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Classical Detection Theory

2.1 INTRODUCTION

In this chapter, we develop in detail the basic ideas of classical detection theory. The first
step is to define the various terms.

The basic components of a simple decision theory problem are shown in Figure 2.1.

The first 1s a source that generates an output. In the simplest case, this output is one
of two choices. We refer to them as hypotheses and label them Hp and H) in the two-
choice case. More generally, the output might be one of M hypotheses, which we label
Hy, Hy, ..., Hy_ ). Some typical source mechanisms are the following:

1. A digital communication system transmits information by sending ones and zeros.
When “one™ i1s sent, we call it H;, and when “zero” is sent, we call it Hj.

2. In aradar system, we look at a particular range and azimuth and try to decide whether
a target is present; H} corresponds to the presence of a target and Hj corresponds to
no target.

3. In a medical diagnosis problem, we examine an electrocardiogram. Here H; could
correspond to the patient having had a heart attack and Hj to the absence of one.

H,
> Probabilistic Observation
Source transition space
= i
Ho mechanism

Decision
rule

Y
Decision

Figure 2.1: Components of a decision theory problem.
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Figure 2.2: A simple decision problem: (a) model; (b) probability densities.

4. In a speaker classification problem we know the speaker is German, British, or Amer-
ican and either male or female. There are six possible hypotheses.

In the cases of interest to us, we do not know which hypothesis is true.

The second component of the problem is a probabilistic transition mechanism; the third
1s an observation space. The transition mechanism can be viewed as a device that knows
which hypothesis is true. Based on this knowledge, it generates a point in the observation
space according to some probability law. A simple example to illustrate these ideas is given
in Figure 2.2. When H; is true, the source generates +1. When Hj is true, the source
generates —1. An independent discrete random variable n whose probability density is
shown in Figure 2.2b is added to the source output. The sum of the source output and n is
the observed variable r.

Under the two hypotheses, we have

Hy:r=1-+n,
Hy:r= —1+n. (2.1)
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Figure 2.3: A two-dimensional problem: (@) model; () probability density.

The probability densities of r on the two hypotheses are shown in Figure 2.2b. The
observation space is one dimensional, for any output can be plotted on a line.

A related example is shown in Figure 2.3a in which the source generates two numbers
in sequence. A random variable n; is added to the first number and an independent random
variable n» is added to the second.

Thus,

Hyvey =T+ ny;

Fs =14 na, (2.2)
Hy:ri=-14n,,
rz —=:—1 <k na.

The joint probability density of r; and r» when H) is true is shown in Figure 2.3b. The
observation space is two dimensional and any observation can be represented as a point in
a plane.

In this chapter, we confine our discussion to problems in which the observation space
is finite dimensional. In other words, the observations consist of a set of N numbers and
can be represented as a point in an N-dimensional space. This is the class of problem that
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20 Detection, Estimation, and Modulation Theory

statisticians have treated for many years. For this reason, we refer to it as the classical
decision problem.

The fourth component of the detection problem is a decision rule. After observing the
outcome 1in the observation space we shall guess which hypothesis was true, and to ac-
complish this we develop a decision rule that assigns each point to one of the hypotheses.
Suitable choices for decision rules will depend on several factors that we discuss in detail
later. Our study will demonstrate how these four components fit together to form the total
decision (or hypothesis testing) problem.

Organization. This chapter is organized in the following sections. In Section 2.2, we
study the binary hypothesis testing problem. Then in Section 2.3, we extend the results to
the case of M hypotheses.

In many cases of practical importance, we can develop the “optimum”™ decision rule
according to certain criteria but cannot evaluate how well the test will work. In Section 2.4,
we develop bounds and approximate expressions for the performance that will be necessary
for some of the later chapters. In Section 2.5, we discuss Monte Carlo simulation and
introduce a simulation technique using importance sampling. Finally, in Section 2.6, we
summarize our results and indicate some of the topics that we have omitted.

2.2 SIMPLE BINARY HYPOTHESIS TESTS

As a starting point, we consider the decision problem in which each of two source outputs
corresponds to a hypothesis. Each hypothesis maps into a point in the observation space. We
assume that the observation space corresponds to a set of N observations:ry,r2,r3, ..., I'y.
Thus, each set can be thought of as a point in an N-dimensional space and can be denoted
by a vector r:

r=| |- (2.3)

The probabilistic transition mechanism generates points in accord with the two known
conditional probability densities py g, (R|H,) and pHHn{RIH{.), The object is to use this
information to develop a suitable decision rule. To do this, we must look at various criteria
for making decisions.

2.2.1 Decision Criteria

In the binary hypothesis problem, we know that either Hy or H, is true. We shall confine our
discussion to decision rules that are required to make a choice. (An alternative procedure
would be to allow decision rules with three outputs: (a) Hy true, (b) H true, (c) do not
know.) Thus, each time the experiment is conducted one of four things can happen:

1. Hj true; choose Hy.
2. Hy true; choose H).
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Classical Detection Theory 21

3. Hj true; choose H).
4. H, true; choose Hj.

The first and third alternatives correspond to correct choices. The second and fourth
alternatives correspond to errors. The purpose of a decision criterion is to attach some
relative importance to the four possible courses of action. It might be expected that the
method of processing the received data (r) would depend on the decision criterion we
select. In this section, we show that for the two criteria of most interest, the Bayes and the
Neyman—Pearson, the operations on r are identical.

Bayes Criterion. A Bayes test is based on two assumptions. The first is that the source
outputs are governed by probability assignments, which are denoted by P, and F;. respec-
tively, and called the a priori probabilities. These probabilities represent the observer’s
information about the source before the experiment is conducted. The second assumption
is that a cost is assigned to each possible course of action. We denote the cost for the four
courses of action as Cyg. Cig. C11, Cpy. respectively. The first subscript indicates the hy-
pothesis chosen and the second, the hypothesis that is true. Each time the experiment is
conducted, a certain cost will be incurred. We should like to design our decision rule so that
on the average the cost will be as small as possible. To do this, we first write an expression
for the expected value of the cost. We see that there are two probabilities that we must
average over; the a priori probability and the probability that a particular course of action
will be taken. Denoting the expected value of the cost as the risk R, we have

R = Cy Py Pr(say Hy| Hy is true)
+ ChoFp Pr(say H||Hy is true)
+ C11 Py Pr(say H||H) is true)
+ Cg1 Py Pr(say Hg|H) is true).

(2.4)

Because we have assumed that the decision rule must say either H; or Hy, we can view
it as a rule for dividing the total observation space Z into two parts, Zp and Z, as shown in
Figure 2.4. Whenever an observation falls in Zy we say Hj, and whenever an observation
falls in Z| we say H).

say Hy

2 Observation space

R \a

R

Source

"ﬂrl Hy {R1Hﬂj

Say H,y

Figure 2.4: Decision regions.
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22 Detection, Estimation, and Modulation Theory

We can now write the expression for the risk in terms of the transition probabilities and
the decision regions:

R =Cu Fﬂf Priay(RIHp)dR

Zn

+ CmFu[ Prisy (R Hy)dR

+C11thﬂr|H](RlH]}dR

£
+ Cioi £ f PriH, (R|H)dR. (2.3)
£

For an N-dimensional observation space, the integrals in (2.5) are N-fold integrals. We
shall assume throughout our work that the cost of a wrong decision is higher than the cost
of a correct decision. In other words,

Cio = Coo,
Cm = If:]]. {26}

Now, to find the Bayes test we must choose the decision regions Zg and Z in such a
manner that the risk will be minimized. Because we require that a decision be made, this

means that we must assign each point R in the observation space Z to Zg or Z.
Thus,

Z=Zo+Z = ZyUZ,. (2.7)

Rewriting (2.5), we have

RZFGCUG/PHHU{RIHDHR+PnCm f Prity (R Hp)dR

Zj) £—2y
+ PlCmanH.(RIHleR-F P\Cy f pria, (RIH AR, (2.8)
2 2—Zn
Observing that
fﬂrmﬂfﬂlHﬂ}dR:fﬂriﬂl{mHl}dR: L, (2.9)
7z 7

(2.8) reduces to

R—=PoCro+PICi1+ f [(P] (Cor—C11)peiar, (RIHY)) —( Po(Cig —Cm)prmnmwﬂ)}} dR.
)
(2.10)

The first two terms represent the fixed cost. The integral represents the cost controlled
by those points R that we assign to Z;. The assumption in (2.6) implies that the two terms
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inside the brackets are positive. Therefore, all values of R where the second term is larger
than the first should be included in Z; because they contribute a negative amount to the
integral. Similarly, all values of R where the first term is larger than the second should be
excluded from Z; (assigned to Z) because they would contribute a positive amount to the
integral. Values of R where the two terms are equal have no effect on the cost and may be
assigned arbitrarily. We shall assume that these points are assigned to H| and ignore them
in our subsequent discussion. Thus, the decision regions are defined by the statement: If

Pi(Coi — Ci)prs (RIH)) = Po(Cro — Coo)prim, (R| Ho), (2.11)

assign R to Z; and consequently say that H) is true. Otherwise assign R to Z; and say H)
1S true.
Alternatively, we may write

pria, (RIHyp) ";_} Po(Cro — Coo)
Priy(RIHp) g, P1(Cpp — C1y)

(2.12)

The quantity on the left-hand side is called the likelihood ratio and denoted by A(R)

o pl‘|H|(RIH]}
AR) 2 -
= Pria,(RIHp)

(2.13)

Because it is the ratio of two functions of a random variable, it is a random variable. We
see that regardless of the dimensionality of R, A(R) is a one-dimensional variable.
The quantity on the right-hand side of (2.12) is the threshold of the test and is denoted

by n:
Py(Cyp—C
n & 0lC1o 00) (2.14)
Pi(Co1 — Cyy)
Thus, Bayes criterion leads us to a likelihood ratio test (LRT)

H

AR) = 7. (2.15)
Hy

We see that all the data processing is involved in computing A(R) and is not affected
by a priori probabilities or cost assignments. This invariance of the data processing is of
considerable practical importance. Frequently, the costs and a priori probabilities are merely
educated guesses. The result in (2.15) enables us to build the entire processor and leave
as a variable threshold to accommodate changes in our estimates of a priori probabilities
and costs.

Because the natural logarithm is a monotonic function. and both sides of (2.15) are
positive, an equivalent test is

H
In A(R) gl In 1. (2.16)
Hi

Two forms of a processor to implement a likelihood ratio test are shown in Figure 2.5.
Before proceeding to other criteria, we consider three simple examples.
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Figure 2.5: Likelihood ratio processors.

Example 2.1. We assume that under H, the source output is a constant voltage m. Under Hy, the
source output is zero. Before observation, the voltage is corrupted by an additive noise. We sample
the output waveform each second and obtain N samples. Each noise sample is a zero-mean Gaussian
random variable n with variance o°. The noise samples at various instants are independent random
variables and are independent of the source output. Looking at Figure 2.6, we see that the observations

under the two hypotheses are

Hy:ri=m+tn: 1i=1,2,...;N,
Haoh—=—n., 1=1.2 ... .49 (2.17)
and
1 X?
ﬁai;{xj — —=CXP| — 5 ] (_EIE}
2mo 20°
because the noise samples are Gaussian.
Source
i n(t) N samples
- = N,
ri r4
p m My |
Hy dr3
- + = Sampler
(1) P
Ho T
' -
Processor <

Figure 2.6: Model for Example 2.1.
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The probability density of r; under each hypothesis follows easily:

R.|H)) (R : ( (= '”]2) (2.19)
o ; = p,.(R; —m) = exp| — :
Pria | P, ) N P 752
and
1 R?
Fr;lHn{Rr'lH[]} = P!J..'{RJ;J = —— CXp| — ~ 2 ; {22{}]
o 20

Because the n; are statistically independent, the joint probability density of the r; (or, equivalently,
of the vector r) is simply the product of the individual probability densities. Thus,

P (RIHy ) = ll[ le_ng exp ( — (R'-,;:”l) (2.21)
=]
and
N "
Pria (RIHp) = H \{,21_ exp ( — ;’;)- (2.22)
i—=] o 2

Substituting into (2.13), we have

AR) = = . (2.23)

After canceling common terms and taking the logarithm, we have

N 2
m Nm
In A(R)= — R — : 2.24
nAR) = — ;ﬁ = (2.24)
Thus, the likelihood ratio test is
] N 2 o
2N R— 2 >y (2.25)
2 =1 20° Hy
or, equivalently,
L Hig? Nm
Z R; = Inp4+ — =¥ (2.26)
= Hy M 2
We see that the processor simply adds the observations and compares them with a threshold. [ ]

In this example, the only way the data appear in the likelihood ratio test is in a sum.
This is an example of a sufficient statistic, which we denote by [(R) (or simply [ when the
argument is obvious). It is just a function of the received data, which has the property that
A(R) can be written as a function of [. In other words, when making a decision, knowing
the value of the sufficient statistic is just as good as knowing R. In Example 2.1,/ is a linear
function of the R;. A case in which this is not true is illustrated in Example 2.2.

Example 2.2. Several different physical situations lead to the mathematical model of interest in
this example. The observations consist of a set of N values: ry, s, r1, ..., ry. Under both hypotheses,
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26 Detection, Estimation, and Modulation Theory

the r; are independent, identically distributed, zero-mean Gaussian random variables. Under H;, each
. 3 . ® . '

r; has a variance o;. Under Hy, each r; has a variance a;;. Because the variables are independent, the

joint density is simply the product of the individual densities. Therefore

N ]
1 R:
pria (RIHp) = —EKP(— —r) (2.27)
o g W/ 2 ECF]E
and
J'|I'I .I RE
Prn, (RIHp) = — exp( - —’) (2.28)
L E 2oy 204

Substituting (2.27) and (2.28) into (2.13) and taking the logarithm, we have
TR L. oo H
T . [ L
5 (ET_ET GE) E R:+ Nln = Inn. (2.29)

= i=1 01 Hy

In this case. the sufficient statistic is the sum of the squares of the observations

N
IR)=) R, (2.30)
and an equivalent test for c:rf' > u:?rg is
H 2 2. 2
I(R) = %(lnn—h’ln @)éy (2.31)
Hy 91 — 9 o

% 7 . . . ' . .
For a7 = aj. the inequality is reversed because we are multiplying by a negative number:

Hy 2gig? a

- T 0 2

IHR) = WL],, NIn— —1In :-3) = o7 < al. (2.32)
H 05 — 07 aj

These two examples have emphasized Gaussian variables. In the next example, we con-
sider a different type of distribution.

Example 2.3. The Poisson distribution of events is encountered frequently as a model of shot noise
and other diverse phenomena (e.g.. [DR58c] or [BR60]). Each time the experiment is conducted. a
certain number of events occur. Our observation is just this number that ranges from () to co and obeys
a Poisson distribution on both hypotheses; that is,

R
(m1; ) -

n!

Prin events) = T "} ) W O il ] (2.33)

where m; is the parameter that specifies the average number of events:
Ei(n) = m;. (2.34)

[t is this parameter mi; that is different in the two hypotheses. Rewriting (2.33) to emphasize this point,
we have for the two Poisson distributions

(n )" _
H; : Pr(n events) = — € ST i | ) S (2.35)
n!
(mg)" _
Hy: Pr(n events) = — € e =Ly 2 e (2.36)
n!
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Then, the likelihood ratio test 1s

- E 2 S\ —mp) ‘:{1
Afn) = € =0 (2.37)
my Hy

or, equivalently,

Ailng+my —mg ,
n = . ifmy = my,
H, Inmy —Inmo

Ao lnn +m; — my
nz
g, Inm — Inmg

if mg = m. (2.38)

This example illustrates how the likelihood ratio test that we originally wrote in terms of prob-
ability densities can be simply adapted to accommodate observations that are discrete random
variables. |

Independent Distribution (ID) Model. In Examples 2.1 and 2.2, the components of the
vector I are statistically independent and have identical probability distributions. This 15
referred to as an IID (independent identical distribution) model. In Examples 2.1 and 2.2,
the probability densities are Gaussian but that is not necessary for an ID or IID model.

The likelihood ratio is given in (2.13). If the components are statistically independent
(but not necessarily identically distributed), then

N
Pryyn (Ri )
pmmmu_g Sl oS

mmmm_ﬁpm&ﬁﬂ
Fyl) /
i=1

AR) =

N
=] [ar. (2.39)
i=I

and the ID log-likelihood ratio is

N
In A(R) = Z In A:(R). (2.40)

=1

If the components have identical probability densities.

Pros,(RilH;) = priu,(Ri|H;) j=0,1, (2.41)

then (2.40) reduces to the IID log-likelihood ratio.

N
In A(R) = Z In A(R)), (2.42)
=1
where
e (R
InAR) 2 n PrisBilHD) (2.43)
Priag (R Hy)

is the marginal log-likelihood ratio. The log-likelihood ratio processor for the IID case is
shown in Figure 2.7.
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Ry.Ry.R,y, In A (Ry). In A (Ry)-- N o1 InA(R) fg Decision
—  » | InA(R) - Z ™ c:'“T] -~
i=] Hy
Figure 2.7: Likelihood ratio test for the IID model.
In Example 2.1, from (2.24)
i ity 2 (2.44)
n )= — - —- :
o2 202
In Example 2.2, from (2.29)
I e:rl2 2 r:r§ % - ﬂ‘%
In AR) = > L0 | R = =1n (21): (2.45)
2\ oyoi 2 o
We now consider an IID model where pr|Hj{r|HJ,-]; j =10, 1 are non-Gaussian.
Example 2.4. The observations under the two hypotheses are
H:r, =—%+n,—, i=1,2,....N,
Hy:r; =g + n;, =t s N. (2.46)

The noise n; 1s modeled as a zero-mean Generalized Gaussian random variable. The n; are statis-
tically independent random wvariables.
The Generalized Gaussian random variable family is defined as

BeL
prr{x} — EKP(_iEi ); —o0 < X < o0, {24?]

where o denotes a particular density in the family. b defines the spread of the density, and c normalizes
the density. Fora = 2, we have a Gaussian random variable. For o = 1, we have a Laplacian random
variable.

The parameter b and constant ¢ depend on the variance of the density.

(1 /a)
h=a ﬁ_ﬂ—‘,"ﬂ']’ (248}

¥

P B (2.49)
26T (1 /)

where I'(-) is the Gamma function.’

The probability densities fora = 1, 2, and 3, and o = | are shown in Figure 2.8. We see that as
o decreases the densities decay more slowly.’

"The Gamma function is defined as '(a) = JIDH'E x*~te=*dx. It can be computed in Matlab using the function gamma.
See Appendix A.
*Later. when we study clutter, we will see that these are referred to as heavy-tailed distributions.
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Figure 2.8: Probability densities; Generalized Gaussian random variable, ¢ = 1, 2, and 3.

The probability densities of the r; on the two hypotheses are

b =] s i (2.50)

Ri—m/2!" ,
P e ol . ]
b

Kol ,

= BN (2.51)

Peiy (R | Hy) =c exp (_

The marginal log-likelihood ratio 1s found by substituting (2.50) and (2.51) in (2.43),

( R, —m/j2 “)
cexp| — | ————

I8 AR = R, +::fz N
' exp(— ’T )
] Ml |@ ni | @
= 4+ —| —|R — — : )
e (!R’+z! !R‘ 2!) (2.32)

In Figure 2.9, we plot In A(R;) fora = 1,2, and 3. As o increases. the weighting of large values
of K; increases. |

The LRT processor in Figure 2.7 1s an important result because we can always find
In A(R;)asdefinedin (2.43). In addition, since In A(R;)is asingle variable-to-single variable
mapping, we can always find the probability density of the output of the first box. This step
will be important when we analyze the performance of the LRT.

We consider the IID model because it occurs frequently in practice. For the 1D case
when the components are statistically independent but have different probability densities,

we obtain the more general model that is given in (2.39) and (2.40).
We now return to our general discussion of Bayes tests. There are several special kinds

of Bayes test that are frequently used and that should be mentioned explicitly.
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%5 45 =1 A5 0 0.5 1 15 2
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Figure 2.9: InA(R;);e =1, 2, and 3.

If we assume that Cyy and Cy; are zero and Cy; = Cip = 1, the expression for the risk
in (2.8) reduces to

R = ngprmﬂ{Rng]dﬂ—l— F[fpr|Hl{R|H|]dR. (2.53)

Zy £y

We see that (2.53) is just the total probability of making an error. Therefore, for this cost
assignment the Bayes test is minimizing the total probability of error. The test is

Hp F
In A(R) = In e In Py — In(1 — Fy). (2.54)
g P

These processors are commonly referred to as minimum probability of error receivers. When

the two hypotheses are equally likely, the threshold is zero. This assumption is normally
true in digital communications systems.

