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Abstract—Spectrum sensing is a fundamental component in a
cognitive radio. In this paper, we propose new sensing methods
based on the eigenvalues of the covariance matrix of signals
received at the secondary users. In particular, two sensing
algorithms are suggested, one is based on the ratio of the
maximum eigenvalue to minimum eigenvalue; the other is based
on the ratio of the average eigenvalue to minimum eigenvalue.
Using some latest random matrix theories (RMT), we quantify
the distributions of these ratios and derive the probabilities
of false alarm and probabilities of detection for the proposed
algorithms. We also find the thresholds of the methods for a given
probability of false alarm. The proposed methods overcome the
noise uncertainty problem, and can even perform better than the
ideal energy detection when the signals to be detected are highly
correlated. The methods can be used for various signal detection
applications without requiring the knowledge of signal, channel
and noise power. Simulations based on randomly generated
signals, wireless microphone signals and captured ATSC DTV
signals are presented to verify the effectiveness of the proposed
methods.

Index Terms—Signal detection, spectrum sensing, sensing algo-
rithm, cognitive radio, random matrix, eigenvalues, IEEE 802.22
wireless regional area networks (WRAN).

I. INTRODUCTION

A “Cognitive Radio" senses the spectral environment
over a wide range of frequency bands and exploits

the temporally unoccupied bands for opportunistic wireless
transmissions [1]–[3]. Since a cognitive radio operates as a
secondary user which does not have primary rights to any pre-
assigned frequency bands, it is necessary for it to dynamically
detect the presence of primary users. In December 2003,
the FCC issued a Notice of Proposed Rule Making that
identifies cognitive radio as the candidate for implementing
negotiated/opportunistic spectrum sharing [4]. In response to
this, in 2004, the IEEE formed the 802.22 Working Group
to develop a standard for wireless regional area networks
(WRAN) based on cognitive radio technology [5]. WRAN
systems will operate on unused VHF/UHF bands that are
originally allocated for TV broadcasting services and other
services such as wireless microphone, which are called pri-
mary users. In order to avoid interfering with the primary
services, a WRAN system is required to periodically detect if
there are active primary users around that region.
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As discussed above, spectrum sensing is a fundamental
component in a cognitive radio. There are however several fac-
tors which make the sensing problem difficult to solve. First,
the signal-to-noise ratio (SNR) of the primary users received
at the secondary receivers may be very low. For example, in
WRAN, the target detection SNR level at worst case is −20dB.
Secondly, fading and time dispersion of the wireless channel
may complicate the sensing problem. In particular, fading
will cause the received signal power fluctuating dramatically,
while unknown time dispersed channel will cause coherent
detection unreliable [6]–[8]. Thirdly, the noise/interference
level changes with time which results in noise uncertainty [6],
[9], [10]. There are two types of noise uncertainty: receiver
device noise uncertainty and environment noise uncertainty.
The sources of receiver device noise uncertainty include [6],
[10]: (a) non-linearity of components; and (b) thermal noise
in components, which is non-uniform and time-varying. The
environment noise uncertainty may be caused by transmissions
of other users, including near-by unintentional transmissions
and far-away intentional transmissions. Because of the noise
uncertainty, in practice, it is very difficult to obtain the accurate
noise power.

There have been several sensing algorithms including the
energy detection [6], [9]–[12], the matched filtering [6]–[8],
[12] and cyclostationary detection [13]–[16], each having
different operational requirements, advantages and disadvan-
tages. For example, cyclostationary detection requires the
knowledge of cyclic frequencies of the primary users, and
matched filtering needs to know the waveforms and channels
of the primary users. On the other hand, energy detection
does not need any information of the signal to be detected
and is robust to unknown dispersive channel. However, energy
detection relies on the knowledge of accurate noise power, and
inaccurate estimation of the noise power leads to SNR wall
and high probability of false alarm [9], [10], [17]. Thus energy
detection is vulnerable to the noise uncertainty [6], [7], [9],
[10]. Finally, while energy detection is optimal for detecting
independent and identically distributed (iid) signal [12], it is
not optimal for detecting correlated signal, which is the case
for most practical applications.

To overcome the shortcomings of energy detection, in this
paper, we propose new methods based on the eigenvalues
of the covariance matrix of the received signal. It is shown
that the ratio of the maximum or average eigenvalue to the
minimum eigenvalue can be used to detect the the presence
of the signal. Based on some latest random matrix theories
(RMT) [18]–[21], we quantify the distributions of these ratios
and find the detection thresholds for the proposed detection
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algorithms. The probability of false alarm and probability of
detection are also derived by using the RMT. The proposed
methods overcome the noise uncertainty problem and can
even perform better than energy detection when the signals
to be detected are highly correlated. The methods can be used
for various signal detection applications without knowledge
of the signal, the channel and noise power. Furthermore,
different from matched filtering, the proposed methods do
not require accurate synchronization. Simulations based on
randomly generated signals, wireless microphone signals and
captured digital television (DTV) signals are carried out to
verify the effectiveness of the proposed methods.

