj(R)≥ vj(S), ∀j ∈R,S. (13.8)

Pareto order is used in the distributed coalition-formation algorithm, which is based on
the merge-and-split rule for secondary users. Partition S ′ = {S1, ... ,Sl} will merge and

become
{⋃l

j=1 Sj

}
if
{⋃l

j=1 Sj

}
�S ′. Conversely, any coalition of

{⋃l
j=1 Sj

}
will split

and become S ′ if S ′ = {S1, ... ,Sl}�

{⋃l
j=1 Sj

}
.

The coalition-formation Algorithm 13.1 starts by allowing the secondary users to
merge the existing coalition. In this case, coalition Ti ∈ T of initial partition T searches
and tries to merge with a nearby coalition. If merge occurs, the new coalition will again
search and try to merge. Once every coalition Ti performs the merging step, the resulting
partition becomesF . Then the split step is performed by all coalitions in this partitionF .
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Algorithm 13.1 Distributed coalition-formation algorithm.

1: Secondary users are partitioned into T = {T1, ... ,Tk} for T =N .
Phase 1: Local sensing

2: Each secondary user performs spectrum sensing.
Phase 2: Coalition formation

3: repeat
4: F = Merge(T ) (Coalition in T decides to merge)
5: T = Split(F) (Coalition in F decides to split based on the Pareto order)
6: until merge-and-split terminates

Phase 3: Standard cooperative sensing
7: Secondary user sends sensing result to coalition head.
8: Coalition head of each coalition makes final decision on the presence of primary

user using OR rule.
9: Secondary user in coalition receives final decision from coalition head.
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Fig. 13.4 Maximum coalition size vs. false-alarm probability.

Once this is done, the secondary users perform standard cooperative spectrum sensing
based on the available partition, and observe the outcome of the coalition.

Using this coalition-formation algorithm, it is proved in [413] that the maximum size
of the coalition is

Mmax =
log(1−α)

log(1−P fal
i )

, (13.9)

where α is the target false-alarm probability. The maximum coalition size for various
false-alarm probabilities is shown in Fig. 13.4. The stability of the algorithm is studied
in [413] using the concept of a defection function.
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13.1.3 Centralized approach and performance comparison

The centralized approach to coalition formation is used as a benchmark for Algo-
rithm 13.1. In this case, a central fusion center is assumed to exist in the network.
An optimization problem is formulated for the central fusion center as follows:

min

∑
S∈P |S |Qmis

S

N
, s.t. Q fal

S ≤ α, (13.10)

where P is a decision variable of the partition and α is the threshold for the maximum
false-alarm probability. It is found that obtaining the optimal partition P∗ is an NP-
complete problem [420]. The optimal solution can be obtained by enumeration.

Simulation is performed to evaluate the performance of the distributed coalition-
formation algorithm. First, it is found that the performance (i.e., average misdetection
probability) of distributed coalition formation is much better than without cooperation.
The performance of the centralized approach is better than that of the distributed algo-
rithm. However, the centralized approach requires much more computational resources
(e.g., time and memory) to obtain optimal partition. Also, the centralized approach can
obtain the solution only for a small number of secondary users, owing to its great com-
plexity. For the distributed coalition-formation algorithm, it is also found that as the
target false-alarm probability increases, the size of the coalition becomes smaller, in
agreement with (13.9).

13.2 Power allocation as a non-cooperative game

In cognitive radio, the spectrum licensed to a primary user can be opportunistically
accessed by secondary users using an overlay or underlay approach. In overlay dynamic
spectrum access, secondary users can access the spectrum only when it is not occupied
by the primary user. In underlay dynamic spectrum access, secondary and primary users
can access the same spectrum simultaneously. In this case, interference to the primary
user can be limited by controlling the transmit power of the secondary users. This is
similar to the concept of the CDMA cellular system. Power control/allocation is crucial
in order for the secondary user to achieve the best performance, while interference to the
primary user must be maintained below a target level. Power allocation by secondary
users becomes more challenging when the secondary users are non-cooperative. All
secondary users need equilibrium strategies (i.e., for transmit power) to ensure not only
that none of them deviates, but also that the interference requirement is not violated.
This problem of power allocation can be formulated as a non-cooperative game [510].

13.2.1 Underlay spectrum access and power allocation

The general system model for underlay spectrum access by secondary users is shown
in Fig. 13.5. In this multi-channel network, there are N secondary users (i.e., pairs of



13.2 Power allocation as a non-cooperative game 427

Secondary user

transmitters 
Secondary user

receivers

Monitoring stations

(primary users)

… …

…

Fig. 13.5 Secondary users’ transmitters and receivers and primary users in power allocation game.

transmitters and receivers) whose set is denoted by N . Secondary user i has a target
data rate (i.e., QoS requirement) denoted by Rmin

i for transmission over all channels.
Each secondary user is rational to minimize its power consumption while meeting the
target transmission rate. There are C channels in total, whose set is denoted by C =
{1,2, ... ,C}. The bandwidth of each channel is denoted by B . There are M primary
users (i.e., monitoring stations to observe interference) in total, whose set is denoted by
M= {1,2, ... ,M}. For primary user m with channel c , the target level for interference
from all secondary users is κγmax

c,m B , where κ is Boltzmann’s constant (1.38× 10−23

J K−1) and γmax
c,m is the interference temperature limit.

A non-cooperative game is formulated to solve the power-allocation problem [510].
The players are the secondary users. The strategy of player i is the transmit power Pc,i

on channel c . Its cost function (i.e., negative payoff) is

Ci (pi ) = ωi

∑
c∈C

Pc,i , (13.11)

where pi = [P1,i , ... ,Pc,i , ... ,PC ,i ] is a 1×C vector of strategies of player i , and ωi is
a weighting factor. In this game model, the strategy space of player i is denoted by ξi .
Because of the constraint on interference to primary users and on the target transmission
rate of each secondary user, this strategy space ξi is coupled with the strategies of all
other secondary users. It can be defined as

ξi (p−i ) = {pi ∈ΩP,i |
∑
c∈C
Rc,i (Pc,i ,pc,−i )≥ Rmin

i ,

Pc,ihc,i ,m +
∑
j �=i

Pc,jhc,j ,m ≤ κγmax
c,m B,m ∈M,c ∈ C}, (13.12)
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where the general strategy space is defined as

ΩP,i = {pi |
∑
c∈C

Pc,i ≤ Pmax
i ,Pmin

c,i ≤ Pc,i ≤ Pmax
c,i }. (13.13)

Pmax
i is the total transmit budget on all channels for secondary user i . [Pmin

c,i ,Pmax
c,i ] is

the interval of transmit power on channel c . p−i and pc,−i are the vectors of transmit
power of all secondary users except user i on all channels and on channel c , respectively.
hc,i ,m is the channel gain on channel c between secondary user i and primary user m.
The transmission rate is

Rc,i (Pc,i ,pc,−i ) = B log
(

1+
Pc,ihc,i

ηc,i

)
, (13.14)

where hc,i is the channel gain between transmitter and receiver of secondary user i , and
ηc,i is the total interference plus noise.

Given the coupled strategy space, the best response of the secondary user is

Bi (p−i ) = min
pi∈ξi (p−i )

Ci (pi ). (13.15)

Based on best response, the Nash equilibrium
(
p∗

1 · · · p∗
i · · · p∗

N

)
satisfies the following

condition:

p∗
i = arg min

pi∈ξi (p∗
−i )

Ci (pi ). (13.16)

13.2.2 Properties of the Nash equilibrium for power allocation

The existence and uniqueness properties of the Nash equilibrium in the above power-
allocation non-cooperative game are studied in [510]. First, it is observed that, given the
strategies p−i , of other secondary users, secondary user i can achieve a unique optimal
power allocation. This is the direct result of the convexity of

∑
c∈C Rc,i (Pc,i ,pc,−i ).

Also, the optimal achievable transmission rate is a continuous, monotonic increasing
function of power capacity Pmax

i if the set of interference temperature constraints is
satisfied. From these observation, if the target rate

(
Rmin

1 , ... ,Rmin
i , ... ,Rmin

N

)
is feasible,

then the Nash equilibrium can be assumed to exist. In addition, at the Nash equilibrium,
none of the secondary users will receive data at a rate which is greater than the target
rate, so the minimum transmit power is used. This is shown by contradiction: for any
strategy profile which yields a transmission rate higher than the target rate, the secondary
user will have an incentive to reduce the transmission rate so that the transmit power will
decrease. As a result, the transmit power decreases until the transmission rate reaches
the minimum target threshold Rmin

i .
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Based on above result, the existence of the Nash equilibrium can be demonstrated.
This Nash equilibrium is obtained using a modified water-filling algorithm, as follows:

P∗
c,i =

⎧⎪⎪⎨⎪⎪⎩
[
wi −

η∗
c,i

hc,i

]+
, if c ∈ C\Ii ,

min
m∈M

κγmax
c,m B −

∑
j∈N ,j �=i P

∗
c,jhc,j ,m

hc,i ,m
, if c ∈ Ii ,

(13.17)

where the water-filling level wi is chosen such that

∑
c∈C

Rc,i (P∗
c,i ,pc,−i ) = Rmin

i , (13.18)

and Ii is a set of channels of secondary user i whose interference is saturated, i.e.,{
c ∈ C

∣∣∣∣[wi −
η∗

c,i
hc,i

]+
> minm∈M

κγmax
c,m B−

∑
j∈N ,j �=i P

∗
c,j hc,j ,m

hc,i ,m

}
. η∗ is the total interference

plus noise at the Nash equilibrium. However, the uniqueness of the Nash equilibrium
depends largely on the structure of (13.17) and (13.18). It is stated in [510] that if the
conditions in (13.17) and (13.18) give a single solution, then the Nash equilibrium is
unique.

13.2.3 Distributed algorithm

Given the constraints on interference to primary users and on the target transmission rate
for secondary users, a distributed algorithm based on dual decomposition and layered
structure is now studied. In particular, the partial dual decomposition is used to relax
both constraints. The Lagrangian function can be expressed as

Li (pi ,p−i ,zi ,μ) = ωi

∑
c∈C

Pc,i + zi

(
Rmin

i −
∑
c∈C

Rc,i (Pc,i ,pc,−i )

)

+
∑

m∈M

∑
c∈C

μc,m

(∑
i∈N

Pc,ihc,i ,m−κγmax
c,m B

)
, (13.19)

where zi and μ = [μ1,1, ... ,μc,m, ... ,μC ,M ] denote the dual price and the vector of dual
prices for the constraints on target transmission rate and interference to primary users,
respectively. Then, the new cost function is

Θi (pi ,p−i ,zi ,μ) =
∑
c∈C

(
ωi +

∑
m∈M

μc,mhc,i ,m

)
Pc,i − zi

∑
c∈C

Rc,i (Pc,i ,pc,−i ).

(13.20)
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The objective is to minimize Θi (pi ,p−i ,zi ,μ). A subgradient algorithm to update dual
prices for secondary user i , given the Nash equilibrium, is defined as follows:

zi = zi +φ1

(
Rmin

i −
∑
c∈C

Rc,i (Pc,i ,pc,−i )

)
, (13.21)

μc,m = μc,m +φ2

(∑
i∈N

Pc,ihc,i ,m−κγmax
c,m B

)
, (13.22)

where φ1 and φ2 are the step sizes.

Algorithm 13.2 Distributed power allocation, given constraints on target transmission
rate of secondary user and interference to primary users.

1: Each secondary user i initializes pi (tT ) and zi (T ) and primary user initializes
μc,m(T ) at T = 0.

2: repeat
3: tT ← 0

• Jacobian iteration for power allocation:
4: repeat
5: Given dual prices zi (T ) and μc,m(T ), the transmit power of each secondary

user is updated as follows:

Pc,i (tT )←
[

zi (T )

ωi +
∑

m∈M μc,m(T )hc,i ,m− ηc,i (tT −1)
hc,i

]Pmax
c,i

Pmin
c,i

, (13.23)

where [·]P
max
c,i

Pmin
c,i

takes a value within [Pmax
c,i ,Pmin

c,i ].
6: tT ← tT +1.
7: until Pc,i (tT ) stops changing.

• Subgradient updating for dual prices:
8: Each secondary user updates zi as follows:

zi (T )←
[
zi (T − 1)+φ1

(
Rmin

i −
∑
c∈C

Rc,i (Pc,i ,pc,−i )

)]+

. (13.24)

9: Each primary user updates μc,m as follows:

μc,m ←
[
μc,m(T − 1)+φ2

(∑
i∈N

Pc,ihc,i ,m−κγmax
c,m B

)]+

. (13.25)

10: T ← T +1
11: until zi (T ) and μc,m stop changing.
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Time

Iteration T=1 Iteration T=2

Subiteration t

ΔT = WΔt 

Δt

Fig. 13.6 Iteration for updating dual prices and subiteration for updating transmit power.

To iteratively solve for the Nash equilibrium in a distributed setting, a layered structure
(i.e., a Stackelberg game) is introduced. The first equilibrium power allocation p∗ is,
obtained, based on Jacobian iteration, given dual prices. Then, the dual prices zi and
μc,m are updated. Algorithm 13.2 has three major steps. The transmit power is updated
on a finer time scale, i.e., every Δt. The dual prices are updated on a longer time scale,
i.e., every ΔT . The iteration for dual prices is denoted by T , while the subiteration
for power update is denoted by tT . The relationship between iteration and subiteration
is indicated by ΔT

Δt = Y , where Y is a large integer (Fig. 13.6). The convergence of
Algorithm 13.2 is also studied in [510].

13.2.4 Pigouvian taxation and social optimality

The socially optimal solution of

min
(p1,...,pN )

∑
i∈N

ωi

∑
c∈C

Pc,i , (13.26)

is also considered in [510]. Pigouvian taxation [321] is applied to achieve the
socially optimal solution. An externality cost is applied to each secondary user, so
the Nash equilibrium is shifted to the socially optimal solution. The taxation πi =
[π1,1, ... ,πc,i , ... ,πC ,N ] is added into the cost function. Based on the Karush–Kuhn–
Tucker necessary condition for a socially optimal solution, the objective function can be
defined as follows:

Θ̂i (pi ,p−i ,πi ,zi ,μ) =
∑
c∈C

(
ωi +

∑
m∈M

μc,mhc,i ,m

)
Pc,i +

∑
c∈C

πc,iPc,i

−zi

∑
c∈C

Rc,i (Pc,i ,pc,−i ), (13.27)

where πc,i =−
∑

j∈N ,j �=i
∂zjRc,j (Pc,j ,pj )

∂Pc,i
. The distributed implementation to achieve the

socially optimal solution is also proposed in [510].
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For the proposed power allocation algorithm, based on a non-cooperative-gamemodel,
numerical results in [510] show that the Nash equilibrium can be achieved while
all constraints on target transmission rate and interference to the primary users are
met. Also, with the Pigouvian-taxation mechanism, a higher transmission rate can be
obtained.

13.2.5 Related work

The power-allocation problem for underlay dynamic spectrum access is studied from a
variety of perspectives [500, 163, 515, 514]. In [515], a potential game is formulated
for power allocation to secondary users with an interference-temperature constraint. A
distributed algorithm to determine the secondary link for spectrum access and power
control is developed.A constraint on minimum signal-to-interference ratio (SIR) is used
to guarantee QoS performance for secondary users.

13.3 Medium access control

For overlay spectrum access in cognitive-radio networks, medium access control (MAC)
must be optimized for the best performance. In the commons-use spectrum-licensing
model, joint channel allocation and access based on game theory is proposed in [148].
Channel allocation refers to the selection of a channel for transmission by the secondary
user, while channel access refers to the obtaining of transmission parameters (e.g., size
of contention window in CSMA/CA protocol). Given non-cooperative behavior by sec-
ondary users, two game models for channel allocation and channel access are developed
to obtain an equilibrium strategy for the secondary users.

In the cognitive-radio network under consideration in [148], there are multiple chan-
nels, whose set is denoted by C. A secondary user (i.e., player) consists of a transmitter
and a receiver (i.e., transmission pair), and the set of secondary users is denoted by N .
Each secondary user has x radio interfaces which can access a maximum of x channels
simultaneously (e.g., as in [528, 16]). For each interface, the CSMA/CAprotocol is used.
It is assumed that the number of radio interfaces is smaller than or equal to the number
of available channels, i.e., x ≤ |C|.A secondary user can observe the transmissions by all
other users. The strategies of a secondary user are the set of channels to access and the
size of the contention window in the CSMA/CA protocol. The payoff is the throughput
(i.e., effective transmission rate), denoted by ri =

∑
c∈C rc,i for secondary user i , and rc,i

is the throughput of user i on channel c . It is assumed that the throughput on channel c
(i.e., the sum of throughputs for all users accessing channel c) is a decreasing function
of the number of users (i.e., radio interfaces) accessing this channel. Since there are two
strategies for each secondary user (i.e., the set of channels and the size of the contention
window), two game models are proposed, i.e., channel allocation and access. In this
case, the channel-allocation game is solved first, and the channel-access game is solved
given the strategy for channel allocation.
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13.3.1 Channel allocation

For the channel-allocation game, secondary user chooses the number of radios xc,i to
allocate to channel c . Therefore, the strategy of user i becomes si = (x1,i , ... ,xc,i , ... ,xC ,i )
where C = |C| is the total number of channels. In this game, the secondary user assumes
that the total throughput of the channelwill be fairly shared (without adapting the channel-
access parameter). With all identical channels, the achievable throughput is denoted by
r(xc) where xc =

∑
i∈N xc,i is the total number of radios allocated to channel c . The

payoff can be defined as

ri =
∑
c∈C

xc,i∑
i ′∈N xc,i ′

r(xc). (13.28)

It is found in [148] that in this channel-allocation game, there can be multiple Nash
equilibria. It is noted that the candidate strategy for Nash equilibria should have the
following properties:

• Secondary users allocate all radios to the available channels. To maximize throughput,
all radios should be allocated for transmission.

• The maximum difference between the number of radios allocated to any channel is
one. To avoid congestion on the channel, the radios should be equally allocated to all
channels.

The difference between the number of radios allocated to channels c and c ′ is Δxc,c′ =
xc − xc′ . The necessary and sufficient conditions for Nash equilibria, based on the load-
balancing concept, are

• Δxc,c′ ≤ 1 for any c ,c ′ ∈ C
• xc,i ≤ 1 for any c ∈ C.

The latter condition ensures that a secondary user does not allocate many radios to the
same channel. However, there is another set of Nash equilibria in which some sec-
ondary users allocate multiple radios to the same channel. The conditions for these Nash
equilibria are

• Δxc,c′ ≤ 1 for any c ,c ′ ∈ C

• For secondary user i with xc,i ≥ 2, xc,i ≤
r(xc − 1)/(xc − 1)− r(xc +1)/(xc +1)

r(xc − 1)/(xc − 1)− r(xc)/xc
• For secondary user i with xc′,i ≥ 2 and c ′ ∈ Cmax, xc,i ≥ xc′,i for c ∈ Cmin, where Cmin

and Cmax are the sets of channels with minimum and maximum number of radios,
respectively.

Note that there could be also the other sets of Nash equilibria, subject to specific
conditions on the throughput function r(·).

The efficiency of the Nash equilibria for this channel-allocation model is also analyzed
in [148]. The price of anarchy is derivedwhen the throughput function r(·) is a decreasing
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function of xc , and can be express as

ρ =
r(1)(

xc +1− |N |x
|C|

)
(r(xc)− r(xc +1))+ r(xc +1)

, (13.29)

where xc =
⌊

|N |x
|C|

⌋
and �·� is floor function. It is observed that as the throughput function

becomes more independent of the number of allocated radios, the price of anarchy
converges to 1, which indicates that the Nash equilibria can achieve almost the maximum
total throughput.

13.3.2 Channel access

In this channel-access model, CSMA/CAprotocol with distributed coordination function
(DCF) is assumed. The objective of this game is to optimize the bandwidth utilization of
all channels, and also to influence secondary users to play the channel-allocation game
optimally. In this game, secondary users i ∈ Ncht can cheat by making the contention
window smaller than in the standard. The cheating user (i.e., the cheater) is a player in
the channel-access game. Ncht ⊂Nc ⊆N , where Ncht is the set of cheaters with Ncht

cheaters in total, andNc is the set of secondary users accessing channel c . Note that the
analysis is performed for a single channel c to which is allocated multiple radios of two
or more secondary users. In general, cheaters will decrease the size of their contention
window to achieve a higher channel-access probability, and thus a higher throughput.
In this channel-access game, the strategy of the secondary user (i.e., cheater) is the set
of contention-window sizes si =

(
Wi ,1, ... ,Wi ,l , ... ,Wi ,xc,i

)
, where Wi ,l is the size of the

contention window for radio l of user i . The channel-access probability is τi ,l = 1
Wi ,l+1 .

The average throughput rc,i of cheater i is

rc,i =
xc,i∑
l=1

rc,i ,l , (13.30)

where rc,i ,l is the average throughput achieved from the l th radio of secondary user i .
As shown in [88], there are two sets of Nash equilibria for this channel-access game. In

the first set, only a single player adopt Wi ,l = 1, while the other users adopt Wj ,l > 1 for
j 	= i . This Nash equilibrium achieves the highest throughput for player i since this user
i always has a chance to transmit. However, the other users receive zero throughput, so
these Nash equilibria are efficient but totally unfair. In the second set of Nash equilibria,
more than one player adopts Wi ,l = 1, so all users receive zero throughput. These Nash
equilibria are referred to as the tragedy of the commons. Because of the undesirable
outcome of these Nash equilibria, an alternative solution based on Nash bargaining is
introduced [376]. This Nash bargaining solution can be obtained from the following
optimization problem:

(s�
1 , ... ,s�

|Ncht|) = arg max
(s1,...,s|Ncht|)

∏
i∈Ncht

xc,i∏
l=1

rc,i ,l(s1, ... ,s|Ncht|). (13.31)



13.3 Medium access control 435

This solution is Pareto-optimal, and fair. To make the optimization problem tractable,
it is assumed that the size of the contention window is continuous. With this assumption,
it can be shown analytically that the Nash bargaining solution is unique. Where the
formulation in (13.31) considers continuous values of Wi ,l , the case for discrete values
of Wi ,l is shown by simulation to also have a solution.