We can also write the likelihood ratio test as

H)
Py pria (RIH) = Poprin,(R|Hp)

(2.55)
Hp
or
Py priw, (RIH)) ‘;j Popriny (R Hp) (2.56)
pr(R) Hy pr(R)
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The terms in (2.56) are the a posteriori probabilities of the two hypotheses,

H
Pr(H;|R) Efl Pr{ Hy|R). (2.57)
Hp

Therefore, a minimum probability of error test is computing a posteriori probabilities of
the two hypotheses and choosing the largest. It is frequently referred to as a maximum
a posteriori probability (MAP) test.

A second special case of interest arises when the a priori probabilities are unknown. To
investigate this case, we look at (2.8) again. We observe that once the decision regions Zj
and Z are chosen, the values of the integrals are determined. We denote these values in the
following manner:

Pr :f Prisy (R Hp)dR,

£

Py — f pry (RIHdR,
£

Py :f PriH, (RIH )R =1 — Pp. (2.58)
Ay

We see that these quantities are conditional probabilities. The subscripts are mnemonic
and chosen from the radar problem in which hypothesis H; corresponds to the presence of
a target and hypothesis Hy corresponds to its absence. Pp is the probability of a false alarm
(i.e., we say the target is present when it is not); Pp is the probability of detection (i.e., we
say the target 1s present when it 1s); Py, 1s the probability of a miss (we say the target 1s
absent when it 1s present). Although we are interested in a much larger class of problems
than this notation implies, we shall use it for convenience.

For any choice of decision regions, the risk expression in (2.8) can be written in the
notation of (2.58):

R = PyCio + PiC11 + Pi(Co1t — C11) Py — Po(Cro — Coo)(1 — Pr). (2:39)
Because
Ph=1-P, (2.60)
(2.59) becomes

R(P1) = Coo(1 — Pp)+ CioPr + P1[(C11 — Coo) + (Cor — C11) Py — (Cip — Cop) Pr|.
(2.61)

Now, if all the costs and a priori probabilities are known, we can find a Bayes test.
In Figure 2.10a, we plot the Bayes risk, Rg(P)), as a function of P;. Observe that as P
changes the decision regions for the Bayes test change and therefore Pr and P,; change.

Now consider the sitnation in which a certain F; (say FP| = FE“) is assumed and the
corresponding Bayes test designed. We now fix the threshold and assume that P is allowed
to change. We denote the risk for this fixed threshold test as Rg(Py, P;). Because the
threshold is fixed, Pr and Py are fixed, and (2.61) is just a straight line. Because it is a
Bayes test for P| = Pf‘, it touches the R g( Py) curve at that point. Looking at (2.14), we
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Figure 2.10: Risk curves: (a) fixed risk versus typical Bayes risk; (5) maximum value of R at
P; = 0; (¢) maximum value of R at P; = 1; (d) maximum value of R interior to [0, 1].

see that the threshold changes continuously with P;. Therefore, whenever P| # Py, the
threshold in the Bayes test will be different. Because the Bayes test minimizes the risk,

Re(P{, P1) = Rg(FP). (2.62)

If A(R) is a continuous random variable with a probability distribution function that is
strictly monotonic, then changing n always changes the risk. Rz(P)) is strictly concave
downward and the inequality in (2.62) is strict. This case, which is one of the particular
interest to us, is illustrated in Figure 2.10a. We see that Rg( Py, P;) is tangent to Ry(P))
at P = F{. These curves demonstrate the effect of incorrect knowledge of the a priori
probabilities.

An interesting problem is encountered if we assume that the a priori probabilities are
chosen to make our performance as bad as possible. In other words, P is chosen to maximize
our risk Rg( Py, P1). Three possible examples are given in Figures 2.10b, 2.10¢, and 2.10d.
In Figure 2.10bh, the maximum of Rg(P;) occurs at P; = 0. To minimize the maximum
risk, we use a Bayes test designed assuming P; = 0. In Figure 2.10¢, the maximum of
Rg(Py) occurs at Py = 1. To minimize the maximum risk, we use a Bayes test designed
assuming P; = 1. In Figure 2.10d, the maximum occurs inside the interval [0, 1], and we
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choose ‘R ¢ to be the horizontal line. This implies that the coefficient of P in (2.61) must
be zero:

(Ci1 — Con) + (Cot — Cr1))Pay — (Crp — Coon) Pe = 0. (2.63)

A Bayes test designed to minimize the maximum possible risk is called a minimax test.
Equation (2.63) is referred to as the minimax equation and is useful whenever the maximum
of R.g(Py) is interior to the interval.

A special cost assignment that is frequently logical is

Coo=0Cp=0. (2.64)
(This guarantees the maximum is interior.)
Denoting,
Cor =Cupy,
Cio =CFr, (2.65)

the risk 1s,

R=CgrPr+Pi(CyPy— CpFr)
= PgCpPp + P1Cpy Py, (2.66)

and the minimax equation is
Cyu Py —=CrFr. (2.67)

Before continuing our discussion of likelihood ratio tests we shall discuss a second
criterion and prove that it also leads to a likelihood ratio test.

Neyman—Pearson Tests. In many physical situations, it is difficult to assign realistic costs
or a priori probabilities. A simple procedure to bypass this difficulty is to work with the
conditional probabilities Pr and Pp. In general, we should like to make Pr as small as
possible and FPp as large as possible. For most problems of practical importance, these
are conflicting objectives. An obvious criterion is to constrain one of the probabilities and
maximize (or minimize) the other. A specific statement of this criterion 1s the following:

Neyman—Pearson Criterion. Constrain Pr = o' < o and design a test to maximize Pp
(or minimize F,;) under this constraint.

The solution is obtained easily by using Lagrange multipliers. We construct the func-
tion f,

f=Py+MPr—a), (2.68)

or

f:/prlH](R|Hl)dR—|—}-. [p”HD{RIHn)dR—G' : (2.69)

vy A
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Clearly, if Pr = o', then minimizing f minimizes P,;. We rewrite (2.69) as

f=xr1—a)+ f [Pris, RIH)) — prisy(RIHp)] dR. (2.70)
Ay
Now, observe that for any positive value of A an LRT will minimize f. (A negative value
of A gives an LRT with the inequalities reversed.)

This follows directly, because to minimize f we assign a point R to Zy only when the
term in the bracket is negative. This is equivalent to the test

Pria (RIHy) P
Prisy (R Hp)

4., assign point to Zg or say Hy. (2.71)

The quantity on the left is just the likelihood ratio. Thus, f is minimized by the likelihood
ratio test

AR) = 4. (2.72)

To satisfy the constraint, we choose A so that Pr = a. If we denote the density of A when
Hy is true as p g, (A|Hp), then we require

o

Pr= f Pasg (Al Hp)dA = a'. (2.73)

Solving (2.73) for A gives the threshold. The value of A given by (2.73) will be nonnegative
because p 4 u, (A Hp) 1s zero for negative values of A. Observe that decreasing A is equivalent
to increasing Z |, the region where we say H;. Thus, Py increases as A decreases. Therefore,
we decrease A until we obtain the largest possible o' < a. In most cases of interest to us.
Pr is a continuous function of A and we have Pr = a. We shall assume this continuity in
all subsequent discussions. Under this assumption, the Neyman—Pearson criterion leads to
a likelihood ratio test. Later, we shall see the effect of the continuity assumption not being
valid.

Summary. In this section, we have developed two ideas of fundamental importance in
hypothesis testing. The first result is the demonstration that for a Bayes or a Neyman—
Pearson criterion the optimum test consists of processing the observation R to find the
likelihood ratio A(R) and then comparing A(R) to a threshold in order to make a decision.
Thus, regardless of the dimensionality of the observation space. the decision space is one
dimensional.

The second idea is that of a sufficient statistic [(R). The idea of a sufficient statistic
originated when we constructed the likelihood ratio and saw that it depended explicitly only
on [(R). If we actually construct A(R), and then recognize [(R), the notion of a sufficient
statistic is perhaps of secondary value. A more important case 1s when we can recognize
[(R) directly. An easy way to do this is to examine the geometric interpretation of a sufficient
statistic. We considered the observations ry, 2, ...,y as a point r in an N-dimensional
space, and one way to describe this point is to use these coordinates. When we choose a
sufficient statistic, we are simply describing the point in a coordinate system that is more
useful for the decision problem. We denote the first coordinate in this system by [, the
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sufficient statistic, and the remaining N — 1 coordinates which will not affect our decision
by the (N — 1)-dimensional vector y. Thus,

pf.}'|H| (L:- Yl H' ] !

AR) = AL, Y) = (2.74)
PryiHo (L, Y| Hy)
Now, the expression on the right can be written as
LIH}) py YL, H
AL Y) = Pua (LIHy) Pyy gy (Y 1) (2.75)

Pusy (L1Hy) pyy wy (YL, Hy)

If [ is a sufficient statistic, then A(R) must reduce to A(L). This implies that the second
terms in the numerator and denominator must be equal. In other words.

Py, Hy(YIL, Ho) = pyy,u (Y|L, Hy) (2.76)

because the density of y cannot depend on which hypothesis is true. We see that choosing a
sufficient statistic simply amounts to picking a coordinate system in which one coordinate
contains all the information necessary to making a decision. The other coordinates contain
no information and can be disregarded for the purpose of making a decision.

In Example 2.1, the new coordinate system could be obtained by a simple rotation. For
example, when N = 2,

]
L=— (R + Ry),

NG

I
Y =— (R] — R3). (2.77)

/3

In Example 2.2, the new coordinate system corresponded to changing to polar coordi-
nates. For N = 2,

L =R} + R3,
—] R

¥ =tan~ —- (2.78)
R

Notice that the vector y can be chosen in order to make the demonstration of the condition
in (2.76) as simple as possible. The only requirement is that the pair (/, y) must describe
any point in the observation space. We should also observe that the condition

Pyia (Y H) = pyia, (Y[ Hp), ()

does not imply (2.76) unless [ and y are independent under H; and Hy. Frequently, we
will choose y to obtain this independence and then use (2.79) to verify that [ is a sufficient
statistic.

In the examples considered so far, the sufficient statistic has been a scalar quantity, but
it may be multidimensional in general (see Problem 2.2.19).

2.2.2 Performance: Receiver Operating Characteristic

To complete our discussion of the simple binary problem, we must evaluate the performance
of the likelihood ratio test. For a Neyman—Pearson test, the values of Pr and Pp completely
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36 Detection, Estimation, and Modulation Theory

specify the test performance. Looking at (2.59), we see that the Bayes risk Ry follows
easily if Pr and P are known. Thus, we can concentrate our efforts on calculating Pr and
PD.
We begin by considering Example 2.1 in Section 2.2.1.

Example 2.5 (continuation of Example 2.1). From (2.25). we see that an equivalent test is

1
VNao

In.r
o ~ Nm

Y Riz——Inn+ - (2.80)
- Ho v Nm 2a

[(R) =

We have multiplied (2.25) by a/+/ Nm to normalize the next calculation. Under Hy, [ is obtained by
adding N independent zero-mean Gaussian variables with variance o and then dividing by +/No.
Theretore [ 15 N(0, 1).

Under Hy,lis N (v" Nm /o, 1). The probability densities on the two hypotheses are sketched in
Figure 2.11a. The threshold is also shown. Now, Pg is simply the integral of py g, (L|Hp) to the right
of the threshold.

Thus,

1 ,’*)
— exp | —— }dx, (2.81)
«,/Z:rr P( 2

o0
e |

(I ) jd 42

= e
A\Threshnld: —=—Inn+ =t 3
{et)
A A
Pp
= > L

(h)

Figure 2.11: Error probabilities: (a) Py calculation; (b) Pp calculation.
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where

N
gay i (2.82)
i

is the distance between the means of the two densities. The integral in (2.81) is called the complemen-
tary error function and is tabulated in many references (e.g., [AS64] or [GH62]). We use a modified
version of the standard definition that we denote as’

e (X) 2 f I ( ‘{2) d (2.83)
erfc = — exp| —— | dx. ;
i V2T 3 2
X
In this notation,
Inp d
Boocrarh gt Y 2.84
F Cric, ( d 2) { )

Similarly, Py, is the integral of pyg, (L|H,) to the right of the threshold, as shown in Figure 2.11b:

5 _ r | (x — d)? ;
n = JE cxXp —T ax

(In r)/d+d /2
oc I 2 | )
¥ R i
- f — exp (— —) dy = erfc, (— - _) ; (2.85)
7
(Inn)/d—d/2 JQH - d 2

In Figure 2.12a, we have plotted Pp versus Py for various values of d with 5 as the varying
parameter. Forn = 0, In n = —o00, and the processor always guesses H;. Thus, Pr = land P = 1. As
n increases, Fp and Pp decrease. When 1 = oo, the processor always guesses Hy and P = Pp = 0.

As we would expect from Figure 2.11, the performance increases monotonically with d. In Figure
2.12b. we have replotted the results to give Pp, versus d with Py as a parameter on the curves. For a
particular . we can obtain any point on the curve by choosing 5 appropriately (0, o).

The resultin Figure 2.12a is referred to as the receiver operating characteristic (ROC). It completely
describes the performance of the test as a function of the parameter of interest.

A special case that will be important when we look at communication systems is the case in which
we want to minimize the total probability of error

Pr(e) = PyPr + P, Py. (2.86)

The threshold for this criterion was given in (2.54). For the special case in which Fy = P, the threshold
n equals one and

Pric) = % (Pr+ Py). (2.87)

Using (2.84) and (2.85) in (2.87), we have

ro x° d
Prie) = f — exp (——) dx = erfc, (—) - (2.88)
2 2
d 2 \/zﬂ-_

“The standard complementary error function is defined as erfc( X)) = (Efﬁ} Jf;" e~ dx. Our modified version can
be computed using the normcdf function in the Matlab Statistics Toolbox. See Appendix A.
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Figure 2.12: (a) Receiver operating characteristic: Gaussian variables with unequal means.

It is obvious from (2.88) that we could also obtain the Pr(¢) from the ROC. However, if this is the
only threshold setting of interest, it is generally easier to calculate the Pr(¢) directly. |

Before calculating the performance of the other two examples, it is worthwhile to point
out two simple bounds on erfc,(X). They will enable us to discuss its approximate behavior
analytically. For X = 0,

— — | exp| —— | <erfc < exp| —— | - :
J2n X X2 TP\ ' N2 S
This can be derived by integrating by parts (see Problem 2.2.15 or Feller [Fel57]). A second
bound is
1 X-
erfc,(X) < 5 exp =5 I iz () (2.90)

which can also be derived easily (see Problem 2.2.16). The four curves are plotted in
Figure 2.13. We note that erfc,.(X) decreases exponentially.
The receiver operating characteristics for the other two examples are also of interest.
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Figure 2.12: (b) Detection probability versus d.

Example 2.6 (continuation of Example 2.2). In this case, the test is

H g2
Ry=)Y Rz 0L (mn— Nln :Tﬂ) —y, o >0 2.91)
1

A particularly simple case appearing frequently in practice is N = 2. Under Hj the r; are independent
zero-mean Gaussian variables with variances equal to o;:

Py = Pr(l = y|Hy) = Pr(r} + r3 = v|Hp). (2.92)
To evaluate the expression on the right, we change to polar coordinates:

o |
,,,*rf—l—rg

5
ri =zsinf@, 0= tan™" ik (2.93)
Fi

rp=zcosf, z
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Figure 2.13: Plot of erfc.(X) and related functions.

Then,
LT o
Pr(2 > y1Ho) =fdef Z -
2may
0 JF

Integrating with respect to £, we have
o
1 A
F,.—sz - EXp (—_:,)dz.
203 203
vF
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We observe that [, the sufficient statistic, equals z°. Changing variables, we have

[
P f : ( 4 ) IL ( r ) (2.96)
= exp| ——= | dL = exp| — - ;
! Em% P 2ay 3 Ecr,,%

v

(Note that the probability density of the sufficient statistic is exponential.)
Similarly,

P, — exp (_ ;’}) | 2.97)

aj

To construct the ROC, we can combine (2.90) and (2.97) to eliminate the threshold . This gives

Pp = (Pp)YTioi (2.98)
In terms of logarithms,
bl
Oy
In P, = — In Pr. (2.99)
0y

As expected, the performance improves monotonically as the ratio r:rlif r:rﬁ increases.

We now calculate the performance for arbitrary N. On both hypotheses, [(R) is the sum of the
squares of N Gaussian variables. The difference in the hypotheses is in the variance of the Gaussian
variables.

To find py g, (L|Hp), we observe that the characteristic function (CF) of each R? is

o

. 1% Il e I — R 202
M:eflﬂufﬂ-‘]' =F l e’ R‘I Hﬂl — [ &% —% e %17 dR,
, 2y =12
= (1 — Ed.luc:rﬁ]l ; (2.100)

Because of the independence of the variables, My g, (jv) can be written as a product. Therefore,

) —N/2

Mya, (o) = (1 — 2 jvay (2.101)

Taking the inverse transform, we obtain pyy,(L|Hp):

Ni2—1 E—Lsz.:rnf

Py (L Hy) = 5 L =0, (2.102)
T (3)

which is familiar as the Gamma probability density function with shape parametera = N/2 and scale
parameter b = Zcr,:,z. The properties of the Gamma density are available in many sources (e.g.. [JKB94])
and are summarized in Appendix A. Plots of the probability density are shown in Figure 2.14. When
JE,E = 1, the Gamma density in (2.102) is identical to a Chi-squared density with N degrees of freedom.
For N = 2, it is easy to check that it is the simple Exponential density in (2.96).

Similarly, for H; we have,

Nj2—1 p—L/20]

Py (LIH ) = L=0, (2.103)

o N i
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Figure 2.14: Gamma probability density for various a and b.
The expressions for Pp and Pr are,
[ 1|l||.|r —1
2 Lo f [zﬁ“-@g;‘*‘ r (Eﬂ LMYt g (2.104)
¥
and
[ N —1
Pr = f [3“-’155‘*' r (E” LNE A Mg, (2.105)
¥
Making the substitution,
X L 2.106
- Eu (2. )
in (2.104), and
L
Xo= —, (2.107)
20

in (2.103), the integrals are incomplete Gamma functions, where the normalized incomplete Gamma
function is defined as*

X

f e dt (2.108)
]

Falx) = Cla)

*The incomplete Gamma function is tabulated in several references (e.g., [FY33] or [AS64]) and can be computed
in Matlab using the gammainc function. See Appendix A.
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Therefore,
Po=1—Tyn ( Tq) ; (2.109)
' 207
and
j.-'
o S ( ) . (2.110)
ag

We see that, for N = 2, Pr and Pp reduce to (2.96) and (2.97).
Consider the physical situation in which there is “noise™ only on Hj,

op =0 (2.111)

n?

and “signal” plus “noise™ on H|,

73 "!' 7

o =0, _+0. (2.112)

In Figure 2.15, we have plotted the receiver operating characteristic for some representative values of
N and GE f{rf.
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Figure 2.15: Receiver operating characteristic: Gaussian variables with identical means and
unequal variances on the two hypotheses.

Van Trees, Harry L., and Bell, Kristine L.. Detection Estimation and Modulation Theory, Part | (2nd Edition). Somerset, NJ, USA: John Wiley & Sons, 2013. ProQuest ebrary. Web. 28 October 2014.
Copyright © 2013. John Wiley & Sons. All rights reserved.



EE Detection, Estimation, and Modulation Theory

| | | - | _
D'mE 4 6 8 1012 16 & 40 B4

N —

la)

Figure 2.16: (a) P, as a function of N[P; = 10-2].

Two particularly interesting curves are those for N = 8, r:r_ffr:rﬁ = 1,and N =2, f:r_fqu? =4. In
both cases, the product Nr:r_f,fr:r& = 8. We see that when the desired Fp is greater than 0.3, P, is
higher if the available “signal strength”™ is divided into more components. This suggests that for
each Pr and }"n-i'r:r_i_E f{rrl: there should be an optimum N. In Chapter 7, we shall see that this problem
corresponds to optimum diversity in communication systems and the optimum energy per pulse in
radars. In Figures 2.16a and b, we have plotted Pjy; as a function of N for Pr = 10™* and 1072,
respectively, and various N::r_f / r:rrf products. We discuss the physical implications of these results in
Chapters 7 and 10. ]

The two Poisson distributions are the third example.

Example 2.7 (continuation of Example 2.3). From (2.38). the likelihood ratio test is

nz =1 M| = M. (2.113)

Because n takes on only integer values, it is more convenient to rewrite (2.113) as

Hj
ray =L (2.114)
Hy
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Figure 2.16: (b) Py as a function of N[Pr = 10~*].
where 34 takes on only integer values. Using (2.35),
vi—l it
1"
— —e‘”"z( Y IO (2.115)
n= n!
and from (2.36)
yi—1
_ (ng)"
=g v Jr=0,1,2,.... 2.116
; n! 1 ¢ )

The resulting ROC is plotted in Figure 2.17a for some representative values of m and mi,.
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Figure 2.17: (a) Receiver operating characteristic, Poisson problem.