The rest of the paper is organized as follows. In Section
II, the system model and some background information are
provided. The sensing algorithms are presented in Section III.
Section IV gives theoretical analysis and finds thresholds for
the algorithms based on the RMT. Simulation results based on
randomly generated signals, wireless microphone signals and
captured DTV signals are given in Section V. Also some open
questions are presented in this section. Conclusions are drawn
in Section VI. A pre-whitening technique is given in Appendix
A for processing narrowband noise. Finally, a proof is given
in Appendix B for the equivalence of average eigenvalue and
signal power.

Some notations used in the paper are listed as follows:
superscripts T and † stand for transpose and Hermitian
(transpose-conjugate), respectively. Iq is the identity matrix
of order q.

II. SYSTEM MODEL AND BACKGROUND

Let xc(t) = sc(t) + ηc(t) be the continuous-time received
signal, where sc(t) is the possible primary user’s signal and
ηc(t) is the noise. ηc(t) is assumed to be a stationary process
satisfying E(ηc(t)) = 0, E(η2

c (t)) = σ2
η and E(ηc(t)ηc(t +

τ)) = 0 for any τ �= 0. Assume that we are interested in the
frequency band with central frequency fc and bandwidth W .
We sample the received signal at a sampling rate fs, where
fs ≥ W . Let Ts = 1/fs be the sampling period. For notation
simplicity, we define x(n) � xc(nTs), s̄(n) � sc(nTs) and
η(n) � ηc(nTs). There are two hypothesizes: H0, signal does
not exist; and H1, signal exists. The received signal samples
under the two hypothesizes are given respectively as follows
[6]–[8]:

H0 : x(n) = η(n), (1)

H1 : x(n) = s̄(n) + η(n), (2)

where s̄(n) is the received signal samples including the effects
of path loss, multipath fading and time dispersion, and η(n)
is the received white noise assumed to be iid, and with mean
zero and variance σ2

η. Note that s̄(n) can be the superposition
of signals from multiple primary users. It is assumed that noise
and signal are uncorrelated. The spectrum sensing or signal
detection problem is to determine if the signal exists or not,
based on the received samples x(n).

Note: In above, we have assumed that the noise samples
are white. In practice, if the received samples are the filtered
outputs, the corresponding noise samples may be correlated.
However, the correlation among the noise samples is only

related to the receiving filter. Thus the noise correlation matrix
can be found based on the receiving filter, and pre-whitening
techniques can then be used to whiten the noise samples. The
details of a pre-whitening method are given in Appendix A.

Now we consider two special cases of the signal model.
(i) Digital modulated and over-sampled signal. Let s(n) be

the modulated digital source signal and denote the symbol
duration as T0. The discrete signal is filtered and transmitted
through the communication channel [22]–[24]. The resultant
signal (excluding receive noise) is given as [22]–[24]

sc(t) =
∞∑

k=−∞
s(k)h(t − kT0), (3)

where h(t) encompasses the effects of the transmission filter,
channel response, and receiver filter. Assume that h(t) has
finite support within [0, Tu]. Assume that the received signal
is over-sampled by a factor M , that is, the sampling period is
Ts = T0/M . Define

xi(n) = x((nM + i − 1)Ts),
hi(n) = h((nM + i − 1)Ts),
ηi(n) = ηc((nM + i − 1)Ts), (4)

n = 0, 1, · · · ; i = 1, 2, · · · , M.

We have

xi(n) =
N∑

k=0

hi(k)s(n − k) + ηi(n), (5)

where N = �Tu/T0�. This is a typical single input multiple
output (SIMO) system in communications. If there are multi-
ple source signals, the received signal turns out to be

xi(n) =
P∑

j=1

Nij∑
k=0

hij(k)sj(n − k) + ηi(n), (6)

where P is the number of source signals, hij(k) is the
channel response from source signal j, and Nij is the order
of channel hij(k). This is a typical multiple input multiple
output (MIMO) system in communications.

(ii) Multiple-receiver model. The model (6) is also ap-
plicable to multiple-receiver case where xi(n) becomes the
received signal at receiver i. The difference between the over-
sampled model and multiple-receiver model lies in the channel
property. For over-sampled model, the channels hij(k)’s (for
different i) are induced by the same channel hj(t). Hence, they
are usually correlated. However, for multiple receiver model,
the channel hij(k) (for different i) can be independent or
correlated, depending on the antenna separation. Conceptually,
the over-sampled and multiple-receiver models can be treated
as the same.