To force all players to adopt the Nash bargaining solution, a penalizing mechanism is
introduced in [148]. In particular, if there is a player deviating from the Nash bargaining
solution, other players will punish the deviating player by jamming the transmissions
of that player. The penalty that player i with radio l imposes on deviating player j with
radio l ′ is

zc,j ,l′ =
{

rc,j ,l′ − rc,i ,l , if rc,j ,l′ > rc,i ,l ,
0, otherwise.

(13.32)

According to the penalty zc,j ,l′ , the jamming period can be determined. Details of the
jamming mechanism can be found in [88].

13.3.3 Distributed algorithms

To achieve efficient Nash equilibria, distributed algorithms are proposed for the channel-
allocation and channel-access game models.

Distributed channel-allocation algorithm
For channel allocation, the player (i.e., the secondary user with a modified contention
window) chooses a strategy knowing only the number of radios allocated to each channel.
The distributed algorithm is shown as Algorithm 13.3. This algorithm can achieve the
Nash equilibrium in which all players allocate only one radio to each channel.

Algorithm 13.3 Distributed channel-allocation algorithm.
1: player initializes channel allocation.
2: player observes the number of radios of each channel in which the average number

of radios on the channel in Ci is x i . Ci is the set of channels with radios allocated by
player i .

3: For channel c ′ ∈ Ci with xc′ − x i ≥ 1, player i moves radio to channel c /∈ Ci with
probability 1

|C\Ci | .
4: To avoid reaching an inefficient stable channel allocation, with small probability ε

player randomly moves a radio to a different channel even though 0 < xc′−x i < 1.

From the performance evaluation, Algorithm 13.3 quickly converges to one of the
Nash equilibria which is efficient. The algorithm can fluctuate as a result of randomness
in line 13.3, but this fluctuation prevents players being trapped in an inefficient strategy.
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Distributed channel-access algorithm
Given a penalty mechanism to punish the cheater, channel-access algorithm to achieve
a unique Pareto-optimal solution is introduced in [148]. In this case, one of the players,
denoted by i , is selected to be a coordinator. This coordinator observes the channel
and performs punishment if necessary. The coordinator uses Algorithm 13.4, where ε

is a small value used in the termination condition of the algorithm. In this case, the
coordinator forces the other players to reach the Pareto-optimal point.

Algorithm 13.4 Channel-access algorithm.
1: Coordinator (i.e., player i) chooses the size of the contention window Wi ,l = W0 > 1

for radio l .
2: repeat
3: Coordinator punishes any deviating player j if rc,j ,l′(Wj ,l′) > rc,i ,l(Wi ,l) for j 	= i .
4: Punished player maximizes the throughput which can be achieved by adjusting

the size of the contention window to Wj ,l′ = Wi ,l .
5: Coordinator updates the size of the contention window to Wi ,l = Wi ,l +1.
6: until |rc,i ,l(Wi ,l)− rc,i ,l(Wi ,l − 1)|< ε.

From the performance evaluation,Algorithm 13.4 can maximize the total throughput.
In summary, it is found in [148] that if a player wants to achieve a fair allocation on each
channel, it will not be beneficial for any player to be fully selfish by setting the smallest
contention window size.

13.4 Decentralized dynamic spectrum access

In cognitive-radio networks, in most cases there is no centralized controller to govern
channel access. Therefore, a rational secondary user requires a decentralized algorithm
to reach an equilibrium strategy. This decentralized algorithm needs to rely only on local
information and has to adapt to the environment quickly. In [322], a decentralized algo-
rithm for overlay spectrum access is developed based on the stochastic approximation
technique. It is shown that this algorithm can converge to a correlated equilibrium if the
spectrum-access activity of the primary user varies slowly [380, 423, 499].

13.4.1 Overlay dynamic spectrum access

Cognitive radio with N secondary users accessing the channels on a time-slot basis
is considered. The length of time slot is Y . There are C channels in total, each of
which is licensed to a primary user. The channel quality (i.e., transmission rate) of
channel c at time slot t is denoted by rc [t]. The channel status (i.e., activity of cor-
responding primary user) is denoted by yc [t], such that channel c is occupied by the
primary user if yc [t] = 0. The decision of secondary user i is denoted by xc,i [t], where
xc,i [t] = 1 if secondary user i can access channel c at time slot t and xc,i [t] = 0 otherwise.
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Fig. 13.7 Example of a channel-access decision by secondary users, in decentralized dynamic spectrum
access. Channel-access decision of secondary users.

The channel-access decision vector is xi [t] = [x1,i [t], ... ,xc,i [t], ... ,xC ,i [t]]. For sec-
ondary user i , the channel-access demand is Di [t], and the maximum number of channels
that this secondary user can access simultaneously is Xi . Di [t] and Xi are private infor-
mation which is not known by other secondary users.An example of channel access with
C = 3 channels and N = 3 secondary users is shown in Fig. 13.7.

The decision space (i.e., action space) of the secondary user is denoted by

Ai [t] =

{
xi [t]

∣∣∣∣∣
C∑

c=1

xc,i [t]yc [t] = 1,
C∑

c=1

xc,i ≤ Xi [t]

}
. (13.33)

That is, the secondary user will access only an idle channel, and the total number of
access channels has to be smaller than Xi [t]. The vector of decisions of all secondary
users is denoted by x[t]∈A[t] =A1[t]×·· ·Ai [t]×·· ·×AN [t], where× is the Cartesian
product. Given decision xc,i [t], secondary user i accesses a channel based on the CSMA
scheme. In this case, the time slot is divided into W minislots. The minislot in time
slot t is denoted by t1, ... , tw , ... , tW . If secondary user i decides to access channel c in
time slot t, i.e., xc,i [t] = 1, a backoff mechanism will be performed. In particular, the
secondary user generates a backoff time bc,i [t] with uniform distribution in the interval
[0,bmax], where bmax is the maximum backoff size. Then the timer counts down from
bc,i [t], and before it reaches zero, the secondary user transmits data if channel c is sensed
to be idle. However, a collision can occur if more than one secondary user has the same
bc,i [t] = bc,j [t] for i 	= j . Specifically, a collision can occur in two cases. In the first case,
secondary user i has the lowest backoff (i.e., bc,i [t] = minj bc,j [t]), but there is another
user with backoff in the range [bc,i [t],bc,i [t]+δ], where δ is the time required to sense the
channel and to switch from receive to transmit mode. In the second case, secondary user
i does not have the lowest backoff. However, its backoff is within [bc,j [t],bc,j [t] + δ],
where secondary user j has the lowest backoff. The success of data transmission can be
observed at the end of the time slot. Given this backoff mechanism, the expected number
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of other secondary users Ñc,i [t] contending with secondary user i for the idle time slot
on channel c at time slot t can be estimated. Also, the probability of channel capture
Pcap

c,i [t] and probability of collision Pcol
c,i [t] for secondary user i can be obtained. These

probabilities will be used in the decentralized algorithm of the secondary user to decide
on channel access.

13.4.2 Utility function

First, the global system utility function is formulated. This function is based on a max-
min fairness criterion in which the utility of the secondary user with the minimum ratio
of received transmission rate to demand will be maximized, i.e.,

U glo(x[t]) = min
i

(
min

(
1,

∑C
c=1 rc [t]P

cap
c,i [t]

Di [t]

))
, (13.34)

where
∑C

c=1 rc [t]P
cap
c,i [t]

Di [t]
represents the satisfaction level of secondary user i . The optimal

solution of (13.34) can be obtained if all complete and perfect information is available to
a centralized controller. However, in a decentralized setting, there is no such controller.
Also, the secondary users do not know one another’s private information (e.g., demand).
Therefore, based on the global utility function, a local utility function is defined, com-
posedof three components.Thefirst component accounts for the self-interest tomaximize
the secondary user’s satisfaction:

U loc
1 (xc,i ) = min

(
C∑

c=1

rc [t]
Di

xc,i [t]
1+Nc,i [t]

(
1− δ

bmax

)1+Nc,i [t]
)

. (13.35)

This first component requires information about the number of secondary users contend-
ing for the same channel, which can be approximated locally. Furthermore, the secondary
user should maximize the satisfaction of other users, so cooperation among secondary
users is introduced by requiring that no user may have a transmission rate higher than the
demand, so that other users have a chance for channel access. Consequently, the second
component of the local utility function is defined as follows:

U loc
2 (xc,i ) =− 1

Di
max

(
0,

(
C∑

c=1

rc [t]P
cap
c,i [t]− (Di +κ)

))
. (13.36)

This second component is the penalty if the data rate of secondary user i is higher than the
demand plus a tolerance margin κ. This margin is introduced because of the randomness
of the system parameters and because of estimation errors. The secondary user should
minimize collisions, which will degrade the performance of all users. Therefore, the
third component of the local utility function accounts for the penalty of collision:

U loc
3 (xc,i ) =− 1∑C

c=1 rc [t]

∑
{c|N̂c,i>0}

rc [t]
Pcol

c,i [t]

N̂c,i
, (13.37)
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where N̂c,i is the estimated number of contending secondary users. Given these three
components, the local utility function of secondary user i can be expressed as

U loc
i (xc,i ) = max

(
0,ω1U

loc
1 (xc,i )+ω2U

loc
2 (xc,i )+ω3U

loc
3 (xc,i )

)
, (13.38)

where ω1, ω2, and ω3 are non-negative weights. This local utility function is used by
secondary user i to adjust its channel-access decision xi [t]. This utility is also a function
of the estimated number of contending secondary users N̂c,i , which is a function of
actions adopted by the other secondary users. Therefore, the utility function may be
expressed as U loc

i (xi [t],x−i [t]), where x−i [t] is the vector of actions of all secondary
users except user i .

13.4.3 Decentralized algorithm for channel access

A non-cooperative game can be formulated whose players are the secondary users. The
strategy is the channel-access action xi [t] and the payoff is the local utility function
U loc

i (xi [t]). A decentralized stochastic approximation algorithm, used to obtain the
channel-access action of the secondary user using local and private information, is devel-
oped based on the regret-matching procedure [196]. The adaptive mechanism integrated
into this procedure is referred to as regret tracking. In this algorithm, the secondary user
takes a sequence of actions defined as follows:

{xi [t] ∈Ai [t] |t = 0,1,2, ...}. (13.39)

The secondary user observes a sequence of rewards, denoted by ui [t] for t = 0,1,2, ... ,
and makes a decision on channel access at time slot t +1.

The decentralized algorithm is presented as Algorithm 13.5. ε[t] is the step size. θi [t]
is the average regret matrix, with elements θi

j ,d [t]. This average regret indicates the
gain that secondary user i would receive if decision d had been made during time 0
to t, instead of decision j . μ satisfies the condition μ > (Si − 1)(Umax

i −Umin
i ), where

Umax
i and Umin

i are, the respectively, maximum and minimum bounds of the local utility
(13.38). H i

j ,d(x[t]) is the instantaneous regret, defined as

H i
j ,d(x[t]) = U loc

i (d ,x−i [t])−U loc
i (j ,x−i [t]), (13.40)

i.e., the regret at making decision j instead of d . This regret H i
j ,d is an element at row j

and column d of the regret matrix Hi .
In Algorithm 13.5, the step size ε[t] can be fixed (ε[t] = ε) or decreasing (ε[t] = 1

t+1 ).
With decreasing step size, the algorithm will converge with probability 1 to the correlated
equilibria [322]. However, the algorithm may not adapt to a change of system parameter.
Alternatively, with a fixed step size, the algorithm can adapt to the slowly changing
activity of primary users and converge to the correlated equilibria. Algorithm 13.5 is
proved to converge to the correlated equilibria using stochastic averaging theory. For
a decreasing step size, the proof is based on [67], while for a fixed step size, the proof



440 Cognitive-radio networks

Algorithm 13.5 Adaptive learning for channel access.

1: Initialization: Set t = 0, take action xi [0], and initialize θi [0] = Hi (x[0]).
2: Set n = 1, take action xi [1] = argmaxd H i

j ,d(x[0]) where j = xi [0] and set θi [1] =
Hi (x[1]).

3: loop
4: Action update: Choose xi [t +1] = d with probability

Pr(xi [t +1] = d |xi [t] = j ,θi [t] = θi ) =⎧⎨⎩ max
(
0,θi

j ,d

)
/μ, if d 	= j ,

1−
∑

d̂ �=j max
(
0,θi

j ,d̂

)
, if d = j ,

(13.41)

where θi
j ,d is an element of θi .

5: Average regret update: Given Hi (x[t + 1]), update θi [t + 1] according to the
following stochastic approximation algorithm with step size ε[t]:

θi [t +1] = θi [t]+ ε[t](Hi (x[t +1])−θi [t]). (13.42)

6: t = t +1.
7: end loop

is based on [270]. In short, with various step sizes, the decision of the secondary user
converges to the trajectory of the given differential inclusion.

13.4.4 Alternative algorithms

Best-response, fictitious-play, and modified regret-tracking algorithms are also consid-
ered in [322]. In best-response algorithm, the secondary user decides to access the channel
to maximize its utility, on the assumption that the decisions of other users remain the
same, i.e., xi [t +1] = argmaxd H i

j ,d(x[t]), where j = xi [t]. For fictitious play, which is
a special case of regret-based algorithms [198], the update of the decision in line 5 of
Algorithm 13.5 becomes xi [t + 1] = argmaxd(θi

j ,d [t](xi [t])) for decreasing step size.
However, the best-response and fictitious-play algorithms assume that secondary users
know all possible decisions, not just the available actions. To overcome this limitation,
the modified regret-tracking algorithm [197] estimates the decisions which have not been
made, so the secondary user can make an approximately optimal decision.

From the performance evaluation, it is shown that the studied regret-tracking algo-
rithm outperforms all of these alternative algorithms (i.e., best-response, fictitious-play,
and modified regret-tracking) by most closely converging to the correlated equilibria
of the spectrum-access game. With the proposed regret-tracking algorithm, it is found
that the average channel utilization is higher for slower changes in the primary user’s
activity. This is because the secondary user has more time to observe and adapt to the
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changes. Also, the performance with spectrum-sensing error is investigated in [322]. As
expected, network performance is degraded when the probability of a sensing error (i.e.,
an occupied channel is sensed to be idle or an idle channel is sensed to be occupied)
increases. Therefore, Algorithm 13.5 requires some level of channel-sensing accuracy
to achieve the best performance.

13.5 Radio resource competition based on a stochastic learning game

To obtain spectrum access, a secondary user can bid competitively for the spectrum
from a central spectrum moderator (i.e., a spectrum broker or regulator). To bid for the
spectrum, not only the channel state but also the local state (e.g., buffer occupancy)
of the secondary user will impact the strategy selection. In a dynamic environment, to
obtain a competitive strategy for spectrum bidding, a stochastic-game model [159] can
be formulated [158, 485]. Also, if information about the other secondary users is not
publicly available, each user has to learn and adapt its strategy dynamically to achieve
the highest reward or, equivalently, lowest cost.

13.5.1 System model of radio resource competition

In the system, there are C channels. Each channel is allocated to one primary user whose
channel occupancy is modeled as a two-state Markov chain [513, 446] (Fig. 13.8). In
this channel model, the state of channel c at time slot t is denoted by yc [t], where
yc [t] = 0 if the channel is in the On state (secondary user cannot transmit) and yc [t] = 1
if the channel is in the Off state (secondary user can transmit). The probability of a state
transition is denoted by αc and βc from On to Off and from Off to On, respectively.
There are N secondary users in total, with N ≥ C . One channel can be accessed by one
secondary user in one time slot, and the transmit power is fixed. Therefore, there is no
interference in the system. Each secondary user has a buffer to store an incoming packet,
whose arrival is assumed to be a Possion process. The secondary user has to determine
external and internal actions, denoted, respectively, by ai [t] and di [t], for time slot t.
The external action corresponds to the bidding strategy to acquire the channel from the
spectrum broker. The internal action corresponds to the transmission strategy on the
allocated channel and time slot. Secondary users compete with each other to obtain

yc [t]=0
β β

αα

On Off

yc[t]=1
c1- c

c
1- c

Fig. 13.8 Two-state Markov-channel model for primary-user occupancy of the channel.
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Fig. 13.9 System model of radio resource competition.

channel access by optimizing their external actions. Then, once the channel is allocated,
each secondary user optimizes its internal action to maximize the reward.

To obtain the action of a secondary user, a stochastic-game model is defined. The
players are the secondary users. The state of a player is composed of buffer occupancy
(i.e., the number of packets in the queue), status, and quality of the channel. The strategy
is composed of an external action to bid for the channel and an internal action for packet
transmission. The payoff is computed from the buffer overflow and cost of channel
bidding. An example of a system model with two secondary users is shown in Fig. 13.9.

13.5.2 Auction mechanism

It is assumed that the spectrumbrokermaintains the status of all channels (i.e., On–Off) in
every time slot. The spectrum broker can allow secondary users to access channels with
Off state in a certain slot. In this case, The spectrum broker informs secondary users
about the channel status (i.e., y[t] = [y1[t], ... ,yc [t], ... ,yC [t]]). Each secondary user
submits a bid to the broker (i.e., ai [t] = [a1,i [t], ... ,ac,i [t], ... ,aC ,i [t]]). Given the bids
from all competing secondary users, the broker determines the winner and sends channel
allocations back to all secondary users. The channel allocation vector is denoted by
zi [t] = [z1,i [t], ... ,zc,i [t], ... ,zC ,i [t]], where zc,i = 1 if channel c is allocated to secondary
user i and zc,i = 0 otherwise. Also, the spectrum broker computes the payment pi which
secondary user i has to pay to access the channel. In this case, feedback information
from the broker to secondary user i can be defined as fi [t] = (zi [t],pi [t]). The message
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Spectrum broker

Channel status y[t ]

Channel allocation zi[t ]

Bid ai[t ]

Price

(payment) pi[t ]

Secondary users

Fig. 13.10 Message exchange in auction between spectrum broker and secondary users.

exchange, in this auction, between the spectrum broker and secondary users is shown in
Fig. 13.10.

Let Z[t] denote the channel-allocation matrix whose elements are zc,i . The auction
rule is to maximize total social welfare, i.e.,

Z∗[t] = argmax
Z[t]

N∑
i=1

C∑
c=1

zc,i [t]ac,i [t]. (13.43)

In a second-price auction mechanism [328], the price to be paid by the secondary user
i is

pi [t] =
N∑

j=1,j �=i

C∑
c=1

z∗
c,j [t]ac,j [t]− max

Z−i [t]

N∑
j=1,j �=i

C∑
c=1

zc,j [t]ac,j [t], (13.44)

where z∗
c,i [t] is an element of Z∗[t] and Z−i [t] is the matrix of channel allocation for all

secondary users except user i . The optimization defined in (13.43) and (13.44) can be
efficiently solved using linear programming.

With this auction mechanism, the spectrum broker does not need to know the private
information (e.g., utility functions) of the secondary users. Also, the outcome of the
auction can be obtained efficiently using a standard algorithm. Therefore, it is suitable
for online resource management.

13.5.3 Secondary-user strategy

The state of user i is composed of the buffer occupancy bi [t] and the channel status yc [t]
and channel quality. For channel quality, adaptive modulation and coding is considered.
In this case, channel quality (i.e., SNR) can characterize the channel state according to
the thresholds. A finite-state Markov-chain (FSMC) model is adopted in this case [363].
Channel status and channel quality can be combined. Let the FSMC state of channel
c allocated to secondary user i be ec,i [t]. At state ec,i [t] = 0, the transmission rate is
zero, which could be due to the low SNR or because the channel is occupied by the
primary user (i.e., yc [t] = 0).At state ec,i [t] = 1, ... ,E , where E is the highest state of the
FSMC model, the transmission rate is positive and the channel is idle (i.e., yc [t] = 1).
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In this way, the state of secondary user i can be expressed as si [t] = (bi [t],ec,i [t]),
i.e., a composite of buffer occupancy and channel state. The transition of state can be
determined from the packet arrival, channel allocation, channel state, and internal action
for packet transmission. In this case, the internal action is chosen to maximize the number
of transmitted packets. Let Ni (si [t],zi [t],di [t]) denote the function for the number of
transmitted packets of secondary user i given state si [t], channel allocation zi [t], and
internal action di [t]. The number of successfully transmitted packets is

ni (si [t],zi [t]) = max
di [t]

Ni (si [t],zi [t],di [t]). (13.45)

To obtain the optimal action, the method of cross-layer optimization [157, 486] can be
adopted in this case. The change of buffer occupancy can be expressed as

bo [t +1] = min(max(0,bi [t]− ni (si [t],zi [t]))+λi [t],bmax
i ) , (13.46)

where λi [t] is the number of arriving packets in time slot t and bmax
i is the maximum

buffer size. In this case, some arriving packets can be lost if the buffer is full (i.e.,
bi [t] = bmax

i ); this loss is considered to be the cost for the secondary user. Therefore, the
immediate reward for the secondary user is

ri (si [t], fi [t]) =−(pi +max(0,max(0,bi [t]− ni (si [t],zi [t]))+λi [t]− bmax
i )) ,

(13.47)
where fi [t] = (zi [t],pi [t]) is feedback information from the spectrum broker. This reward
can be fully characterized by the state, channel status, and action of all secondary users,
i.e., ri (s[t],y[t],a[t]), where s[t] = [s1[t], ... ,si [t], ... ,sN [t]] is a vector of states, y[t] is
a vector of channel status, and a[t] is a vector of actions of all secondary users on all
channels.

To obtain the optimal external action, the secondary user observes the state and action
in the system. The observation by secondary user i , with private information, can be
denoted by oi [t]. The action can be determined given the observation, and this mapping
is referred to as the policy, i.e., πi ,t where ai [t] = πi ,t(oi [t]). Since the secondary user
can observe only its own state and the channel status as provided by the spectrum broker,
the policy can be defined as πi ,t(oi [t]) = πi ,t(si [t],y[t]). Given a discount factor δi with
0≤ δi < 1, the total discounted sum of rewards to secondary user i is

Qi ,t(s[t],y[t],π) =
∞∑

t′=t

(δi )t
′−tri (s[t ′],y[t ′],π(s[t ′],y[t ′])), (13.48)

where π is the set of stationary Markov policies of all users. Note that πi ,t is a Markov
policy ifπi ,t is independent of the past, given the current state si [t] and channel status y[t].