We see that it consists of a series of points and that Py goes from 1 to 1 — ¢7™° when the threshold
is changed from O to 1. Now suppose we wanted Py to have an intermediate value, say | — 1¢™"0,
To achieve this performance, we proceed in the following manner. Denoting the LRT with 3, = 0 as

LRT No. 0 and the LRT with 37, = 1 as LRT No. 1, we have the following table:

LRT ¥r P;.' F[_:.
0 0 I 1
1 1 l—em™ J—e™m

To get the desired value of Pp, we use LRT No. 0 with probability % and LRT No. 1 with pro-
bability 5. The test is

Ifn =0, say H; with probability ’]11
say Hyp with probability %

Ifn =1, say H,.
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Figure 2.17: (b) Receiver operating characteristic with randomized decision rule.

This procedure, in which we mix two likelihood ratio tests in some probabilistic manner, is called
a randomized decision rule. The resulting Py, is simply a weighted combination of detection proba-
bilities for the two tests.

Pr=051)4+051—e")=1-—0.5"". (2.117)

We see that the ROC for randomized tests consists of straight lines which connect the points in
Figure 2.17a, as shown in Figure 2.17bh. The reason that we encounter a randomized test is that the
observed random variables are discrete. Therefore, A(R) is a discrete random variable and, using an
ordinary likelihood ratio test. only certain values of Py are possible. ]

Looking at the expression for Pg in (2.73) and denoting the threshold by 1. we have
00
Pr(n) = f Py (X Hp)dX. (2.118)
n
If Pr(n) is a continuous function of 1, we can achieve a desired value from 0 to 1 by a

suitable choice of 1 and a randomized test will never be needed. This is the only case of
interest to us in the sequel (see Problem 2.2.12).
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In each of the first three examples, we were able to compute the probability density of the
sufficient statistic on Hy and H,. However, in Example 2.4, this is difficult to do for arbitrary
a. For observations that are 11D, a Matlab-based approach provides a good alternative. We
discuss this case briefly. From (2.39) and (2.42),

RIH e (R | H Hl
ﬂ[R):PnH]( |Hy) F’|Hl{ |Hy) s (2.119)
primy(RIHp) 1 Prieg(RilHp) g H.]
N
I(R)=InAR) =) InA(R)), (2.120)
=]
where
riH (RH
iy & AR (2.121)
F}'IH[]{RJIHG}
To evaluate performance, we need to compute
8
Pp = f Pua (LIH)dL (2.122)
Inn
and
(8. 4]
Pr = f P (LI Hp)dL. (2:123)
Inxn

In many cases, we can compute the probability density of In A(R;) on Hy and H,, but
an analytic formula for the density of /(R) is hard to find. However, we know that it is an
(N — 1)-fold convolution of identical densities. This is straightforward to carry out using
Matlab. We then perform numerical integration to obtain Pp and Pg.

Example 2.8 (continuation of Example 2.4). In Figure 2.18, we plot the ROC for m = 1,
g=05.N=10,and @ = 1.1, 1.5, and 2.0. For & = 2, the density is Gaussian, so the result is the
same as Example 2.5. ]

With these examples as a background, we now derive a few general properties of receiver
operating characteristics. We confine our discussion to continuous likelihood ratio tests.
Two properties of all ROC’s follow immediately from this example.

Property 1. All continuous likelihood ratio tests have ROC’s that are concave downward.

If they were not. a randomized test would be better. This would contradict our proof that a
LRT is optimum (see Problem 2.2.12).

Property 2. All continuous likelihood ratio tests have ROC’s that are above the Pp = Pg

line. This is just a special case of Property 1 because the points (Pr =0, Pp = 0) and
(Pr =1, Pp = 1) are contained on all ROC’s.

Property 3. The slope of a curve in a ROC at a particular point is equal to the value of the
threshold n required to achieve the P and Fg of that point.
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Figure 2.18: P; versus P; for Generalized Gaussian probability density: m = 1,6 = 0.5, N =
10; ¢ = 1.1, 1.5, 2.0.

Proof.
0o
Ff;-:meH.(ﬂlHlldﬁ,
1
0o
P;::prHﬂ(h|Hﬂjdﬁ. (2.124)

Ji

Differentiating both expressions with respect to 1 and writing the results as a quotient, we
have

dFﬂ)}drg . _pﬁlH](ﬁ|H]] dPﬂ

S e ot " (2.123)
dPg/d,  —pam(AlHy)  dPg
We now show that
. MNH
Pas(AH1) . (2.126)
pthﬂ(ﬁlHﬂ}
Let
Pria (R HY) |
G2 ,]é IRIA(R) = n) = |:R| - : (2.127)
* ! prioRIHp) ~
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Then,

Po(n) 2 Pr(AR) > n|H}} — f petsr (RIH) AR

£2(n)

= / A(R)pria, (R Ho)dR, (2.128)

S2(n)

where the last equality follows from the definition of the likelihood ratio. Using the definition
of £1(n), we can rewrite the last integral

e ¥

Pp(n) = f MRJFﬂHu[RIHa)dR:fXPMH{;(XIHD)H"X- (2.129)

s2lm) n
Differentiating (2.129) with respect to n, we obtain

dPp(n)
dn

= —1P aH (X Hp). (2.130)

Equating the expression for d Pp(1)/dn in the numerator of (2.125) to the right side of
(2.130) gives the desired result.

We see that this result 1s consistent with Example 2.5. In Figure 2.12a, the curves for
nonzero d have zero slope at Pr = Pp = 1 (n = 0) and infinite slope at Pr = Pp =0

(n = o0).

Property 4. Whenever the maximum value of the Bayes risk is interior to the interval
(0, 1) on the F) axis, the minimax operating point is the intersection of the line

(C11 — Coo) + (Con —Ci)(1 — Pp) — (Cro — Coo)Pr =10 (2.131)

and the appropriate curve of the ROC (see (2.63)). In Figure 2.19, we show the special case
defined by (2.67),

CrPr=CyPuy = Cy(l — Pp), (2.132)

superimposed on the ROC of Example 2.5. We see that it starts at the point P = 0, Pp = 1,
and intersects the Pr = 1 line at

Cr

Pr=1——£
§ Cuy

(2.133)

This completes our discussion of the binary hypothesis testing problem. Several key
ideas should be re-emphasized:

1. Using either a Bayes criterion or a Neyman—Pearson criterion, we find that the opti-
mum test is a likelihood ratio test. Thus, regardless of the dimensionality of the obser-
vation space, the test consists of comparing a scalar variable A(R) with a threshold.
(We assume Fg(n) is continuous.)

2. In many cases, construction of the LRT can be simplified if we can identify a sufficient
statistic. Geometrically, this statistic is just that coordinate in a suitable coordinate
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10

Figure 2.19: Determination of minimax operating point.

system that describes the observation space that contains all the information necessary
to make a decision.

3. A complete description of the LRT performance was obtained by plotting the con-
ditional probabilities P, and Pg as the threshold i was varied. The resulting ROC
could be used to calculate the Bayes risk for any set of costs. In many cases only one
value of the threshold is of interest and a complete ROC is not necessary.

A number of interesting binary tests are developed in the problems.

2.3 M HYPOTHESES

The next case of interest is one in which we must choose one of M hypotheses. In the
simple binary hypothesis test, there were two source outputs, each of which corresponded
to a single hypothesis. In the simple M-ary test, there are M source outputs, each of which
corresponds to one of M hypotheses. As before, we assume that we are forced to make
a decision. Thus, there are M? alternatives that may occur each time the experiment is
conducted. The Bayes criterion assigns a cost to each of these alternatives, assumes a set
of a priori probabilities Fy, ..., Py—), and minimizes the risk. The generalization of the
Neyman—Pearson criterion to M hypotheses is also possible. Because it is not widely used
in practice, we shall discuss only the Bayes criterion in the text.

Bayes Criterion. To find a Bayes test, we denote that cost of each course of action as C;;.
The first subscript signifies that the ith hypothesis is chosen. The second subscript signifies
that the jth hypothesis is true. We denote the region of the observation space in which we
choose H; as Z; and the a priori probabilities are P;. The model is shown in Figure 2.20.

The expression for the risk is
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i

Source

i

=

M=1

Figure 2.20: M hypothesis problem.

M—1 M-I
R=). Y & ijfpﬂﬂj(mﬂjmk. (2.134)
i=0 j=0 Y

To find the optimum Bayes test, we simply vary the Z; to minimize K. This is a straight-

forward extension of the technique used in the binary case.
Noting that Zg = Z — Z| — Z», because the regions are disjoint, we obtain

R = PyCwo f Priay(RIHp)dR + FnCmf Pris(RIHp)dR

A R Zi

: & FDCEDf Priay (RIHp)dR + P Cy f Pria (RIH AR

Zy 2—In—2Zn

+F1Cﬂ]fpr|m(R|Hl)dR+ PICEIfFr|H|(R|H]}dR

Ay Z7

+ P,Cxy f Priss (RIH2)AR + FECusznH;[RIHz]dR

£—In—2 2

—I—FgC]gfp”HE[RIHg)dR. (2.133)

£y
This reduces to

R = PyCpo + PIC11 + P2Cx
X f [FE(CEIZ . CEE}Frng[.R|Hg] + Pi(Cpy — C||]pr|H[[R|H|)]dR
Z)
T f [ Po(Cro0 — Coo)Primy(RIHo) + P2(Ci2 — C)pria, (RIH:)|dR

£y

T f [F‘:’(EED — Coo)prisy (R Hp) + Pi(Cay — CII]PHH[(RlHl)]dR. (2.136)

£
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As before, the first three terms represent the fixed cost and the integrals represent the vari-
able cost that depends on our choice of Zj, Z, Z>. Clearly, we assign each R to the region
in which the value of the integrand is the smallest. Labeling these integrands Ip(R), I1(R),

and />(R), we have the following rule:

if In(R) = I1(R) and I5(R), choose Hp,
if 1(R) <= Ip(R) and I5(R), choose Hj,
if H(R) = Ip(R) and [}(R), choose H>.

We can write terms in terms of likelihood ratios by defining

ﬂ[(R] A Pr|H, {R|Hl]"

Prit, (R| Hp)
Pr|H3{R|H2)_
Pria (R|Hp)

AR) =

Using (2.138) in (2.136) and (2.137), we have

Hy or H>
Pi(Cor — C1DA(R) = Fy(Cyg — Cpo) + P2(Cr2 — C2)A2(R),
Hyy or Hy

H> or Hj
P2(Cop — Co2)A2(R) = Pop(Cy — Coo) + P1(Co1 — Con)A1(R),
Hp or Hj

H> or Hy
Pr(C1p — C)A2R) = FPop(Cyp — Cro) + Pi(Ca — Cr11)A(R).
Hy or Hy

(2.137)

(2.138)

(2.139)

(2.140)

(2.141)

We see that the decision rules correspond to three lines in the (A, A») plane. It is easy
to verify that these lines intersect at a common point and therefore uniquely define three
decision regions, as shown in Figure 2.21. The decision space is two dimensional for the
three-hypothesis problem. It is easy to verify that M hypotheses always lead to a decision

space that has, at most, (M — 1) dimensions.

Al (R)

Say Ho (2.141})

(2. 1-H))

Say HI

AL(R)

Figure 2.21: Decision space.
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Several special cases will be useful in our later work. The first is defined by the assump-
tions

Coo=C1) = Cxn =0,

Ci=1, i#] (2.142)

These equations indicate that any error i1s of equal importance. Looking at (2.134), we
see that this corresponds to minimizing the total probability of error.
Substituting into (2.139)—+2.141). we have

Hj or H
FIA(R) = Py,
Hy or Hy

H> or Hy

PrA3(R) = Py, (2.143)
Hp or H|

H> or Hy
PyAx(R) = PiIA(R).
Hy or Hy

The decision regions in the (A, Az) plane are shown in Figure 2.22a. In this partic-

ular case, the transition to the (In A, In A») plane is straightforward (Figure 2.22b). The
equations are

Az (R) 4
Hs
Pof P
o/ Po Hy
Hy
AR
Po/P > A1 (R)
L)
o >In A (R
Ho Anp/P n A1(R)

(h)

Figure 2.22: Decision spaces.
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Hy or A2 F
0

InA(R) = In—,
Hp or H I

H> or Hy Pﬂ
InA(R) = In—, (2.144)
Hp or H) 2

H> or Hy FI
InA(R) = InA|(R)+In—-
Hy or Hy

The expressions in (2.143) and (2.144) are adequate, but they obscure an important
interpretation of the processor. The desired interpretation is obtained by a little manipulation.

Substituting (2.138) into (2.139)—(2.141) and multiplying both sides by py g, (R| Hp), we
have

Hy or Hy
Piprm,(RIH) = Poprm,(RIHp),
Hp or H

H> or Hj
Prprimy(RIH2) = Poprimg (R Hyp), (2.145)
Hp or Hy

H> or Hy
Prprim(RIH2) = Piprm,(RIH)).
Hy or Hp

Looking at (2.145), we see that an equivalent test is to compute a posteriori proba-
bilities Pr(Hy|R), Pr(H|R), and Pr(H>|R) and choose the largest. (Simply divide both
sides of each equation by p.(R) and examine the resulting test.) For this reason, the
processor for the minimum probability of error criterion is frequently referred to as a
maximum a posterior probability computer.

The next two topics deal with degenerate tests. Both results will be useful in later appli-
cations. A case of interest is a degenerate one in which we combine H| and H>. Then,

Cra=Cm=A), (2.146)
and, for simplicity, we can let
Col = Cyp = Cyp = Cip (2.147)
and
Cog= Ci-=Can =1 (2.148)

Then (2.139) and (2.140) both reduce to

Hy or H>
PIA(R)+ PoAS(R) = Py (2.149)
Hy

and (2.141) becomes an identity.

The decision regions are shown in Figure 2.23. Because we have eliminated all of the
cost effect of a decision between H| and H>, we have reduced it to a binary problem.

We next consider the dummy hypothesis technique. A simple example illustrates the
idea. The actual problem has two hypotheses, H) and H>, but occasionally we can simplify
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Py H; or Hy

Ay ()
Py
P

Figure 2.23: Decision spaces.

the calculations by introducing a dummy hypothesis Hy that occurs with zero probability.
We let

Fop=0, Pi+FPH=1,
Cip = Cpp, Gy = . (2.150)

Substituting these values into (2.139)—(2.141), we find that (2.139) and (2.140) imply that
we always choose H; or H, and the test reduces to

Hz
P:(Cj2 — Co)A2(R) = Pi(Co — Cr)A(R). (2.151)
H)

Looking at (2.12) and recalling the definition of Aj(R) and A>(R), we see that this re-
sult is exactly what we would expect. [Just divide both sides of (2.12) by anﬂ[RIH.;.].]
On the surface this technique seems absurd, but it will turn out to be useful when the
ratio

Pris (R H2)
pria; (RIHp)

is difficult to work with and the ratios A (R) and A>(R) can be made simple by a proper
choice of py g, (R|Hp).

The formulation of the M hypothesis problem in (2.134)—(2.141) leads to an efficient
decision space but loses some of the symmetry. The optimum Bayes test can be written in
a different manner by defining a function

M—1
BR)= ) C;Pr(H;R), i=0,1,...,M—1. (2.152)
=0
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Using Bayes rule, we can rewrite (2.134) as

M—1 M-1

R=) D PGy f prir,(R|H;) dR

i=0 =0

M—1 M-1

- Z ZC,prﬂHj{mHj}deR

i=0 j=0 Z.

|
M .
¥
L:'HJ

f Pr(H,[R) ps(R) dR

i=0 j=0 Z.
M—1 M—1

- Y Cyj Pr(HjIR) | pr(R)dR. (2.153)
i=0 . =0

R = f £:(R) pr(R)dR. (2.154)

Evaluating (2.154) gives,

R:fﬁ{lfﬂ}f}r{ﬂ)dﬂ+fﬁE(R}Pr{R}dﬂ+""|' f Bu—1(R) pr(R)dR.
Zyr—1
(2.153)

Each particular R will be included in only one integral. We want to assign it to the region
Z; where it will make the smallest contribution to R. Clearly this is done by choosing the
smallest §;(R) and assigning R to that region. Thus, the optimum Bayes test is, compute

M—1
BiR)= > C; Pr(HjR), i=0,1,...,M—]1 (2.156)
j=0

and choose the smallest.
For a minimum probability of error test, we consider the costs,

Ch=1 d=0 T M—1;
Cp==0, 14 Jil, §=0, Tuesydl—1 (2.157)

Substituting into (2.152),

M—1 M—1
Bi(R)= > C; Pr(H|R)=C ) Pr(H,R), (2.158)
=0 =0
F#Fi
or
Bi(R) = C[1 — Pr(H||R)]. (2.159)
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From (2.159), it is clear that choosing the largest Pr( H;|R) is equivalent to choosing the
smallest f;(R). This is the maximum a posteriori test that we previously encountered in
(2.145) for M = 3. Thus, the optimum Bayes test 1s, compute

L{R)=Pr(H;R), j=0,1,....M—1, (2.160)

and choose the largest.
A special case that occurs frequently in practice is equal a priori probabilities.

|
P V=l L M= 1 2.161
I M’ -'il { )
Then, since
P pru,(RIH))
Pr(H.|R) = L™
! pr(R)
- —— (R|H; S |5y ey © = 2.162
(Mpr{R}) pl;'|H,( | _,r,ll: J ' { )
we can compute
[{R) = pHH_f.(RlHj), j=0,1,.... M—1, (2.163)

and choose the largest. Thus the maximum a posteriori test involves computing M sufficient
statistics.
We now consider several examples.

Example 2.9. The observed random variable is Gaussian on each of five hypotheses.

Prn; (RIH;) =

{R—H!jjz :
exp| — 52 , —w<R<oo;j=1,2,....5, (2.164)

]
V2o
where

ny = — 2m,

my = "—m,

msy =0, (2.165)
my =ni,

nis = 2m.
The hypotheses are equally likely and the criterion is minimum Pr{e).

In this case, M = 5 and the decision space is one dimensional. From (2.160), we know that to
minimize the Pr(e), we choose the H; with the largest a posteriori probability.

P.
Pr(H,|R) = Pr(R|H;) —. (2.166)
: " pe(R)
Since the H; are equally likely, this is equivalent to choosing the H; for which,
(RIH : ( ER— R e B, (2.16T)
H s exp | — : =3 i S, :
PriH; i) Jono p 252 J

is the largest. This, in turn, is equivalent to choosing the H; for which
L{R)=|R—m;). j=12008, (2.168)

is the smallest. The decision space and the boundaries are shown in Figure 2.24.
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H, ‘ Hy ‘ H; ‘ Hy ‘ Hs
I I I I | R
—2m ‘ —m ‘ 0 m 2m
3m m m 3nt
- ] 2 2
Figure 2.24: Decision space.
The probability of error is
1
Pr(e) = 2 | Pr(elH1) + -+ Pr(e|Hs) | (2.169)
By comparing Figure 2.24 to Figure 2.11, we have
Pr(el H)) = 2erfe, (1-),  j=2,34, (2.170)
20
and
m
Pr(e|H,) =e1fc*(j_) i (2.171)
50
3 m
Pr(e) =  erfe, (5) : (2.172)
L
Example 2.10. Consider the case where M =4 and N =2
rp=mpytng  J=01023
ro=my+ny, J=01273. (2.173)

The n; and ny are statistically independent, zero-mean Gaussian random variables with variance
i . .
a-. The n; and m31; form a two-dimensional vector whose components are

my = :m D]T.
m =[0 m], (2.174)

m; = :—m D]T,

m; = :ﬂl m]r.

The hypotheses are equally likely and the criteria is minimum probability of error.
The joint probability density of r; and r; on H; is

| 1 s
Prirn Ry, Ro|Hj) = 7 ERD (_ 1|:{RI —”Iu]ﬂ—F{RE—mEJE}) ! (2.175)
g 2mo- 20 : :

From (2.163), we take the logarithm of (2.175) and choose the largest. Dropping terms that do not
depend on the hypotheses gives

Li(Ry, Ry) = —[[R] —mi + (Ry — ml,-ﬁ], j=0,1,2,3. (2.176)
Choosing the largest in (2.176) is equivalent to choosing the smallest of

- [{R] —mi,) 4+ (R — mgjf}. 31,055, (2.177)
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Figure 2.25: Decision space.

which is just the distance between the observations (R, K;) and m; in the two-dimensional space
shown in Figure 2.25. The result is an example of a minimum distance decision rule. We choose the
hypothesis corresponding to the mean vector that the observation is closest to.