Model (2) can be treated as a special case of model (6) with
M = P = 1 and Nij = 0, and s(n) replaced by s̄(n). For
simplicity, in the following, we only consider model (6). Note
that the methods are directly applicable to model (2) with
M = P = 1 (later the simulation for wireless microphone
is based on this model).
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Energy detection is a basic sensing method [6], [9], [11],
[12]. Let T (Ns) be the average power of the received signals,
that is,

T (Ns) =
1

MNs

M∑
i=1

Ns−1∑
n=0

|xi(n)|2, (7)

where Ns is the number of samples. The energy detection
simply compares T (Ns) with the noise power to decide the
signal existence. Accurate knowledge on the noise power is
therefore the key to the success of the method. Unfortunately,
in practice, the noise uncertainty always presents. Due to the
noise uncertainty [6], [9], [10], the estimated noise power may
be different from the actual noise power. Let the estimated
noise power be σ̂2

η = ασ2
η where α is called the noise

uncertainty factor. We define the noise uncertainty bound (in
dB) as

B = sup{10 log10 α}. (8)

It is assumed that α (in dB) is evenly distributed in an interval
[−B, B] [6], [17]. In practice, the noise uncertainty bound of
receiving device is normally 1 to 2 dB [6]. The environment
noise uncertainty can be much higher due to the existence of
interference [6]. When there is noise uncertainty, the energy
detection is not an effective method [6], [9], [10], [17] due
to the existence of SNR wall and/or high probability of false
alarm.

III. EIGENVALUE BASED DETECTIONS

Let Nj
def= max

i
(Nij). Zero-padding hij(k) if necessary,

and defining

x(n) def= [x1(n), x2(n), · · · , xM (n)]T , (9)

hj(n) def= [h1j(n), h2j(n), · · · , hMj(n)]T , (10)

η(n) def= [η1(n), η2(n), · · · , ηM (n)]T , (11)

we can express (6) into a vector form as

x(n) =
P∑

j=1

Nj∑
k=0

hj(k)sj(n− k) + η(n), n = 0, 1, · · · . (12)

Considering L (called “smoothing factor") consecutive outputs
and defining

x̂(n)
def
= [xT (n),xT (n − 1), · · · ,xT (n − L + 1)]T ,

η̂(n)
def
= [ηT (n), ηT (n − 1), · · · , ηT (n − L + 1)]T ,

ŝ(n)
def
= [s1(n), s1(n − 1), · · · , s1(n − N1 − L + 1), · · · ,

sP (n), sP (n − 1), · · · , sP (n − NP − L + 1)]T , (13)

we get

x̂(n) = Hŝ(n) + η̂(n), (14)

where H is a ML× (N +PL) (N
def=

P∑
j=1

Nj) matrix defined

as

H
def
= [H1, H2, · · · , HP ], (15)

Hj
def
=

⎡
⎢⎣

hj(0) · · · · · · hj(Nj) · · · 0

. . .
. . .

0 · · · hj(0) · · · · · · hj(Nj)

⎤
⎥⎦ . (16)

Note that the dimension of Hj is ML × (Nj + L).

Define the statistical covariance matrices of the signals and
noise as

Rx = E(x̂(n)x̂†(n)), (17)

Rs = E(̂s(n)̂s†(n)), (18)

Rη = E(η̂(n)η̂†(n)). (19)

We can verify that

Rx = HRsH
† + σ2

ηIML, (20)

where σ2
η is the variance of the noise, and IML is the identity

matrix of order ML.

A. The algorithms

In practice, we only have finite number of samples. Hence,
we can only obtain the sample covariance matrix other than
the statistic covariance matrix. Based on the sample covariance
matrix, we propose two detection methods as follows.

Algorithm 1: Maximum-minimum eigenvalue (MME) de-
tection

Step 1. Compute the sample covariance matrix of the
received signal

Rx(Ns)
def=

1
Ns

L−2+Ns∑
n=L−1

x̂(n)x̂†(n), (21)

where Ns is the number of collected samples.
Step 2. Obtain the maximum and minimum eigenvalue of

the matrix Rx(Ns), that is, λmax and λmin.
Step 3. Decision: if λmax/λmin > γ1, signal exists (“yes"

decision); otherwise, signal does not exist (“no" decision),
where γ1 > 1 is a threshold, and will be given in the next
section.

Algorithm 2: Energy with minimum eigenvalue (EME) de-
tection

Step 1. The same as that in Algorithm 1.
Step 2. Compute the average power of the received signal

T (Ns) (defined in (7)), and the minimum eigenvalue λmin of
the matrix Rx(Ns).

Step 3. Decision: if T (Ns)/λmin > γ2, signal exists (“yes"
decision); otherwise, signal does not exist (“no" decision),
where γ2 > 1 is a threshold, and will be given in the next
section.

The difference between conventional energy detection and
EME is as follows: energy detection compares the signal
energy to the noise power, which needs to be estimated
in advance, while EME compares the signal energy to the
minimum eigenvalue of the sample covariance matrix, which
is computed from the received signal only.