The best-response policy can be defined as:

Bi (π) = argmax
πi

Qi ,t(s[t],y[t], (πi ,π−i )), (13.49)
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where π−i is the set of policies of all secondary users except user i . Note that the best-
response policy defined in (13.49) can be obtained only when the state and policy of other
secondary users are available. To overcome this limitation, the concept of preference is
introduced. Preference uc,i [t] is the benefit for secondary user i in accessing channel
c in time slot t. This preference can be considered the optimal bid submitted to the
spectrum broker. Since secondary user i will bid to maximize its immediate reward, this
preference can be defined as function of its own state and channel status. This is referred
to as the myopic strategy. However, if the impact of future reward is taken into account,
the secondary user needs to predict future reward with discount factor δi . This prediction
can be performed based on past observation.

13.5.4 Learning algorithm

A learning algorithm similar to reinforcement learning [503, 471] is developed to pre-
dict the impact of the strategy adopted by other secondary users. This learning is
based on observations oi [t] = {si [0],y[0],ai [0],pi [0], ... ,si [t − 1],y[t − 1],ai [t − 1],
pi [t−1],si [t],y[t]} of all local and observable information. The secondary user is char-
acterized by its class. In this case, Ki classes are defined and the state space of other users
is mapped to each class. Given this class, approximated preference, optimal bidding pol-
icy, and approximated transition probability can be obtained. The average future reward
is denoted by Vi ,t((si ,s−i ),y[t]). The learning algorithm is presented asAlgorithm 13.6.

Algorithm 13.6 Learning algorithm for radio resource competition.

1: Initialize average future reward Vi ,0((si , s̃−i ),y) for all possible states si of user i
and approximated states s̃−i of other users.

2: loop
3: Observe current state si [t] and channel status y[t].
4: Choose action (i.e., bid)ai [t]= [u1,i [t], ... ,uc,i [t], ... ,uC ,i [t]] according to approx-

imated reward Vi ,t+1((si [t +1], s̃−i [t +1]),y[t +1]).
5: Submit action ai [t] to spectrum broker.
6: Receive channel allocation zi [t] and payment pi [t].
7: Compute the approximated states s̃−i [t] of other secondary users.
8: Compute the expected total discounted sum of rewards

Qi ,t((si [t], s̃−i [t]),y[t],π).
9: Update future reward Vi ,t((si , s̃−i ),y) using learning rate φi [t].
10: t = t +1.
11: end loop

In the performance evaluation, different approaches to the game of spectrum bidding
for secondary users are considered, i.e., fixed bidding, source-award bidding, myopic
bidding, and best-response learning bidding strategies. In the fixed-bidding strategy, a
constant bid vector is adopted by the secondary user. In the source-award bidding strategy,
the bidding action is obtained optimally considering only the buffer occupancy. In the
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myopic strategy, the bidding action is chosen to maximize immediate reward. It is found
that as the secondary user has more information to choose an action, the reward is higher
(i.e., packet loss due to lack of buffer space and payment are smaller). In particular, the
source-award bidding strategy is observed to outperform the fixed-bidding strategy. The
myopic bidding strategy is better than the source-aware bidding strategy, and the best-
response learning bidding strategy yields the best performance because of the ability to
learn and adapt to both environment and opponent changes.

13.6 Cheat-proof strategies for open spectrum sharing

With non-cooperative secondary users, it is mostly found that the performance of all
users is not maximized because of selfishness (e.g., all secondary users transmit at the
highest power). This effect is known as the tragedy of the commons [194, 145]. The
efficient or optimal strategy (e.g., secondary users transmit at a lower power level to
avoid severe interference) is more desirable if secondary users can cooperate. However,
because of the rationale to maximizing their own benefit, some secondary users may
deviate from cooperation and even cheat, to reporting false private information to gain a
higher payoff. Therefore, an enforcement method/strategy will be required to ensure that
secondary users always cooperate and adopt an efficient strategy. A cheat-proof strategy
for secondary users in open spectrum sharing (i.e., the common-use model) is proposed
in [511].

13.6.1 One-shot non-cooperative game

There are N secondary users (i.e., N pairs of transmitter and receiver) whose set is
denoted byN . These secondary users share a single channel with the primary user. With
CDMA channel access, the received signal of secondary user i at time slot t is

ψi [t] =
N∑

j=1

hj ,i [t]χj [t]+wi [t], (13.50)

where χj [t] is the transmitted information, hj ,i is the instantaneous channel gain from
transmitter j to receiver i , and wi [t] is the white noise at receiver i . The secondary
user i ∈ N can adjust transmit power Pi (i.e., strategy). The payoff is defined as the
transmission rate Ri (·) achieved by secondary user i , which can be approximated by

Ri (P1, ... ,Pi , ... ,PN) = log

(
1+

Pi |hi ,i |2
σ2 +

∑
j �=i Pj |hj ,i |2

)
, (13.51)

where σ2 is the noise power. In this case, the mutual interference is treated as noise with
Gaussian random variable. Given the maximum transmit power Pmax

i for secondary user
i , theNash equilibrium is found to bep∗ =(Pmax

1 , ... ,Pmax
i , ... ,Pmax

N ). It is shown by con-
tradiction that if secondary user i decreases transmit power toPi <Pmax

i , the transmission
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rate Ri (·) will not be maximized. With Nash equilibrium, the transmission rate of selfish
secondary user i with channel gain hj ,i in one time slot is denoted by Rslf

i (h1,i , ... ,hN,i ).

The expected payoff is denoted by R
slf
i = Ehj ,i ;j∈N

(
Rslf

i (h1,i , ... ,hN,i )
)
.

13.6.2 Cooperative strategy

It is proposed that the optimal transmission rate for all secondary users can be achieved
when a single user is allowed to transmit in the time slot [511]. The main reason
is that there is no interference and it is simple to implement this transmission pol-
icy. Also, it is easy to detect deviating secondary users if they start transmission in
the same time slot. Since only one secondary user can transmit data in one time
slot (i.e., time-division multiple-access or TDMA), a transmission policy (i.e., who
should transmit in the current time slot) must be determined. Two criteria to evalu-
ate candidate transmission policy are considered: maximum total throughput [187] and
proportional fairness [242]. The policy which maximizes total throughput is defined
as L1 = argmaxP1,...,Pi ,...,PN

∑N
i=1 Ri (P1, ... ,Pi , ... ,PN) and that which achieves pro-

portional fairness is defined as L2 = argmaxP1,...,Pi ,...,PN

∏N
i=1 Ri (P1, ... ,Pi , ... ,PN). For

policy L1 to maximize total throughput, the secondary user with the highest channel qual-
ity γi = Pmax

i |hi ,i [t]|2 will be selected for transmission in each time slot. In this case, the
transmission rate of secondary user i under cooperation to maximize total throughput is
given by

R̂cop
L1,i =

∫ ∞

0
log

(
1+

γi

σ2
i

)
Pr(γi ≥max

j �=i
γj)f (γi )dγi , (13.52)

where f (γi ) is the probability density function of random variable γi . Note that γi is
an i.i.d. exponentially distributed random variable with mean Pmax

i νi , where νi is the
parameter of Rayleigh fading. However, the shortcoming of this transmission policy
in maximizing the total transmission rate is its lack of fairness. A secondary user with
good channel quality (e.g., close to the receiver) will have a much higher transmission
rate than those with poor channel quality (e.g., far from the receiver). To solve this
problem, a policy to achieve proportional fairness is studied. In transmission policy L2,
the secondary user with the highest normalized channel quality γ̌i = γi/E (γi ) is selected
for transmission in a time slot. In this case, the normalized channel gain is exponentially
distributed with mean 1. Therefore, every secondary user will have an equal chance of
1/N to transmit data. The transmission rate of this policy L2 is

R̂cop
L2,i =

∫ ∞

0
log

(
1+

Pmax
i νi γ̌

σ2
i

)
exp(−γ̌)(1− exp(−γ̌))N−1dγ̌. (13.53)

Given the above transmission policies, in each time slot a secondary user has to detect
whether other users are transmitting in the same time slot. Since users cannot detect and
transmit data simultaneously in one time slot, the secondary user will be in a detection
period with length αT to listen to the channel and observe the transmission signals from
other users. T is the length of the time slot and α is the proportion of time for detection.
However, detection is not perfect, and false alarms can occur (i.e., a transmission signal
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by another user is falsely detected by the transmitting secondary user). This false-alarm
event reduces the performance of all secondary users. In this case, increasing the length
of the detection period can decrease the false-alarm probability, but at the cost of shorter
transmission times. Given from this tradeoff, a method to obtain the optimal length α∗T
of the detection period is also proposed in [185] given that an energy-detection algorithm
is used by the secondary user. With optimal α∗, the transmission rate for the secondary
user i with a cooperative strategy is denoted by Rcop

i = (1−α∗)R̂cop
L,i .

13.6.3 Repeated games

Secondary users can be selfish by transmitting using Nash equilibrium (i.e., maximum
power), and experience high interference. The expected transmission rate of selfish

secondary user i is denoted by R
slf
i . Alternatively, secondary users can cooperate by

transmitting using a cooperative policy. The corresponding expected transmission rate is
denoted by R

cop
i . In general, a cooperative strategy will yield a higher transmission rate

(i.e., R
slf
i <R

cop
i ). However, any secondary user can deviate to gain a higher transmission

rate when all other users adopt a cooperative strategy. The transmission rate of the
deviating user i in one time slot is denoted by Rdev

i . To prevent any secondary user from
deviating, a punishment-based repeated game is formulated so that all secondary users
have an incentive to maintain cooperation. In this repeated game, the payoff is defined
as the sum of discounted transmissions

Ui = (1− δ)
∞∑
t=0

δtRi [t], (13.54)

where 0 < δ < 1 is the discount factor. The first punishment policy considered in [511]
is a trigger punishment, where all secondary users initially cooperate. However, if any
secondary user deviates from cooperation, all users will punish by playing the Nash
equilibrium strategy forever. It is proved in [511] that as δ→ 1− (i.e., the transmission
rate in the future isweighted close to the current transmission rate), the utility of deviation

Udev
i almost surely converges to R

slf
i , while the utility of cooperation Ucop

i almost surely
converges to R

cop
i . Therefore, a rational secondary user will maintain cooperation if

Ucop
i > Udev

i . This is the self-enforced policy.
However, this trigger policy has the shortcoming that the deviating user will be

punished forever, and that other cooperative users will be affected by receiving low
transmission rates. Therefore, a policy to punish for a certain period of time and then
forgive the deviating user is introduced (i.e., punish-and-forgive). This policy aims to
prevent rather than avenge deviation. With this policy, if a deviation is detected, all sec-
ondary users punish the deviating user by adopting Nash equilibrium for the next T −1
time slots. Then a cooperative strategy is applied again, after T − 1 time slots. T is
referred to as the duration of punishment. With this policy, the condition for subgame-

perfect equilibrium can be obtained as follows. Given R
cop
i > R

slf
i for all i = 1, ... ,N ,

there is a minimum value δmin of the discount factor such that if δ > δmin, then the
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repeated game has a subgame-perfect equilibrium. The proof is based on the Folk The-
orem [159]. The parameter T can be obtained such that subgame-perfect equilibrium
is achieved (i.e., given the discount factor δ). If the maximum transmission rate gained
from the deviation is R̂dev

i , the necessary condition for T is

T > max
i

log
(

δ− (1−δ)R̂dev
i

Rcop
i −Rslf

i

)
logδ

. (13.55)

This condition is obtained from the fact that the expected utility of cooperation must be

greater than that of deviation, i.e., U
cop
i > U

dev
i . These expected utilities are

U
cop
i = E [Ucop

i ]≥ (1− δ)

(
t0−1∑
t=1

δtR
cop
i +

∞∑
t=t0+1

δtR
cop
i

)
, (13.56)

U
dev
i = E [Udev

i ]≤ (1− δ)

(
t0−1∑
t=0

δtR
cop
i + δt0 R̂dev

i +
t0+U−1∑
t=t0+1

δtR
slf
i +

∞∑
t=t0+U

δtR
cop
i

)
.

(13.57)

13.6.4 Cheat-proof strategy

Given a cooperative strategy, the secondary user with the highest channel quality is
selected for transmission in one time slot in order for the policy to maximize the total
transmission rate. Secondary users have an incentive to report false values of channel
quality γi and they will do so since there is no centralized controller in the system.
Therefore, a cheat-proof strategy is introduced so that secondary users will report true
information. This cheat-proof strategy is based on the concept of transfer. When sec-
ondary users report a high value of channel quality, they will be asked to pay a tax which
will increase as the value of reported channel quality increases. The tax will be paid to the
secondary users reporting low value of channel quality. This is referred to as the transfer
in Bayesian mechanism design theory [160]. In this case, the utility for the secondary
user includes both that from transmission rate and the transfer.

With cooperation, private information on channel quality {γ1, ... ,γi , ... ,γN} is
exchanged among all secondary users. Let {γ̃1, ... , γ̃i , ... , γ̃N} denote the actual chan-
nel quality at one time slot. Secondary user i reports γ̂i which may not be the same
as γ̃i . In this case, {γ̂1, ... , γ̂i , ... , γ̂N} is common knowledge for all secondary users,
but {γ̃1, ... , γ̃i , ... , γ̃N} is private information. The transfer of secondary user i in the
cheat-proof strategy is defined as

φi (γ̂1, ... , γ̂i , ... , γ̂N) = Φi (γ̂i )−
1

N − 1

N∑
j=1,j �=i

Φj(γ̂j), (13.58)
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where

Φi (γ̂i ) = E

⎛⎝ N∑
j=1,j �=i

Rj(γj ,L1(γ1, ... ,γj , ... ,γN))

∣∣∣∣∣∣γi = γ̂i

⎞⎠ , (13.59)

and L1(γ1, ... ,γi , ... ,γN) = argmaxi γi to maximize the total transmission rate. Expec-
tation E (·) is taken over all values of {γ1, ... ,γi , ... ,γN}. In this case, Φi (γ̂i ) is the sum
of all expected data rates from all other users given that secondary user i reports γ̂i . If
secondary user i reports γ̂i > γ̃i , this user will have a higher chance to transmit data, but
the higher transfer has to be paid to other users. It is proved that with this transfer, all
secondary users will report true private information, i.e., γ̂i = γ̃i . The proof is based on
the fact that it is the best response for the secondary user to report true private informa-
tion given the transfer. That is, the utility will be maximized only when the secondary
user reports γ̃i .

For the policy to achieve proportional fair performance, secondary user i reports
normalized channel quality γ̌i . In this case, if the secondary user reports true information,
in the long term each user will receive a 1/N time-share of the transmission. If any
secondary user receives a time-share greater than 1/(N + κ), then this user will be
identified as the deviating user and will be punished. κ is the tolerance margin. With this
statistics-based strategy, it is shown that the gain from cheating is bounded.

From the performance evaluation, it is shown that as the interference level increases,
the transmission rate of a selfish secondary user (i.e., the Nash equilibrium of a
non-cooperative game) decreases. However, for a cooperative secondary user, the trans-
mission rate remains constant since only one user will transmit at a time. For the
punishment, it is found that as the discount factor increases, the punishment duration
becomes shorter. Since the user is more concerned about the payoff in the future, the
punishment duration can be decreased so that perfect Nash equilibrium is achieved.
Also, it is shown that the expected overall payoff (i.e., transmission rate and transfer) is
maximized only when the secondary user reports true information about channel quality.

13.7 Spectrum leasing and cooperation

In cognitive-radio networks, especially with the exclusive-use model, the primary user
needs an incentive to share spectrum with secondary users. This incentive could be
through pricing.Alternatively, secondary users can help the primary user to transmit data
so that transmission rate and reliability are improved. In [460], an incentive is considered
in which the cooperative diversity technique (e.g., decode-and-forward) is used so that
secondary users can relay the transmitted data of the primary user. In return, the primary
user allows secondary users to access the spectrum. This exchange of resources can be
formulated as a hierarchical game.

There is one primary user with one channel, and a group of secondary users, whose
set is denoted by Nall. A subset of secondary users denoted by N ⊆ Nall participates
in relaying the transmitted data of the primary user, so these secondary users share the
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Fig. 13.11 (a) Primary transmitter transmits to primary receiver and secondary users; (b) secondary users
relay received data to primary receiver; (c) secondary users transmit their own data.

spectrum allocated by the primary user. As shown in Fig. 13.11, with a TDMA system
between primary user and secondary users, a portion 1−α (0≤ α≤ 1) of the time slot
is used by the primary transmitter to transmit the data. This transmitted data is received
by both the primary receiver and the secondary users. A portion αβ (i.e., 0≤ β ≤ 1) of
the time slot is used by the secondary users to transmit (i.e., relay) the received data to
the primary receiver. Finally, a portion α(1−β) of the time slot is used by the secondary
users to transmit among themselves. The transmission by secondary users is based on
the CDMA system.

13.7.1 Game formulation with instantaneous CSI

Given the above system model of a cognitive-radio network, two game models are
formulated. In the first, players are the primary user and a group of secondary users. The
strategy of the primary user is a time-share to allow the secondary users to access the
spectrum (i.e., α and β) and a set of secondary users N to relay the transmitted data.
The strategy of a secondary user is the transmit power to relay the transmitted data of the
primary user. The payoff for both primary user and secondary users is the transmission
rate. Since the primary user can control the time-share and select the set of secondary
users, the primary user is considered to be the leader while the secondary users are
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Fig. 13.12 Interaction among primary user and secondary users.

considered to be followers. With this structure, the first game is based on the Stackelberg
game. The primary user will choose an optimal strategy under the assumption that the
secondary users will perform their best-response strategies as well. However, in this
case, the primary user can choose a strategy before the secondary users. In other words,
once the primary user determines the strategy, the secondary users in set N compete
with each other to select a transmit power to maximize their transmission rates. Note
that the transmit power to help the primary user is assumed to be the same as that used
for communication among the secondary users. This is the second game model, based on
a non-cooperative game. The interaction of these game models is shown in Fig. 13.12.

Game of primary user
For the primary transmitter and primary receiver, the objective is to maximize the trans-
mission rate RP(α,β,N ) whose decision parameters (i.e., strategy) are α, β, and N . If
α = 0, i.e., the primary user does not allow secondary users to relay the transmitted data
and there is no time-share for secondary users, the transmission rate of the primary user,
given perfect instantaneous channel-state information (CSI), is

Rdir = log
(

1+
|hP|2PP

σ2

)
, (13.60)

where hP is the instantaneous channel gain between primary transmitter and primary
receiver, PP is the transmit power of the primary transmitter, and σ2 is the noise power.
However, if α > 0, the decode-and-forward multi-hop and space-time coding is used
for the transmission between primary transmitter and secondary users [280, 428]. In this
case, the transmission rate of the primary user is

Rcop(α,β,N ) = min((1−α)RPS(N ),αβRSP(α,β,N )) , (13.61)

where RPS(N ) and RSP(α,β,N ) are the transmission rates from the primary transmitter
to the set of secondary users N and from the secondary users in the same set to the
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primary receiver, respectively. These transmission rates are

RPS(N ) = log
(

1+
mini∈N |hPS,i |2PP

σ2

)
, (13.62)

RSP(α,β,N ) = log

(
1+

∑
i∈N

|hSP,i |2P∗
i (α,β,N )
σ2

)
, (13.63)

where hPS,i and hSP,i are the instantaneous channel gains from primary transmitter to
secondary user i and from secondary user i to primary receiver, respectively.P∗

i (α,β,N )
is the transmit power of secondary user i to relay the transmitted data of the primary user.
This transmit power will be the outcome of a competition among the secondary users,
i.e., Nash equilibrium of the corresponding non-cooperative game (Fig. 13.12). The
transmission rate in (13.63) is obtained as the information-theoretic bound of orthogonal
space-time codes (STCs). Given the strategyα andβ, the transmission rate of the primary
user can be expressed as

RP(α,β,N ) =
{

Rdir, if α = 0,
Rcop(α,β,N ), if α > 0.

(13.64)

The objective of the primary user is to maximize this rate, i.e.,

max
α,β,N

RP(α,β,N ), s.t. N ⊆Nall, 0≤ α,β ≤ 1. (13.65)

Game of secondary users
Given the strategy of the primary user, the non-cooperative game among the secondary
users can be formulated as follows. The players are the secondary users in setN , chosen
by the primary transmitter. The strategy of each secondary user is the transmit power
Pi . The secondary users use the same transmit power Pi for relaying the transmitted
data of the primary user and for data transmission to secondary receivers. Therefore,
Pi as defined in (13.63) becomes the strategy of the secondary users. The payoff is the
transmission rate minus the cost due to the transmit power. The transmission rate between
secondary transmitters and secondary receivers, based on CDMA, α(1−β)Ri (Pi ,p−i ),
where

Ri (Pi ,p−i ) = log

(
1+

|hS,i |2Pi

σ2 +
∑

j �=i |hS,i ,j |2Pj

)
, (13.66)

hS,i is the channel gain between secondary transmitter and secondary receiver i , and p−i

is a vector of transmit power of all secondary users in N except user i . In this case, the
payoff function of secondary user i ∈N is

ui (Pi ,p−i ) = α((1−β)Ri (Pi ,p−i )−ωPi ) , (13.67)

where ω is the cost constant. In this case, α can be omitted, and the transmission rate of
a secondary user can be expressed as RSP(β,N ). It is proved in [460] that, with α > 0,
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a Nash equilibrium P∗
i exists and is unique if

∑
j∈N

|hS,i ,j |2
|hS,i |2 < 1. The proof is based on

the KKT condition [431, 139].
Then the optimal strategy of the primary user can be obtained. In particular, the optimal

strategy α∗ (i.e., time-share for secondary users) will be positive if and only if there exists
a set of secondary users N ⊆Nall such that

β∗RSP(β∗,N )RPS(N )
β∗RSP(β∗,N )+RPS(N )

> Rdir, (13.68)

where the optimal strategyβ∗ (i.e., time-share for secondary users to relay the transmitted
data from the primary transmitter) is

β∗ = argmax
β

βRSP(β,N ). (13.69)

In particular, the optimal strategy α∗ is

α∗ =
1

1+ β∗RSP(β∗,N )
RRS(N )

. (13.70)

The optimal setN ∗ of secondary users to participate in cooperative transmission can be
obtained by enumeration.