Note that the minimum distance test applies to any set of m;. We can also write

D, = —2(Rymy; + Rama;) + R} + R3 —I—m;‘j 4 m%j, J=0,1,2,3, (2.178)

and observe that for the my; in (2.174) only the first term depends on the hypotheses. Thus, we can
compute

R'm; = Rym; + Rymy;, j=0.1,2,3, (2.179)

and choose the largest. This is a correlation test.
To compute the Pr(e), we observe that

3

g

Pr(e) = 7 Y Pr(e|H)) (2.180)
=0

and that, from the symmetry of the decision space, all of the Pr(e|H;) are identical.

We also observe that the answer would be invariant to a 45" rotation of the signal set because the
noise is circularly symmetric.

Thus, the problem of interest reduces to the simple diagram shown in Figure 2.26. The Prie) is
simply the probability that r lies outside the first quadrant when H, is true.

Now r; and r» are independent Gaussian variables with identical means and variances:

E(ri|Hy) = E(r|H)) = m/V2,
Var(ri|H;) = Var(r:| H)) = o°. (2.181)
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Figure 2.26: Rotation of signal.

The Pr(e) can be obtained by integrating p,, .5, (K, K2|H;) over the area outside the first quadrant.
Equivalently, Prie) is the integral over the first quadrant subtracted from unity.

Prie) =1 —(f{lnﬂz]_"@ exp(— (S mf"ﬁ}j) dR] |7jl:[2;r1ﬁ:rzj|_""E E.‘-'ip(— (K2 — meE]E)dR].
s it

2a- 2o- 'J
(2.182)
Changing variables, we have
r 1 ¥ 2 m :
Prie) =1 — f Vir exp (— E) dx]|] =1-— [f:,rfc* (— @g)} ; (2.183)
—m |+
which is the desired result. |

Example 2.11. In this example, we consider a non-Gaussian density with M hypotheses. We
consider the Generalized Gaussian probability density introduced in Example 2.4. We assume that o
is the same on all hypotheses. The mean is zero on all hypotheses but the variances c:rﬁ are different.
The probability densities are

R |”
Pran; (Ri|H;) = ¢; exp (— ! —! ) ., Jj=0,1,....M—1, (2.184)
’ | B |

4

where b; and ¢; were defined in (2.48) and (2.49). To simplify notation, we define

B =B (2.185)
"\ TG/a) o o
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and
1
a) = BT T 1/a) = 507 (2.156)
Then, (2.184) can be rewritten as
_ 1 | R [
Fr;'|H_r-{R!'|HJ.'} = H—J 7o) exp (— | ﬂjﬁ{ﬂﬂ ) (2.187)
and
N
,|E'|-|hrj'[R|HJ-'J| = 1_[ Pran; (Ri|Hj). (2.188)

i=l

We assume that the hypotheses are equally likely, so we choose the H; for which Pria; (R|H;) is
the largest.

N .
R;
In prig; (RIH;)=NIny(a)— Nlng; — Z! r:r-ﬁ{a}!
=1 /
| N
=Nlnya)— Nlng; — leRJlu- (2.189)
aipa =l
We can see that a sufficient statistic is
N
[NR) =) IRI". (2.190)
i=l1
We define
N
. 1 y
[n(R) = N ;|Rs| (2.191)
and choose the largest of
1 _
[i{iRy=—Ino;, — ————Iy(R), j=0,1,...,M— 1. (2.192)

[Jj ﬁ{ﬂ’}]

In Figure 2.27, we plot fJ,'{R}VEI‘SUSIﬂJ(R}fﬂF M = 4 hypotheseswitha =1, = 1,00 =2, 03 =
5, and g4 = 10. We see that there are four distinct regions where each of the [;(R) is largest. The
performance can be evaluated. but it is tedious. |

In this section, we have developed the basic results needed for the M hypothesis problem.
Several important points should be emphasized.

1. The dimension of the decision space is no more than M — 1. The boundaries of the
decision regions are hyperplanes in the (A, ..., Ay_;) plane.

2. The optimum Bayes test is straightforward to find. We compute

M—1
BR) =Y C;Pr(HR), i=0,1,...,M—1, (2.193)
/=0
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'!T:".'(R}

Figure 2.27: [, versus I y(R).

or
M—1
BR)= )Y CjPipyyRIH), i=01,...,M—1, (2.194)
j=0
and choose the smallest. We shall find however, when we consider specific examples,
that the error probabilities are frequently difficult to compute.

3. A particular test of importance is the minimum total probability of error test. Here
we compute the a posteriori probability of each hypothesis Pr( H;|R) and choose the

largest.
These points will be appreciated more fully as we proceed through various

applications.

2.4 PERFORMANCE BOUNDS AND APPROXIMATIONS

Up to this point, we have dealt primarily with problems in which we could derive the
structure of the optimum receiver and obtain relatively simple expressions for the receiver
operating characteristic or the error probability.

In many cases of interest, the optimum test can be derived but an exact analytic perfor-
mance calculation is difficult or impossible. For these cases, we must resort to bounds on
the error probabilities or approximate expressions for these probabilities. In this section,
we derive some simple bounds and approximations that are useful in many problems of
practical importance. The basic results, due to Chernoff [Che62], were extended initially by
Shannon [Sha56]. They have been further extended by Fano [Fan61], Shannon, Gallager,
and Berlekamp [SGB67], and Gallager [Gal65] and applied to a problem of interest to us
by Jacobs [Jac66]. Our approach is based on the last two references. Because the latter part

Van Trees, Harry L., and Bell, Kristine L.. Detection Estimation and Modulation Theory, Part | (2nd Edition). Somerset, NJ, USA: John Wiley & Sons, 2013. ProQuest ebrary. Web. 28 October 2014.
Copyright © 2013. John Wiley & Sons. All rights reserved.



64 Detection, Estimation, and Modulation Theory

Figure 2.28: Typical densities.

of the development is heuristic in nature, the interested reader should consult the references
given for more careful derivations.

The problem of interest is the general binary hypothesis test outlined in Section 2.2.
From our results in that section we know that it will reduce to a likelihood ratio test. We
begin our discussion at this point.

The likelihood ratio test is

L(R) 2 In A(R) = In [PrIH[ lRIHu)} By

zInnp = y,. (2.195)
Prixy (R Hp) :’n )

We use the notation /. (R) to denote the sufficient statistic that is equal to the log-likelihood
ratio and y, to denote the threshold for this statistic. The variable [,(R) is a random variable
whose probability density depends on which hypothesis is true. In Figure 2.28, we show a

typical py, 5, (L|Hy) and p;, 4, (L|Hp).
If the two densities are known, then Pr and Pp are given by

o0

Pp(ye) = fﬁs*m] (L|H)dL, (2.196)

1%
030

Pr(ye) = meHﬂ(LIHn}dLm (2.197)

Fax

where we have used the notation Pp(y,) and Pg(y,) to emphasize the dependence of these
probabilities on the value of the threshold y,. The difficulty is that it is often hard to find
f};$|HJI.(L|HJ.-); j =0, 1. A common case in practice occurs when the components of R are
statistically independent but are non-Gaussian. In a few cases, analytic expressions for
Praa(L|H;); j = 0,1 can be obtained, but in most cases, an (N — 1)-fold convolution is
required. On the other hand. if we set out to synthesize a system, it is inefficient (if not
impossible) to try successive systems and evaluate each numerically. Therefore, we should
like to find some simpler approximate expressions for the error probabilities.

When we discuss simulation in Section 2.5, we will find that the approximate expressions
we derive in this section are the key to efficient simulation.

In this section, we derive some simple expressions that we shall use in the sequel. We
first focus our attention on cases in which [,(R) is a sum of independent random variables.
This suggests that its characteristic function may be useful, for it will be the product of the
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individual characteristic functions of the R;. Similarly, the moment-generating function will
be the product of the individual moment-generating functions. Therefore, an approximate
expression based on one of these functions should be relatively easy to evaluate. The first
part of our discussion develops bounds on the error probabilities in terms of the moment-
generating function of /. (R).

In the second part, we consider the case in which [, (R) is sum of a large number of
independent random variables. By the use of the central limit theorem, we improve on the
results obtained in the first part of the discussion.

We begin by deriving a simple upper bound on Pg(y, ) in terms of the moment-generating
function. The moment-generating function of [,(R) on hypothesis Hj is

o

1,18 (s) = E (™| Hp) = [ e promy(L|Ho)dL, (2.198)

—ix

where s is a real variable. (The range of s corresponds to those values for which the integral
exists.) We shall see shortly that it is more useful to write

i, 11(5) = exp[p(s)], (2.199)
50 that
{5
p(s) = In f EILIEJ;*|H“{L|HQ]LIIL. (2.200)
—00

We may also express ju(s) in terms of pyy, (R|H)) and priy,(R[Hp). Because [, is just a
function of r, we can write (2.198) as

~
P11 (5) = f e ®) p i (R| Hp) dR. (2.201)
S
Then,
0
jt(s) = In f e R p o (R| Hp) dR. (2.202)
"o
Using (2.195),
~ 5
1£(s) = In / (E z:ziﬁ:gﬁ) prin, (R Hg) dR, (2.203)
oo
or
=
u(s) = In f [ e RIHD] [ preiio (RIHp)] " dR. (2.204)
M

The function w(s) plays a central role in the succeeding discussion. It is now convenient to
rewrite the error expressions in terms of a new random variable whose mean is in the vicinity
of the threshold. The reason for this step is that we shall use the central limit theorem in the
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Figure 2.29: Tilted probability densities.

second part of our derivation. This is most effective near the mean of the random variable
of interest. Consider the simple probability density shown in Figure 2.29a. To get the new
family of densities shown in Figure 2.29, we multiply p.(X) by ¢'* for various values of s
(and normalize to obtain a unit area). We see that for s = 0 the mean is shifted to the right.
For the moment, we leave s as a parameter. We see that increasing s “‘tilts” the density more.

Denoting this new variable as x;, we have

e pram(XIHo) e pruy(XIHo)

§X—pils
T = "7 pp, 1y (X| Hp). (2.205)

D )= =
| et prp,(LIHp)dL

—d
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Observe that we define x; in terms of its density function, for that is what we are interested
in. Equation (2.205) is a general definition. For the density shown in Figure 2.29, the limits
would be (—A, A).

We now find the mean and variance of x,:

o0
% | Xe* pi, uo(X| Ho)d X
E(x,) = f Xp(X)dX = —— : (2.206)
oo | et prmy (LI Ho)dL
—2

Comparing (2.206) and (2.200), we see that

d
Exr) = 9 2 4. (2.207)
ds
Similarity, we find
Var(x;) = ji(s). (2.208)

[Observe that (2.208) implies that p(s) is convex.]
We now rewrite Pg(y,) in terms of this tilted variable x,:

00 0o
Pr(ys) = fps*mﬂ(LIHn}dL =f€““"”‘xp_1-_¢(X}dX
Fax Fx
00
) —iX
= e " pp(X)dX. (2.209)
Fx

We can now find a simple upper bound on Pg(y,). For values of s = 0,

e X e forX = ¥ (2.210)
Thus.
o0
Pe(y,) < ettt —srs f p.(X)dX, s=0. (2.211)
Fx

Clearly the integral is less than one. Thus,
Pe(y) S e, 53 0. (2.212)

To get the best bound. we minimize the right-hand side of (2.212) with respect to s.
Differentiating the exponent and setting the result equal to zero, we obtain

i(s) = Vi (2.213)

Because ji(s) 1s nonnegative, a solution will exist if

1(0) < ¥4 < jUo0). (2.214)
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Because
(1(0) = E(l,|Hy), (2.215)

the left inequality implies that the threshold must be to the right of the meant of /,, on Hp. If
Ve = ju(0), the value of s that minimizes the bound in (2.212) will be s, = 0, which gives
the bound Pg(y,) < 1.

Let s, denote the value of s that is the solution to (2.213),

Sie = P(Ss) = Ve (2.216)
The resulting bound 1s:
E.rﬂif*}—ss.tl(!*}! = (0
Pr(ys) < I '[_L( ; (2.217)
] Ve < (0).

(Note that we have assumed pu(s) exists for the desired s,..)

Equation (2.217) is commonly referred to as the Chernoff bound [Che62]. Comparing
(2.216) and (2.207). we observe that s, is chosen so that the mean of the tilted variable x,
is at the threshold y..

The next step is to find a bound on Py (). ), the probability of a miss:

F=
Py(ys) = f Praa (XIH))dX, (2.218)

—{x

which we want to express in terms of the tilted variable x,.
Using an argument identical to that in (2.124) through (2.130), we see that

Pro (X1 Hy) = € pr, o (X| Ho). (2.219)

Substituting (2.219) into the right side of (2.203), we have

Proay (X1H)) = 4O I=0Xp (X)), (2.220)
Substituting into (2.218),
|
Pu(y,) = e f MM (X)dX. (2.221)
A
Fors < 1,
=X < =9 for X < y,. (2.222)
Thus,
b
Py (ye) < etri—an f Py (X)dX
—0g
g etHI=m g g (2.223)
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Once again the bound is minimized for
= Ji(5) (2.224)
if a solution exists for s < 1. Observing that
fu(l) = E(l| Hy), (2.225)

we see that this requires that threshold to be to the left of the mean of [, on H,. If y, = ji(1),
then the value of s that minimizes the bound in (2.223) will be s, = 1, which gives the
bound Py (y,.) < 1

Combining (2.217) and (2.223), we have

Pr(ys) < explie(se) — 8ifu(sy)], Sk 2 0
< 1

<
Pp(yi) < explie(sy) + (1 — s0)fu(s)], Sk (1), (2.226)

where
S = Yis (222

Confining s, = 0 (and therefore y, = ji(0)) for the Pg(y,) bound and s, < 1 (therefore
Ve = fL(1))forthe Py (y.) bound is not too restrictive because if the threshold is not between
the means then one of the error probabilities will be large (greater than one half if the median
coincides with the mean).

As pointed out in [SGB67], the exponents have a simple graphical interpretation. A
typical pu(s) is shown in Figure 2.30. We draw a tangent at the point at which ju(s) = y,.
This tangent intersects vertical lines at s = 0 and 5 = 1. The value of the intercept at s = 0
1s the exponent in the Pg(y,) bound. The value of the intercept at s = 1 is the exponent in
the Py (y,) bound.

For the special case in which the hypotheses are equally likely and the error costs are
equal we know that y, = 0. Therefore to minimize the bound we choose that value of s
where [t(s) = 0.

The probability of error Pr(e) is

1 1
Pr(e) = EPF(}’* =0)+ EFM[]»‘* = 0). (2.228)

uls, )+ (l=s)n(s,)
(exponent in P, bound)

Tues, ) =s.i1(s,)
(exponent in Pg bound)

Figure 2.30: Exponents in bounds.
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Substituting (2.211) and (2.223) into (2.228) and denoting the value s for which ji(s) = 0
as s5,,. we have

oo 0
| 1
Pr(¢) < E E,.u{sm}f PI_V{X)dX s 5 pHtlm) f F.r_g{X)dX+ (2.229)
0 —C0
or
I s
Pr(e) < 5 gHlsm) (2.230)
where
Sie RS =1, (2.231)

Up to this point we have considered arbitrary binary hypothesis tests. The bounds in
(2.226) and (2.230) are always valid if j(s) exists. In many cases of interest, [,(R) consists
of a sum of a large number of independent random variables, and we can obtain a simple
approximate expression for Pg(y, ) and Fy(y,) that provides a much closer estimate of their
actual value than the above bounds. The exponent in this expression is the same, but the
multiplicative factor will often be appreciably smaller than unity.

We start the derivation with the expression for Pg(y,) given in (2.209). Motivated by
our result in (2.213) in the bound derivation, we choose 5, so that

fL(Ss) = Y- (2.232)
Then, (2.209) becomes
o0
Pr(y,) = el f e Xp (X)dX. (2.233)
£l s
This can be written as
0
Pr(y,) = etlsw)—snitlsx) f gl Ay (X dX. (2.234)

Ll 5y )

The term outside is just the bound in (2.217). We now use a central limit theorem argument
to evaluate the integral. First, define a standardized variable:

i Xs — E(I_;?l . Xy — .I-L(Sa} _

y 3 — (2.235)
[Var(x)]'* /(4
Substituting (2.235) into (2.234), we have
o
Pr(ys) = eloesaitlss) f g WM p (V)Y (2.236)

0
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In many cases, the probability density governing r is such that y approaches a Gaussian
random variable as N (the number of components of r) approaches infinity.” A simple
case in which this is true is the case in which the r; are independent, identically distributed
random variables with finite means and variances. In such cases, y approaches a zero-mean
Gaussian random variable with unit variance and the integral in (2.236) can be evaluated
by substituting the limiting density,

0
f e AP GY — M exfe, |50/ W) | (2.237)
(0 i
Then.
| 52 |
Pr(y,) ~ {Exp [;L(s*} s jtls,) + ?*,m;s*;} ] arfe, [sﬂfﬁ[s*)} | (2.238)

The approximation arises because y is only approximately Gaussian for finite N. For values
of s5,./ji(s,) > 3. we can approximate erfc,(-) by the upper bound in (2.89). Using this
approximation,

1
Pr(y) =~ — exp [ j(ss) — seft(sy)], s = 0. (2.239)
v 2msz ji(s,)

[t is easy to verify that the approximate expression in (2.239) can also be obtained by
letting

p,(Y) = p,(0) = (2.240)

-

Looking at Figure 2.31. we see that this is valid when the exponential function decreases
to a small value while V¥ < 1.
In exactly the same manner, we obtain

e T ] ;
Pp(ye) = {EKP |:P5{5*) + (1 — s )p(s,) + {ST;IPL(S*}} } erfc, [“ — Sy .#I:'f’ﬂ-c]:| -

(2.241)

For (1 — 5,)4/jt(s,) = 3, this reduces to

|
P o) R <+ (1 —s)(s,)], § 1. 2.242
m(Vs) Ton = PR exp [je(sy) + (1 —s)pe(sy)], s < ( )

Observe that the exponents in (2.239) and (2.242) are identical to those obtained by
using the Chernoff bound. The central limit theorem argument has provided a multiplicative
factor that will be significant in many of the applications of interest to us. In practice, we
will normally use (2.238) and (2.241) in our numerical evaluations.

*An excellent discussion in contained in Feller [Fel66], pp. 517-520.
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o 55V Ui, )Y

",

Increasing s\ u(s,)

=Y

f oy (Y)

L
~

Figure 2.31: Behavior of functions.

For the case in which Pr(¢) is the criterion and the hypotheses are equally likely we have

| 1
Pr(e) = = Pr(0) + EP_-H(D]
A ; i S
z = E exp I”-’(SJIJ )+ T:{L{Sna} EI'fC* S f-'L[Sm ):|
1 i [] _Sm]z - N s
Ci E ExXp H'(Sm ,ll i ) ,LL(S,“:I E]‘fﬂﬁ [{1 G Sm) p“f('gm )j| ' [2243)

where s, is defined in (2.231) [i.e.. ii(s,) = 0= y.]. When both s,,+/ji(s,,) = 3 and
(1 — 5,,)+/ jL(5,;) = 3, this reduces to

1

Prie) ~= - 5
2 [EIJ{L{SJH }] “ Sm'[l = = Sm)

exp L(sm)- (2.244)

Independent Observations. The function p(s) defined in (2.204) and its derivatives ji(s)
and ji(s) are the key quantities in the bounds and approximations derived in this section.
We now show that their expressions can be simplified in the case where the observation
vector I consists of N statistically independent components. In many cases, the probability

Van Trees, Harry L., and Bell, Kristine L.. Detection Estimation and Modulation Theory, Part | (2nd Edition). Somerset, NJ, USA: John Wiley & Sons, 2013. ProQuest ebrary. Web. 28 October 2014.
Copyright © 2013. John Wiley & Sons. All rights reserved.



Van

Classical Detection Theory 7

densities of the observation components are identical, but that is not necessary for the current
derivation. For independent observations, we have

N
Pria,(RIHj) = l_[ Pram,(Ri|Hj) j=0,1. (2.245)
=1
From (2.204),
o
i(s) = In f [ P, RIHD]'| prisag (RIHp)] '~ dR. (2.246)
—o0

Using (2.245) in (2.246), for the ID model, we have
ju(s) = Z In f [ Pritiay RAHD] [ oot (Ri Ho)|

N
Z [Li(s), (2.247)

where
pi(s) = In f [Pri1 (RIAHD] [ Pty (RN Ho)) " AR (2.248)

Taking derivatives with respect to s yields

as)= Y uls), (2.249)

jt(s) =) fui(s). (2.250)

If the components of r are 1ID, then p;(s) is the same foralli = 1, ..., N, and we have

i(s) = Niwi(s), (2.251)
L(s) = N jti(s), (2.252)
ji(s) = N jti(s). (2.253)

We now consider several examples to illustrate the application of these ideas. The first is
one in which the exact performance is known. We go through the bounds and approximations
to illustrate the manipulations involved.