Remark: Similar to energy detection, both MME and
EME only use the received signal samples for detections,
and no information on the transmitted signal and channel is
needed. Such methods can be called blind detection methods.
The major advantage of the proposed methods over energy
detection is as follows: energy detection needs the noise power
for decision while the proposed methods do not need.
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B. Theoretical analysis

Let the eigenvalues of Rx and HRsH
† be λ1 ≥ λ2 ≥ · · · ≥

λML and ρ1 ≥ ρ2 ≥ · · · ≥ ρML, respectively. Obviously,
λn = ρn + σ2

η. When there is no signal, that is, ŝ(n) = 0
(then Rs = 0), we have λ1 = λ2 = · · · = λML = σ2

η. Hence,
λ1/λML = 1. When there is a signal, if ρ1 > ρML, we
have λ1/λML > 1. Hence, we can detect if signal exists by
checking the ratio λ1/λML. This is the mathematical ground
for the MME. Obviously, ρ1 = ρML if and only if HRsH

† =
λIML, where λ is a positive number. From the definition of the
matrix H and Rs, it is highly probable that HRsH

† �= λIML.
In fact, the worst case is Rs = σ2

sI, that is, the source signal
samples are iid. At this case, HRsH

† = σ2
sHH

†. Obviously,
σ2

sHH
† = λIML if and only if all the rows of H have the same

power and they are co-orthogonal. This is only possible when
Nj = 0, j = 1, · · · , P and M = 1, that is, the source signal
samples are iid, all the channels are flat-fading and there is
only one receiver.

If the smoothing factor L is sufficiently large, L > N/(M−
P ), the matrix H is tall. Hence

ρn = 0, λn = σ2
η, n = N + PL + 1, · · · , ML. (22)

At this case, λ1 = ρ1 + σ2
η > λML = σ2

η , and furthermore
the minimum eigenvalue actually gives an estimation of the
noise power. This property has been successfully used in
system identification [23], [25] and direction of arrival (DOA)
estimation (for example, see [21], page 656).

In practice, the number of source signals (P ) and the chan-
nel orders usually are unknown, and therefore it is difficult
to choose L such that L > N/(M − P ). Moreover, to
reduce complexity, we may only choose a small smoothing
factor L (may not satisfy L > N/(M − P )). At this case,
if there is signal, it is possible that ρML �= 0. However,
as explained above, it is almost sure that ρ1 > ρML and
therefore, λ1/λML > 1. Hence, we can almost always detect
the signal existence by checking the ratio λ1/λML.

Let Δ be the average of all the eigenvalues of Rx. For the
same reason shown above, when there is no signal, Δ/λML =
1, and when there is signal, Δ/λML > 1. Hence, we can also
detect if signal exists by checking the ratio Δ/λML.

The average eigenvalue Δ is almost the same as the signal
energy (see the proof in the appendix B). Hence, we can use
the ratio of the signal energy to the minimum eigenvalue for
detection, which is the mathematical ground for the EME.

IV. PERFORMANCE ANALYSIS AND DETECTION

THRESHOLD

At finite number of samples, the sample covariance matrix
Rx(Ns) may be well away from the statistical covariance
matrices Rx. The eigenvalue distribution of Rx(Ns) becomes
very complicated [18]–[21]. This makes the choice of the
threshold very difficult. In this section, we will use some latest
random matrix theories to set the threshold and obtain the
probability of detection.

Let Pd be the probability of detection, that is, at hypothesis
H1, the probability of the algorithm having detected the signal.
Let Pfa be the probability of false alarm, that is, at H0, the
probability of the algorithm having detected the signal. Since

we have no information on the signal (actually we even do not
know if there is signal or not), it is difficult to set the threshold
based on the Pd. Hence, usually we choose the threshold based
on the Pfa. The threshold is therefore not related to signal
property and SNR.

A. Probability of false alarm and threshold

When there is no signal, Rx(Ns) turns to Rη(Ns), the
sample covariance matrix of the noise defined as,

Rη(Ns) =
1

Ns

L−2+Ns∑
n=L−1

η̂(n)η̂†(n). (23)

Rη(Ns) is nearly a Wishart random matrix [18]. The study
of the spectral (eigenvalue distributions) of a random matrix
is a very hot topic in recent years in mathematics as well
as communication and physics. The joint probability density
function (PDF) of ordered eigenvalues of a Wishart random
matrix has been known for many years [18]. However, since
the expression of the PDF is very complicated, no closed form
expression has been found for the marginal PDF of ordered
eigenvalues. Recently, I. M. Johnstone and K. Johansson have
found the distribution of the largest eigenvalue [19], [20] as
described in the following theorem.

Theorem 1. Assume that the noise is real. Let A(Ns) =
Ns

σ2
η
Rη(Ns), μ = (

√
Ns − 1 +

√
ML)2 and ν = (

√
Ns − 1 +√

ML)( 1√
Ns−1

+ 1√
ML

)1/3. Assume that lim
Ns→∞

ML
Ns

= y (0 <

y < 1). Then λmax(A(Ns))−μ
ν converges (with probability one)

to the Tracy-Widom distribution of order 1 (W1) [26], [27].
Bai and Yin found the limit of the smallest eigenvalue [21]

as described in the following theorem.
Theorem 2. Assume that lim

Ns→∞
ML
Ns

= y (0 < y < 1).

Then lim
Ns→∞

λmin = σ2
η(1 −√

y)2 (with probability one).