From the performance evaluation in [460], it is observed that the primary user should
select the secondary users with high channel gain for relay data transmission.An approx-
imate algorithm to select only the optimal set N of secondary users with the highest
channel gains is introduced. The transmission rate obtained from the approximate algo-
rithm is observed to be close to that from enumeration, which is optimal [460]. Also, it
is found that as the interference among secondary users decreases, they can reduce the
transmission rate to maximize their payoff, so smaller transmit power will be used for
relay transmission for the primary user.

13.7.2 Game formulation with long-term CSI

Without instantaneousCSI, the gamemodel can bemodified for probabilistic parameters.
For example, the primary user cannot select a subset of secondary users N which can
decode and relay data for a given channel realization. In this case, long-term CSI is
used in a game where the primary user and secondary users optimize their strategies.
Randomized distributed space-time coding (DSTC) is used in this case. Each secondary
user selected by the primary user will select a codeword within the orthogonal space-time
codebook, randomly and independently. The payoff to the primary user is changed to be
the outage probability to be minimized, which is more suitable to represent performance
in the long term. For transmission, there is aminimumSNRγth or threshold to guarantee a
target BER for a given transmission rate. The outage probability Pout(α,β,N ) is defined
as the probability that the SNR of the relay transmission from the secondary users to the
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primary receiver is smaller than the threshold, i.e.,

Pout(α,β,N ) = Pr
(

γSP(β,N ) < γth

(
RP

αβRSTC,i

))
, (13.71)

where RP is an overall transmission rate and RSTC,i is the reduced rate of orthogonal
STCs of secondary user i . For secondary users, long-term channel gain applies, so the
same game formulation can be formulated and solved directly. Thus the optimal strategy
for the primary user is obtained in a similar way to the case of instantaneous CSI.

13.8 Service-provider competition for dynamic spectrum allocation

In the exclusive-use model, service providers (i.e., primary users) bid and buy spectrum
from a regional broker [87, 161], e.g., a government agency, and then resell the spectrum
as a service to users (i.e., secondary users). This dynamic spectrum sharing is considered
in [15]. In the system, there are M service providers and N users. The size of the non-
overlapping spectrum used for communication between service provider m and user i is
denoted by xm,i . This is similar to an OFDMA network. If xm,i = 0, user i does not buy
service from provider m. Let the channel gain from the base station of service provider
m to user i be denoted by hm,i , and the spectral efficiency (i.e., channel quality) for the

transmission between the base station and user be denoted by km,i = log
(
1+ νmhm,i

σ2

)
,

where νm is the spectral density and σ2 is the noise power. The transmission rate of
user i to service provider m is rm,i = km,ixm,i . The user is characterized by a utility
function Ui (ri ) of the transmission rate, where ri is the total transmission rate, i.e.,
ri =

∑M
m=1 rm,ixm,i . This utility function is assumed to be increasing and concave in ri .

In this system, users want to maximize their utility while the service provider wants to
maximize profit. This situation is formulated as a Stackelberg game [15]. The players
of this game are the service provider (i.e., leader) and the users (i.e., followers). The
strategy of the service provider is the price pm, and the strategy of the users is the size
of spectrum xm,i that each will buy from the service provider. The payoff to the service
provider is the profit, while that to the user is the net utility. The two main components of
this game model are the profit for users of the service provider and utility maximizations
(Fig. 13.13).

13.8.1 User demand

The users have to determine the size of the spectrum to buy from the service provider so
that their payoffs are maximized. Given a price pm charged by the service provider per
unit of spectrum, the payoff (i.e., net utility) to the user is

ui = Ui (ri )−
M∑

m=1

pmxm,i . (13.72)
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To maximize the payoff for user i , the Lagrangian multiplier αm,i for the constraint
xm,i ≥ 0 can be expressed as

Li = Ui (ri )−
M∑

m=1

pmxm,i +
M∑

m=1

αm,ixm,i . (13.73)

It is found that the user will buy service from provider m rather than m′ (i.e., xm,i > 0
and xm′,i = 0) if pm

km,i
< pm′

km′ ,i
. The effective price charged by service provider m to user

i can be defined as ρm,i = pm
km,i

and, in the general case, a user will buy service from the
provider with the lowest effective price.

An exponential utility function is defined by

Ui (ri ) = Γi

(
1− e−ri/Γi

)
, (13.74)

where Γi is the constant of the utility function. An example of an exponential utility
function is shown in Fig. 13.14. The demand function (i.e., the size of spectrum given
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the price) can be obtained bymaximizing the payoffui in (13.72).This demand function is

xm,i (pm) = max
(

0,
Γi

km,i
log

(
km,i

pm

))
= max

(
0,

Γi

km,i
log

(
1

ρm,i

))
. (13.75)

An example of a demand function is shown in Fig. 13.15.

13.8.2 Optimal price

Given the demand function (13.75), a service provider can maximize profit by adjusting
the price pm. The special case of a single service provider is considered here. The revenue
of service provider m is the price paid by all users, i.e., pm

∑N
i=1 xm,i . The cost for the

service provider is a result of buying spectrum from the broker, and of the transmit power.
The former is denoted by ωbro

∑N
i=1 xm,i and the latter by ωpowνm

∑N
i=1 xm,i , where ωbro

and ωpow are the cost constants arising from bidding for spectrum from the broker and
from transmit power, respectively. Therefore, the profit to service provider m is

Fm = (pm−ωbro−ωpow)
N∑

i=1

xm,i . (13.76)

Examples of profit functions for various prices pm from a single user are shown in
Fig. 13.16. However, if there are multiple users whose parameters (e.g., Γi and km,i ) are
different, the profit function is not concave. Only numerical methods can be applied to
obtain optimal prices. Naturally, for the service provider, the price to charge a user has
to satisfy the condition pm > ωbro +ωpow, which ensures that the service provider gains
a positive profit. Moreover, the user will buy service only if km,i > pm. Since km,i can
be considered as the marginal utility, the price has to be higher than this marginal utility
so that the user has an incentive to buy service from provider m. From these conditions,
the minimum effective price to service provider m is ρmin

m,i = ωbro+ωpow

km,i
.

Formultiple service providers, it is found that the userswill be partitioned into different
groups, each buying service from a different provider. For example, with two service
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Fig. 13.16 Examples of profit to a service provider with Γi = 10.

providers, if N users have channel gain hm,i (i.e., between provider m and user i) which
can be arranged as follows:

h1,1 > h1,2 > · · ·> h1,N , and h2,1 < h2,2 < · · ·< h2,N , (13.77)

then there is a user i∗ such that users 1, ... , i∗ will buy service from provider 1 and the
rest, i.e., users i∗ +1, ... ,N , will buy service from provider 2.

13.8.3 Related work

In [239], a hierarchical spatial game model is formulated for two service providers
and multiple users. The first part of this game model is the interaction among users
(i.e., mobile subscribers) to choose a service provider. It is assumed that the users are
spatially distributed between the base stations of two service providers (e.g., Hotelling’s
model [215]). The users can choose to use high-or low-priority services from either
provider. This game is analyzed based on the size of spectrum and price charged by
each service provider. It is found that a Wardrop equilibrium exists in this game. The
second part of this game models the interaction between service providers to acquire
spectrum from a regulator (i.e., broker) and set the price so that profit is maximized. The
Nash equilibrium is considered to be the solution of this game. In [34], a similar system
model is considered. In [34], the problem of base station placement is considered. Base
station selection by users depends on SINR. A Stackelberg equilibrium is identified for
this game formulation.

13.9 Summary

With cognitive radio, transmission by wireless users can be adapted to a changing envi-
ronment. Rational users can adjust transmission parameters to achieve their benefits.
Game theory has been applied to obtain optimal solutions for primary and secondary
users in cognitive-radio networks with different types of spectrum sensing and access.
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First, secondary users can cooperate in channel sensing. Coalitions can be formed among
secondary users to achieve optimal performance. Spectrum access in a shared-use model
can be based on an underlay or overlay approach. For underlay spectrum access, power
control is important for secondary users not only to achieve the highest transmission
rate but also to maintain interference to the primary user below a target level. A non-
cooperative game model can be formulated to obtain the Nash equilibrium. For overlay
spectrum access, medium access control is important to identify and access spectrum.
Without complete information and a centralized controller, secondary users can learn
from experience and make decisions to achieve the optimal solution. In spectrum access
with the exclusive-use model, incentive for the primary user to allow secondary users
to access the spectrum is an important issue. In this case, secondary users can relay the
transmitted data of the primary user to improve performance. In exchange, the primary
user shares the spectrum with secondary users. A Stackelberg game model has been
formulated to obtain the optimal strategy for the primary user, given that the secondary
users will maximize their own benefit. The incentive for spectrum sharing and access can
be the price paid by secondary users to the primary user. In this case, the pricing scheme
is important. A Stackelberg game model can be formulated in which the primary service
provider chooses an optimal price while the secondary users determine their spectrum
demand according to channel quality and price.



14 Internet networks

Communication networks such as the Internet are becoming more and more dependent
on the interactions of intelligent devices that are capable of autonomously operat-
ing within a highly dynamic and rapidly changing environment. The dynamism and
complexity of Internet networks is a consequence of their size, heterogeneity, traf-
fic diversity, and decentralized nature. Next-generation communication networks such
as the future Internet are envisioned to be self-organizing, self-configuring, self-
protecting, and self-optimizing. The applications and services that make use of these
networks will also grow in complexity and impose stringent constraints and demands
on network design: increased quality-of-service requirements for routing data, content
distribution based on peer-to-peer networks, advanced pricing, and congestion control
mechanisms, etc.

While these challengeswere initially perceivedwith the emergenceof the Internet, they
are now essential in the design of every current and future network. To efficiently analyze
and study such Internet-like networks, there is a need for a rich analytical framework
such as game theory, whose models and algorithms can capture the numerous challenges
arising in current and emerging communication networks. The challenges in designing
Internet networks differ from those of their wireless counterparts in several aspects. In
general, one does not need to worry about the reliability of the communication chan-
nel, as in the wireless case. But because Internet networks are generally composed of
heterogeneous nodes having different capabilities and communicating over long paths
and routes, the network size and as well as heterogeneity the nodes’ capabilities, for
example, play a role that is more critical in the design of Internet networks than in
the wireless case. Moreover, issues such as pricing and service providers’ competition
or cooperation arise more frequently with Internet networks, owing to their well-
established infrastructure andvaried services.Therefore, to complement the development
of game-theoretic models for the wireless case in the previous chapters, this chapter
presents the use of game theory to tackle important challenges in Internet networks, in
particular:

• Routing and flow control: Routing and flow control lie at the heart of the challenges
facing any communication network. As the number of nodes and their autonomy
increase, devising efficient algorithms for routing and flow control becomes more and
more challenging. In Section 14.1, we tackle the problem of combined routing and
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flow control in an Internet-like communication network, and show how, using game
theory, nodes can individually control their transmission rates and select their network
path, while taking into account the tradeoff between their throughput and their average
delay.

• Congestion control and pricing: In a communication network, the users and the net-
work service provider have conflicting objectives. While the provider has an incentive
to optimize its prices so as to maximize its revenues from selling bandwidth, network
users have an incentive to efficiently utilize the available network bandwidth by per-
forming congestion control, i.e., controlling their transmission rates while minimizing
the cost they pay for the used bandwidth. From the operator’s perspective, this gives
rise to an important tradeoff. On the one hand, if prices are kept very low, this will
attract many users to the service; however, it will reduce the revenues of the provider.
On the other hand, raising prices can increase the revenues, but it may drive off the
demand for the service, which will potentially reduce revenues. From the users’ per-
spective, while each user has an incentive to utilize the entire bandwidth for its own
communication, this comes at the expense of an increased cost to use the bandwidth
and a loss of performance (e.g., increased delay) due to the increasing traffic (from
this user as well as other users) in the network. In Section 14.2, we discuss a game-
theoretic model to tackle these two challenging problems for a network with a single
provider.

• Revenue sharing between Internet service providers: The pricing of Internet
services is a challenging issue, specifically when an end-to-end service needs to
go through a number of service providers owned by different entities. In such a
scenario, the self-interest of each provider in maximizing its own profit leads to
an increase in the service price, which in turn will discourage users from uti-
lizing the service. Therefore, providing incentives for multiple service providers
to collaborate in pricing and fair revenue-sharing is an important challenge in
the development of pricing mechanisms for Internet services. In Section 14.3, we
analyze, using non-cooperative games, the inefficient pricing scheme that arises
when providers act in complete non-cooperation. Then, examine see how the result
can be improved by allowing some form of collaboration among the providers,
even when these providers are still making independent and non-cooperative
decisions.

• Cooperative peer-to-peer file sharing: Using a combination of advanced search
and communication techniques as well as large-scale distributed file-storage systems,
peer-to-peer file sharing networks allow a number of users to download and share con-
tent in a decentralized, scalable, and fault-tolerant manner. One important challenge
in such networks is to improve download delays for peers when they are compet-
ing to download, concurrently, multiple resources from the same seed at the time
the availability of the resources is announced. In Section 14.4, we discuss coopera-
tive strategies, using coalitional-game theory, that enable peers to alleviate download
delays during the phase of simultaneous download of resources at the time they become
available. We show that, with a game-theoretic framework for this scenario, peers



462 Internet networks

can significantly improve their average download delay compared to the traditional
non-cooperative case.

14.1 Combined flow control and routing in communication networks

With the emergence of large-scale communication networks such as the Internet
and ATM networks, the need for robust resource and traffic management has sig-
nificantly increased. In this context, algorithms for controlling the throughput and
transmission rates of network nodes such as routers, service providers, and comput-
ing devices are critical for the efficient operation of the network. In particular, because
of bandwidth constraints on the communication links and the traffic delay incurred
on the communicating nodes, the design of efficient flow-control schemes is of cen-
tral interest. Flow control is a scheme by which nodes having best-effort traffic adjust
their instantaneous transmission rates depending on available bandwidth and delay
requirements.

Routing is another important problem in the analysis of communication networks
such as the Internet. Routing in such networks often involves the selection of a commu-
nication path that can optimize a desired quality-of-service parameter such as delay or
throughput. In this regard, communication networks often use advanced routing algo-
rithms by which nodes with conflicting objectives can agree on the path each must select
in the network.

It is often the case that flow-control and routing decisions must be taken by the net-
work nodes, i.e., the users, rather than by a centralized entity because every decision is
made in such a way as to optimize each user’s own objectives or performance criteria.
Consequently, game-theoretic approaches for flow control and routing have been pro-
posed in the literature, e.g., [200, 400, 379, 274, 27, 21, 28, 235] and references therein.
First, when jointly considering flow control and routing, it is well known that, if the
objective functions of network users are functions of a reward in terms of throughput
and the sum of link costs, then the problem can be reduced to a routing game [200].
Furthermore, performing joint flow control and routing when the utilities are a function
of a delay defined as the sum of all link capacities minus all link flows multiplied by an
entropy yields a computable Nash equilibrium in the case of parallel links [400]. Other
aspects of flow control and routing, such as the presence of heterogeneous services and
robustness requirements, are studied in [379, 274, 27, 21, 235]. Additional information
on the use of control and game theory in flow control and routing problems can be
found in [55].

In this section, we are interested in studying, based on [28], the problem of combined
flow control and routing in a large-scale network when the total throughput of the users
is not fixed and when each user’s utility is a function of the perceived tradeoff between
delay and throughput. First, we consider the simpler case of a single user accessing
multiple parallel links, and study the optimal solution. Using the results of the single-
user case, we study, using non-cooperative games and the concept of a Nash equilibrium,
the case when the number of users is large. We determine all symmetric Nash equilibria,
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show that multiple equilibria exist in some cases, and discuss the features of the Nash
equilibria in the asymptotic case.

14.1.1 Single user with multiple links

Consider a single user, i.e., a source node, that needs to send infinitesimally divisible
traffic to a certain destination, over M possible communication links. LetM denote the
set of links in the network, and let cm and λm denote, respectively, the capacity and
throughput (transmission rate) of a link m ∈M. The links are labeled in such a way that

c1 ≥ ...≥ cM .

Given M/M/1 queues at each link, λm > 0 for at least one m ∈M, and the vector of
transmission rates λ= [λ1, ... ,λM ], the average delay experienced by a given user will be

τ(λ) =

M∑
m=1

λm

cm−λm

M∑
m=1

λm

. (14.1)

The objective of each user is to optimize a metric that captures the tradeoff between
the perceived delay and its achieved throughput. Although every user has an incentive
to increase its throughput, this increase can yield an increased delay on the links, due
to capacity constraints, as is clearly seen in (14.1). In any application where there is a
need to optimize a throughput/delay tradeoff, it is of interest to utilize the concept of
power, defined as the ratio between a power of the expected throughput and the expected
delay. This concept is quite popular in communication networks whenever one needs to
capture incentives for higher throughput while penalizing increasing delays. Formally,
for the considered user, we define the following utility function:

u(λ) =

(
M∑

m=1

λm

)β

τ(λ)
, (14.2)

where β ∈ (0,1) is a parameter highlighting the tradeoff between throughput and delay.
The utility in (14.2) represents the power perceived by the considered user in a commu-
nication network with multiple parallel links. For convenience, we define the function
l(λ) as the logarithm of (14.2), i.e.,

l(λ) = (β +1)log

(
M∑

m=1

λm

)
− log

(
M∑

m=1

λm

cm−λm

)
. (14.3)

The objective of the user is to find the transmission rates vector λ in the set
C = [0,c1]×·· ·× [0,cm] that maximizes (14.3). For mathematical convenience, we
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assume that u(0) = 0 when λm = 0, ∀m ∈M, so although l(λ) is not well-defined
at the point 0 (the origin), this point cannot be considered as a solution. We note that
the single-user case is an optimization problem that does not require any game-theoretic
concepts for a solution, owing to the lack of any competitive or cooperative environment.
However, the single-user case gives interesting insights and foundations for the case of
multiple users.Thus, the use of game theory for the jointflow-control and routingproblem
will become clearer when we start dealing with multiple users in the next subsection.

First, we remark that the existence of an optimal solution to l(λ) is guaranteed by
the fact that C is compact and l(λ) is continuous on C [28]. However, since l(λ) is
not concave, finding the optimal solution requires examining all stationary points as
well as the values on the boundary of C. By performing this analysis, one can obtain an
interesting result on the optimal point, as shown in [28]. Before presenting the result, we
define a few necessary mathematical expressions. Define wm(μm) as

wm(μm) =
(c̄m−μmc̃m)(β+1)μm

c̃m−mμm
, (14.4)

with c̄m �
m∑

j=1

cj , c̃m �
m∑

j=1

√
cj , and

μm =
(β +2)c̃m−

√
(β +2)2c̃2

m− 4m(β +1)c̄m

2(β +1)m
. (14.5)

Furthermore, letMf denote the set of all integers inMwith the property that m∈Mf

implies that μm <
√

cm, and
c̃2
m

mc̄m
≥ 4(β +1)

(β +2)2
(14.6)

is satisfied.
Given these definitions, we present the following interesting result on the flow control

and routing problem for the single-user case.

theorem 14.1 For the single-user multiple-link combined flow control and routing
problem, we have the following:

1. A transmission-rate vector that maximizes the power of the user, i.e., (14.2), exists.
2. The optimal solution dictates positive flows on links 1, ... ,m̂ and zero flows on the

remaining links m̂ +1, ... ,M (if m̂ < M), where

m̂ = argmax
m∈Mf

wm(μm). (14.7)

3. The optimal flows are given by

λj =

{
cj −μm̂

√cj , j ∈ Sm̂,

0, j ∈M\Sm̂,
(14.8)

where μm̂ is given by (14.5) and Sm̂ = {1, ... ,m̂} is a subset ofM.



14.1 Combined flow control and routing in communication networks 465

The proof of this theorem is found in [28] and is the result of developing candidate
optimal solutions of the problem. Furthermore, in the case of equal link capacities, i.e.,
when cm = c , ∀m ∈M, the optimal flows will be given by [28]

λ∗
m =

β

β +1
c , ∀m ∈M. (14.9)

The equal-links case exhibits two important robustness properties (detailed proofs are
in [28]):

theorem 14.2 For any communication system with one user and M links, with the
capacity of the mth link being c +δm, there exits δ > 0 such that, for |δm|< δ, ∀m ∈M,
the utility-maximizing solution is unique and is an inner solution.

theorem 14.3 Consider a network with one user, M links, and the first m̃ links
having equal capacity c , with the remaining M − m̃ having capacities smaller than c .
Then there exists a β∗ > 0 that depends on c and cm̃+1 such that, for β ∈ (0,β∗), the
unique utility-maximizing solution dictates zero flow over the links m̃ +1, ... ,M; i.e.,

λ∗
j =

{
β

β+1c , j ∈ Sm̃,

0, j ∈M\Sm̃.
(14.10)

Theorem 14.3 implies that, starting with an original network with equal-capacity links,
the solution remains intact even when links of lower capacity are added (i.e., the optimal
solution dictates zero flow over these additional links), provided that β is sufficiently
small.

The above theorems for the single-user case will be used in proving many of the
properties and results of the multiple-user case, which is tackled in the following
subsection.

14.1.2 Multiple users with multiple parallel links

While the single-user case provides interesting insights into how a user can divide its
networkflows overmultiple links, the case ofmultiple users ismore complex.The single-
user case can, as seen in the previous subsection, be tackled using classical optimization
techniques; however, the multiple-user case requires more advanced tools because of the
conflicting interests of the users, i.e., the mutual delays incurred over the routes, which
in turn impact the flow-control and routing decisions of the users.