Example 2.12 (continuation of Examples 2.1 and 2.5). In this example, we consider the
simple Gaussian problem first introduced in Example 2.1:

N 9
| (R; —m)~
i
P (RIH)) = | | CXP | ——F53 (2.254)
W Ao L=
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and

N 3
| R
pray (RIH)) = | | 5, o (— Egj) : (2.255)
1 T i
Then, using (2.246)
o o N . 7
1 (R, —m)y s+ K1 —»5)
wis) = Inf f l_[ —— exp [— ; ’ }{J’R,-. (2.256)
—od — 0 =1 JEHU s

Because the observations are IID, all the integrals are identical, and

Fa gy 2 2 i
i(s) = Nui(s) = N lnf S O SJ} dR

1
— — 2.257
V2mo e [ 20° : }

Integrating we have

. 2.258)
T 2 (

where d was defined in (2.82). The curve is shown in Figure 2.32.
Taking the derivative with respect to s gives:

2 2
— 1)d
p(s) = Ns(s — 1];” = i )

25— 1)d?
i = & : Lol (2.259)
Evaluating ji(s), we obtain
ji(s) = d’. (2.260)
Using (2.227), the value of s, is found from:
Ve ]
O T | A N
T -0.05— ==
k(s)
dE
-0.10— i
-0.15 | l l . | | '1 [ 1
0 01 02 03 04 05 06 07 08 09 1.0
5§ —=

Figure 2.32: u(s) for Gaussian variables with unequal means
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Using the bounds in (2.226), we have

—52d? d?
PFU’?:}&;EKP( 2* ): Sy 20—y, 2 ——,

Y.l =3y, = T (2.262)

(1 —5,)d? d?
P,u(:*a}éexp[— ) };

Because [(R) is the sum of Gaussian random variables, the expressions in (2.238) and (2.241) are
exact. Substituting (2.258)—(2.261) into (2.238) and (2.241), we have

Py(1,) = erfc, [.':*«.,,f,ﬁ(s*)} = erfc(s5,.d) = erfc, (; -+ g) (2.263)
and
Py (y,) = erfc, [(1 — s*jy’ﬁ{s*}} = erfc,[(1 — 5,)d] = erfc, (— ;‘E + {;) ) (2.264)

These expressions are identical to (2.84) and (2.85).
An even simpler case is one in which the total probability of error is the criterion. Then, we choose
S such that ji(s,,) = 0. From Figure 2.32, we see that s, = ,_L, Using (2.243) and (2.244), we have

d i Vs 2
Pr(e) = erfc, (E) = (E) exp (—%) . (2.265)

The first expression is exact and identical to (2.88) and the second approximate expression is very
good ford = 6.

This example is a special case of the binary symmetric hypothesis problem in which p(s) is
symmetric about % When this is true and the criterion is minimum Pr(e), then p H]l is the important
quantity,

=

1 M o
[ (i) = In f [F‘run (R|H|}]I'_ [PI'|H|:|{.R|H']}]IP— dR. (2.206)

—ia

The negative of this quantity is frequently referred to as the Bhattacharyya distance (e.g., [Bha43]).
It is important to note that it is the significant quantity only when s5,, = 1. |

The nextexample also considers a case in which we have exact expressions for Pp(y.)and
2 . T, :
Pr(y«). However, it serves as useful lead into the case where the o7: j = 0, 1 are different
. a2
on each component (i.e., we have o7};:

Chapter 3.

Jj=0,1i=1,2,..., N) that we will encounter in

Example 2.13 (continuation of Examples 2.2 and 2.6). From (2.27) and (2.28),

N

1 R’
pr (RIH) = 1_[ o exp (— Zr:;z) ,
|

iz) V2ma
LI R?
Prig (R Hp) = —— exp (— ’:_,_) : (2.267)
’ E Jzarr:rr_] 205
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Substituting (2.267) into (2.246) and using the IID property gives,

[ SR (1—5)R?
wis) = Nu:(s)= N In — e S = - d K (2.268)
. W 2 To oy 207 20,
or
N {D_lj.ﬁ'{ G_j)l—s
= ] Lafho) : 2.269
) 2 n|:5ﬁ§—|—{f—5]ﬂ'f:| : )
A case that will be of interest in the sequel is
3 ) ]
o =0, + 0.
oy =0 (2.270)
Substituting (2.270) into (2.269) gives
ﬂ— (1 —s)In I+g—'E — In I—|—{l—';}g—'£ - (2.271)
N2 2 e -

This function is shown in Figure 2.33. Taking derivatives,

N - r:rE;'r:r2
)= —|—-Inl1+ = |+ — (2.272)

2 o

1+ (1 —s)o?/o?

| s

u(s)

Ny2

0.2 0.4 0.6 0.8 1.0

i o—

Figure 2.33: u(s) for Gaussian variables with unequal variances.
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Figure 2.34: Approximate receiver operating characteristics.

and

1

N r:r;,fr:r2 7
iL{5) = — = 7 . 2273
Ats) 2 [I +{|—.’i}ﬂ_§fﬂ§i| { ]

By substituting (2.271), (2.272), and (2.273) into (2.238) and (2.241), we can plot an approximate
receiver operating characteristic. This can be compared with the exact ROC in Figure 2.15 to estimate
the accuracy of the approximation. In Figure 2.34, we show the comparison for N = 4 and 8, and
cr_f ,fcr;‘: = 1. The lines connect the equal threshold points. We see that the approximation is good. For
larger N, the exact and approximate ROC are identical for all practical purposes. |

Examples 2.12 and 2.13 allowed us to compare the Pp and Py approximations to exact
expressions. In the next example analytic solutions are not available for Pp and Prg.

Example 2.14. The observations on the two hypotheses are statistically independent samples from
Weibull probability densities with different parameters,

a;—1
_ S X R,‘ "' —{.H,',-"F:r')a-'. ¢ -
Pros; (R | H)) = — | — e 1w Bellmeag Ny =00k (2.274)
' bj \ b;
When we study radar applications later in the text, we will find that the Weibull probability density
is a good model for clutter in many applications. The parameter @; = 0 controls the shape and the

parameter b; = 0 controls the scale. The mean is
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—— p(Aj|Hy)
- - -plAH} T

--I-‘--"-.

Figure 2.35: Weibull densities on Hy and Hy, oy =2, by =1, ¢y = 3. by = 3.

|
Er|H)=5T (I + —) (2.275)
i
and the variance is
3 2 . |
Var{r,-lHﬂ,-}=hi ri+—)-1r-{1+—11. (2.276)
o o
We consider the following specific values: ag = 2, by = 1, a; = 3, by = 3. The resulting proba-

bility densities on the two hypotheses are shown in Figure 2.35.

The functions p(s), fu(s), and ji(s) are computed numerically. We use (2.274) to obtain p;(s)
and then differentiate numerically to obtain f;(s), and ji,(5). The results are shown in Figure 2.36.
We obtain pu(s), ju(s), and fi(s) from (2.251)—(2.253) by multiplying by N. In order to construct an
approximate ROC using (2.238) and (2.241), we let 5, vary from 0 to 1. The f,(s) curve in Figure
2.36 specifies the threshold 3, = N (s,). The results are shown in Figure 2.37. As expected, the
performance improves as NV increases. In the problems, we will investigate the behavior for various
a; and b;. We do not have an analytic result to verify the approximation, but in Section 2.5 we will
discuss techniques for simulating the LRT to validate the results. |

Summary. The principal results of this section were the bounds on P, Py . and Pr(e)
givenin (2.226) and (2.230), and the approximate error expressions givenin (2.238), (2.239),
(2.241),(2.242),(2.243), and (2.244). These expressions will enable us to find performance
results for a number of cases of physical interest.

The first two examples considered Gaussian densities on both hypotheses and analytic re-
sults were available. The results play a much more important role when we have statistically
independent observations and the probability densities are non-Gaussian. Then,

N
uis) =Y pils)
i=1
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Figure 2.36: Weibull densities; p;(s), st;(s), and ji;(s).
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Figure 2.37: Receiver operating characteristic; Weibull densities, N =1, 2, ...
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and we can find j;(s) by a numerical one-dimensional integration of (2.248) if an analytic
result is not available. We can then construct an approximate ROC as in Example 2.14.
Thus, for an ID, non-Gaussian model, the results in Section 2.2 specify the optimum test
and the results in this section allow us to bound the performance and construct approximate
ROCs.

In the next section, we will discuss Monte Carlo simulation techniques and will find that
the pt(s) function plays the central role in designing optimum simulations.

2.5 MONTE CARLO SIMULATION

In many of the applications of interest, it is necessary to simulate the detection algorithm in
order to evaluate the performance. In Section 2.5.1, we give a brief introduction to Monte
Carlo (MC) simulation. A key issue is the number of trials needed to have a desired level
of confidence in the result. In most systems of interest, the desired Pr is very small (e.g.,
Pr <107 %is frequently required). In these cases, the number of trials required to obtain a
reasonable confidence level is prohibitively large.

In Section 2.4, we introduced the Chernotf bound and various extensions in order to
obtain bounds on the performance and approximate expressions for the performance. The
key idea was that, by defining a pt(s) function, we could tilt the relevant probability densities
so that the mass of the tilted density was near the threshold. We can apply the same idea
to the simulation problem. The resulting technique is called “importance sampling™ in the
literature. We develop the key results in Section 2.5.2 and apply them to several of the
examples introduced earlier in the chapter.

In Section 2.5.3, we summarize our results.

2.5.1 Monte Carlo Simulation Techniques

The log-likelihood ratio test consists of comparing the log-likelihood ratio to a threshold.
From (2.195),

H
[.(R) = A(R) ;;:;l Vs (2.277)
Hp

From (2.75). the log-likelihood ratio and the corresponding error probabilities can equiva-
lently be expressed in terms of any sufficient statistic X,

Pxia, (X[ HY)
[.(X)= In _ . (2.278)

- P, (X Hp)

The expressions for Pr(y,) and Py (y,) in terms of X are
Pr(yse) = Pr(lu(X) = y.|Hp) = f Pxia,(X|Hyp) dX (2.279)

Ia(X) 2%
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and

Py(ye) = 1 — Pp(y,) = Pr(lu(X) < yul Hy) = f Pxia (X[ Hp)dX. (2.2830)
Ll X< e

At one extreme, the sufficient statistic may be the scalar log-likelihood ratio itself or a
scalar function of the observations that is related to the log-likelihood ratio in a straightfor-
ward (invertible) manner. At the other extreme, it may be the N-dimensional observation
vector I. In other cases. X may be multidimensional with dimension less than N. The latter
two cases are important when it is difficult to find p;, g, (L|Hp) and p;, 5, (L] H}). As in the
previous sections, we will find it useful to work with a variety of sufficient statistics.

For this discussion, we will make use of the indicator function II(-), which is equal to one
when its argument is true and zero otherwise. The indicator function allows us to express
probabilities as expected values. For example,

1 fa(X) 2=
00 B | IS (2.281)
0 LX) <Y

With this definition, Pg(y,) in (2.279) may be written as

Pr(yy) = f T(.(X) = ) pxpy XIHo) dX = Eg [I0.(X) = y0)], (2.282)

where Eg[-] denotes expectation on Hpy. Similarly,
Pu(y:) = E1 [10.(X) < p)], (2.283)

where E|[-] denotes expectation on H).

The procedure for estimating Fg 1s to simulate a random sample of the sufficient statistic
X and estimate the expected value in (2.282) by computing the sample mean of the indicator
function. To generate the random sample, we conduct a set of K r independent trials. On each
trial, we generate a realization of X from the probability density ,'Jx|Hi}[X|H{_}). Our choice
of sufficient statistic X will often by driven by the ease in which we can generate random
samples from the specified distribution. There are a variety of techniques for generating
random samples that are discussed in [DeV86] and [BFS87].

[f the sufficient statistic is the scalar x and its cumulative distribution function (CDF)
F.(X)is known, then we can use the inversion method. In this method, we generate a sample
of a random variable y with a uniform probability density

1 D€ ¥Vl
py(Y) = (2.284)
0 elsewhere

and transform ¥ to X by the inverse of the CDF,
= PriE (2.285)
Then.,

¥ = PiX) (2.286)
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To verify that X is a sample from p,(X). and the Jacobian of the transformation in (2.285)

15
7 _ dY B dP.(X) _ pUX 2.287)
=ax - ax PN (2.
and
Px(X) = py( Pr(X))IJ| = 1 - pu(X). (2.288)

Thus, we can generate U/(0, 1) random samples and transform them with F_ 1(]r’}.

If the inverse of the CDF is not known explicitly, then we may use other methods such
as numerical inversion or the rejection method [DeV86, BFSST].'Eb

We denote the simulated sufficient statistic generated on the kth trial as X, and the value
of the log-likelihood ratio as [, (X;: Hy). On each trial, we compute [,(X,: Hy) and count
the number of times that it exceeds the threshold y,. We denote this count by the random
variable n,, , which is defined as’

KFr
ny, = 10X Ho) = v). (2.289)
=]

It is a Binomial(K g, Pg) random variable with probability mass function,
KF 1 KF—n
Pr(n,, =n)= g(1 — Pp) B [ F— ] (2.290)
i

Given n, , we estimate Pg(}.) as®

KF
1 |
Pr(y.) = K”’; = gﬂ(f*'ixk;ﬁﬂ) 21 (2.291)

The expectation of the estimate is

. I KgF
E[Pr] = £-E[nu] = ——=Pr, (2.202)

which is an unbiased estimate. The variance of the estimate is

: 1 KpPp(l — Pp)  Pp(l — Pr)
Var(FPr) = —Var(n, ) = — . 2.293
r(Fr) K2 (ny,) K2 K. ( )

The variance of the estimate decreases as the number of trials increases and we would
like to determine how many trials we need to get a good estimate. We do this in terms of a
confidence interval Pre[(1 — a)Pr, (1 + a)Pr]. where

“The Matlab Statistics Teolbox has random number generators for many standard distributions, including all of
the distributions listed in Appendix A except for the Generalized Gaussian. The inversion or rejection methods
could be used for that case.

"Our development is similar to a number of references (e.g., [Ech91] or [Sri02]).

In Chapter 4. when we study estimation theory, we will see that P is the maximum likelihood estimate of Fp.
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Pr—P
Pr(' F El

=L — 2.294
), -

where p. is the confidence probability (e.g.. 0.95) and « is the percent deviation tolerance
(e.g., 0.1). Then, (2.294) can be written as

Pr (u‘JF A Pelic aPF) = Pe. (2.295)

For large K g, the probability density of Py approaches a Gaussian density with mean and
variance given by (2.292) and (2.293), that is,

’ Ps(1 — P
PFMN(PF, F(K F})- (2.296)
F

For a Gaussian random variable z ~ N { ut., ﬂf), the probability that z has a value within ¢
standard deviations of its mean is

Fr“.;'__, T .|u'z| % C !T:} — pt': (229?]

where ¢ is given in Table 2.1 for several values of p.. Using the Gaussian approximation
for P from (2.296) in (2.297), we have

A Pr(1—P
Pr (|FF w Pol & E‘/ F( F}) 2, (2.298)
K

Comparing this expression to (2.295), we can achieve the desired confidence level if

Pr(1 — F
g Pyas c/ F( F). (2.299)
Kp
This occurs when
¢t 1—Pr
Kr = ; (2.300)
D'E FF

The preceding analysis 1s valid when FPg i1s small (less than 0.5). In some cases, we may
want to simulate a scenario where Fr = 0.5. In this case, we want the tolerance to be a
fraction of 1 — Pg. To cover both cases, we express the tolerance as a fraction of the smaller
of Fr and 1 — Fpg, that 1s,

Pr(|Pr — Pr| <amin(Pr,1— Pp)) = p.. (2.301)

Table 2.1: Confidence interval probabilities from the Gaussian distribution

P (.900 0.950 0.954 0.990 0.997
¢ 1.645 1.960 2.000 2.576 3.000
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Then, (2.299) becomes

Pl = E
amin (Pg, 1 — Pg) = c\/ Al (2.302)
KF
and the more general formula for the required number of trials 1s:
2
C Fpll—F
Ko F 2 (2.303)

o’ min(Pr, 1 — Pp)*
For example, if p. = 0.954, then ¢ = 2. When @ = 0.1 and P is small, we have

4 1 400

~ - (2.304)
0.01 P Py

Kr

Since false alarms occur with probability Pr, we would expect to observe one false alarm
in about every 1/Pf trials. The result above tells us that we need to observe at least 400
false alarms to get a good estimate of P, which requires at least 400/ P trials. If we want a
higher confidence probability or lower tolerance factor, even more trials would be required.

To simulate an entire ROC curve, we need to estimate both Pr and Pp (or Py) at various
thresholds. To estimate F,;, we conduct a set of K j; independent trials in which we generate
a realization of x from the probability density pyy,(X|H)) and count the number of times
that [, (X, : H)) falls below the threshold y,. Following a similar argument, the required
number of trials is:

~

g5 Pyl — Py)

Kjg= : (2.305)
"7 a2 min(Py, 1 — Py
and the estimate of Fy(y,) 1s:
i Kum
Pulyo=—> T.Xe; H) < ). (2.306)
Kn 15

We consider the following example to demonstrate the results. It 1s a continuation of
Examples 2.1 and 2.5. Because we have analytic results, we probably would not simulate
this model in practice, but it is useful to introduce the simulation procedure.

Example 2.15 (continuation of Examples 2.1, 2.5, and 2.12). From (2.19) and (2.20),

H:ri~N@m,6) i=12,...N
Hy:r; ~N(0,07) i=1,2,...N, (2.307)

and from (2.84) and (2.85),

i T

Pr(yy) = erfc*(;f—* +

oo N

) ; (2.308)

ol

Pyl =1— erfc*(;_"—* — (2.309)

3| R
o

where

N,
d — v i) (2.310)
T
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Table 2.2: Simulation values for d = /40, p.=0.954, and @ = 0.1

Pr Lr Vi Py K¢ K p
102 2.33 —5.29 3.2 x 1073 4 % 104 1.3 % 107
10~4 3.72 3.52 0.0046 4 % 10° 8.7 » 10*
106 4.75 10.06 0.0581 4 % 108 6488
108 5.61 15.49 0.2381 4 % 1010 1281
T 6.36 20.23 0.5147 4 % 104 425
10-12 7.03 24.49 0.7611 4 x 10M 1275

We define £ r as the argument of erfc,(- ) that corresponds to the value of Fr that we want to simulate.”

We rewrite (2.308) as

Pr = erfcy (ZF). (2.311)
Therefore,
L (2.312
RH Y B i
and we calculate the threshold from
42
v, = Zpd — = (2.313)

and then calculate Py (14) from (2.309). The required number of trials is obtained from (2.303) and
(2.305). A summary is given in Table 2.2 ford = xfﬁ p. =0.9534 (c = 2),a = 0.1, and a variety of
ROC points. We observe that as Pr decreases, K r increases correspondingly. At the same time. Py
1s increasing and Ky is decreasing until Py becomes greater than 0.5. Then 1 — Py = Fy,and Ky,
begins increasing.

To implement the simulation, we need to pick a sufficient statistic to simulate. We could choose
the statistic to be the original observations, X = r. Then for each trial, we would generate N IID
observations from the densities in (2.307). Alternatively, we could choose the statistic to be the
log-likelihood ratio, X = /. which is given in (2.24). Then, from (2.307) and (2.310),

i

Hi:l, ~N (%.d?) (2.314)
v .

Ho:lo~ N (=5.d%). (2.315)

and for each trial, we would generate a scalar random variable from these densities.

To simulate the ROC curves in Figure 2.12b, for each point on the curve, we would determine
the threshold 1, from Pr and d, and calculate the required K and K ;. We would generate K ¢ trials
from ;J1|HiL{X|HD] and compute ﬁ;:{jlf*] using (2.291), then generate K trials from py g, (X|H,) and
compute P (%) using (2.306).