Based on the theorems, when Ns is large, the largest and
smallest eigenvalues of Rη(Ns) tend to deterministic values
σ2

η

Ns
(
√

Ns +
√

ML)2 and
σ2

η

Ns
(
√

Ns − √
ML)2, respectively,

that is, they are centered at the values, respectively, and have
variances tend to zeros. Furthermore, Theorem 1 gives the
distribution of the largest eigenvalue for large Ns.

The Tracy-Widom distributions were found by Tracy and
Widom (1996) as the limiting law of the largest eigenvalue
of certain random matrices [26], [27]. Let F1 be the cumu-
lative distribution function (CDF) (sometimes simply called
distribution function) of the Tracy-Widom distribution of order
1. There is no closed form expression for the distribution
function. The distribution function is defined as

F1(t) = exp
(
−1

2

∫ ∞

t

(
q(u) + (u − t)q2(u)

)
du

)
, (24)

where q(u) is the solution of the nonlinear Painlevé II differ-
ential equation

q′′(u) = uq(u) + 2q3(u). (25)

It is generally difficult to evaluate it. Fortunately, there have
been tables for the functions [19] and Matlab codes to compute
it [28]. Table I gives the values of F1 at some points. It can
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TABLE I
NUMERICAL TABLE FOR THE TRACY-WIDOM DISTRIBUTION OF ORDER 1

t -3.90 -3.18 -2.78 -1.91 -1.27 -0.59 0.45 0.98 2.02
F1(t) 0.01 0.05 0.10 0.30 0.50 0.70 0.90 0.95 0.99

also be used to compute the inverse F−1
1 at certain points. For

example, F−1
1 (0.9) = 0.45, F−1

1 (0.95) = 0.98.
Using the theories, we are ready to analyze the algorithms.

The probability of false alarm of the MME detection is

Pfa = P (λmax > γ1λmin)

= P

(
σ2

η

Ns
λmax(A(Ns)) > γ1λmin

)

≈ P
(
λmax(A(Ns)) > γ1(

√
Ns −

√
ML)2

)

= P

(
λmax(A(Ns)) − μ

ν
>

γ1(
√

Ns −
√

ML)2 − μ

ν

)

= 1 − F1

(
γ1(

√
Ns −

√
ML)2 − μ

ν

)
. (26)

This leads to

F1

(
γ1(

√
Ns −

√
ML)2 − μ

ν

)
= 1 − Pfa, (27)

or, equivalently,

γ1(
√

Ns −
√

ML)2 − μ

ν
= F−1

1 (1 − Pfa). (28)

From the definitions of μ and ν, we finally obtain the threshold

γ1 =
(
√

Ns +
√

ML)2

(
√

Ns −
√

ML)2

·
(

1 +
(
√

Ns +
√

ML)−2/3

(NsML)1/6
F−1

1 (1 − Pfa)

)
. (29)

Please note that, unlike energy detection, here the
threshold is not related to noise power. The threshold can
be pre-computed based only on Ns, L and Pfa, irrespective
of signal and noise.

Now we analyze the EME method. When there is no signal,
it can be verified that the average energy defined in (7) satisfies

E(T (Ns)) = σ2
η, Var(T (Ns)) =

2σ4
η

MNs
. (30)

T (Ns) is the average of MNs statistically independent and
identically distributed random variables. Since Ns is large, the
central limit theorem tells us that T (Ns) can be approximated

by the Gaussian distribution with mean σ2
η and variance

2σ4
η

MNs
.

Hence the probability of false alarm is

Pfa = P (T (Ns) > γ2λmin)

≈ P

(
T (Ns) > γ2

σ2
η

Ns
(
√

Ns −
√

ML)2
)

= P

⎛
⎝T (Ns) − σ2

η√
2

MNs
σ2

η

>
γ2

√
M(

√
Ns −√

ML)2 −√
MNs√

2Ns

⎞
⎠

≈ Q

(
γ2

√
M(

√
Ns −

√
ML)2 −√

MNs√
2Ns

)
(31)

where

Q(t) =
1√
2π

∫ +∞

t

e−u2/2du. (32)

Hence, we should choose the threshold such that

γ2

√
M(

√
Ns −

√
ML)2 −√

MNs√
2Ns

= Q−1(Pfa). (33)

That is,

γ2 =
Q−1(Pfa)

√
2Ns +

√
MNs√

M(
√

Ns −
√

ML)2

=
(√

2
MNs

Q−1(Pfa) + 1
)

Ns

(
√

Ns −
√

ML)2
. (34)

Similar to MME, here the threshold is not related to
noise power. The threshold can be pre-computed based
only on Ns, L and Pfa, irrespective of signal and noise.

B. Probability of detection

When there is a signal, the sample covariance matrix
Rx(Ns) is no longer a Wishart matrix. Up to now, the
distributions of its eigenvalues are unknown. Hence, it is
very difficult (mathematically intractable) to obtain a precisely
closed form formula for the Pd. In this subsection, we try to
approximate it and devise some empirical formulae.