In this regard, we denoteN = {1, ... ,N} as the set of N network users, λij ≥ 0 as the
flow of player i over link j , and λj =

∑N
i=1 λij as the total flow on link j . We can define a

non-cooperative continuous-kernel game with the players being the network users, i.e.,
the set N . In this game, the strategy of each player i is to choose the transmission rates
{λij}j∈N that maximize its utility function ui , which, as in (14.2), is defined as the power
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achieved by the user over the different links; i.e.,

ui (Λ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎝
∑
j∈M

λij

⎞
⎟⎠

β+1

∑
j∈M

λij

cj −λj

,
∑
j∈M

λij > 0,

0,
∑
j∈M

λij = 0,

(14.11)

where Λ = {λij}i∈N ,j∈M and β is assumed to be user-independent. Nonetheless, we see
later that β can depend on N , so we denote it by β(N). We show the dependence of the
utility on N by denoting it uN

i . Without loss of generality, we consider that the utility
that each user i ∈ N aims to optimize is lNi , which is the logarithm of (14.11). In this
game, we are not restricted to packet-level utilities, i.e., cases in which the users have
a single connection. Instead, a user can be a service provider that generates a flow of
traffic through its subscribers.

Naturally, given this formulated strategic game, the first key concept to investigate is
the Nash equilibrium, as discussed in Chapter 3. In this game, the Nash equilibrium is
an N-tuple {λ∗

ij}i∈N ,j∈M that satisfies

lNi
(
{λ∗

ij}j∈M,{λ∗
kj}k∈N\{i},j∈M

)
≥ lNi

(
{λij}j∈M,{λ∗

kj}k∈N\{i},j∈M
)
, (14.12)

for all {λij}j∈M and for all i ∈ N . Certainly these inequalities at the Nash equilib-
rium as well as the results presented hereinafter would also be satisfied for the actual
utility uN

i .
As discussed in Chapter 3, finding the Nash equilibria in a general case is quite

complex, especially when the utilities are not concave as in the considered case. In order
to provide a suitable analysis, we consider the case of a large number of users. In the
context of combined flow control and routing, this consideration is meaningful given the
large-scale nature of many communication networks such as the Internet. Moreover, the
use of a large number of users for games involving routing is common, as discussed in
the context of the Wardrop equilibrium in Chapter 3. For this purpose, we consider the
concept of an asymptotic Nash equilibrium, defined as follows [28]:

definition 14.1 For the considered combined flow-control and routing game, assum-
ing that N is arbitrarily large, let λ∗

ij(N), i ∈ N , j ∈M be a set of flow rates for the
users, dependent on N and defined for all positive integers N . These flow rates are said
to constitute an asymptotic Nash equilibrium if, for all i ∈N ,

lim
N→∞

lNi ({λ∗
ij}j∈M,{λ∗

kj}k∈N\{i},j∈M)

= lim
N→∞

max
{λij}j∈M

lNi ({λij}j∈M,{λ∗
kj}k∈N\{i},j∈M). (14.13)

In other words, the policies (flow rates) of a given player i at an asymptotic Nash
equilibrium (i.e., when N is large) forbid any unilateral deviations at the asymptotic case
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since they are equal to the policies that maximize lNi given that the policies of the other
players are fixed. By specifying how close the two expressions in (14.13) are, we can
define the following refinement on the defined equilibrium concept [28]:

definition 14.2 For the defined N-user non-cooperative game with an arbitrarily
large number of users N , letλ∗

ij(N), i ∈N , j ∈M be a set of asymptotic equilibrium flow
rates for the users. These flow rates are said to constitute an O(1/N) Nash equilibrium
with exponent κ if there exists a non-positive scalar κ, independent of N , such that, for
all i ∈N ,

lNi ({λ∗
ij}j∈M,{λ∗

kj}k∈N\{i},j∈M)

= max
{λij}j∈M

(
lNi ({λij}j∈M,{λ∗

kj}k∈N\{i},j∈M)
)
+

κ

N
+ o(1/N). (14.14)

In order to find asymptotic equilibrium solutions, assume that for each N the Nash
equilibrium exists and is an inner solution, i.e.,λ∗

ik(N) 	=0, ∀i ∈N , k ∈M, and consider
the first-order necessary conditions given by

∂lNi
∂λik

= 0, ∀i ∈N , k ∈M, (14.15)

which yields
β(N)+1∑

k∈M
λij(N)

− ck −λk(N)+λik(N)

(ck −λk(N))2
∑
j∈M

λij(N)
cj −λj(N)

= 0, (14.16)

where β(N) is the parameter β redefined as a function of N , as follows:

β = β(N) =
α

N
,∀N, (14.17)

whereα is a positive constant.This definition stems from the fact that, in the limitN→∞,
it turns out that non-trivial solutions for (14.16) exist only if β is scaled appropriately as
a function of N , such as in (14.17). This need for non-trivial solutions to (14.16) justifies
the dependence of the utilities lNi on N , introduced earlier. Consider the single-link case
(i.e., M = 1). For this case, one can solve (14.16) and find that there exists a unique and
symmetric Nash equilibrium solution given by

λ∗(N) = λi1(N) =
β(N)

Nβ(N)+1
c1, ∀i ∈N . (14.18)

From (14.18), we note that the corresponding total flow over the single link is λ1 =
Nλ∗(N), so to ensure a finite delay as N→∞we must require that β(N) be of the order
of 1

N .
Given this scaling of β, and in order to derive an asymptotic equilibrium solution

that is also an O(1/N) Nash equilibrium for the studied joint flow-control and routing
model, it is useful to derive the limiting value of the solution that satisfies the first-order
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conditions in (14.16). Given the fact that, in the considered model, the users enter the
game symmetrically, we can restrict our attention to symmetric solutions where

λij(N) =
λj(N)

N
, ∀i ∈N , and each j ∈M. (14.19)

Given this symmetric assumption, this exact derivation of this limiting value is found
in [28] and is a result of algebraic manipulation of (14.16) using (14.19) as well as
sequence limits and convergence. In essence, the limiting value as N goes to infinity
turns out to be the solution of the quadratic equation

(α+1)λ̄2−αc̄λ̄+Mc̄2− c̄2 = 0, (14.20)

where λ̄ =
∑M

j=1 λj , c̄ =
∑M

j=1 cj ,c̄2 =
∑M

j=1 c2
j . The solution of (14.20) is given by

λ̄ =
α±

√
(α+2)2− 4(α+1)Mν

2(α+1)
c̄ , (14.21)

where ν = c̄2

c̄2 . This result is valid only if at least one of the solutions in (14.21) satisfies
the bounds

0≤ λ̄≤ c̄ , (14.22)

in which case the individual link flow λj becomes

λj = cj −
c̄ − λ̄

M
, j ∈M, (14.23)

given that
λj ≥ 0, ∀j ∈M. (14.24)

With these results, one can prove, as per [28], the following theorem regarding the
asymptotic Nash equilibrium of the considered joint flow-control and routing problem:

theorem 14.4 Suppose that there exists {λj}Mj=1 satisfying (14.21)–(14.24). Then

λij =
λj

N
, i ∈N , j ∈M (14.25)

constitute an O(1/N) Nash equilibrium with exponent

κ = α log
2λ̄√

γQ̄ +αMγ
< 0, (14.26)

where

Q̄ � λ̄2−Mλ̄2

γ
+α2M2γ > 0, (14.27)

with λ̄2 =
∑M

j=1 λ2
j and

γ � λ̄2

αλ̄
. (14.28)
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Proof The proof of this theorem is based on [28]. Fix the flows of all users except
player i , as given by (14.21)–(14.24). Denote the flows of player i , which are arbitrary,
by ηi ,m, for m ∈M. Given this consideration, the situation faced by player i is similar
to the single-user multiple-links case of Section 14.1.1, with the capacity of link m ∈M
as seen by player i being

c i
m = cm−

N − 1
N

λm =
1

αλ̄
λ̄2 +

1
N

λm, m ∈M. (14.29)

Since λm, λ̄2, and λ̄ are independent of N , c i
m constitutes a (1/N)-perturbation around

a nominal constant capacity λ̄2

αλ̄
that is also independent of the user. Thus, from the

perspective of player i , the network has equal link capacities. By Theorem 14.2, there
exists a sufficiently large N∗ such that, for all N > N∗, player i’s response to (14.21)–
(14.24) is an inner solution. For each such N , the solution is also the unique stationary
point of uN

i with all other users’ policies fixed as given. Thus, the unique solution is the
stationary point of the function

vN
i ({ηij}j∈M) =

(
M∑

m=1

ηim

)1+ α
N

M∑
m=1

ηim

c i
m− ηim

, (14.30)

where c i
m is given by (14.29). From Theorem 14.1, it follows that the unique inner

maximizing solution for vN
i yields the value

(vN
i )∗ = max

{ηij}j∈M
vN
i =

(
c̄ i −μc̃ i

)1+ α
N

c̃ i −Mμ
μ, (14.31)

where c̄ i =
∑M

m=1 c i
m = Mγ + λ̄

N and c̃ i =
∑M

m=1

√
c i
m =

∑M
m=1

√
γ + λm

N , and γ is
given by (14.28). The value μ is given by

μ =
(1+ α

N )c̃ i −
√

Q
2M(1+ α

N )
, (14.32)

with

Q =
α2

N2 c̃ i
2
+4(1+

α

N
)(c̃ i

2
−Mc̄ i ). (14.33)

For computing (vN
i )∗ for large N , we perform the expansion√
γ +

λk

N
=
√

γ

(
1+

λk

2γN
− 1

8

(
λk

γN

)2

+O
(

1
N3

))
, (14.34)

using the fact that, for any real positive number x ,

√
1+ x = 1+

x
2
− x2

8
+O(x3).
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Using the expansion (14.34) in c̄ i and c̃ i , we obtain

Q = Q̄ · 1
N2 +O

(
1

N3

)
,

where Q̄ is given by (14.27), which can be rewritten as

Q̄ =
c̄2−Mc̄2 +α2(c̄ − λ̄)2

c̄ − λ̄
M.

We note that

μ =
c̃ i

M
− 1

2MN
(αc̃ i +

√
Q̄)+O

(
1
N

)
.

For the above expression to be valid, it is necessary that Q̄ be positive, which readily
follows from the fact that, as in Theorem 14.2, Q is positive for all sufficiently large N .

Now let us expand the numerator and denominator of (14.31):

c̄ i −μc̃ i =

(
γαM

2
+

√
γQ̄
2

)
1
N

+O
(

1
N

)
,

c̃ i −Mμ =
Mα

√
γ +

√
Q̄

2N
+O

(
1
N

)
.

Hence,

lim
N→∞

(vN
i )∗ = lim

N→∞

[
(
√

Q̄ +αM
√

γ)
α
N

(
1

2N

)α
N

·γ1+ α
2N

]

= γ =
c̄ − λ̄

M
. (14.35)

Furthermore, with ηij = λij substituted into vN
i given by (14.30), we obtain

vN
i ({λj

N
}) = γ

(
λ̄

N

)α
N

=
c̄ − λ̄

M

(
λ̄

N

)α
N

. (14.36)

As N goes to infinity, (14.36) tends to c̄−λ̄
M , which is identical to (14.35). Thus, the

corresponding flow rates of Theorem 14.4 constitute an asymptotic Nash equilibrium.
We need to further show that these flow rates are also in O(1/N) equilibrium, which

can be computed using the already-computed expansion

logvN
i (

λj

N
)− log (vN

i )∗ =
α

N
log

2λ̄√
γq̄ +αMγ

+O
(

1
N

)
, (14.37)

which is exact to the 1
N term. The exponent κ is easily computed from (14.37), and its

negativity is easily shown.
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The symmetricO(1/N)Nashquilibriumprovided inTheorem14.4,which existswhen
(14.21)–(14.24) admit a solution, requires that the flows on all M links be positive.
However, there might exist a symmetric O(1/N) Nash equilibrium that uses only a
subset of the links, i.e., Sm = {1, ... ,m} for some m with zero flows on the remaining
links inM\Sm. The following theorem provides necessary and sufficient conditions to
characterize when a set of positive flows on a subset of links can constitute a symmetric
O(1/N) Nash equilibrium for the considered M-link game:

theorem 14.5 For some subset of links Sm, consider that a solution to (14.21)–
(14.24) exists, with the corresponding total flows on link j denoted by λ

(m)
j . Then, for

every j ∈M, i ∈N , the set of flows

λij(N) =

⎧⎨⎩
λ

(m)
j

N , j ≤m,

0, j > m,
(14.38)

provides an O(1/N) Nash equilibrium if

cm+1 < c1−λ
(m)
1 . (14.39)

In this case, the exponent κ is given by (14.34) with M replaced by m. Conversely, if
cm+1 ≥ c1− λ

(m)
1 , then the set of flows in (14.38) is not in O(1/N) Nash equilibrium,

nor does it constitute an asymptotic Nash equilibrium.

The proof of this theorem can be found in [28].

14.1.3 Sample Nash equilibria

The two theorems previously discussed constitute a complete solution to the continuous-
kernel game formulation of the combined flow-control and routing problem in a
large-scale communication network with multiple links. For instance, the two theo-
rems provide conditions that can be tested to characterize the entire set of symmetric
O(1/N) Nash equilibria, and the number of tests is equal to M , i.e., the number of links.
Each test involves checking the existence of a solution to (14.21)–(14.24) for a general
m and, if m < M , checking condition (14.39). When the conditions are not satisfied
for all m ∈M, then the considered game has no symmetric O(1/N) Nash equilibrium.
However, this does not rule out the existence of an asymmetric equilibrium which is an
O(1/N) Nash equilibrium. Furthermore, the devised equilibrium concept is applicable
even when the total throughput of the users is not fixed, and it is also characterized by
the fact that it is possible for only a strict subset of the available network links to carry
positive flow. We also highlight that the theorems show that the symmetric O(1/N)
Nash equilibrium exhibits an equal-delay property such as in the Wardrop equilibrium,
discussed in Chapter 3.

Moreover, in the previous subsection we showed that if, for a given non-cooperative
game, computing the Nash equilibrium for the generic case is difficult, one can use some
assumptions, such as a large number of users, to ease the mathematical treatment. For
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instance, as Internet-like communication networks are often characterized by a large
number of nodes, assuming a large number of users proves to be both mathematically
appealing and practically desirable. By assuming a large number of users, we had to
extend the concept of the Nash equilibrium to the asymptotic case, using Definition 14.1.
This new concept is along the same lines as the key idea of a Nash equilibrium, i.e., no
unilateral deviations, but applied at the limit of the utility. We further refined the concept
using Definition 14.2 to show how close the utility at the equilibrium is to its maximum
when N is large. Such refinements of the Nash equilibrium are also useful in other
applications and with non-asymptotic analysis; we refer the reader to [58] for further
information. In brief, when dealing with non-cooperative games in which no immediate
characterization for the Nash equilibrium exists, in the generic case, one can use some
practically motivated assumptions on the number of players, the strategies, and even the
utilities in order to characterize equilibrium concepts.

We highlight the results of the previous subsection in two numerical examples taken
from [28].

Example 14.1 Consider a network of ten links with the capacities of the mth link being
100− 10(m− 1) with α = 0.9. There is no solution to (14.21)–(14.24) if we consider
the subsets Sm for m≥ 7. For m = 6, we obtain a feasible solution through the positive
square root in (14.21), with the corresponding value being λ̄+ = 182.95. Thus, we can
find the flows corresponding to λ̄+ as follows:

λ1 = 55.49, λ2 = 45.49, λ3 = 35.49, λ4 = 25.49, λ5 = 15.49, λ6 = 5.49. (14.40)

Note that the negative square root, λ̄− = 30.2, leads to a negative value for λ6 and
hence is not a feasible solution. Using Theorem 14.5, we can easily verify that we have a
symmetric O(1/N) Nash equilibrium and that the exponent is κ =−0.0875. For m < 6,
although (14.21)–(14.24) admit a solution, the condition of Theorem 14.5 is not verified,
so, no symmetric asymptotic Nash equilibria exist in which the users transmit positive
flows on only the first five (or fewer) links.

Example 14.2 Suppose we have a network with ten links with

c1 = 100 and cm = 500, m = 2,3, ... ,10,

with α = 0.9. For this case, Theorem 14.4 directly applies, as it turns out that all ten links
can be used with both roots of (14.21), yielding feasible solutions. Thus, this example
admits two symmetric O(1/N) Nash equilibria. For the positive root λ̄+ = 201.9, the
equilibrium flow rates are

λ1 = 65.19, λm = 15.19, m = 2,3, ... ,10,
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and the one corresponding to the negative square root λ̄− = 58.7 is

λ1 = 50.87, λm = 0.87, m = 2,3, ... ,10.

This example highlights the delay-equalizing property of the considered equilibria for
both cases. The exponents for the two equilibria are κ+ =−0.1472 and κ− =−0.777.

We can further explore the possibility of other Nash equilibria with fewer links having
positive flows. We compute λ̄ for all m < 10. For the subsets Sm with m = 6,7,8,9, both
the roots provide {λi} that satisfy (14.21)–(14.24), but these solutions do not satisfy the
condition in Theorem 14.5, so they are not O(1/N) Nash equilibria. For m = 2,3,4,5,
there exists no solution for (14.21)–(14.24). For m = 1 (i.e., S1), the negative square
root of (14.21) yields a solution, given by λ1 = 47.37. Since c2 = 50 < 52.63 = c1−λ

(1)
1 ,

the condition of Theorem 14.5 is satisfied, so , there is an O(1/N) Nash equilibrium in
which all users use only one link, i.e., link 1. It must be noted that the total flow for this
case is 47.37, which is less than those under the two other equilibria, which are 201.9
and 58.7, respectively.

The last example shows that some O(1/N) Nash equilibria can use all available links
or only one link for all users.

The analysis of this section has focused on symmetric Nash equilibria when the net-
work’s users optimize their utilities, in terms of power, when the number of users is large.
One can further study the possibility of asymmetric equilibria, the characterization of
equilibria for a finite number of users, the formation of a network topology (i.e., the
interconnection among the links), and many other extensions.

14.2 Congestion control in networks with a single service provider

In many communication networks, users such as routers or computing devices need
to control flow of traffic based on their quality-of-service requirements, the perceived
congestion, and the availability and cost of bandwidth. Given these incentives, there
has been much research devoted to maintaining small queue sizes at the routers of such
communication networks (e.g., see [265, 243, 60] and references therein).Themotivation
for such research stems from thewell-known result that, in a networkwith a large capacity
and a large number of users, the probability that the arrival rate will exceed the available
capacity is small, i.e., the probability of queue build-up is small [78].

While much work in this area focuses on flow control from the perspective of the
users and on the aggregate efficiency of the network as noted in Section 14.1, it is also
of interest to investigate the problem from the perspective of the service provider. In
other words, it is of interest to analyze how the service provider can price its bandwidth
while optimizing its profit and given the incentives of the users, which control their
flow in such a way as to avoid congestion and reduce their costs. In [59], this problem
was investigated in a single-link network, focusing on the economics of providing a
large capacity to reduce the queue build-up at the routers, from the perspective of the
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service provider. However, beyond this it is important to study the pricing scheme of the
service provider, given the flow-control actions of the users as well as the presence of a
multiple-link network.

In this section, based on the work in [60], we first present the network model of interest
and its underlying assumptions. Then, we formulate the problem using a Stackelberg
game in which the leader is the service provider and the followers are the users. We
investigate the users’ flow-control problem, and for devise the optimal policy for the
service provider. Finally, we discuss the results and their implications for pricing and
flow control in communication networks.

14.2.1 Pricing and congestion control

Suppose that we have a communication network with a single service provider and
M tandem links accessed by N users belonging to M + 1 different classes. The users
belonging to class 0 are able to use all M links in the network, while users belonging to
class l can only use a single link l with l = 1, ... ,M . We let nk denote the number of users
belonging to class k = 0, ... ,M . Here, cl denotes the capacity (bandwidth) of a link l ,
l = 1, ... ,M and p denotes the price per unit bandwidth charged by the service provider.
The transmission rate of the j th user in class k is denoted by xkj . Thus, the total flow x̄k

of users of class k is given by

x̄k =
nk∑
j=1

xkj , k = 0, ... ,M. (14.41)

Hereinafter, we use the term “user kj” to refer to the j th user in class k . Furthermore, we
let x−k denote the collection of flow rates of all users except those in class k and x−jk

the collection of flow rates of all users in class k , except that of the j th user in class k .
The objective of any user i in class 0, i.e., a user that utilizes all M links, is to maximize

a function that reflects the achieved benefit, i.e., utility, from the flow x0i , the price paid
for the used bandwidth, and the cost due to congestion on a particular link l . Thus, user
0i aims to maximize the following objective function:

u0i (x0i ,x−0i ,x−0,p) = w0 log (1+ x0i )−Mpx0i −
M∑
l=1

1
cl − x̄0− x̄l

, (14.42)

where w0 log (1+ x0i ) is the benefit or utility of flow x0i to user 0i , with w0 > 0 a
preference parameter, and the term 1

cl−x̄0−x̄l
is the congestion cost on a link l . The

maximization in (14.42) is with respect to x0i over the range [0,min
l
{cl− x̄0 +x0i− x̄l}).

For the users in other classes, which use only a single link, we can define a similar
objective function for user kj (with k ≥ 1):

ukj(xkj ,x−kj ,x−k ,p) = wk log (1+ xkj)− pxkj −
1

ck − x̄0− x̄k
, (14.43)
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with the optimization being for xkj over [0,ck − x̄0 + xkj − x̄k). The motivation for the
congestion used cost in (14.42) and (14.43) is that, assuming the queueing at the kth link
is an M/M/1 process, this cost is simply the delay on the link.

From the perspective of the service provider, the main objective is to maximize its
profits received from the bandwidth used by the users of all classes. With this objective,
the provider would aim to set its price p in a way that maximizes the following function:

l(p, x̄(p)) = Mpx̄0 + p
M∑

k=1

x̄k , (14.44)

where x̄(p) = [x̄0(p), ... , x̄M(p)] is the vector of the total flows of all M +1 user classes.
The dependence of this vector on p will be clarified shortly.

By closely inspecting (14.42), (14.43), and (14.44), we can see that these objectives
are interdependent and manifest a clear conflict of interest between the provider and the
users. The network provider needs to set its price so as to ensure that the tradeoff between
price and bandwidth utilization is optimized. If the provider sets its price too high, few
users would use the bandwidth, and the profits would go down. If the provider sets its
price too low, althoughmany users are encouraged to use the bandwidth, the overall profit
might remain low. Furthermore, given a set price as in (14.42) and (14.43), the users
themselves would engage in a non-cooperative situation, since the objective function of
a user depends on the amount of bandwidth used by the others over the desired link, i.e.,
the congestion cost. Clearly, we have a two-level competitive situation: the users attempt
to utilize as much bandwidth as possible while maintaining reasonable congestion and
bandwidth costs, while the provider attempts to set its price so as to maximize its profit.