To simulate the curves in 2.12a, we could follow the same procedure. However, in this case only
the threshold varies along each curve while the densities remain the same, and we can use a simpler
procedure. We first determine the maximum number of trials needed over all points on the curve and
denote these by K - and K ;. We then generate K ¢ trials from Px 1, (X[ Hp) and compute Pr(v,) using
(2.291) by varying y,. and do the same using K ;; trials from Px a1, (X|H}) to calculate P (v,). This

“For a specified Py, Z, can be computed in Matlab using the norminv function. See Appendix A.
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method has the advantage that only one set of data is generated. The worst-case accuracy will be as
specified by @ and p,: however, many of the points will have significantly better accuracy since the
number of trials generated will be larger than required. ]

In the previous example, the simulation method was straightforward, however the number
of trials was very large for the small values of Pr considered. Clearly, we need to find a
better technique in order to reduce the number of trials required to achieve the desired
accuracy and confidence level.

2.5.2 Importance Sampling

Our development of importance sampling is based on our discussion of tilted densities,
{t(s), and the Chernoff bound in Section 2.4.

We introduced a new random variable x;, whose probability density was related to
Pumy(L|Hp) by (2.205)

Py (X) = X7 py (X[ Hp), (2.316)

where 5 = 0. In Figure 2.29, we saw that as s increased, more of the density was moved to
the right of the threshold. The tightest bound on Pr was obtained by choosing s so that the
mean of the tilted variable x, was at the threshold.

In Section 2.5.1, we found that a key issue in MC simulation was that if Pg (or Fy) was
very small, then the number of trials was prohibitively large. However, if we could run the
simulation using the tilted density, then the probability of exceeding the threshold would be
on the order of 0.5. (It would be exactly 0.5 if the median and mean were equal.) If we could
relate this probability to the desired Pg (or Py). then presumably the required number of
trials would be significantly smaller.

There is an extensive literature on tilted densities and importance sampling. The earliest
use of tilted densities appears in a paper by Esscher [Ess32]. His results are still widely used
in the financial community and are referred to as the Esscher transformation (e.g., [The84]).
Siegmund [Sie76] applied the technique to sequential detection. The first application to
communications was by Cottrell et al. [CFMB83]. The technique started to be referred to as
large deviation theory and a number of applications, books, and journal articles began to
appear.

Importance sampling was discussed in the early work of Kahn and Marshall [KM33]
and the book by Hammersley and Handscomb [HHG64]. The early work developed various
techniques to modify the probability density for simulation purposes but did not utilize
tilted densities. Papers by Sadowsky and Bucklew [SB90] and Sadowsky [Sad93] showed
the optimality of tilted densities and the technique became more widely used.

The paper by Smith et al. [SSG97] provides an excellent review of the history and status
of the area (circa 1997). It contains an extensive list of references. The book by Srinivasan
[Sri02] provides a good development of importance sampling at a mathematical level similar
to our discussion. Other books include Bucklew [Buc90] and Jeruchim et al. [IBS92].

Our objective in this section is to introduce the reader to the application of tilted densities
(large deviation theory) to a specific set of problems:
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I. We restrict our attention to the problem of estimating Pr(l,(X) = y.) and
Pr(l,(X) < y,) by simulation, where [, (X) is the log-likelihood ratio in (2.278). This
enables us to find Px(y,) and Py (y,).

2. We restrict our development to finding the “optimum™ tilted density to use in the
simulation. We do not discuss other importance sampling techniques that involve other
types of biasing densities that may be simpler to implement (but may not perform as
well).

3. We assume that the components of r are statistically independent, but not necessarily
IID.

The approach should provide the necessary background so that students and practicing
engineers can effectively simulate the algorithms that we develop in the text and problems.

The initial part of our discussion follows Srinivasan’s book on importance sampling
[Sri02]. However, after establishing some preliminary results we can proceed directly to
the tilted densities of Section 2.4.

2.5.2.1 Simulation of P

First, consider Pr. We introduce a biasing probability density pxm*(}()m that is related to
Px|#,(X|Hp) in a manner yet to be determined, and write Pg(y.) as:

FPr(y,) = f]I{Ei(X} = F*]Fleg(X|Hﬂ}dX

X| H
=2 f 1(,(X) 3 y,) P2 X)dX. (2.317)
F'xll}*(x}
Defining,
X|H
() & Zrm S, (2.318)
F'xlﬂ*{X)

we can write
Prr) = [ 100 > y2) WoX) pur (X)X
= Eo [1(.(X) = ) Wo(X)] . (2.319)
Note that in general, that for any function f(X),
Eo[fX)] = Eo= [ X Wo(X)] . (2.320)

We will simulate the test, choosing X, from the biasing density pyp+(X). Then,

Kr
el ]
Pr(r) = —— Y T((Xe: Hor) = yi) WoXe: Ho). (2.321)
F o=l

""We used p, (X) in Section 2.4. We need different notation because X may be a vector and, even if it is a scalar,
the biasing density may be different.
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The expectation of the estimate 1s

5 K
Eor [Pr] = 2= Eor [10.(0) > y) Wo®)] = Eo[1(h(¥) > 7)) = Pr,  (2.322)
F

and the variance is

K 1 .
Vargs (P r) = —5 Varg [T(,(%) > y,) Wo(®)] = = s = P§), (2.323)
F F
where
Ie(ys) = Eox [P (LX) > y:) W(x)] . (2.324)

Noting that I* (-) = I (-), and using the property in (2.320), we may also write Ix(y,) as:

Ir(ye) = Eo [1(L.(X) > 1) Wo(X)] - (2.325)

Comparing (2.323) to (2.293), if Iz < Pg, then the variance of the importance sampling
estimate is less than the variance of the conventional estimate for the same number of trials.
Therefore, the number of trials can be reduced to get the same level of accuracy in the
estimate. For the importance sampling estimate, (2.302) becomes

o,
amin(Pr, 1 — Pp) = ¢ \/( 4 F}, (2.326)
Kr
and the required number of trials is:
2 : 2
¢ fr — F
Krpis=:1— { . F) (2.327)

a? min (Pg, 1| — Pr)’

We would like to find the biasing probability density pyjp=(X) that minimizes /. This is
difficult, so instead we find an upper bound on [ similar to the Chernoff bound and find
the biasing density that minimizes the bound. We observe that for s = 0,

[(,X) > yu) < =@l 550, (2.328)

This is illustrated in Figure 2.38.
Using (2.328) in (2.324),

Ir(r) < Eor | 2101w )| £ Tr(p,). (2.329)
We now apply Jensen's inequality, which states that for any nonnegative function f(X),

E[f2X)] > E*[fX)], (2.330)

with equality iff f(X)= E [f{X}]. For the quantities in (2.329), I z(y,) will be minimized
iff

EJ[;*[}:}—F*I W[](X;I — El_’]* |:|f_-’-1[n":t'[:{}—]f"*] WD(X]:|

i [e‘ [I’E:{K]—]f’*]:|

— pHls)—sve (2.331)
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Figure 2.38: Upper bound on I ({/,(X) = y.)

where ju(s) was defined in (2.200) in Section 2.4, and can be expressed in terms of any
sufficient statistic as:

iw(s) £ In Eg[e"™™] = In / [ pxja, XIHD)] [px,Hu{mHU}]E" dX. (2.332)

Using (2.318) in (2.331) gives

E:[Fﬁ{l‘{}—}’*] ple[]{X|Hﬂ} = E,ufs}—:],f*
F"xlﬂ*(X]

ar
pxo+(X; 5) = X4 b (X Hy). (2.334)

Not surprisingly, the biasing density in (2.334) is the same as the tilted density in (2.203).
Substituting (2.334) into (2.318) gives

Wo(X:s) = E—.I!'*[.K.J"'H['ﬂ. (2.335)

These results are essentially the same as the results in [Sri02 equations (2.18) and (2.19)].
However, there are two differences that will be important in our later development. The
results developed in [Sri02] are for a generic scalar statistic being compared to a threshold,
while we are specifically considering the log-likelihood ratio expressed as a function of a
multidimensional sufficient statistic X,

; X H
L.(X) = In Poe(EIHD (2.336)
ple{:.(XIHﬂ}
50 that
SX) (leH] (X|Hl])' | (2.337)
PxHp (X[ Hp)
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In our case. p(s) is defined as in (2.332) and the tilted density has the form

Pxio(X; 5) = ¢ pyy g XIHo) ' ™ pag, (X HY ). (2.338)

The tilted density is specified in terms of the sufficient statistic X, rather than the log-
likelihood ratio /,, and it can be found directly from the original densities py g, (X|Hp)
and pMHl{XIHﬂ. This is a key result, because in many, if not most, of the cases when
we need to use this in practice, analytical expressions for PrH, (LI Hp) and py, g, (LI H})
are not available. In addition, we will find that the optimum tilted density for estimating
Py, is identical to pxp+(X;:s). In many cases we use X = I, corresponding to the original
observations, and we tilt the N-dimensional densities PT|HD{R|H[|;| and pr|H|{R|H1}. In
practice, the case of most interest will be when the r; are statistically independent (not
necessarily identical) and we tilt the marginal probability densities. Thus, this more general
approach enables us to find the tilted densities for a large number of useful applications. A
final note is that although Wy(X: s) is defined in terms of pyy,(X|Hp) and pyjp«(X; s), the
expression in (2.335) can be evaluated without specifying these densities.
From (2.330) and (2.331), the optimized upper bound is

Tr(yu;s) 2 -] o> o (2.339)

Comparing (2.339) to (2.212), we see that  g(y,; s) is the square of the Chernoff bound. As
with the Chernoff bound, we can get the tightest bound by minimizing it with respect to s.
The optimum s is the same as for the Chernoff bound and is given by

S 1 fU(5) = Vi (2.340)

as long as y, = (0). If y. = (0), the optimum value is s, = 0, which gives the bound
?F{]”*; 0)=1. B

The upper bound [ g(y,;s) was useful for showing that the optimal biasing density has
the form of the tilted density given in (2.338) and for finding the value of s, that minimizes
the estimation variance. However, the bound is too weak to be used in (2.327) to determine
the required number of trials. For this calculation, we would prefer to compute [ itself.
Substituting (2.335) in (2.325) gives an expression for [ when the biasing density is the
tilted density in (2.334),

I (yss5) = 1) f I(1,.X) = yi) e pyya, (X1 Hp) dX. (2.341)

Note that when s = 0, Ir(y.:0) = Pp(y.) because pyo=(X;0) = pyp,(X|Hp), and we do
not get any advantage from importance sampling.

In problems where we can find an analytical expression for Pr, we will generally also be
able to evaluate (2.341) to find an analytical expression for Ir. In cases where the evaluation
is intractable, we can approximate [y using the technique developed in Section 2.4 for
approximating Pg. If we let x = [, and note that p,p=(X:5) = p,.(X), then substituting
(2.335) into (2.324) and using the optimum s, from (2.340) gives the following expression,

o]

Ir(Ya; Si) = f ey, (Xydx. (2.342)

pel sy )
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In Section 2.4, we started with a similar expression for Pr in (2.233) and derived the
approximate expression in (2.238). Noting that (2.342) and (2.233) differ only in a factor
of two in the exponent, we may follow the same argument and obtain an approximate
expression for /g,

Tr (Vi 54) & {exp [2,&:(5*] — 28 Ll5e) 235,&{3*]} ] erfc, [25*1-’ ﬁ.{s*)} : (2.343)

2.5.2.2 Simulation of Py,
The next step is to find the optimum biasing density to estimate P,;. The arguments are
identical, so we omit some of the intermediate equations. We begin from

Pu(ys) = f]I(E*{X] = }’*)me] (X|Hp)dX

= f]I[E*{X) < ¥y) Wi(X) pxn+(X) dX, (2.344)
where
a Pxia (X[ Hp)
Wi(X) £ . (2.345)
! pxi+(X)

The expression in (2.344) can be written as

Pu(yy) = Eix [1(1.(X) < y) Wi(X)] . (2.346)
We define
In(ye) = Eix [P (LX) < y3) Wi(X)] (2.347)
= E [I(L.(X) < y) Wi(X)] . (2.348)
Then.,
: |
Varjs ( Py) = — (Iyy — P) (2.349)
Ky
and

> (In = Py)

Kyis = 5 R (P 1 — P_-w}j. (2.350)
We can upper bound I(/,(X) < y.) as shown in Figure 2.39,
I1(,(X) < ) < e Is&E-n]l 5 o (2.351)
Then,
Iu(r) < Eie | 210w | £ Ty (), (2.352)
which 1s minimized when
1wy (X) = By | e~ ]| (2.353)
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LX)

Figure 2.39: Upper bound on 1({/,(X) < y,.).

MNow note that

o 1a(X) _ (P3|HI{X|H1))_I - (Flen{X|HD]‘
Pxia (X H))

Px sy (X[ Ho)

S0

Ei[g 5] = f P (X1 Ho) px, (X1 Hp)' ™' dX

:EH{E—f]‘_

From (2.353), TM[}»',;_C} 1s minimized when

E_F[I*[}:}_]”'ﬂ] Pxi#y (X[ H)) — phll=t)+1yy
le]*(x}

ar

px=(X; ) = e X=ll=0p 0 (X HY).

Substituting (2.357) into (2.345), we obtain
Wi(X: 1) = e Xl —1)
The optimized upper bound is
Ty t) = e2ul=ttnal 4~ 0
Minimizing 7 (y,; ) with respect to f, we obtain

et Bl —1) = Vs,

(2.354)

(2:353)

(2.356)

(2:357)

(2.358)

(2.359)

(2.360)

tor y, < fe(l1). If y, = (1), the optimum value is f, = 0, which gives the bound

?M{]”*; 0) = 1.
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Substituting (2.358) 1n (2.348) gives the following expression for [,
Iy t) = U0 f I(1.(X) < i) e™™ pym, (X Hy) dX. (2.361)

In this case when t = 0, Iy (y,;0) = Puy(yi), and pxj=(X;0) = pya, (X|Hp), and there is
no importance sampling gain.
If we let
p=1—1T ¥ &l (2.362)

and use the expression for [,(X) in (2.336), the tilted density in (2.357) becomes

Px*(X:8) = e pyy o (XIHo) ' ™ pyjar (X1 HY )’ (2.363)

which 1s the same as the tilted density in (2.338). We use the following notation for the
optimum tilted density for estimating both Pg and Py,

Pxie(X) = €7 pyo (X1 Ho) ' ™** pyy, (X1 H ™. (2.364)

In terms of s, (2.358)—(2.361) become

Wi(X:s5) = E,H—.s}r*I:KH;u:;]_ (2.365)

Tor(yars) = e2lsHl=nl g g (2.366)

S ¢ u54) = Vo (2.367)

I (ysis) = f I0X) < p) e ®pyy XIHDAX.  (2.368)

From (2.367) and (2.340), we see that the optimum tilting specified by s, is the same for
both Fu; and Pr.

If we let x = [, and note that p,1=(X:s) = p. (X). then substituting (2.365) into (2.347)
and using the optimum s,, from (2.367) gives the following expression,

Lol 5y )
Ipg(yss5e) = f Pl Hl=Xly (34X, (2.369)

from which we can derive the approximate expression for [y (y.:s,):

Fpr (Vi 50 ™ lEKP|:2;lL(S,;}+2(1 — 5 ) (854 )+ 2(1 _5*}2;&{5*)} ] erfc, [2“ — S )y .u’{gﬂc}i| -

(2.370)
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2.5.2.3 Independent Observations
The optimum tilted density in terms of the original observations is found by letting X = R
in (2.364),

Priss(R) = 7% pry gy (RIHo)' ™ prysr (RIH ™. (2.371)

If the observations are independent, we substitute (2.245) and (2.247) in (2.371) to obtain

N N l=sx ¢ ¥
Pris, (R) = exp (— > ,u.-(s}) (ﬂ p,,m{.m.-wm) (ﬂ Prim, n:R.-|Hl})
I.:|.

i=1

i=1

N
[ 10755 pr, 1ot (Ri | Ho) = py 1y (Ri) Hi ) (2.372)
I.=].

that can be written as

N
PrisR) = | | Pritea(RY) (2.373)

i=]
where the tilted marginal probability density is defined as
Pritss (R) = €7 py g (Ri | Ho) ™ Py, (Ril HY )™, (2.374)

This is a key result for the cases in which it is difficult to compute p; 4,(L|Hp) and
Pia, (LI Hy). Most applications with non-Gaussian observations fall into this category. We
can use the tilted marginal probability densities to simulate the r;.

2.5.2.4 Simulation of the ROC

To summarize our results, we have the following procedure for simulating a ( Fg, Pp) point
on the ROC curve:

. Compute p(s) from (2.332),

[ | —5
[(s) = In f | pxien XIHD)| [ pximy (X1 Hp)]  dX. (2.375)
For an ID model, we can compute p;(s) from (2.248) and p(s) from (2.247),
¥ | —s
iLi(s) = In f [Prien (RIVHD] [ Prijy(RilHo) | dR; (2.376)
N
() = ) mils). (2.377)

=

Differentiate jt(s) to obtain fi(s) and ji(s). Note that ji(s) is only needed if we are
computing approXximate expressions in step 3.

2. Find s, using

0 Ve < ((0)
Se = St fUSe) = Ve U0) <y < (1) (2.378)
] Ve = f2(1)
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3. Find Pr(y.), Py(ye), Ie(y.:8), and Ty (y,.:s). Exact analytical expressions can be
obtained from (2.317), (2.344), (2.341), and (2.368), when they can be evaluated.

Pr(y) = f LX) > 7.) prasry (X1 Ho) dX, (2.379)
Py(ys) = f 1(.(X) < yi) pxan (XIHp) dX, (2.380)
I (yy;s) = e f I(1,(X) > yo) e "™ pyiy (X Ho) dX, (2.381)
Iu(ys; s) = e f [(.(X) < y) ' =0 pyy (XIHy dX. (2.382)

Alternatively, use the approximate expressions in (2.238), (2.241), (2.343), and
(2.370),

o

Pr(y,) =~ lexp |:£Lf5*] — Sy fl(8y) + %ﬂ(ﬂ*)} ]
x erfc, [sﬂfps,(s*)}, (2.383)
| I
Pp(ys) == [EEP [!‘1’(5*]—'—{1 — S fL(sy) + > F{S*)}]
x erfc, [(1 _ s*}ﬁz;;z,(sﬁ}} | (2.384)

Tp(ya;ss) &2 qexp | 2pa(s,) — 25, fu(sy) + 253#“*]} } erfc, [25**\3 #[5*}}

13

Ipr(ys: 54) 2 {eXp zﬁf(?ﬂc} + 2(1 — s, fit(se) + 2(1 — ?*J jL 51:):|}

X erfc, [2(1 _ s*)ﬁf;u,(sﬂ}} | (2.386)

Note that we can only use the approximate expressions for thresholds that satisfy
(0) < y, < (1), while the exact expressions are valid for any y,.

4. Pick a sufficient statistic X to be used in the simulation and evaluate (2.278) to find
an expression for [, (X),

X|H
1.(X) = In P ALHD (2.387)
Px sy (X| Hp)
5. Find the optimum tilted density from (2.364),
Pxina(X) = 7% po e X Ho) ' ™" pyyar, (X1 HY )™, (2.388)

For an ID model, the optimum tilted marginal densities are found from (2.374),

Priis(R) = e # p o (Ri| Ho) ™™ p,.1m, (R HY )™ (2.389)
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6. Find the weighting functions from (2.335) and (2.365),
Wo(X; 5,) = e Rl (2.390)
W|{X: 5*) — E“—f'&}fﬂc(xj—F#EE*}. {2391)

7. Specify the confidence interval parameters a and ¢ and compute K g ;s and K 4 ;s
from using (2.327) and (2.350),

1 ,
G { - S0 — Pely)
K e F(Va38e) — Pe(Ye) ,, (2.392)

Q% min [PFI.’}’*)* L s PF{}"*}]H

2 2
c i & i 1) G o
F . . TLO A M Vi) - (2.393)

“ " 1
@% min [FM{}!*}, s S F_.w(}*’*}]

Select the larger value for the simulation,
K;S = MHK[LKFJS, KM,I.’S') . {2394)

8. Generate K ;5 independent realizations of X from py, (X) and compute the estimates

Kis

1
Pr(y) = — Zﬂﬁ*(xa 51) 2 ¥a) WoXii 50) (2.395)

Kig

. 1 .
Pu(r) = — ) TUXi;8,) < i) WiXi; 5. (2.396)

15 k=l

An estimate of Pp(y,) can be found from

Kis

1
Po(ry=1=Pu(y) = 2= D TLXKiis) > p) WiKisss).  (2.397)
g

It is important to note that ((s), Pr(ye), Pu(ve)s Tr(ye:s), Ty(ye:s), Wo(X:s), and
W1 (X; s) are all defined in terms of a sufficient statistic X. When computing these quantities,
we do not need to use the same statistic, and in fact we will usually find it convenient to use
different statistics.