Since Ns is usually very large, we have the approximation

Rx(Ns) ≈ HRsH
† + Rη(Ns). (35)

Note that Rη(Ns) approximates to σ2
ηIML. Hence, we have

λmax(Rx(Ns)) ≈ ρ1 + λmax(Rη(Ns)), (36)

λmin(Rx(Ns)) ≈ ρML + σ2
η. (37)

For the MME method, the Pd is

Pd = P (λmax(Rx(Ns)) > γ1λmin(Rx(Ns)))
≈ P

(
λmax(Rη(Ns)) > γ1(ρML + σ2

η) − ρ1

)
= 1 − F1

(
γ1Ns + Ns(γ1ρML − ρ1)/σ2

η − μ

ν

)
.(38)

From the formula, the Pd is related to the number of samples
Ns, and the maximum and minimum eigenvalues of the signal
covariance matrix (including channel effect).

Both the Pd and threshold γ1 in (29) are related to L
and Ns. For fixed Ns and Pfa, the optimal L is the one
which maximizes the Pd. Based on (29) and (38), we can
find that optimal L. However, the optimal L does not have
high practical value because it is related to signal property
which is usually unknown at the receiver.

As proved in Appendix B,

T (Ns) =
Tr(Rx(Ns))

ML

≈ Tr(HRsH
†)

ML
+

Tr(Rη(Ns))
ML

, (39)
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where Tr(·) means the trace of a matrix. As discussed in
the last subsection, the minimum eigenvalue of Rη(Ns) is

approximately
σ2

η

Ns
(
√

Ns − √
ML)2. Hence, equation (37) is

an over-estimation for the minimum eigenvalue of Rx(Ns).
On the other hand, ρML+

σ2
η

Ns
(
√

Ns−
√

ML)2 is obviously an
under-estimation. Therefore, we choose an estimation between
the two as

λmin(Rx(Ns)) ≈ ρML +
σ2

η√
Ns

(
√

Ns −
√

ML).(40)

Based on (39) and (40), we obtain an approximation for the
Pd of EME as equation (41) on the next page.

From the formula, the Pd is related to the number of
samples Ns, and the average and minimum eigenvalues of
the signal covariance matrix (including channel effect).

Similarly, for fixed Ns and Pfa, we can find the optimal L
based on (34) and (41).

C. Computational complexity

The major complexity of MME and EME comes from
two parts: computation of the covariance matrix (equation
(21)) and the eigenvalue decomposition of the covariance
matrix. For the first part, noticing that the covariance matrix
is a block Toeplitz matrix and Hermitian, we only needs to
evaluate its first block row. Hence M2LNs multiplications
and M2L(Ns − 1) additions are needed. For the second
part, generally O((ML)3) multiplications and additions are
sufficient. The total complexity (multiplications and additions,
respectively) are therefore as follows:

M2LNs + O(M3L3). (42)

Since Ns is usually much larger than L, the first part is
dominate.

The energy detection needs MNs multiplications and
M(Ns − 1) additions. Hence, the complexity of the proposed
methods is about ML times that of the energy detection.

V. SIMULATIONS AND DISCUSSIONS

In the following, we will give some simulation results using
the randomly generated signals, wireless microphone signals
[29] and the captured DTV signals [30].

A. Simulations

We define the SNR as the ratio of the average received
signal power to the average noise power

SNR def=
E(||x(n) − η(n)||2)

E(||η(n)||2) . (43)

We require the probability of false alarm Pfa � 0.1. Then
the threshold is found based on the formulae in Section
IV. For comparison, we also simulate the energy detection
with or without noise uncertainty for the same system. The
threshold for the energy detection is given in [6]. At noise
uncertainty case, the threshold is always set based on the
assumed/estimated noise power, while the real noise power
is varying in each Monte Carlo realization to a certain degree
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Fig. 1. Probability of detection: M = 4, P = 2, L = 8.

as specified by the noise uncertainty factor defined in Section
II.

(1) Multiple-receiver signal detection. We consider a 2-
input 4-receiver system (M = 4, P = 2) as defined by (6).
The channel orders are N1 = N2 = 9 (10 taps). The channel
taps are random numbers with Gaussian distribution. All the
results are averaged over 1000 Monte Carlo realizations (for
each realization, random channel, random noise and random
BPSK inputs are generated).

For fixed L = 8 and Ns = 100000, the Pd for the MME
and energy detection (with or without noise uncertainty) are
shown in Figure 1, where and in the following “EG-x dB”
means the energy detection with noise uncertainty bound being
x-dB. If the noise variance is exactly known (B = 0), the
energy detection is very good (note that it is optimal for
iid signal). The proposed methods are slightly worse than
the energy detection with ideal noise power. However, as
discussed in [6], [9], [31], noise uncertainty is always present.
As shown in the figure, if there is 0.5 to 2 dB noise uncertainty,
the detection probability of the energy detection is much
worse than that of the proposed methods. From the figure,
we see that the theoretical formulae in Section IV.B for the
Pd (the curves with mark“MME-theo" and “EME-theo") are
somewhat conservative.