This competition invites the use of non-cooperative game theory. The presence of
a hierarchy, between the provider that controls the prices and the users, implies that a
Stackelberg framework, as discussed in Chapter 3, is quite suitable. In this context, we
can formulate a Stackelberg game having the following components:

• Asingle leader, which is the network provider aiming to set its price so as to maximize
its profit, as in (14.44)

• A total of N =
∑M

k=0 nk non-cooperative followers (i.e., network users), with each
follower aiming to maximize its objective function in (14.42) for class 0 and (14.43)
for the other classes.

In this context, the Stackelberg game can be split into two goals. First, given a set
price p, we can see the followers as a single group. For this group, the reaction setRF(p)
is a function of the price set by the leader, and can be defined as follows:

RF(p) = { {{xkj ≥ 0}nk
j=1}Mk=0 : ukj(xkj ,x−kj ,x−k ,p)≥ ukj(x ′

kj ,x−kj ,x−k ,p),

∀x ′
kj ∀j ,1≤ j ≤ nk and k,0≤ k ≤M}, (14.45)

where the interval for x ′
kj is [0,min

l
{cl− x̄0+x0i− x̄l}) for k =0 and [0,ck− x̄0+xkj− x̄k)

for k ≥ 1.
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By closely inspecting the reaction set of the followers group,we can see that, for afixed
p > 0, there exists a non-cooperative game among the followers whereby each follower,
depending on its class, attempts to find the transmission rate that maximizes (14.42)
or (14.43). By closely looking at (14.42) and (14.43), we can see that these functions
depend not only on a follower’s own transmission rate but also on the transmission
rate of its competitors (and the price). Thus, the reaction set of the followers group
can be investigated using the set of strategies that constitute a Nash equilibrium for the
non-cooperative continuous-kernel game defined with the N users being the players, the
transmission rates being the strategies, and the objective functions being given by (14.42)
and (14.43), depending on the followers’ class. In other words, the reaction strategies
of the followers to a fixed price p > 0 of the leader is the tuple {{x∗

kj(p) ≥ 0}nk
j=1}Mk=0

satisfying, for all j , 1≤ j ≤ nk and k , 0≤ k ≤M ,

max
xkj

ukj(xkj ,x∗
−kj ,x

∗
−k ,p) = ukj(x∗

kj ,x
∗
−kj ,x

∗
−k ,p), (14.46)

where the constraint interval is [0,min
l
{cl − x̄∗

0 + x∗
0i − x̄∗

l }) for k = 0 and [0,ck −
x̄∗
0 + x∗

kj − x̄∗
k ) for k ≥ 1. (14.46) clearly shows the dependence of any strategy, i.e.,

transmission rate, for the followers on the price p, which was shown earlier.
From the leader’s perspective, assuming that the N-player followers’ game admits a

unique Nash equilibrium (which will be shown in the next subsection), then the Stack-
elberg solution of the game would be to determine the optimum price that can maximize
the revenue given the followers’ Nash strategy, i.e.,

max
p≥0

l(p, x̄∗(p)). (14.47)

Note that the pricing function considered in (14.44) assumes that a user is charged a
price in proportion to the product of its bandwidth usage and the number of hops/links
on its route. This is because, if a user utilizes r links on its route while transmitting with
a rate x , then the total consumption is rx units of network resources.

14.2.2 Non-cooperative Nash game between followers

For the followers’non-cooperative game, it can be shown that a unique Nash equilibrium
exists, as shown by the following lemma:

lemma 14.1 For each fixed price p > 0, the N-player non-cooperative game among
the followers with objective functions given in (14.42) and (14.43) admits a unique Nash
equilibrium in the strategies {x∗

kj(p) ≥ 0;1 ≤ j ≤ nk ,0 ≤ k ≤M}, with x̄∗
0 + x̄∗

l < cl ,
1≤ l ≤M .

Proof The proof is from [60]. We note that by adding the quantity

w0

∑
j �=i

log (1+ x0j)+
M∑

k=1

wk

nk∑
j=1

log (1+ xkj)−Mp
n0∑

j=1, �=i

x0j − p
M∑

k=1

x̄k
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to u0i , the resulting function can be used as a new objective function for user 0i without
affecting the Nash equilibrium. Similarly, adding

wm

∑
j �=i

log (1+ xm,j)+
M∑

k=0,k �=m

wk

nk∑
j=1

log (1+ xkj)

−
M∑

l=1, �=m

1
cl − x̄0− x̄l

−Mpx̄0− p
M∑
l=1

x̄l + pxmi

to umi for each i ,m, 1 ≤ i ≤ nm, 1 ≤ m ≤M , will not change the Nash equilibrium
because the quantity added does not depend on the decision variable of user mi . One can
easily show that all the modified objective functions become identical and are given by

u(x0, ... ,xM ,p) =
M∑

k=0

wk

nk∑
j=1

log (1+ xkj)−
M∑
l=1

1
cl − x̄0− x̄l

−Mpx̄0− p
M∑
l=1

x̄l .

(14.48)

In consequence, the Nash equilibrium of the original game is also a Nash equilibrium
of the game with the common objective function (14.48). The function u(·) of (14.48),
is strictly concave in (x01, ... ,xMnM ), which is restricted to the non-negative orthant
bounded by the hyperplanes x̄0 + x̄l = cl on which u is unbounded from below. From
standard results in finite-dimensional optimization (e.g., see [81]), we have that u has a
unique maximum in this bounded region and every person-by-person optimal solution
is also globally optimal. Thus, the Nash equilibrium of the original game exists and is
unique. The maximizing solution cannot lie on the hyperplane, which leads to the strict
inequality on x̄∗

0 + x̄∗
l for all l ,0≤ l ≤M .

The unique Nash equilibrium can, depending on the value of the price p, yield some
transmission rates (i.e., xkj ) that are zero. Whenever this does not occur, we refer to the
Nash equilibrium as inner or positive. By setting the partial derivatives of u with respect
to xkj to zero for all admissible j and k , we obtain necessary and sufficient conditions for
the Nash equilibrium to be positive. To find a tractable condition for this positive Nash
equilibrium to exist, we make the following assumptions:

• All users that use single links have the same preference parameter wk , so wk is
independent of k for k ≥ 1.

• The number of users in each class that uses a single link is also independent of k , i.e.,
nk is independent of k for all k ≥ 1.

• The capacity of each link is proportional to the total number of users using that link.

Given the above assumptions, the capacity of a link l can be written as cl = (n0 +n1)c =
nc . Furthermore, we let

ȳ0 � n0 + x̄0, ȳ1 � n1 + x̄1, ȳ �= ȳ0 + ȳ1,

and
w̄ � n0w0 +Mn1w1, wav =

w̄
n

.
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Given these quantities, it is shown [60] through algebraic manipulation of the first-order
conditions that a positive Nash equilibrium exists if and only if there exists a ȳ(p) solving

g(ȳ) � w̄
ȳ
− M

(nc + n− ȳ)2
−Mp = 0 (14.49)

and satisfying the positivity constraint

min (w0,Mw1)
ȳ(p)
w̄

> 1. (14.50)

As demonstrated in [60], it turns out that there exists a unique solution to (14.49) in the
open interval (n, (c +1)n) if and only if g(n) > 0; that is,

p < p̂ � wav

M
− 1

(nc)2
. (14.51)

Thus, a range of values for the price p exists for which the Nash equilibrium of the
followers is positive, which, as will be seen in the next subsection, implies that the
leader’s problem is feasible.

14.2.3 Optimal pricing policy for the service provider

In order to inspect the optimal pricing policy for the service provider, i.e., the leader,
we maintain the assumptions made in the previous subsection regarding having, for
each class of users using a single link, a number of users and preference parameters
independent of the class, while having a capacity proportional to the number of users
using a link.

In (14.49), we observe that there exists a one-to-one correspondence between ȳ and
the price p. As a result, the leader’s problem can be turned into a maximization, with
respect to ȳ > n, of the following objective function:

l̃(ȳ) = w̄(1− n
ȳ

)− M(ȳ − n)
(n(c +1)− ȳ)2

, (14.52)

which is obtained by substituting p from (14.49) as a function of ȳ . For notational
convenience, we let l̃ȳ = ∂ l̃

∂ȳ and l̃ȳ ȳ = ∂2 l̃
∂ȳ∂ȳ . Over the desired interval (n, (c + 1)n),

l̃ is an analytic function (i.e., a function that is locally given by a convergent power
series), so

l̃ȳ =
nw̄
ȳ2 −

M[n(c − 1)+ ȳ ]
(n(c +1)− ȳ)3

, l̃ȳ ȳ < 0. (14.53)

Therefore, l̃ is strictly concave, and since it becomes unbounded negative at the upper
end of the interval, it follows that it has a unique maximum in the interval [n, (c +1)n).
To avoid the situation at ȳ = n, we require that l̃ȳ > 0, which translates into

n2c2wav > M. (14.54)
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Under this condition, there exists a unique solution to l̃ȳ = 0, which is ȳ∗ ∈ (n, (c +1)n).
For this solution, the corresponding price value which maximizes l(p, x̄∗(p)) is obtained
directly from (14.49):

p∗ =
w̄

Mȳ∗ −
1

(nc + n− ȳ∗)2
, (14.55)

which satisfies (14.51). Furthermore, we need the price p∗ to satisfy (14.50), i.e.,

min (w0,Mw1)ȳ∗ > w̄ . (14.56)

However, we note that ȳ∗ is a solution to l̃ȳ = 0, which is a third-order polynomial.
Thus, as discussed in [60], a closed-form expression for ȳ∗ can be obtained only for
some special cases, such as when c = 1. In this case, we have

ȳ∗ =
2n(nw̄)

1
3

M
1
3 +(nw̄)

1
3
, (14.57)

provided that nw̄ > M , which ensures that the total throughput is positive, i.e., ȳ∗ > n.
Furthermore, satisfying (14.56) in this case maps to(

2min (w0,Mw1)
wav

− 1
)

(n2wav)
1
3 > 1, (14.58)

which is a condition that is more restrictive than n2wav > M , which can now be dropped.
The Stackelberg solution, i.e., the revenue-maximizing price for the service provider,

can be obtained for the case c = 1 using (14.55) and (14.57):

p∗ =
wav

2M
(1+M

1
3 (n2wav)− 1

3 )− 1
4n2 (1+M

1
3 (n2wav)

1
3 )2, (14.59)

which is seen to be positive whenever n2wav > M , which already holds. Furthermore,
one can clearly see that p∗ < p̂.

14.2.4 Network with a large number of followers

In the previous subsection,we saw thatfinding theStackelberg solution for the considered
communication network game is difficult unless a simplifying assumption such as c = 1
is used. The difficulty stems mainly from the fact that a closed-form expression for ȳ∗

is difficult to find.
For more insight into the problem, we will consider the case with a large number

of followers. In particular, we study the behavior of the system when n is large. When
dealing with large n, we will use the convention that as n →∞ the sequence {wav}
has a well-defined limit, wav > 0. For example, this case is applicable when there exists
α0 ∈ (0,1) such that n0 = α0n, which means that there will be infinitely many users of
both classes as n→∞. In this case, we would have wav = α0w0 + (1−α0)Mw1. This
convention immediately implies that (14.54) is satisfied.
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To study the case of a large number of followers, it is convenient to work with the
arithmetic mean of the xi (or the yi ) rather than their sum. We denote this arithmetic
mean, for the xi by

xav(n) =
1
n
(x̄0 + x̄1).

In this case, l̃ȳ = 0 translates into

wav(n)
M(xav(n)+1)2

=
c + xav(n)

n2(c − xav(n))3
.

Given that wav → wav as n→∞, a positive solution to xav exists for large n if and
only if

lim
n→∞

n2(c − xav(n))3 = α,

for some α > 0. By substituting into (14.49), we obtain

p ∼ wav

M(c +1)
+

2c − 1

α
2
3 n

2
3

, (14.60)

where f (n)∼ h(n) if lim
n→∞

f (n)
h(n) = 1. By using (14.60) in l̃ȳ = 0, and letting n→∞, we

obtain

α =
2c(c +1)2M

wav
,

so

xav(n)∼ c − n− 2
3 α

1
3 ,

with the positivity condition

xav(n) > max(
wav

w0
− 1,

wav

Mw1
− 1). (14.61)

By letting α0 = n0
n and assuming that α0 < 1 for all n, as n→∞, we have that (14.61)

is equivalent to
α0

c +α0
<

Mw1

w0
<

c
1−α0

+1, (14.62)

which is a necessary and sufficient condition for the existence of an inner solution. This
also places an upper bound on the number of links M:

M <
w0

w1

(
c

1−α0
+1

)
, (14.63)

considering that w0 is not a function of M . However, if we pick w0 = w̃0M for some
constant w̃0 > 0, then no upper bound on the number of links M would exist.

We remark that the optimal price, i.e., the Stackelberg solution, for large n is positive;
however, depending on the capacity c , it can be an increasing or a decreasing function of
n. For instance, when c > 1

2 the price decreases with n, whereas when c < 1
2 it increases
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with n. Nonetheless, when n is sufficiently large, the revenue B per unit bandwidth per
link increases with n independently from c :

B =
pxav

c
∼ wav

M(c +1)
− 3α− 2

3 n− 2
3 . (14.64)

Whenever wav
(c+1) is larger than the cost of adding one unit of bandwidth, we can show

that the service provider’s profit increases with the number of users. Hence, in this case,
the provider has an incentive to increase the link capacity as this increase would drive
the congestion cost to zero. For instance, the congestion cost decreases with n when n
is large:

1
n(c − xav(n))

∼ α− 1
3 n− 1

3 . (14.65)

The utilities of the users would decrease, as can be easily seen from (14.42) and (14.43).
In brief, under the studied model, for the asymptotic case the service provider has an

incentive to increase the link capacity, and this increase is somewhat detrimental to the
users as it decreases their net utilities, as in (14.42), and (14.43), as the system becomes
more crowded.

In conclusion, using the Stackelberg framework, we have studied the problem of
bandwidth pricing and flow control in communication networks. With this formulation,
we have seen that the network provider, i.e., the leader in the Stackelberg game, has an
incentive to increase the available capacity in proportion to the number of users in the
network. It turns out that increasing this capacity decreases the congestion delay seen by
the users (although it also decreases their net utility), so it is beneficial for the network
provider to give better quality of service, in terms of delay, to the users.

While this work has considered two specific classes of users, it can be extended to
multiple classes, as well as to the case in which multiple providers exist. In such a case,
the use of amulti-leadermulti-follower Stackelberg solution can constitute a goodmodel.
Moreover, in the multiple-provider case one can also study, using cooperative games,
the possibility of cooperation among the providers in setting a joint pricing strategy
and among the users to obtain better transmission rates. While in this formulation we
have assumed that we have a game with complete information, the case of incomplete
information is also of interest, and the interested reader is referred to [451] for further
information. The reader is also referred to [451] for a discussion of improvement using
non-linear pricing policies.

14.3 Pricing and revenue sharing for Internet service providers

The pricing of Internet services is a complex issue because of the interdependency among
the various service providers and network operators. In this context, traffic circulating
over the Internet needs to pass through many networks, owned by different providers,
which requires that these providers work together in order to deliver an end-to-end
service coverage. This gives an incentive for providers to collaborate in setting the price
so as to maintain a respectable profit and demand. However, in the collaborative case,
devising a scheme for sharing revenues among the providers is a challenging task.
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The issue of Internet service provider pricing has been studied in [244, 266, 303, 452]
and references therein. However, these studies mainly focus on the flow-control and
queueing aspects of the problem, with price only being an input. Moreover, most of this
work assumes a single service provider that is aiming to maximize the social welfare.
However, in this section, we are interested in studying the interactions of a number of
Internet service providers that need to strategically set their prices so as to maximize their
own profits, while having an efficient revenue-sharing mechanism. In such a design, two
key issues arise: (i) modeling and analyzing the competitive pricing strategies among
the providers, and (ii) devising a revenue-sharing scheme that can ensure better perfor-
mance for the providers. Clearly, both objectives highlight the need for game theory.
While (i) can easily be tackled with a non-cooperative game, objective (ii) highlights the
idea of equilibrium selection and cooperation enforcement through some incentive, i.e.,
a revenue-sharing scheme. To tackle these objectives, we adopt the analysis carried out
in [203].

First, we present a model for Internet pricing and formulate a non-cooperative game.
Then we investigate non-cooperative strategies and the efficiency of the resulting equi-
libria. To improve the equilibrium efficiency, we study a fair revenue-sharing scheme and
its implications for the non-cooperative game. Finally, we discuss a possible distributed
algorithm that the providers can use to reach an equilibrium point.

14.3.1 Pricing game among Internet service providers

Consider a number of interconnected service providers that deliver an Internet service
over a setR of routes, i.e., end-to-end paths that traverse a sequence of service providers.
The price charged for the service is the sum of the prices charged by all providers on a
route. For every route r ∈R, we define a price pr that controls the number of users on
that route. This assumption stems from the fact that, given a certain price, only a certain
number of users are willing to pay this price for the service. This relationship between the
number of users and the price on a route is captured by a demand function d(pr ). Note
that, in this section, we do not deal with the rates or routing decisions of the users, as
these aspects were analyzed in Section 14.1 and Section 14.2. Furthermore, we consider
that the provided service has certain quality-of-service requirements in terms of delay,
rate, or other factors, and that these requirements map into a local capacity constraint.

In such a model, the objective of every provider is to maximize its profit, i.e., the
difference between the revenues and the costs, while maintaining its quality-of-service
commitment to the served users. Before mathematically formulating the model and
objectives, we make some assumptions:

• The demand function is assumed to be relatively inelastic, i.e., it does not change much
when the price is low, with its elasticity increasing as the price becomes higher. This
assumption reflects the nature of Internet services: at low prices, demand is dominated
by the users’need to communicate, and so is close to being saturated; however, once the
price goes beyond a certain threshold, it becomes a major deciding factor in whether to
use the service. A mathematical motivation for this assumption is also found in [203].
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• We assume that the links between the providers constitute the capacity bottlenecks.
Thus, we can see the providers as network nodes connected by capacity-constrained
links, and each route inR is a sequence of inter-provider links.

• We assume that a fluctuation or change in prices does not yield a change of route
between a source–destination pair.

With these assumptions, we formulate a strategic non-cooperative continuous-kernel
game among the providers. In this game, the strategy of each provider i is the vector pi

that maximizes its profit function. Each element plr of the vector pi represents the price
charged by provider i for its service over link l ∈ Ei going through route r ∈Rl , where
Ei is the set of egress links owned by provider i andRl is the set of routes going through
a link l . The profit function ui of any provider i can be written as

ui (pi ,p−i ) =
∑
l∈Ei

∑
r∈Rl

(plr − cl)dr (pr ), (14.66)

where cl is a cost per unit bandwidth and pr =
∑

j∈Lr
pjr is the end-to-end price for route

r , with Lr being the set of all links that route r traverses. The non-cooperative nature
of this game is indicated by the dependence of (14.66) not only on the own price of the
provider but also on the prices set by the other providers over common routes, as seen
in the dependence of the demand function on the term pr . For instance, each element of
the vector of strategies of the opponents of i (i.e., p−i ) is defined for every link l ∈ Ei

and route r ∈Rl as
p−lr �

∑
k∈Lr \l

pkr = pr − plr . (14.67)

Nonetheless, when finding its optimal strategy, each provider i attempts to maximize
its profit in (14.66) given a capacity constraint. In the formulated strategic game, each
provider i attempts to solve the following optimization problem:

max
plr ≥0

∑
l∈Ei

∑
r∈Rl

(plr − cl)dr (pr ),

s.t.
∑
r∈Rl

dr (pr )≤ Cl ,∀l ∈ Ei , (14.68)

where Cl is the capacity constraint on link l . When the providers, each acting indepen-
dently, simultaneously solve their corresponding optimization problems in (14.68), they
would be able to find their Nash equilibrium pricing strategies for every service provided
on every route. Equivalently, denoting by L the set of all links in the network, the Nash
equilibrium is the set of prices {plr , l ∈ L, r ∈ R} that solve the following system of
equations: ⎧⎪⎨⎪⎩

plr = cl +μl + gr (p−lr + plr ), ∀l ∈ L, r ∈R,

μl(
∑
r∈Rl

dr (pr )−Cl) = 0, ∀l ∈ L, (14.69)

where {μl , l ∈L} are Lagrangian multipliers and gr (p) �− dr (p)
d′

r (p) (d ′
r (p) is the first-order

derivative).
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As discussed in Chapter 3, the Nash equilibrium is often inefficient or undesirable. In
this Internet service providers’ game, it is shown in [203], using an example with two
providers, that a Nash equilibrium can lead to an unfair distribution of revenues among
service providers. For instance, for the considered two-provider example in [203], the
provider with smaller capacity can obtain a larger profit. In reality, a provider that has a
larger capacity should, in principle, be able to obtain a larger profit, which highlights the
unfairness of the Nash equilibrium in this game. Furthermore, at the Nash equilibrium,
it can turn out that a provider having a bottleneck link has no incentive to upgrade its
capacity since, by not doing so, it can maintain an advantage in obtaining more profits
than the other providers.

14.3.2 Revenue-sharing strategies

In order to overcome the undesirable outcomes of the Nash equilibrium of the non-
cooperative pricing game discussed in the previous subsection, one can naturally design
improved pricing schemes that can maintain each provider’s self-interest while avoiding
the drawbacks of the non-cooperative equilibrium.

The providers can easily realize, upon reaching the undesired Nash equilibrium, that
some form of collaboration can make them better off. This gives rise to a situation in
which a number of players (i.e., providers) have an incentive to collaborate, but need to
agree on how to reach an agreement on distributing the revenues fairly. This scenario
corresponds to a bargaining situation, as discussed in Chapter 7. The key question to
be answered is which agreement, among all the feasible ways of allocating revenues,
the providers can agree upon. This agreement should, as in any bargaining problem, be
Pareto-efficient, and, for the providers’ game, it must not depend on the scale by which
the profits are measured nor on the order of the providers’ indices.