2.5.2.5 Examples

In this section, we apply importance sampling using the optimum tilted density. The first
two examples are continuations of Examples 2.1 and 2.2. Because we have analytic results,
we probably would not simulate these models in practice, but they are useful to introduce the
simulation procedure. The third example illustrates the case where we can find an analytic

expression for pu(s), but cannot find p;g,(L|Hy) and p;, g, (L|H)) and cannot evaluate Pg
and Py. We use importance sampling with the approximate expressions and develop an
iterative importance sampling scheme in Section 2.5.2.6 to solve this case.
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Example 2.16 (continuation of Examples 2.1, 2.5, 2.12, and 2.15). For this model, (),

ft(s), and ji(s) were computed in Example 2.12. Recall from (2.257)—(2.259) that

5(5 — 1].51*2

Ju'il{s'} == ,}N 1

sls = 1)d?

J(s) = > :

| Qe P>

JL(5) = > ;

To find 5,, we solve jt(s) = 7. The result is

2
0 Ve < —%
Eﬂ::';_I'E""% _d—-z:i:"*

2

. | Vo = d?

i

Sy

(2.398)

(2.399)

(2.400)

(2.401)

Pr(1,) and Py(y,) were found in Examples 2.5 and 2.15 and are given in (2.308) and (2.309).
We next compute [¢(74,:5) using (2.381). It is convenient to use

=

Ap = g\/ﬁ Z?‘,‘.

i=1

which is N(0O, 1) on Hy. Then, from (2.24)

d?
L(Xo) = dXo — =

s

and [ (Xp) = v, when Xy = Zf, where Z was defined in (2.312). Thus,

o0

I

.
gle—1}ad=

,
T sl sai
Tp(yyi5) = e 2 e Lz . dXy:
2w

ZF

which reduces to

Ip(yeis) = F'E:”:Erfc*fzp + sd) = el erfc, (

To calculate [y(7,: 5), we proceed in a similar manner. We define

]
b — — r—d,
[ HJNZ E

which 1s N(0, 1) on H;. In this case,

.!'2
[(X1) = dX) + =

and [, (X,) =y, when X| = Z; — d. Evaluating (2.382), we obtain

’

T 7 d
1h4(,: 5) = elts—1M] [1 — erfc, (f —s +(s— L)d

9~
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Table 2.3: Importance sampling simulation values ford = 6, p. = 0.954, and o = 0.1

P p AP Py Ir Iy Kgis K is
1072 —5.29 0.37 3.2 x 107 3.7 x 1074 5.6 x 1077 1069 1804
10~4 3.52 0.59 0.0046 5.2 % 1078 8.3 x 107 1676 1185
10-8 10.06 0.75 0.0581 6.4 x 10712 0.0099 2155 774
10-8 15.49 0.89 0.2381 7.4 x 1019 0.1281 2562 504
10-10 20.23 | 0.5147 8.3 x 107% 0.5147 2034 425
10-12 24.49 I 0.7611 1.2 x 1072 0.7611 4539 1275

For the simulation, we choose our sufficient statistic to be the original data X = r, which are [ID.
From (2.24),

[ e e’
LR = — R, | d=52g; (2.409)
EE

The tilted marginal densities are given by (2.389). Substituting (2.19), (2.20), and (2.398) into (2.389)
and simplifying gives

Praic (R} o~ N(f* m, -:TE). (2.410)

We see that the tilted density corresponds to a Gaussian density with the same variance but with a
mean value of s.m that varies between 0 and m. When 5, = 0, p,. s, (Ki) = pryn,(R:|Ho), and when

Fu = Ia Fr;'l.':*{,Ra'} — pr,'|H| {erHl}
From (2.390) and (2.391), the weighting functions are

e i . e — [
“‘ﬁ:}(R; S*:I — .ﬁ*faliR_]F.H{.'p*} — .'l-*.ll*'l.R}E.':;“.'i-* I]—_r’ {2.41 l]

fres > L ¥ ¥ T :1.:
W[ {R; j‘*} ) E{I LY ”3':_“.]‘?‘”{'!*} ol £:|‘|:] LN H*{RJE.'I-$|:_.'I-* I.]—_|— ] {2I4 l 2'}

We consider the parameter values used in Table 2.2: d = ~.,f M), c=2. =01, and a variety of
ROC points. Ford = v 40, () = —20, and ge(1) = 20. We compute 5., T35 50, Ly 500 Kggss
and Ky ;5. The results are summarized in Table 2.3. We see that in all cases Ir = Pr and K5 1S
significantly smaller than the corresponding K r in Table 2.2. In the last two rows of the table, we have
Ve = jt(1) and the optimum 5, = 1. For these cases, {y = Py and Ky ;s = Ky. For the other rows,
Iy = Py and Ky s = K. We see that importance sampling has dramatically reduced the required
number of trials when Pr or Py, is very small.

We run the simulation for Pr = 1079, choosing N =40, m = 1, and o2 = 1. From Table 2.3,
Py = 0.0581 and Pp = 0.9419, and the required number of trials is K ;s = max(2155, 774) = 2155,
The confidence intervals are:

Pre[09,1.1] x 107%,

P, €]0.9384, 0.9454].

We generate the required number of trials using the tilted marginal density!' and compute Py and
P,r_] from (2.395) and (2.397). (Without importance sampling, we would have had to run two separate

""The random samples are generated using the Matlab function randn.
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Figure 2.40: Histograms of P, and P,.

simulations to estimate P and Pp requiring Ky = 4 x 10° and K j; = 6488 trials, respectively.) We
repeat the simulation 1000 times. Histograms of P and P, are shown in Figure 2.40. We see that
the results are consistent with the confidence interval specifications.

We next consider the ROC curves plotted in Figure 2.125. We run the simulation for various values
of d and Pr and plot the simulation results on top of the analytic results in Figure 2.41. We see that
there is excellent agreement between the simulation and the analytic results. [ ]

Example 2.17 (continuation of Examples 2.2, 2.6, and 2.13). In this example, the r; are [ID

zero-mean Gaussian random variables with different variances on the two hypotheses:'?
(R |H;) I { LRy = J gl Nand j =0, 1 (2.413)
i (R H)= ——exp{ —=—¢, i=12,...,Nand j =0, 1.
i, M,-‘_HJI_ z 2 o; !
We assume u::rl2 = {:F{:;.
We computed Py and Pp in Example 2.6. From (2.109) and (2.1 10,1
Pr(3) =1 — T[yp ( - 1,) : (2.414)
205

1>This example also has an analytic solution for P, and Pr. However, it serves as an introduction to the problem
¥ RrCEY, i ] . i A

whose o is different on each observation and an analytic solution is not available.

'“For a specified Py or Py, ¥ can be computed in Matlab using the gaminv function. See Appendix A,
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Figure 2.41: Simulated P versus d for various Py using optimum tilted density.

1
Py(y) =Dyp ( J :.) 3 (2.415)
207

where 1 was defined in terms of % = Inn in (2.91),

2 d Sl N 2
) _ 2000 [},H__ln(”_“,)] (2.416)

3 7
gy — 0y

For notational simplicity, it will be easier to work with 3 instead of 7,,. We can easily convert the
results back to 1, by rearranging (2.416) to obtain,

v (g — g N z
:'jﬂc:' ( [*1 1{)+—In(gq.)- {241?}
205071 a;

We computed 1,(5) and p(5) in Example 2.13. Recall from (2.268) and (2.269),

5 I—x
N (3)" (1)
— Ny(s) = — 1 - _|. 2.418
M) HilS) 2 " |:.5f)'.|j ] =Wy { :
Differentiating gives
dh=e|1 (55 P i (2.419)
F)= — n b ] . .-
s 2 E,I say + (1 — 5)o;

To find s, we solve ji(s) = ¥, for (0) < 1, < (1) and then use (2.417) to express the results in
terms of 72. The result is

0 v < Naj
5o = { F'i'_JT (1 - h:*’fﬁ) Nol < v € No? (2.420)
| 0 !
1 Y = N{rf.
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To find [ x(7: 5), we define

N
=R (2.421)

and evaluate (2.381) using an analysis similar to Example 2.6 to obtain'*

N
ot z —sof + (1 + s)of
¥ 7 I= r;"v'."l hg T .
— 80y (1 8oy ' 2007

|_|:-':

P o7
i '1.":5 — -
e sog + (1 — 5o}

(2.422)
Similarly,
2 s % N
Ty(yis) = [ 5 20 1}_ [ % }} " Pl [ {2—510U+{5— l}al}
sap + (1 — s)oy (2 —s)og + (s — 1)ay Egﬂﬁl
(2.423)

For the simulation, we choose our sufficient statistic to be the original data X = r, which are IID.
From (2.29), the log-likelihood ratio is

1 2_,._-]- N < N 2
I.(R) = — R: +Nln - L R+ m( ¥ 2.424
®= (- 2)Y = () omrgn(B) ees

To find the tilted marginal densities, we use (2.413) and (2.418) in (2.389) to obtain

ERTRT I—sx ['I_ ]—_ﬂ* Ky
(Uﬁj (UT) ( I —R2 ‘) ( 1 —0 :)
Prigse( Ri) = * - 5 e~ & 127 S N (2.425)
! |:E$CF{% + {1 —5,)07 Iy 3 JZm:r,‘

1|IIfE;rl.'f:F{g
which reduces to
Prass(R:) ~ N(0, 07 ) (2.426)
where
ol & %% (2.427)

'J "
vats (1 — 1)o7

We see that the tilted marginal density is a zero-mean Gaussian density with variance r:r' When

22 . 3D
5 =0, 0, = g, and when s, = 1, 0, = agy.

The weighting functions are

st _ o] T
Wo(R; 5,) = e s®hgulss) — gmses®) | (2 (2.428)
s+0p + (1 — s4)oy

I 7y 1 —5a T
W]{R 33} s Eﬂl a*_hr*l,ﬁj Sl ) E{I—.*.'*}IRER:I ([iﬁj (ﬂ-l) § . {242.})
S0 + (1 — 5, )oy

We consider the following parameter values: N = 8, f}-ﬂj —7 c:rf =21, p. =0.954 (¢ = 2), and
a = 0.1, and a variety of ROC points. We compute the quantities of interest and summarize the results
in Table 2.4. In this example, [y < Pr for all the ROC points and K s <= Kp. Also, Iy = Py and

*The analysis is straightforward but tedious.
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Table 2.4: Importance sampling simulation values for N = 8,07 = 1,07 = 21, p. = 0.954,
and e« = 0.1

Pr v 54 Py Iy Iy Ky Ky s Ky K is

10°%  31.8 079 00076 8.8x 107% 00001 4x10° 3120 53x 10 573
10°% 427 085 00200 1.2x 107" 00009 4x10® 4495 20x 100 536

107% 532 0.89 00398 1.6x107° 00036 4x 10" 5820 0658 503
107 634 092 00668 1.9x 10°Y 00097 4x 102 7120 5585 472
10712 735 094 01007 22x 1072 00214 4 x 10" 8401 31573 444

Ky s = Ky. Again, importance sampling has significantly reduced the required number of trials
when Pr and Py are very small.

Next we let cri?' = r:r_f 3 = r:ﬂ?‘ and study the behavior as a function of CF_Eg"CTE. We run the simulation for
various values of {'I:T / fI:- and Py by generating the required number of trials using the tilted marginal
density and computing Py and P, using (2.395) and (2.397). In Figure 2.42, we plot the analytic
results and simulation results for Pp versus G’E fcrf for various Pg. Once again, the agreement is
excellent. ]

In Examples 2.16 and 2.17, we had analytic expressions for Pr and Pp, so we could
specify the desired Py and solve for threshold y,. In this case, we do not really need to
simulate the likelihood ratio test. A more realistic case 1s when we do not have an analytic
expression relating Pr and y,. We consider this case in the next example.

Example 2.18. The observations on Hy and H) are statistically independent draws from a Beta
probability density,

I aj— o
F"'rlHj{RleJ]=mR;} I“-R,‘}h" l, Df; Fi s 1;5=].2....,N;}I=0.1, {243{]]
PRI

1

T B T T T T T T ==
M
0.95) =

=0

0.9
0.85
0.8

a” 0.75
0.7
0.65
0.6

0.55

{]5 1 1 1 1 1 1 1 1 1
10 11 12 13 14 15 16 17 18 19 20

allot

Figure 2.42: Simulated P, versus o /o for various P using optimum tilted density.

Van Trees, Harry L., and Bell, Kristine L.. Detection Estimation and Modulation Theory, Part | (2nd Edition). Somerset, NJ, USA: John Wiley & Sons, 2013. ProQuest ebrary. Web. 28 October 2014.
Copyright © 2013. John Wiley & Sons. All rights reserved.



Classical Detection Theory 103

2 I I I I 2 I 1 1 I
1.8+ . 1.8+ H
1.6 = 1.6} 4
1.4} : 1.4} :
1.2F . 1.2 4
T T
c 1 1 € 1 '
O Q.
D.8F . 08¢ —
D.6F . 0.6F .
0.4+ - 0.4} -
0.2 = 0.2F 5
ﬂ L I I L ﬂ L 1 1 L
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
R A

Figure 2.43: Probability densities; p, g, (R;|Hy) and p, g (R;|H;).

where B(a, b) is the Beta function: L

C(a)I°(b
Bla, b) 2 ff‘]{l _aplax— O (2.431)
la+ b)
i}
On Hywehaveap = 1, byp = 2and on H| we havea; = 2, by = 1, which gives the following densities
Hy: pram(Ri/H)) =2(1—R) O< R < Lii=1,2,...,N,
H):p,u(R;|H)) = 2R, DL R < 1;3=1,2,.... N (2.432)
The densities on the two hypotheses are shown in Figure 2.43.
The log-likelihood ratio is
N N
K, R;
l,(R)=1In Ly e, 2.433
«(R) EI—R,- ; — 7 (2.433)

We do not know how to evaluate p; g, (L|Hy) and py 5, (L|H)). therefore we do not have analytical
expressions for Pr and Py. However we can find p;(5). Substituting (2.432) into (2.376), we have

I
et f Pritt (Ri| Hy Y prai (Ri| Hp) ™ dR; =2 f Ri(1 — R)'"dR;. (2434)
0 0

3The Beta function can be computed in Matlab using the beta function. See Appendix A.
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The integral can be evaluated using (2.431), which gives

20 + D2 —
prits) — 208 +r;;]3:|{ Y G4+ DI@ - 9), (2.435)

therefore,
wi(s)=InI'(s+ 1)+ InT'(2 — 5. (2.436)

Differentiating yields

Ms+1) TI'2—3
T T+ I'2—75)
() = V(s + 1) — Yh2 — 5) = V(s + D+ (2 — 5), (2.438)

= Ynls + 1) — ¥ol(2 — 5), (2.437)

J(5)

where V(- ) and 1y (-) are the Digamma and Trigamma functions defined as!®

(D) ["{z) (2.439)
0li) = . A
['(z)
d
Vi(2) = = g Y(2). (2.440)
The samples are IID, so
i) =N (s)=NInl'(s+ 1)+ NInT'(2 — 5), (2.441)
fus) = Np(s) = Njgls + 1) — Np(2 — 5), (2.442)
ji(s) = Nji;(s) = Nyri(s + 1)+ Ny (2 — 5). (2.443)

We want to run a simulation to estimate Pr and P and compare the results to the approximate
expressions. We start by choosing a set of ROC points to simulate by choosing some values for s,
that satisty 0 < s, < 1. We then find the corresponding threshold using

Ve = H(5,) = N"ifcr{é‘* + I) = N"anilz — 84)- (2.444)

We compute Pr(1y). Pu(ve). Ir(4: 5,), and Ty(y: 5,) using (2.383)—(2.3806).
For the simulation, we choose X = r. The log-likelihood ratio is given in (2.433) and the tilted
marginal density is found by substituting (2.432) into (2.3589). The result is

1
T T+ D2 —3,)

pr;‘|.r3(Ra'} g R:.*El_ﬁ*':] T R'_)]—.-;*‘ 0 < l:"j‘r' < 1,

= R*(1—R)'"™™, OSR <1, (2.445)

B(s.+ 1,2 —5:)
which is a Beta(s, + 1, 2 — s,) probability density. In Figure 2.44, we show the tilted density for
5. = 0.7. We see that, although it is still a Beta probability density, it has a significantly different
shape than the original densities.

The weighting functions are evaluated by substituting (2.433) and (2.441) into (2.390) and (2.391).
We specify @ = 0.1 and ¢ = 3 and calculate K5, Ky ;5. and K5 using (2.392)—(2.394). We gen-
erate the random samples from the tilted marginal dﬁnsity” and compute the estimates Pr(y,) and
ﬁ’ﬂijf*] using (2.395) and (2.397). We plot the approximate ROC curve and the simulation esti-
mates in Figure 2.45 for N = 20. The results show that the approximation is quite accurate for
this example. ]

""The Digamma and Trizamma functions can be computed in Matlab using the psi function. See Appendix A.
""The random samples are generated using the Matlab function bet arnd.
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Figure 2.44: Tilted probability density for s, = 0.7.

These three examples provide interesting results for the optimum “tilted” density. In
Example 2.16, the original Gaussian density is translated so that its mean is s,m and its
variance is unchanged. Example 2.17, the variance of the original Gaussian density is
modified. This is equivalent to scaling the density. In neither case is the density actually
tilted as shown in Figure 2.29. In Example 2.18, the parameters of the Beta density are
modified so that another Beta density is obtained. The operation is not a scaling or shifting
operation and “tilting” 1s a more appropriate description.

— Approx
Sim

0.95

0.9

0.85

0.8

a” 0.75

0.7
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0.6

0.55

HE 1 | | |
1" 107° 10°° 107 10°° 10°

Figure 2.45: Approximate and simulated P, versus Py for N = 20.
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Srinivasan [Sr102] and other references (e.g., [Mit81]) consider an approach that restricts
Prox(X) to be a scaled transformation,

1 X
Pxiow(X) = — Paimg ( —) (2.446)
a a

or a translated density
Pxi0s(X) = Paipy(X — D) (2.447)

and chooses a or b to minimize the variance. The disadvantage is that it is not clear which
form 1s appropriate for a given problem. In addition, in many cases, the optimum tilted
density will not be the same form as the original density.

Example 2.18 illustrated how simulation can be used to validate theoretical results. To
make the comparison, we needed a representative set of points on the two ROC curves, but
the specific values were not important. It turned out that the simulated Fr and Fp were
quite close to the approximate values, however this is not always the case. If we are trying to
simulate a particular value of Fg, such as when producing curves similar to those in Figures
2.41 and 2.42, the threshold y, corresponding to the approximate Pr(y,) may produce an
estimate P, that is not within the specified confidence interval. We develop an iterative
technique to handle this situation in the next section.

2.5.2.6 Iterative Importance Sampling
In this section, we consider the model in which we do not have an exact analytic expression
relating Pr and y, and want to simulate a particular value of Pr, which we denote as Py.
We develop an iterative algorithm for solving this 1::~rc:-l:r!efm.'H

We assume that we can find p(s), either analytically or numerically, and can then find

ft(s) and ji(s). We use (2.383) to specify an approximate expression for Pr as a function
of s,

2
Pr(s) ~ {exp [H(SJ — sju(s) + %ﬁ(ﬂ} ] erfe. sy/]is) | (2.448)

We solve (2.448) to find s (usually numerically) for the desired P, that is,
i Pl B (2.449)
We then find the corresponding threshold using
y = jus). (2.450)

Note that we can only use this technique for values of Py where 0 < 5 < 1 or equivalently
(0) < y < (1). We run the simulation and compute the estimate P using (2.395). If the
estimate falls within our confidence interval, that 1s,

(1 —a)Pf < Pr < (1 +a)Pf (2.451)

then we accept the simulation results. If not, we adjust s and y iteratively.

'8 Srinivasan [Sri02] (p. 55) also discusses this problem but our approach is significantly different. [SSG97] also
discusses various adaptive techniques and gives references.
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Our iterative procedure is a gradient approach based on a Taylor series expansion of
In Pg(s),

d In .PF(S}|
ds

In Pr(s) & In Pge(sp) + (s — sp) (2.452)

|.!|'=I[|

To evaluate the derivative in (2.452) we use the Chernoff bound in (2.217). which we denote
as Pr(s),

Pr(s) £ oS —SiLs), (2.453)

Although the Chernoff bound can be weak compared to the approximation Pg(s), they have
similar derivatives, that is,

dln Pg(s) _dIn Pg(s)

2.454
ds ds ( )
Differentiating the log of (2.453) gives
din Pp(s) d _ ) |
= — wis) — si(s) | = —sji(s). (2.455)
ds cls

Let s and }5{;” denote the values of s and Py at the nth iteration. In (2.452), we set
sop = s s = stntD Po(sy) = ﬁfﬁ], and Prp(s) = Pf. Then s can be updated as follows

£ Filin)
In PF In FF

E[Ir—l—lj —s Stn} g : .
Sfu]ﬁl E S{r:})

(2.456)

n+l) -

and ' is given by

};(H+|} = (5{31+]j) . (2.457)

We iterate until convergence in fjp as specified in (2.451).