The Pfa is shown in Table II (second row) (note that Pfa

is not related to the SNR because there is no signal). The Pfa

for the proposed methods and the energy detection without
noise uncertainty almost meet the requirement (Pfa � 0.1),
but the Pfa for the energy detection with noise uncertainty
far exceeds the limit. This means that the energy detection is
very unreliable in practical situations with noise uncertainty.

To test the impact of the number of samples, we fix
the SNR at -20dB and vary the number of samples from
40000 to 180000. Figure 2 and Figure 3 show the Pd and
Pfa, respectively. It is seen that the Pd of the proposed
algorithms and the energy detection without noise uncertainty
increases with the number of samples, while that of the energy
detection with noise uncertainty almost does not change (this
phenomenon is also verified in [10], [17]). This means that
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Pd = P (T (Ns) > γ2λmin(Rx(Ns))) (41)

≈ P

(
Tr(Rη(Ns))

ML

> γ2

(
ρML +

σ2
η√
Ns

(
√

Ns −
√

ML)

)
− Tr(HRsH

†)
ML

)

= Q

⎛
⎜⎝γ2

(
ρML + σ2

η√
Ns

(
√

Ns −
√

ML)
)
− Tr(HRsH

†)
ML − σ2

η√
2

MNs
σ2

η

⎞
⎟⎠ .

TABLE II
PROBABILITY OF FALSE ALARM AT DIFFERENT PARAMETERS

method EG-2 dB EG-1.5 dB EG-1 dB EG-0.5 dB EG-0dB EME MME
Pfa (M = 4, P = 2, L = 8, Ns = 105) 0.499 0.499 0.498 0.495 0.104 0.065 0.103

Pfa (M = P = 1, L = 10, Ns = 5 × 104) 0.497 0.496 0.488 0.470 0.107 0.019 0.074
Pfa (M = 2, P = 1, L = 8, Ns = 5 × 104) 0.499 0.499 0.497 0.486 0.097 0.028 0.072
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Fig. 2. Probability of detection: M = 4, P = 2, L = 8, SNR=−20 dB.

the noise uncertainty problem cannot be solved by increasing
the number of samples. For the Pfa, all the algorithms do not
change much with varying number of samples.

To test the impact of the smoothing factor, we fix the SNR
at -20dB, Ns = 130000 and vary the smoothing factor L
from 4 to 14. Figure 4 shows the results for both Pd and Pfa.
It is seen that both Pd and Pfa of the proposed algorithms
slightly increase with L, but will reach a ceiling at some L.
Even if L � N/(M − P ) = 9 , the methods still works well
(much better than the energy detection with noise uncertainty).
Noting that smaller L means lower complexity, in practice, we
can choose a relatively small L. However, it is very difficult
to choose the best L because it is related to signal property
(unknown). Note that the Pd and Pfa for the energy detection
do not change with L.

(2) Wireless microphone signal detection. FM modulated
analog wireless microphone is widely used in USA and
elsewhere. It operates on TV bands and typically occupies
about 200KHz (or less) bandwidth [29]. The detection of the
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Fig. 3. Probability of false alarm: M = 4, P = 2, L = 8.

signal is one of the major challenge in 802.22 WRAN [5]. In
this simulation, wireless microphone soft speaker signal [29] at
central frequency fc = 200 MHz is used. The sampling rate at
the receiver is 6 MHz (the same as the TV bandwidth in USA).
The smoothing factor is chosen as L = 10. Simulation results
are shown in Figure 5 and Table II (third row for Pfa). From
the figure and the table, we see that all the claims above are
also valid here. Furthermore, here the MME is even better than
the ideal energy detection. The reason is that here the signal
samples are highly correlated and therefore energy detection
is not optimal.

The Receiver Operating Characteristics (ROC) curve is
shown in Figure 6, where the sample size is Ns = 50000.
Note that we need slightly adjusting the thresholds to keep all
the methods having the same Pfa values (especially for the
energy detection with noise uncertainty, the threshold based
on the predicted noise power and theoretical formula is very
inaccurate to obtain the target Pfa as shown in Table II). It
shows that MME is the best among all the methods. The EME
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Ns = 130000.
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Fig. 5. Probability of detection for wireless microphone signal.

is worse than the ideal energy detection but better than the
energy detection with noise uncertainty 0.5 dB.

(3) Captured DTV signal detection. Here we test the
algorithms based on the captured ATSC DTV signals [30].
The real DTV signals (field measurements) are collected at
Washington D.C. and New York, USA, respectively. The
sampling rate of the vestigial sideband (VSB) DTV signal
is 10.762 MHz [32]. The sampling rate at the receiver is
two times that rate (oversampling factor is 2). The multipath
channel and the SNR of the received signal are unknown.
In order to use the signals for simulating the algorithms at
very low SNR, we need to add white noises to obtain various
SNR levels [31]. In the simulations, the smoothing factor is
chosen as L = 8. The number of samples used for each test
is 2Ns = 100000 (corresponding to 4.65 ms sampling time).
The results are averaged over 1000 tests (for different tests,
different data samples and noise samples are used). Figure 7
gives the Pd based on the DTV signal file WAS-003/27/01 (at
Washington D.C., the receiver is outside and 48.41 miles from
the DTV station) [30]. Figure 8 gives the results based on the
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Fig. 6. ROC curve for wireless microphone signal: Ns = 50000.
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Fig. 7. Probability of detection for DTV signal WAS-003/27/01.