Certainly, in such a bargaining situation, one can revert to using well-known
concepts such as the Nash bargaining solution and its generalization. However, in [203]
it is shown that such concepts can yield non-sensible solutions. For example, for a
scenario in which M access providers are connected to a backbone provider through
M links, it is shown that the generalized Nash bargaining solution with a zero disagree-
ment point, i.e., the weighted proportional fair solution, yields M times more profit
for the access providers, which is practically unfair and unacceptable to the backbone
provider.

For this model, this unfairness stems from the fact that “negotiation” is dictated by
two kinds of compromise. First, on a route traversing a sequence of providers, these
providers negotiate how to share the revenues collected from this route, according to
their respective contributions. Second, a provider carrying traffic on multiple routes
needs, because of its capacity constraint, to negotiate with others on how to allocate its
capacity among different routes, or, equivalently, the end-to-end price of the routes it
serves.

As an alternative, [203] proposes a fair allocation that takes into account both negoti-
ations, i.e., intra-route and inter-route. In this scheme, on each route r ∈R, the providers
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agree to share the revenues according to the following rule:

plr − cl

cl
=

pmr − cm

cm
, ∀l ,m ∈ Lr . (14.70)

This rule, as computed in [203], is a result of the generalized Nash bargaining solution
applied over a single route r with zero disagreement point and the bargaining power of
every provider i set to be equal to the provider’s cost, i.e., ci . The allocations in (14.70)
can be seen as a return on investment rate and are not influenced by the end-to-end
prices. Thus each provider can, independently, choose its local price (i.e., plr ) in such a
way that, when it is combined with those of others, the resulting end-to-end price would
maximize its own total profit. Hence, for end-to-end prices, this leads to the use of a
Nash game in which each provider’s allocated profit is the payoff and the local prices
are the strategies.

This game is different from the one discussed in the previous subsection, since a
provider’s revenue and profit are no longer solely determined by its own prices and the
demand function. They are also dependent on the other providers’ prices through the
allocation rule in (14.70). For instance, for provider i , given (14.70), the total generated
profit can be rewritten as

vi (pi ,p−i ) =
∑
l∈Er

∑
r∈Rl

⎛⎜⎜⎝cl(plr + p−lr )∑
m∈Lr

cm

− cl

⎞⎟⎟⎠dr (plr + p−lr ). (14.71)

In this new game, each provider i’s objective is to find the prices that solve the
following optimization problem:

max
plr >0

vi (pi ,p−i ),

s.t.
∑
r∈Rl

dr (plr + p−lr )≤ Cl ,∀l ∈ Ei . (14.72)

It is shown in [203] that, for the game defined by the simultaneous optimizations in
(14.72), a Nash equilibrium exists. The proof is done in [203] by showing that, for any
opponents’ strategy profile, the problem in (14.72) admits a unique maximizer, and by
using the Brouwer Fixed-Point Theorem to show the existence of a solution to a system
of fixed-point equations. From the proof of existence it is also demonstrated that, under
this new Nash game with fair revenue-sharing, the Internet providers always have an
incentive to upgrade their links, as long as there exists unserved demand. As a direct
result, it turns out that the Nash equilibrium of the game produces an allocation that
Pareto-dominates the non-cooperative pricing strategy of the previous subsection.

14.3.3 Distributed algorithm for finding a Nash equilibrium

In the previous subsection, we determined that using revenue-sharing concepts can lead
to an equilibrium that is fair and more efficient than the pure non-cooperative case.
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One key issue that remains to be tackled is to devise an algorithm for reaching this
equilibrium. In [203], a distributed algorithm is devised for finding the equilibrium. This
algorithm, shown asAlgorithm14.1, is generally composed offive phases.The gist of this
algorithm is based on two key observations made in [203]. First, for a given route r , the
end-to-end price is determined by the link with the largest scaled Lagrangian multiplier
μ
c = argmax

l∈Lr

μl
cl

. Second, the Lagrangian multipliers can be computed iteratively based

on the traffic loads on the links. In the first phase, the provider maintains and updates a
state variable μl (which is a Lagrangian multiplier) for each link l , based on the following
rule:

μl = max

{
0,μl +wl(

∑
r∈Rl

dr (pr )−Cl)

}
, (14.73)

with wl > 0 a small constant.
The next three steps of the algorithm rely mainly on stamping control packets so as to

allow the first-hop provider to obtain, from the destination, in Phase 4, the values for the
largest-scaled Lagrangian multiplier on the route and the sum of link costs. Once this
information is available, the first-hop provider can easily compute the optimal price p∗

r

by solving [203]

p∗
r =

∑
m∈Lr

cm +
μ

c
+ gr (p∗

r ). (14.74)

In the final phase, each provider on the route records its share of the price p∗
r cl∑

m∈Lr
cm

on

the link l it is providing for forwarding the packet. In this phase, it is assumed that a system
is established for the providers to collect or distribute revenues, presumably on a time
scale much longer than that of the traffic dynamics. The five phases in Algorithm 14.1
are operated on a route-by-route basis.

Note that, since the cost of a link cl is private information for each provider, the
providers can instead use a virtual value to avoid any cheating (the algorithm would
remain unchanged). Practically, the algorithm, as discussed in [203], can be relatively
easily implemented since it does not require a lot of information to be maintained by
the providers. More importantly, it is shown in [203] that, when applied to all routes,
Algorithm 14.1 converges to the Nash equilibrium of (14.72). This is shown through
analytical proof and using a numerical example.

In this section, we have illustrated the use of non-cooperative game theory for setting
service prices in a multi–service provider communication network such as the Internet.
We identified a Nash equilibrium of the non-cooperative solution and showed that it is
inefficient and undesirable. In consequence, we showed how, using concepts from bar-
gaining theory, one can improve the efficiencyof theNash equilibriumand reach a desired
agreement among the providers, even when the providers are acting independently and
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Algorithm 14.1 Distributed algorithm for finding the equilibrium.
Phase 1: State variable

Each provider maintains a state variable μl for each link l .
This state variable is updated periodically using the well-defined rule of (14.73).

Phase 2: Control/pricing packets update
A number of packets (e.g., control packets) are assigned for carrying pricing
information.
Each pricing packet carries two fields:

(i) A first field that contains information on a scaled Lagrangian multiplier
(ii) A second field that contains information on the sum of costs over all links

in a route.
The router on each link in a packet’s route to the destination updates the first field
if the local link has a larger-scaled Lagrangian multiplier.
The router on each link in a packet’s route to the destination always updates the
second field.

Phase 3: Feedback
The destination returns the two fields to the sending host using a control packet
(e.g., an ACK packet).

Phase 4: First-hop provider optimal pricing
The first-hop provider is assumed to maintain an estimate of the demands
initiating from its network on each route.
The first-hop provider receives the two fields from the third phase and uses
them to compute and update the optimal price along this route.

Phase 5: Revenue-sharing
For the established connection, all packets are stamped with the optimal price
and the sum of costs.
Each one in the sequence of providers over this route can compute its share of the
price using the stamped information in the packets.

are self-interested. Furthermore, we explained how a practical algorithm can be built
to reach the equilibrium point. We note that the main focus of the study has been on
profit maximization of the providers. Nonetheless, this study can be extended to account
for the preferences of the users and their behavior. To do so, one can combine different
game-theoretic concepts such as Nash equilibria, Stackelberg equilibria, and repeated
games. Other extensions can include the integration of routing as part of the providers’
strategies as well as the study of the price of anarchy so as to further inspect the efficiency
of the reached suboptimal Nash equilibrium.

14.4 Cooperative file sharing in peer-to-peer networks

Peer-to-peer (P2P) communication networks such as Napster [349], Gnutella [168],
KaZaa [241], and BitTorrent [74] are self-organizing and distributed systems with no
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central authority that manages the network. Instead, each peer in a P2Psystem is indepen-
dent and can dynamically self-optimize and take communication decisions depending on
its perceived environment. For instance, P2Psystems allow thepoolingof the resources of
many autonomous nodes to provide an accessible platform for distributed data exchange,
storage, or file sharing. The interest in P2Psystems stems from their nature as enablers for
communication services and applications. Consequently, numerous research activities
[304, 394, 385, 112, 80, 36, 426, 311, 408] have focused on studying and analyzing peer-
to-peer systems from various perspectives, ranging from data exchange [394], resource
reciprocation [385], and cooperative download [36] to legal issues [408].

Because of the heterogeneous and limited capabilities of the peers (e.g., in terms
of upload and download rates) as well as the decentralized nature of P2P file sharing,
there is a strong need for new architectures and protocols for data exchange and packet
scheduling among the peers. In [385], the authors propose a study that analyzes the
problem of resource reciprocation of multimedia content among peers using a stochastic
game. Furthermore, packet scheduling schemes and peer contributions are studied in [96]
for improving the performance of video streaming of P2P content-distribution networks.
Different architectures, including tree-based [73] andmesh-based approaches [304, 295],
are analyzed for content dissemination in P2P networks. Given these different architec-
tures, a number of peers can efficiently share different content, resources, or fragments
of various files.

Most of the aforementioned work in P2P networks focuses on the P2P sharing of
resources after these resources are entirely acquired by the peers, independently, from
different seeds. However, a prominent challenge of P2P systems is the scenario in which
a number of peers compete to download, concurrently, a number of resources, e.g.,
files or file fragments that complement their already-owned resources, from the same
seed at the time the availability of the resources is announced. Whenever a new file,
fragment, or group of files/file fragments becomes available at a certain seed, i.e., a
server or another peer, a large number of interested peers, e.g., a flash crowd of nodes
interested in these resources, will, concurrently, attempt to download these resources
from the seed. Eventually, because of the limited upload capabilities of the seed and
the heterogeneous characteristics of the peers, this scenario yields increased download
delays for the competing peers (this issue is highlighted in [295] from a protocol and
topology point of view for asymmetric P2P networks). Hence, one important challenge
is to propose cooperative schemes for P2P networks that can alleviate the download
delays for the peers during this phase of simultaneous download of resources at the time
they become available.

In this section, based on the work in [408], we study cooperative strategies, using
cooperative game theory, notably coalitional games, to enable peers to improve their
download delays during the concurrent download of resources from a common seed.
First, we highlight the problem and formulate a cooperative model using coalitional
games. Then, we develop an algorithm for coalition formation, and show some results
on the optimal division of the peers’download requests between the main seed and other
cooperative peers. Finally, we assess the performance of cooperative file sharing in P2P
systems for the cases of two peers and N peers.
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14.4.1 Cooperative vs. non-cooperative file sharing

Consider a P2P network consisting of N peers, and let N denote the set of all peers.
In this network, each peer already owns a small number of resources (e.g., files or
fragments) related to a particular content and is seeking to download the remainder of
this content. Whenever a seed, e.g., a server or another independent peer (not in the
set N ) that owns the entire content of interest to the peers, announces the availability
of a number of resources, all N peers will concurrently attempt to download these
resources from the seed. This model assumes that the seed owns all the data related to
the content of common interest to the peers,while eachpeer inN ownsdifferent chunks of
this data.

Each peer i ∈ N has an upload rate μi , and, in a non-cooperative manner, attempts
to download the remainder of its data from the common seed with a download rate λi .
For any peer i , the arrival process for the download requests is considered exponentially
distributed with parameter λ−1

i . In such a scenario, given that the seed has an upload
rate of μs , and considering that the file service process is an M/D/1 queue, the average
delay τnc for any peer i ∈N non-cooperatively downloading data from the seed is

τnc =
λs

2μs(μs −λs)
, (14.75)

where λs =
∑

i∈N λi is the total request rate at the seed.
As the seed has a limited upload rate μs , one can see from (14.75) that, whenever the

number of peers interested in the seed’s content is large, the download delay increases
significantly. In particular, the total download requests that the seed can handle must
satisfy the stability condition of the queueing system in (14.75), i.e., λs < μs . As a direct
result of this condition, the number of peers that can concurrently download the data
from the seed, non-cooperatively, is limited and strongly depends on the heterogeneous
download rates of the peers. For example, a single peer with large download rate can
congest the seed and forbid other peers from utilizing the resource.

To reduce their delay, instead of solely downloading the remaining content directly
from the seed, the peers can cooperate, downloading the content of interest from the seed
as well as from a subset of other peers. By doing so, the peers can potentially reduce
the load on the seed and possibly improve their delay. Within each group of cooperating
peers, i.e., a coalition S ⊆N , every peer i ∈ S can direct its download requests to the
seed as well as to other cooperative peers j ∈ S \{i} with a certain fraction pij such that

0≤ pij ≤
μj

λi
,∀j ∈ S \ {i} and

∑
j∈S\{i}

pij + pi0 = 1, (14.76)

where the upper bound in the first condition ensures that no peer i ∈ S will download
data from another peer j ∈ S with a rate that exceeds the upload rate μj of peer j , and
0≤ pi0 ≤ μs

λi
is the fraction of requests directed to the seed from peer i . For every peer

i ∈ S , we define the (|S |+ 1)× 1 (| · | is the set cardinality operator) column vector
pi = [pi0, ... ,pi|S|]T of all the fractions of requests directed by by peer i to its partners
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Fig. 14.1 Illustration of peer coalitions for content download.

in S and the seed. Note that pii = 0,∀i ∈ S . Furthermore, we let PS = [p1, ... ,p|S|] be
the (|S |+ 1)× |S | matrix of all the fractions of the peers in coalition S . Note that any
peer outside a coalition S , i.e., in N \S , will not allow peers inside S to use its upload
bandwidth.

Subsequently, for any cooperative peer i , member of a coalition S ⊆N , that is down-
loading data from the seed and the peers in K⊆ S with |K|= K , given that each of the
K queues is independent, and by using Little’s law [71], the average download delay
will be

τi (PS) =
1

K +1

⎛⎝ ∑
j∈S , j �=i

Λj

2μj(μj −Λj)
+ τs

⎞⎠ , (14.77)

where the first term is the delay from the data downloaded by peer i from K partners
in coalition S , with μj the service rate of peer j ∈ S , and τs the delay from the data
downloaded by peer i from the seed, which is the same for all i ∈ S and is given using
(14.75) with λs =

∑
i∈S pi0λi . Furthermore, Λj = (PS)jλ in (14.77) represents the total

load at peer j ∈ S , with (PS)j the j th line of PS and λ an |S |×1 vector, with each element
λk corresponding to the download rate of a peer k ∈ S . Note that we assume that, for any
coalition S that forms, ∃i ∈ S such that pi0 	= 0, i.e., at least one peer downloads from the
seed, otherwise the download delay in (14.77) is considered to be infinite. By adequately
selecting the distribution of their download requests, i.e., the matrix PS , the cooperative
peers might be able to improve their average. An illustration of the considered model is
shown in Fig. 14.1.
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Although the peers can divide their download requests in any way between the coop-
erative peers and the seed, one scheme that the peers can adopt is to distribute their
requests in such a way as to minimize the total social cost for a coalition, i.e., total
average delay experienced by the coalition as a whole. Thus, given a coalition S ⊆N
of cooperative peers, the peers in the coalition distribute their download requests, i.e.,
compute the vectors pi , ∀i ∈ S by jointly solving the following optimization problem:

min
PS

∑
i∈S

τi (PS), (14.78)

s.t. 0≤ pi0 <
μs

λi
and 0≤ pij <

μj

λi
, ∀j ∈ S \ {i}, i = 1... |S |,∑

j∈S\{i}
pij + pi0 = 1, i = 1... |S |,

where τi is given by (14.77) and the two constraints describe previously mentioned
properties of the download-request fractions. Note that at least one peer in the coalition
must be connected to the seed, i.e., ∃i ∈ S with pi0 	= 0, otherwise the delay is infinite.
Subsequently, whenever a group of peers cooperates within a coalition S , they can
compute the download request distribution that minimizes the total average delay of
their coalition based on (14.78). As a result of this optimization, the delay of every peer
i in coalition S is given by τi (P

∗
S) in (14.77), with P∗

S denoting the solution of (14.78).
Nonetheless, although minimizing the social cost is an attractive approach, in several

scenarios the social optimum and the individual incentives of the peers might not be
aligned, i.e., optimizing the social cost for a coalition does not guarantee a better indi-
vidual delay for every peer involved in the coalition. Hence, there is a need to devise
cooperative strategies that allow each peer to autonomously form coalitions such as in
Fig. 14.1 while taking into account two conflicting objectives: (i) improving its indi-
vidual delay through cooperation, and (ii) distributing its download requests inside the
coalition so as to minimize the overall social cost for the network, based on (14.78).

14.4.2 File sharing as a coalitional game in partition form

By inspecting Fig. 14.1, we can see that the objective of the problem is to study coop-
erative strategies and the formation of coalitions. For this, we can use the framework of
coalitional games that was developed in Chapter 7.

For this purpose, denoting by B the set of all partitions of N and by φi (S ,Π) the
payoff to any peer i in coalition S ∈ Π within a partition Π ∈B of N , we define the
coalitional value as follows:

V (S ,Π) = {φ(S ,Π) ∈RS |∀i ∈ S ,φi (S ,Π) =−τi (P
∗
S)}, (14.79)

where τi (P
∗
S) is given by (14.77), with P∗

S the solution of (14.78) for coalition S
and the minus sign being inserted for convenience, in order to turn the problem into
a maximization problem.
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Thedelay τi (PS) in (14.77) depends, through its second term, not only on the download
request distribution inside S , but also on the distribution outside S through the seed, so it
depends on the partition Π (for notational convenience, this dependence is dropped from
τi (P

∗
S)). Therefore, we can see that the value in (14.79) is in partition form because of the

dependence on the entire partition and not only on the considered coalition. Moreover,
we note that in (14.79) we have a singleton set that assigns to every coalition a vector of
payoffs and not a single value. Therefore, we have a game with non-transferable utility.
The fact that the utility for a peer depends on its delay, which is a non-transferable metric,
implies that one cannot define a utility that is transferable, i.e., that can be divided in any
way among the peers.

Hence, the peer-to-peer cooperative file-sharing problem is formulated as an (N ,V )
coalitional game in partition form with non-transferable utility, where the mapping V
is given in (14.79). As mentioned in Chapter 7, the partition-form class of coalitional
games is a framework that is more complex than the characteristic form, because of the
dependence of the value on the network partition. The main challenge of the formulated
P2P coalitional game in partition form is to construct algorithms for forming coalitions
such as those in Fig. 14.1. In essence, coalitional games in partition form are classified
as coalition-formation games as discussed in Chapter 7.

Prior to developing an algorithm to solve the studied P2P coalition-formation game,
we define the following concept:

definition 14.3 Given any peer i ∈ N , a preference relation, denoted by �i , is
defined as a complete, reflexive, and transitive binary relation over the set of all coali-
tion/partition pairs that peer i can be a member of, i.e., the set {(Sk ,Π)|Sk ⊆ N , i ∈
Sk , Sk ∈Π, Π ∈B}.

The concept of preference relation that we define here enables us to provide, for any
peer i ∈ N , a quantification of its benefit for every potential coalition that it can form.
Thus, the preference relation �i can be used to compare the peer’s preference between
any two coalitions S1 ⊆N , S1 ∈Π, and S2 ⊆N , S2 ∈Π′ such that i ∈ S1 and i ∈ S2 and
their respective partitions. This notion differs slightly from the concept of a preference
relation defined in Chapter 3 in the sense that the latter was defined for comparing
collections of coalitions (in characteristic form, although its extension to partition form
is straightforward) and not only single coalitions.

Thus, using the preference relation defined above, (S1,Π) �i (S2,Π′) implies that
peer i is better off working cooperatively in coalition S1 when Π is in place than being a
member of coalition S2 when Π′ is in place, or at least i prefers both coalition/partition
pairs equally (when the preference is strict, it is denoted by i ). Note that this preference
relation can be used to compare two coalitions in the same partition, or the same coalition
in two different partitions. For the peer-to-peer coalition-formation game, we propose
the following preference relation for any peer i ∈N :

(S1,Π)�i (S2,Π′)⇔ wi (S1,Π)≥ wi (S2,Π′), (14.80)
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where S1 ∈ Π, S2 ∈ Π′, with Π,Π′ ∈B, are any two coalitions that contain peer i , i.e.,
i ∈ S1 and i ∈ S2, and wi is a preference function defined for a peer i ∈N as follows:

wi (S ,Π) =

⎧⎪⎪⎨⎪⎪⎩
φi (S ,Π), if φj(S ,Π)≥ φj(S \ {i},Π),

∀j ∈ S \ {i}& S /∈ h(i) or (|S |= 1),

0, otherwise,

(14.81)

where φi (S ,Π) is given by (14.77)–(14.79) and represents the delay perceived by peer
i ∈ S when partition Π is in place, and h(i) is the history set of peer i that holds the
coalitions of size larger than 1 that i was a member of in the past, and had left.

The main idea behind the function wi is that a peer i assigns a preference equal to
its achieved payoff for any coalition/partition pair (S ,Π) as long as coalition S is either
a singleton coalition (i.e., peer i is acting non-cooperatively) or S is a coalition of size
larger than 1 which was not previously visited by i (not in h(i)), and where the joining of
peer i to coalitionS is not detrimental to any of the peers already inS \{i}. Otherwise, the
peer assigns a zero preference value to any coalition whose members’ payoffs decrease
because of the presence of i , since the members of such a coalition will refuse to have
peer i join the coalition. Also, peer i assigns a zero preference to any coalition it has
already visited and left because peer i has no incentive to revisit such a coalition (this
can be seen as a basic learning rule by which a peer has no incentive to revisit a coalition
that, eventually, ended up being detrimental).

14.4.3 Distributed algorithm for coalition formation

In forming coalitions, we can utilize a rule that can be followed individually by each
peer in the network based on the previously defined preference relation:

definition 14.4 (Change Rule) For a given partition Π = {S1, ... ,SM} of the set of
peersN , a peer i can decide to change its coalition, i.e., leave its current coalition Sm,
for some m ∈ {1, ... ,M}, and join another coalition Sk ∈Π∪{∅}, with Sk 	= Sm, if and
only if (Sk ∪ {i},Π′) i (Sm,Π), where Π′ = {Π \ {Sm,Sk}} ∪ {Sm \ {i},Sk ∪ {i}} is
the partition resulting from the change. This change rule is represented by {Sm,Sk}→
{Sm \ {i},Sk ∪{i}}, and Π→Π′.

Using this change rule, any peer can decide to leave its present coalition Sm ∈ Π
and join a new coalition Sk ∈ Π, forming a new partition Π′, as long as the new pair
(Sk ∪{i},Π′) is strictly preferred over (Sm,Π) through the preference relation defined
by (14.80) and (14.81). That is, a peer can move to a new coalition if it can strictly
improve its payoff without decreasing the payoff to any member of the new coalition,
i.e., given the consent of the new members as in (14.80). Furthermore, each time a peer
executes a change rule from its current coalition Sm ∈ Π, coalition Sm is stored in its
history set h(i) (if |Sm|> 1).

Consequently, as in [408], for coalition formation one can use Algorithm 14.2 which
consists of three main stages: peer discovery, coalition formation, and cooperative
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Algorithm 14.2 Peer-to-peer coalition-formation algorithm.
Initial state
The network is partitioned by Π0 = {S1, ... ,SM}. At the beginning of all time, the
network is non-cooperative; hence, Π0 =N .

Stage 1: Peer discovery
The seed announces the availability of resources sought by all peers.
Each peer in N attempts to download the content from the seed.
Using peer-discovery algorithms such as trackers [168, 74, 304], the
peers discover the presence of other peers at the seed.

Stage 2: Coalition formation
repeat

Each peer i ∈ N investigates potential change operations using the preference in
(14.80) by engaging in pairwise negotiations with existing coalitions in partition Π
(initially Π = Π0).

Once a change operation is found:
a) Peer i leaves its current coalition.
b) Peer i updates its history h(i), if needed.
c) Peer i joins the new coalition with the consent of its members.

until convergence to a Nash-stable partition
Stage 3: Cooperative download
The formed coalitions perform cooperative download from the seed
and their partners as discussed in Section 14.4.1.

download. During the first stage, as the seed announces the availability of the resources,
all interested peers attempt to download the content from the seed. Meanwhile, the peers
can use a tracker or other well-known peer-discovery algorithm such as in [74, 304, 168]
to learn of the presence of other peers downloading from the seed. Once peer discovery is
done, the peers engage in the coalition-formation stage. In this stage, each peer attempts
to estimate its payoff from changing its current coalition and joining another coalition (or
peer). Once a peer finds a potential change possibility (satisfying (14.80) and (14.81)),
it can make a distributed decision to break from its current coalition and join a new
coalition (the change rule guarantees that the new coalition accepts the joining of this
peer). In this stage, we consider that the peers make decisions in a certain random order
(dictated by who first requests to cooperate). The peers make their change decisions
based on an assessment, using (14.77) and (14.78), of the payoff given the current parti-
tion, and not on the long-term payoff. Such a strategy can be seen as a myopic strategy.
Following the convergence of the coalition-formation process, a partition Πf is in place
in the network for downloading the resources from the seed, which occurs in the last
stage of the algorithm.

The stability of the partition Πf can be studied using the following stability concept,
which is, in essence, related to the idea of a Nash equilibrium from non-cooperative
games:
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definition 14.5 A partition Π = {S1, ... ,SM} is Nash-stable if ∀i ∈N such that i ∈
Sm,Sm ∈ Π, (Sm,Π)�i (Sk ∪{i},Π′) for all Sk ∈ Π∪{∅} with Π′ = (Π \ {Sm,Sk}∪
{Sm \ {i},Sk ∪{i}}).

Hence, a partition Π is Nash-stable if no peer has an incentive to move from its
current coalition to another coalition in Π or to deviate and act alone. Given this notion,
the convergence of the peer-to-peer coalition-formation algorithm during the coalition-
formation stage is guaranteed, as shown in [408]:

theorem 14.6 Starting from any initial network partition Π0, the coalition-formation
stage of Algorithm 14.2 always converges to a final Nash-stable network partition
Πf ∈B.

The proof is, as shown in [408], mainly a result of two facts: (i) coalition formation
consists of a sequence of change rules based on (14.80) and (14.81), and (ii) the number
of partitions of the set N is finite (given by the Bell number).

14.4.4 Coalition formation in two-peer and N-peer networks

In order to gain further insight into the properties of the formulated coalition-formation
game, we start by studying the case of a network with two peers that seek to download
resources from a common seed at the time the resources are announced by the seed. For
this case, under certain conditions on the upload rate of the seed μs , the optimal social
cost–minimizing solution for the coalition S = {1,2}, if this coalition forms, can be
given by the following theorem:

theorem 14.7 Consider two peers seeking to download data from a common seed
and having respective download rates λ1, λ2, and upload rates μ1, μ2. In this scenario,
given λT = λ1 +λ2, whenever the seed’s upload rate μs > λT it satisfies

μs ≤
{

(
√

2+1)μ1 −μ2 +λT , if μ1 ≤ μ2 < (
√

2+1)μ1,
(
√

2+1)μ2 −μ1 +λT , if μ2 < μ1 ≤ (
√

2+1)μ2.
(14.82)

The optimal solution that minimizes the social cost for coalition S = {1,2}, if S forms,

is P∗
S =

[
p∗

10 p∗
20

p∗
12 p∗

21

]
, with

p∗
12 = 1− p∗

10 =
(
√

2− 2)(μ1 +μs −λT )+
√

2μ2

2λ1
, (14.83)

p∗
21 = 1− p∗

20 =
(
√

2− 2)(μ2 +μs −λT )+
√

2μ1

2λ2
. (14.84)

Proof The proof of this theorem follows from [408]. Consider the scenario in which two
peers, with respective download rates λ1, λ2, and load rates μ1, μ2, wish to download
resources from a common seed having an upload rate μs > λT , λT = λ1 + λ2. To
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analyze whether it is to their benefit to form coalition S = {1,2}, the peers need to find
the social cost–minimizing request rate distribution matrix P∗

S , as in (14.78). Denote
by x12 = p12λ1 the number of download requests directed by peer 1 to peer 2 and
x21 = p21λ2 its counterpart from peer 2 on peer 1. Thus, given the download delays
τ1(PS) and τ2(PS) of peers 1 and 2, respectively, as in (14.77), the total delay of the
coalition S (the dependence on PS dropped for simplicity) is

τS
total(PS) = τ1 + τ2 =

x12

4μ2(μ2− x12)
+

x21

4μ1(μ1− x21)
+ τs , (14.85)

with τs = λT −x12−x21
2μs (μs−(λT −x12−x21))

as in (14.75), with λs = (λ1− x12)+ (λ2− x21).
To find the optimal P∗

S using (14.78), the peers need to minimize τS
total(PS) given the

constraints

0≤ p12 <
μ2

λ1
, 0≤ p21 <

μ1

λ2
, p12 + p10 = 1, p21 + p20 = 1. (14.86)

Note that, since μs > λT , p10 and p20 always satisfy the constraints of (14.78). By

solving ∂τS
total(PS )
∂x12

= 0 and manipulating the resulting quadratic equation, we obtain,
using μs > λT , two roots for the equation

x ′
12 = (α+1)x21 +(α+1)(μs −λT )+ (α+2)μ2, (14.87)

where α =±
√

2. One can verify that with α =
√

2, and given μs > λT , (14.87) yields
x ′
12 > μ2, which is an infeasible solution since we must have x12 ≤ μ2. Hence, the only

possible solution is

x12 = (1−
√

2)x21 +(1−
√

2)(μs −λT )+ (2−
√

2)μ2. (14.88)

In a symmetric manner, by setting ∂τS
total(PS )
∂x21

= 0, we find

x21 = (1−
√

2)x12 +(1−
√

2)(μs −λT )+ (2−
√

2)μ1, (14.89)

so the optimal solution is the solution of the system (14.88) and (14.89), which satisfies
the constraints, and is given by

x∗
12 =

(
√

2− 2)
2

μ1 +

√
2

2
μ2 +

(
√

2− 2)
2

(μs −λT ), (14.90)

x∗
21 =

(
√

2− 2)
2

μ2 +

√
2

2
μ1 +

(
√

2− 2)
2

(μs −λT ). (14.91)

By substituting (14.90) and (14.91) in the constraints of (14.86) and through algebraic
manipulation while maintaining μs > λT , we find that the derived solution is feasible
whenever (14.82) is satisfied. Finally, given x∗

12 = p∗
12λ1, x∗

21 = p∗
21λ2, p∗

10 = 1− p∗
12,

and p∗
20 = 1− p∗

21, the optimal matrix P∗
S can be computed.
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Theorem 14.7 provides an analytical solution that the peers can use to compute their
optimal policy for download-request distribution, given that the seed’s upload rate sat-
isfies (14.82).1 Once the two peers compute the optimal divisions for the coalition
S = {1,2}, using (14.80) and (14.81) (as in the change rule), they would agree to
join into a single coalition S if at least one peer is better off in the cooperative case
without decreasing the payoff to the other peer, i.e., τ1(P

∗
S)≥ τnc with τ2(P

∗
S) > τnc or

τ1(P
∗
S) > τnc with τ2(P

∗
S)≥ τnc, where τnc is the non-cooperative delay as in (14.75).

As seen by (14.77), (14.83), and (14.84), for a given seed load μs > λ1 + λ2, the
decision of the two peers to join inherently depends on the characteristics of the peers,
i.e., their download and upload rates. For instance, from Theorem 14.7, it is interesting
to note that the optimal divisions p∗

12 and p∗
21 are linear functions of the upload rates

μ1, μ2, and μs . Furthermore, given a fixed upload rate for a peer, e.g., μ1, as the upload
rate μ2 of the other peer increases, the social cost–minimizing solution dictates that peer
1 leeches less and less on peer 2. In order to emphasize this aspect and show how the
upload rate of the peers affects their cooperative file-sharing policies (14.83) and (14.84),
we consider the following example:

Example 14.3 Consider two peers with, respectively, upload rates λ1 = 1.4 Mbps, λ2 =
1 Mbps, and download rates μ1 = 512 kbps, μ2 ∈ [256,850] kbps. We consider the case
when a server, acting as a seed, with an upload rate of μs = 2.5 Mbps, announces the
availability of resources that peers 1 and 2 seek to download. These parameters are
chosen such that, at all μ2, (14.82) is verified and both peers find it always beneficial
to form a single coalition as per the change rule and (14.80). For this scenario, we
are interested in the variation of the optimal policies of the peers, as in (14.83) and
(14.84), when coalition S = {1,2} forms and as μ2 changes. By inspecting (14.83),
we can see that, as the upload capability of peer 2 increases, peer 1 tends to put more
download requests on peer 2, while peer 2 decreases its download requests on peer 1.
For instance, while at μ2 = 256 kbps, peer 1 does not download any data from peer 2
as p∗

12 ≈ 0 as in (14.83) (but still benefits from cooperation arising from the reduced
load on the server from the cooperation of peer 2); at μ2 = 850 kbps, peer 1 downloads
up to p∗

12 = 30 percent of its data from peer 2. In contrast, the fraction of download of
peer 2 from peer 1 decreases from around p∗

21 = 25.8 percent at μ2 = 256 kbps down
to p∗

21 = 8.4 percent at μ2 = 850 kbps. Hence, as one of the peers leeches more on the
other, the optimal policy of the other peer dictates that it download more from the server
(which is less congested because of the cooperative behavior of the other peer) and less
from the other peer. Finally, by solving the system of equalities in (14.83) and (14.84),
we find that, at μ2 = 577.5 kbps, the optimal policy of both peers is to equally download
from each other, i.e., p∗

12 = p∗
21 = 16.3 percent.

1 Alternatively, in the case where (14.82) is not satisfied, the peers can always find their optimal download
distributions using classical optimization methods.
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Fig. 14.2 Average download delay per peer achieved by the coalition-formation algorithm and the
non-cooperative case as the number of peers N increases.

As N becomes larger than 2, finding closed-form analytical results becomes compli-
cated. However, in [408], simulations were used to assess the performance of coalition
formation in a peer-to-peer system. In Fig. 14.2, we show the average download delay
per peer as the number of peers downloading from the server N increases. We can see
that, as the number of peers N increases, the average delay for the non-cooperative
scheme increases because of the increased load on the server. In contrast, for coalition
formation, although the average delay starts by increasing slowly, at N = 10 peers this
average delay starts to slightly decrease with the number of peers N since the benefit
from cooperation grows because of (i) the presence of more peers to cooperate with,
and (ii) the growing need for cooperation with the increasing server load. Figure 14.2
demonstrates that the performance advantage of coalition formation increases with the
size N and can reach up to 99.6 percent (two orders of magnitude) improvement in the
average download delay per peer, relative to the non-cooperative case at N = 15 peers.

Figure 14.3 shows further statistics on the average and averagemaximumcoalition size
as N increases. In particular, this figure shows that when the upload rate μs of the server is
large relative to the total download rate of the peers, then no cooperation occurs, as shown
for the case of N = 2 peers. Furthermore, it shows that, using coalition formation, the
resulting partition is mainly composed of an average number of medium-sized coalitions
with the occasional emergence of large coalitions.
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Fig. 14.3 Average and average maximum coalition size achieved by the coalition formation algorithm as
the number of peers N increases.

Finally, the simulations in [408] also showed that, for a given peer-to-peer network,
coalition formation would maintain a performance advantage as the upload rate of the
server, μs , varies.

In summary, coalition-formation games in partition form constitute a suitable tool
for cooperation among a number of peers seeking to download content of interest from
a common seed at the time this seed announces the availability of the resources. By
engaging in coalition formation, the peers can take individual decisions to join or break
from a coalition while minimizing their average download delay. This approach admits
numerous extensions such as considering a cost for uploading, accounting for contribu-
tion levels, integrating non-cooperative solutions at the level of a coalition, and the use
of advanced solutions and algorithms for partition-form games.

14.5 Summary

In future communication networks such as Internet networks or peer-to-peer networks,
the presence of autonomous and independent nodes is ubiquitous. Ultimately, networks
having a centralized authority that controls the entire network will give way to distributed
and self-optimizing networks. To enable the nodes of such distributed networks to com-
municate efficiently, route data, or interact, there is a need for game-theoretic tools and
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frameworks. In particular, the use of game theory is strongly indicated by the increasing
demand for fair and robust algorithms to govern the operation of large-scale and decen-
tralized networks. In fact, as shown in this chapter, numerous challenging problems
such as flow control, routing, pricing, and file sharing admit interesting and insight-
ful solutions through game-theoretic techniques ranging from classical Nash games to
advanced Stackelberg and cooperative games. One can also envision emerging applica-
tions for game theory within Internet or communication networks such as in the areas
of security for large-scale networks, autonomous agent deployment in communication
networks, “Internet of things,” communication in smart-grid networks, and even military
networks.
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[416] W. Saad, Q. Zhu, T. Başar, Z. Han, and A. Hjørungnes. Hierarchical network-formation
games in the uplink of multi-hop wireless networks. In Proc. IEEE Global Com-
munications Conf. (GLOBECOM 2009), pages 1–6, Honolulu, HI, USA, December
2009.

[417] A. K. Sadek, K. J. R. Liu, and A. Ephremides. Cognitive multiple access via cooperation:
Protocol design and performance analysis. IEEE Trans. Inf. Theory, 53(10):3677–3696,
2007.

[418] A. K. Sadek, W. Su, and K. J. R. Liu. A class of cooperative communication protocols
for multi-node wireless networks. In Proc. IEEE Int. Workshop on Signal Processing
Advances in Wireless Commun. (SPAWC 2005), pages 560–564, New York, NY, USA,
June 2005.

[419] L. Samuelson. Evolutionary Games and Equilibrium Selection. MIT Press, January 1997.
[420] T. Sandholm, K. Larson, M. Andersson, O. Shehory, and F. Tohme. Coalition structure

generation with worst case guarantees. Artificial Intelligence, 111(1):209–238, 1999.
[421] W. H. Sandholm. Potential games with continuous player sets. J. Econ. Theory, 97(1):

81–108, 2001.
[422] S. Sanghavi and B. Hajek. Optimal Allocation of a Divisible Good to Strate-

gic Buyers. Technical report, University of Illinois at Urbana-Champaign, 2004.
http://ima.umn.edu/talks/workshops/3-8-13.2004/sanghavi/

sanghavi_hajek_divisible_good.pdf.
[423] S. Sankaranarayanan, P. Papadimitratos, A. Mishra, and S. Hershey. A bandwidth shar-

ing approach to improve licensed spectrum utilization. In Proc. 1st IEEE Int. Symp. on
New Frontiers in Dynamic Spectrum Access Networks (DySPAN 2005), pages 279–288,
Baltimore, MD, USA, November 2005.

[424] C. U. Saraydar, N. B. Mandayam, and D. J. Goodman. Pricing and power control in
a multicell wireless data network. IEEE J. Sel. Areas Commun., 19(10):1883–1892,
2001.

[425] C. U. Saraydar, N. B. Mandayam, and D. J. Goodman. Efficient power control via pricing
in wireless data networks. IEEE Trans. Commun., 50(2):291–303, 2002.

[426] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A measurement study of peer-to-peer file
sharing systems. In Proc. SPIE Multimedia Computing and Networking, San Jose, CA,
USA, January 2002.

[427] M. A. Satterthwaite. Strategy-proofness and arrow’s conditions: Existence and correspon-
dence theorems for voting procedures and social welfare functions. J. Econ. Theory,
10:187–217, 1975.

[428] A. Scaglione, D. L. Goeckel, and J. N. Laneman. Cooperative communications in mobile
ad hoc networks. IEEE Signal Processing Magazine, 23(5):18–29, 2006.

[429] R. Schoenen, R. Halfmann, and B. H. Walke. MAC performance of a 3GPP-LTE multi-
hop cellular network. In Proc. IEEE Int. Conf. on Communications (ICC 2008), pages
4819–4824, Beijing, China, May 2008.



524 References

[430] G. Scutari, S. Barbarossa, and D. P. Palomar. Potential games:Aframework for vector power
control problems with coupled constraints. In Proc. IEEE Intl. Conf. on Acoustics, Speech,
and Signal Processing, pages 241–244, Toulouse, France, May 2006.

[431] G. Scutari, D. P. Palomar, and S. Barbarossa. Optimal linear precoding strategies for wide-
band non-cooperative systems based on game theory and art I: Nash equilibria. IEEE Trans.
Signal Process., 56(3):1230–1249, 2008.

[432] A. Sendonaris, E. Erkip, and B. Aazhang. User cooperation diversity, part I: System
description. IEEE Trans. Commun., 51(11):1927–1938, 2003.

[433] A. Sendonaris, E. Erkip, andB.Aazhang.User cooperation diversity, part II: Implementation
aspects and performance analysis. IEEE Trans. on Commun., 51(11):1939–1948, 2003.

[434] S. Sengupta, S. Anand, K. Hong, and R. Chandramouli. On adversarial games in dynamic
spectrum access networking based covert timing channels. ACM Mobile Computing and
Commun. Review (MC2R): Special Issue on Cognitive Radio Technologies and Systems,
pages 96–107, 2009.

[435] S. Sengupta, R. Chandramouli, S. Brahma, and M. Chatterjee. A game theoretic frame-
work for distributed self-coexistence among IEEE 802.22 networks. In Proc. IEEE
Global Communications Conf. (GLOBECOM 2008), pages 1–6, New Orleans, LA, USA,
November–December 2008.

[436] S. Sengupta and M. Chatterjee. Synchronous and Asynchronous Auction Models for
Dynamic Spectrum Access. In Distributed Computing and Networking. Proceedings
of the 8th International Conference (ICDCN 2006), Guwahati, India, December 2006,
pages 558–569. Springer, 2006.

[437] S. Sengupta and M. Chatterjee. Sequential and concurrent auction mechanisms for dynamic
spectrum access. In Proc. Int. Conf. on Cognitive Radio Oriented Wireless Networks and
Commun. (CrownCom 2007), pages 448–455, Orlando, FL, USA, August 2007.

[438] S. Sengupta and M. Chatterjee. Designing auction mechanisms for dynamic spec-
trum access. ACM/Springer Mobile Networks and Applications (MONET): Special issue
on Cognitive Radio Oriented Wireless Networks and Communications, 13(5):498–515,
2008.

[439] A. Sfairopoulou, B. Bellalta, and C. Macian. How to tune VoIP codec selection in WLANs?
IEEE Comm. Lett., 12(8):551–553, 2008.

[440] S. Shafiee and S. Ulukus. Achievable rates in Gaussian MISO channels with secrecy con-
straints. In Proc. IEEE Int. Symp. on Information Theory, pages 2466–2470, Nice, France,
June 2007.

[441] S. Shafiee and S. Ulukus. Mutual information games in multi-user channels with correlated
jamming. IEEE Trans. Inf. Theory, 55(10):4598–4607, 2009.

[442] S. Shakkottai, E.Altman, andA. Kumar. Multihoming of users to access points in WLANs:
A population game perspective. IEEE J. Sel. Areas Commun., 25(6):1207–1215, 2007.

[443] S. Shakkottai and R. Srikant. Economics of network pricing with multiple isps. IEEE/ACM
Trans. Networking, 14(6):1233–1245, 2006.

[444] S. Shakkottai, R. Srikant, A. Ozdaglar, and D. Acemoglu. The price of simplicity. IEEE J.
Sel. Areas Commun., 26(7):1269–1276, 2008.

[445] J. Shamma and G. Arslan. Unified convergence proofs of continuous-time fictitious play.
IEEE Trans. Autom. Control, 49(7):1137–1142, 2004.

[446] S. N. Shankar, C. Chou, K. Challapali, and S. Mangold. Spectrum agile radio: Capacity and
QoS implications of dynamic spectrum assignment. In Proc. IEEE Global Communications
Conf. (GLOBECOM 2005), pages 2510–2516, St. Louis, MO, USA, December 2005.



References 525

[447] L. Shapley and M. Shubik. The assignment game, I: The core. Int. J. Game Theory,
1:111–130, 1972.

[448] L. S. Shapley. Stochastic games. Proc. Natl. Acad. Sci., USA, 39:1095–1100, 1953.
[449] A. Shawish, X. Jiang, P. Ho, and S. Horiguchi. Wireless access point voice capacity anal-

ysis and enhancement based on clients’ spatial distribution. IEEE Trans. Veh. Technol.,
58(5):2597–2603, 2009.
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