DTV signal file NYC/205/44/01 (at New York, the receiver is
indoor and 2 miles from the DTV station) [30]. Note that each
DTV signal file contains data samples in 25 seconds. The Pfa

are shown in Table II (fourth row). The simulation results here
are similar to those for the randomly generated signals.

In summary, all the simulations show that the proposed
methods work well without using the information of signal,
channel and noise power. The MME is always better than
the EME (yet theoretical proof has not been found). The
energy detection are not reliable (low probability of detection
and high probability of false alarm) when there is noise
uncertainty.

B. Discussions

Theoretic analysis of the proposed methods highly relies on
the random matrix theory, which is currently one of the hot
topic in mathematics as well as in physics and communication.
We hope advancement on the random matrix theory can solve
the following open problems.
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Fig. 8. Probability of detection for DTV signal NYC/205/44/01.

(1) Accurate and analytic expression for the Pd at given
threshold. This requires the eigenvalue distribution of matrix
Rx(Ns) when both signal and noise are present. At this case,
Rx(Ns) is no longer a Wishart random matrix.

(2) When there is no signal, the exact solution of
P (λmax/λmin > γ). This is the Pfa. That is, we need to
find the distribution of λmax/λmin. As we know, this is still
an unsolved problem. In this paper, we have approximated this
probability through replacing λmin by a deterministic number.

(3) Strictly speaking, the sample covariance matrix of the
noise Rη(Ns) is not a Wishart random matrix, because the
η̂(n) for different n are correlated. Although the correlations
are weak, the eigenvalue distribution may be affected. Is it
possible to obtain a more accurate eigenvalue distribution by
using this fact?

VI. CONCLUSIONS

Methods based on the eigenvalues of the sample covariance
matrix of the received signal have been proposed. Latest ran-
dom matrix theories have been used to set the thresholds and
obtain the probability of detection. The methods can be used
for various signal detection applications without knowledge
of signal, channel and noise power. Simulations based on
randomly generated signals, wireless microphone signals and
captured DTV signals have been done to verify the methods.

APPENDIX A

At the receiving end, usually the received signal is filtered
by a narrowband filter. Therefore, the noise embedded in the
received signal is also filtered. Let η(n) be the noise samples
before the filter, which are assumed to be independent and
identically distributed (i.i.d). Let f(k), k = 0, 1, · · · , K , be
the filter. After filtering, the noise samples turns to

η̃(n) =
K∑

k=0

f(k)η(n − k), n = 0, 1, · · · . (44)

Consider L consecutive outputs and define

η̃(n) = [η̃(n), · · · , η̃(n − L + 1)]T . (45)

The statistical covariance matrix of the filtered noise becomes

R̃η = E(η̃(n)η̃(n)†) = σ2
ηHH†, (46)

where H is a L × (L + K) matrix defined as

H =

⎡
⎢⎢⎢⎣

f(0) f(1) · · · f(K) 0 · · · 0
0 f(0) · · · f(K − 1) f(K) · · · 0

. . .
. . .

0 0 · · · f(0) f(1) · · · f(K)

⎤
⎥⎥⎥⎦ . (47)

Let G = HH†. If analog filter or both analog and digital
filters are used, the matrix G should be defined based on those
filter properties. Note that G is a positive definite Hermitian
matrix. It can be decomposed to G = Q2, where Q is also a
positive definite Hermitian matrix. Hence, we can transform
the statistical covariance matrix into

Q−1R̃ηQ−1 = σ2
ηIL. (48)

Note that Q is only related to the filter. This means that
we can always transform the statistical covariance matrix Rx

in (17) (by using a matrix obtained from the filter) such that
equation (20) holds when the noise has been passed through a
narrowband filter. Furthermore, since Q is not related to signal
and noise, we can pre-compute its inverse Q−1 and store it
for later usage.

APPENDIX B

It is known that the summation of the eigenvalues of a
matrix is the trace of the matrix. Let Δ(Ns) be the average
of the eigenvalues of Rx(Ns). Then

Δ(Ns) =
1

ML
Tr(Rx(Ns))

=
1

MLNs

L−2+Ns∑
n=L−1

x̂†(n)x̂(n). (49)

After some mathematical manipulations, we obtain

Δ(Ns) =
1

MLNs

M∑
i=1

L−2+Ns∑
m=0

δ(m)|xi(m)|2, (50)

where

δ(m) =

⎧⎨
⎩

m + 1, 0 ≤ m ≤ L − 2
L, L − 1 ≤ m ≤ Ns − 1
Ns + L − m − 1, Ns ≤ m ≤ Ns + L − 2

(51)

Since Ns is usually much larger than L, we have

Δ(Ns) ≈ 1
MNs

M∑
i=1

Ns−1∑
m=0

|xi(m)|2 = T (Ns). (52)
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