Note that, at each step in the iteration, the tilt in the marginal density changes per
(2.456). Also note that we have used several approximations, so there is no guarantee that
the algorithm will converge.

Example 2.19 (continuation of Example 2.18). We consider the same model as in Example
2.18. We specify @ = 0.1, ¢ = 2, N = 20, and P} = 107, In Figure 2.46, we show the iteration for
one trial. The simulated values are slightly less than the approximate values and it converges in three
iterations. |

Examples 2.18 and 2.19 are representative of the class of problems where we can find an
analytic expression for pt(s) but we do not know how to find py, |4, (L|Hp) and p;, 4, (L] H}),
and therefore cannot evaluate Pr and P,;. The approximate expressions used in Example
2.18 and the iterative algorithm used in Example 2.19 appear to provide efficient techniques
for simulating this class of problems.
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Figure 2.46: Convergence of iterative algorithm.

Example 2.14 in Section 2.4 1s representative of the class of problems where we have to
find pt(s) numerically. The approximate and iterative algorithms are also applicable to this
class of problems (see Problem 2.5.6).

There are a number of references on adaptive importance sampling techniques. Srinivasan
[Sri02] and Smith et al. [SSGY97] have a discussion of various techniques and a list of
references.

2.5.3 Summary

In this section, we have developed an approach to importance sampling that utilizes tilted
densities to specify the probability density to be used for simulation. The technique is also
referred to as exponential twisting or large deviation theory in the literature. Although we
did not include the derivation, one can show that this approach is asymptotically efficient
as N — oo or Fr — 0 (e.g.. [SB90]).

By focusing on the log-likelihood ratio (which 1s optimal for our model), we were able
to find p(s) using the probability densities of a sufficient statistic X on Hy and H,. This
enabled us to solve problems where PiHy (LI Hp) and py, 4, (L|H)) were difficult to find.
This result was exceedingly useful when the components of R were statistically independent
and we could tilt the marginal probability densities. This approach allowed us to achieve
the required accuracy and confidence intervals with K ;s values that were typically lower
by a factors of up to 10'” compared with classical Monte Carlo techniques.

We did not consider the simulation of suboptimal tests or tests that simply compared an
arbitrary statistic to a threshold. All of the tilting ideas carry over, but the (s) relation in
(2.375) no longer applies.

Our goal in this section was to provide an introduction to importance sampling that
tocused on the use of tilted densities. It provides adequate background to simulate most of
the detection problems that we will encounter in the text.
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2.6 SUMMARY

In this chapter, we have derived the essential detection theory results that provide the basis
for much of our work in the remainder of the book.

We began our discussion in Section 2.2 by considering the simple binary hypothesis
testing problem. There were several key results:

1. Using either a Bayes criterion or a Neyman—Pearson criterion, we find that the opti-
mum test is a likelihood ratio test,

Pria (RIHYp) ‘g_"

AR) = = 1.
Pri#,(RIHp) H;)H

Thus, regardless of the dimensionality of the observation space, the test consists of
comparing a scalar variable A(R) with a threshold.

I-J

. In many cases, construction of the LRT can be simplified if we can identify a sufficient
statistic. Geometrically, this statistic is just that coordinate in a suitable coordinate

system that describes the observation space that contains all the information necessary
to make a decision (see (2.74)—(2.76)).

3. A complete description of the LRT performance was obtained by plotting the con-
ditional probabilities P, and Pg as the threshold n was varied. The resulting ROC
could be used to calculate the Bayes risk for any set of costs. In many cases, only one
value of the threshold is of interest and a complete ROC is not necessary.

In Section 2.3, we introduced the M hypotheses problem. The key results were

1. The dimension of the decision space is no more than M — 1. The boundaries of the
decision regions are hyperplanes in the (A4, ..., Ay_1) plane.

2. The optimum test is straightforward to find. From (2.156), we compute

M—1
Bi(R) = Z CyPr(HLIR), i=0,1,....,.M—1,
j=0

and choose the smallest. We shall find however, when we consider specific examples
that the error probabilities are frequently difficult to compute.

3. A particular test of importance is the minimum total probability of error test. Here
we compute the a posteriori probability of each hypothesis Pr( H;|R) and choose the
largest.

In Sections 2.2 and 2.3, we dealt primarily with problems in which we could derive
the structure of the optimum test and obtain relatively simple analytic expressions for the
receiver operating characteristic or the error probability. In Section 2.4, we developed bounds
and approximate expressions for the error probabilities for the large group of problems
where an exact solution is difficult. The key function in these results was the logarithm of
the moment generating function of the likelihood ratio. From (2.204)
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b 0

j(s) = In f [PnH](mHl}]J [}’3‘:-|H.;,{R|1"1!‘?::]']]_Jr dR.

—

The function j(s) plays a central role in all of the bounds and approximate expressions that
are derived in Section 2.4. It is straightforward to calculate when the components of r on
the two hypotheses are statistically independent. Then,

o

i(s) = In f [Prote (R [Prao(RiVHY) " dRi, i=1,...,N,

_xu

and

N
pis) = Z fLi(s).

=]

We have introduced p(s) early in the text because of the central role it plays in the
analysis of non-Gaussian models.

In many applications of interest, it is necessary to simulate the detection algorithm in or-
der to evaluate the performance. In Section 2.5, we gave a brief introduction to Monte Carlo
simulation. A key issue is the number of trials needed to have a desired level of confidence
in the result. In most systems of interest, the desired Pr is very small (e.g., Pr < 107 is
frequently required). In these cases, the number of trials required to obtain a reasonable
confidence level is prohibitively large. We introduced a technique called “importance sam-
pling” that provided a dramatic reduction in the number of trials. The key function in our
approach was y1(s) developed in Section 2.4.

In this chapter, we confined our discussion to the decision problem in which the transition
probabilities pr|Hj(R|H ;) were known. This is referred to as simple hypothesis testing. In
many applications, pr iy, o(R|H;, #) depends on an unknown vector parameter # that may
be random or nonrandom. This is referred to as composite hypothesis testing and we study
it in Chapter 4.

In this chapter, we have developed many of the key results in detection theory. All of
our discussion dealt with arbitrary probability densities. A large number of important signal
processing applications in communications, radar and sonar can be modeled assuming that
pr|Hj{R|Hj}, j=0,..., M —11s a multivariate Gaussian probability density. In Chapter
3. we consider this model in detail.

2.7 PROBLEMS

The problems are divided into sections corresponding to the major sections in the chapter.
For example, section P2.2 pertains to text material in Section 2.2. In sections in which it 1s
appropriate the problems are divided into topical groups.
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P2.2 Simple Binary Hypothesis Tests
SIMPLE BINARY TESTS
Problem 2.2.1. Consider the following binary hypothesis testing problem:

H:r=s5+n,

Hy:r=n,
where s and n are independent random variables:

ae™™ S§=0
pS) =

0 S <0
and
be ™™ N =0
PJI{,N} ==
0 N <.

1. Prove that the likelihood ratio test reduces to

2. Find y for the optimum Bayes test as a function of the costs and a priori probabilities.

3. Now assume that we need a Neyman—Pearson test. Find 3 as a function of Py, where

P = Prisay H,|Hy is true).
Problem 2.2.2. The two hypotheses are
|
Hy:p.(R) g S (—|K]).

! i o
Hy:p.(R)=——exp | —= R ] -
0 Pr(K) Nor P(z )

(This is an example of the Generalized Gaussian density withay = 1,6y = l,anda; =2, b = Ji.]

I. Find the likelihood ratio A(K).
2. The testis

H|
A(R) = 1.

Hy

Compute the decision regions for various values of 7.

Problem 2.2.3. The random variable x is N('D, a’). It is passed through one of two nonlinear
transformations.

Find the LRT.
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Problem 2.2.4. The random variable x is N (m, o2). It is passed through one of two nonlinear
transformations.

Find the LRT.

Problem 2.2.5. Consider the following hypothesis testing problem. There are K independent
observations:

H]:r,-isGaussian,N(D,cr) 1 =1 onus K
Hy :r; is Gaussian, N (0,03) i=1,2,...,K,

—_—a

g g
where o < O7.

1. Compute the likelihood ratio.
2. Assume that the threshold is n:
H)
AR) = n.
Hy
K
Show that a sufficient statistic is [(R) = Z RE. Compute the threshold - for the test

=

. 3
in terms of 5, g;, and r:r%.

3. Define
FPr = Prichoose H|Hyp is true),
Fy = Pr(choose Hn|H; is true).
Find an expression for Pr and Py.
Plot the ROC for K = 1,67 =2, and o = 1.
5. What is the threshold for the minimax criterion when Cy = Cp and Cyp = Cy| = 07

Problem 2.2.6. The observation r is defined in the following manner:

Ho:r=bm;+n,

Hy:r=n,
. . . " . 7 8 '
where b and n are independent zero-mean Gaussian variables with variances o, and o, respectively.

Find the LRT and draw a block diagram of the optimum processor.
Draw the ROC.

Assume that the two hypotheses are equally likely. Use the criterion of minimum probability
of error. What is the Pr(e)?

D D e
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1 07
- > a
Source lor0
9 =S > b
0.6
Channel

Figure P2.1: Binary communication channel.

Problem 2.2.7. One of two possible sources supplies the inputs to the simple communication
channel as shown in Figure P2.1.

Both sources put out either 1 or 0. The numbers on the line are the channel transition probabilities;
that is,

Pr(a out| 1 in) = 0.7.
The source characteristics are

Source 1: Pr(l)=0.5 Pr(0)=0.5
Source 2: Pr(l)=0.6 Pr(0)=0.4.

To put the problem in familiar notation, define

(@) False alarm—say source 2 when source 1 is present;
(b) Detection

say source 2 when source 2 1s present.

. Compute the ROC of a test that maximizes Fp subject to the constraint that Pr = o.

2. Describe the test procedure in detail for o = 0.25.

Problem 2.2.8. The probability densities on the two hypotheses are

Hr' . F.1'|H,":X|Hr'} =

= el 00 £ = Do,
:rr[I —|—{X—a,-j-]

whereap =0and a; = 1.

l. Find the LRT.
2. Plot the ROC.

Problem 2.2.9. Consider a simple coin tossing problem:

H, :heads are up: Pr[H|] £ P,
Hp :tails are up:  Pr[Hp] 2 Py< Py
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N independent tosses of the coin are made. Show that the number of observed heads NV is a sufficient
statistic for making a decision between the two hypotheses.

Problem 2.2.10. A sample function of a simple Poisson counting process N(t) is observed over
the interval T

H; : The mean rate is k| : Pr(H)) =

Hpy : The mean rate i1s kp : PriHy) =

P | b D]

1. Prove that the number of events in the interval T 1s a “sufficient statistic” to choose hypothesis
Hyor Hy.

2. Assuming equal costs for the possible errors, derive the appropriate likelihood ratio test and
the threshold.

Lad

Find an expression for the probability of error.

Problem 2.2.11. Let
XY= Z Xis
=0

i . . . . ' ¥
where the x; are statistically independent random variables with a Gaussian density N (0, o°). The
number of variables in the sum is a random variable with a Poisson distribution:

k

rh :
Pr{uzk}zﬁa:-'_", K=k 1. ..

We want to decide between the two hypotheses,

H:n< 1
Hy:n > 1.

Write an expression for the LRT.

Problem 2.2.12. Randomized tests. Our basic model of the decision problem in the text did
not permit randomized decision rules. We can incorporate them by assuming that at each point R in
Z we say H; with probability ¢(R) and say Hj with probability 1 — ¢(R). The model in the text is
equivalent to setting ¢(R) = | for all R in Z and ¢(R) = 0 for all R in Z.

1. We consider the Bayes criterion first. Write the risk for the above decision model.
2. Prove that an LRT minimizes the risk and a randomized test is never necessary.

3. Prove that the risk is constant over the interior of any straight-line segment on an ROC. Because

straight-line segments are generated by randomized tests, this is an alternate proof of the result
in Part 2.

4. Consider the Neyman—Pearson criterion. Prove that the optimum test always consists of either
(1) an ordinary LRT with Pr = o or
(11) a probabilistic mixture of fwo ordinary likelihood ratio tests constructed as
H H
follows: Test 1: A(R) = n gives Pr =a™. Test 2: A(R) - n gives Pr =a™, where

[@”, a™] is the smallest interval containing o. ¢(R) is 0 or 1 except for those R where
@(R) = n. (Find ¢(R) for this set.)
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MATHEMATICAL PROPERTIES

Problem 2.2.13. The random variable A(R) is defined by (2.13) and has a different probability
density on H| and Hj. Prove the following:

1. E(A"|H,) = E(A"*'|Hy).
2. E(A|Hp) =1.
3. E(A|H,)— E(A|Hy) = Var(A|Hp).

Problem 2.2.14. Consider the random variable A. In (2.128)—(2.129), we showed that

Fﬁ.lHl(lelj = XF,-'\,|H”(X|H[|-,]-

l. Verify this relation by direct calculation of p g, (-) and p 44, (-) for the densities in Examples
2.1 and 2.5.

2. We saw that the performance of the test in Example 2.5 was completely characterized by d’.
Show that

d* = In[1 + Var(A|Hp)].
Problem 2.2.15. The function erfc,(X) is defined in (2.83).

l. Integrate by parts to establish the bound

1 ! X 1 X?
(I——ﬂ)exp(——) < erfe, (X) = — exp(——) X = 0.
v 2mX X~ 2 2w X 2

2. Generalize part 1 to obtain the asymptotic series

n—1
1 3 1:3...(2m—1
JE_XE_I 2 |:] o Z{_l}m Xg"r } + RH} '
T

The remainder is less than the magnitude of the n 4+ 1 term and is the same sign. Hini: Show
that the remainder is

erfc.( X) =

i [{—11"_"' 1-3.--(2n — I}} 5

XEH+2

where

|
x 2\
a=f f—'(|+ ) dt < 1.
0 X-

3. Assume that X = 3. Calculate a simple bound on the percentage error when erfc.(3) is ap-
proximated by the first n terms in the asymptotic series. Evaluate this percentage error for
n = 2, 3, 4 and compare the results. Repeat for X = 5.

Problem 2.2.16.
1. Prove

erfc, (X) <

xl
exp (—?) X =0.

B3| =
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Hint: Show
lerfe (X)) =Pr(x = X,y > ¥) < Pr(x? + y* = 2X%),

where x and y are independent zero-mean Gaussian variables with unit variance.
2. For what values of X is this bound better than (2.89)?

HIGHER DIMENSIONAL DECISION REGIONS

A simple binary test can always be reduced to a one-dimensional decision region. In many cases,
the results are easier to interpret in two or three dimensions. Some typical examples are illustrated in
this section.

Problem 2.2.17. The joint probability density of the random variables x; and x2 on H, and Hj is
exp|l —— — — exp| ——= — ;
dmoyay P 207 E{T{% P 20y chi?

H, {X X |H = : cxXp (— l: — %
" r].nx2 L 2 - il = ]
0. P, [.x31|Hp 1 i]-] 7 Ijg 2 7 3

Hy:py oo (X1, Xo|Hy) =

where —o00 < X, X» < oo,

1. Find the LRT.

2. Write an exact expression for Fp and Pr. Upper and lower bound Fp and Pr by modifying
the region of integration in the exact expression.

Problem 2.2.18. The joint probability density of the random variables x;;i = 1,2,..., M on H,
and Hy is

2 l (2, copi) | X2
H;: X|H) = ; _exp | — 2% exp| ——L ],
| PE|H| { | ]::I ; P {;EH{TEJMIE P |: Elﬂ'j :| 1_[ P ( 251)

P =k
Bt a
1 X
Hy: pxya, (X|Hp) = —ex (— ’,.,),
s E][ 2ro T
where —oo < X; < 00, and
M
D b=
=1

1. Find the LRT.

2. Draw the decision regions for various values of n in the X, X;-plane for the special case in
which M =2and p; = p2 = %

3. Find an upper and lower bound to Pr and Fp by modifying the regions of integration.

Problem 2.2.19. The probability density of r; on the two hypotheses is

(R, —m ) T I PR
cX —
. 257 =001

|
Py (Ril H) =
SRV 7=

The observations are independent.
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|. Find the LRT. Express the test in terms of the following quantities:

2. Draw the decision regions in the [, , [5-plane for the case in which
2mg =m =0
201 = og.

Problem 2.2.20 (continuation of Problem 2.2.19).

. Consider the special case
mg =0,
ap = .

Draw the decision regions and compute the ROC.

2. Consider the special case

ng =my =0,

2 : 2
CFI_ =ﬂ-.‘|' +':Fu’
ap =a,.

Draw the decision regions.

Problem 2.2.21. A shell is fired at one of two targets: Under H; the point of aim has coordinates
X1, ¥1, Z1; under Hy it has coordinates xg, vp, Zo. The distance of the actual landing point from the point
of aim 1s a zero-mean Gaussian variable, N {I], JE]I . in each coordinate. The variables are independent.
We wish to observe the point of impact and guess which hypothesis is true.

|. Formulate this as a hypothesis testing problem and compute the likelihood ratio. What is the
simplest sufficient statistic? Is the ROC in Figure 2.12a applicable? If so, what value of d” do
we use?

2. Now include the effect of time. Under H, the desired explosion time is #;: k = 1, 2. The distri-

bution of the actual explosion time is
(t—=1) —00 < T < 00
expl ————

20?2 k=1,2.

f

FI'HJ.{T} —

1
v 2ma,
Find the LRT and compute the ROC.

Problem 2.2.22. Consider the model in Examples 2.2 and 2.6.

1. Plot Py, versus N for Pr = 1079,

2. Define Ny as the value of N that gives the minimum Py, for a given
SNRr £ No’/a”.

Plot Ny versus SNRy for Pr = 102, 1074, and 1075,
3. Plot Py(Nyp) versus SNRy for Pr = 1072, 1074, and 107°.

Van Trees, Harry L., and Bell, Kristine L.. Detection Estimation and Modulation Theory, Part | (2nd Edition). Somerset, NJ, USA: John Wiley & Sons, 2013. ProQuest ebrary. Web. 28 October 2014.
Copyright © 2013. John Wiley & Sons. All rights reserved.



118 Detection, Estimation, and Modulation Theory

[ID MobpeL

The following problems assume the IID model in (2.39)—-(2.43) and Figure 2.7.

Problem 2.2.23. Consider the Generalized Gaussian model in Example 2.4. Plot In A(R;) for
=1y Lils :2eiaaq7 B9,

Problem 2.2.24. [Kay98] The observations on the two hypotheses are

H:rr=m+n;, i=1,..., N
Hy:r; = n; i=1,..., N,

where p,.(N;) is Cauchy

" Nr - — Nr :
Py, (1V;) ;rr{1—|—N.3} 00 < < 00

I

Plot In A(R,).

Problem 2.2.25. The observations on the two hypotheses are

=

H:rn=m+n, i=1,...,
Hy:r; = n;, i=1,..., N,

where n; i1s a sample from a Gaussian mixture density

"

(V) =a— ( o)+ (- ( )
-”.I:I,' i) =X —— cX B -y — — cX =R
v 2o, . 2 o v 2o E 2 03

for0 =< o < 1.

() Assume m = ],r:rf = |, and three values of f::r-;:“ : 2,10, and 20. Plot In A(R;) for a =
0,0.1,...,1.0.

(b Fixa =05 m=1, r:f]1 = 1. Plot In A(R,) for various cr:::fr:rlz.
Problem 2.2.26. The observations on the two hypotheses are:

H:rp=m+n, i=1,...,N,
Hy:r; =n; P=1,..., 40N

The noise n; is a sum of two statistically independent noise terms
n,=wytx, 1=1,...;N,

where w, has a Weibull density, defined in (2.274),

2 Hf'r, a—1 .-
Fh'.:';{m}zg(?) E_{W‘:.Ih}n’? w';?ﬂ;j:]-szi---!N:-

and x; has a Rayleigh density

X; X? _ ;
P.(X;))=—=sexp|l——]. Xiz0i=12,...,N.
' 2 20

X

The n; are statistically independent.
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Notice that the Weibull density corresponds to the Rayleigh density whena = 2 and b = V20,
The variance of w; is given by (2.276). We will encounter this model later when we sample the output

of a bandpass square-law detector.

(a) Assume o = b = 3. The resulting density is shown in Figure 2.35. Assume IJ'I;"CTE =18k

EYED

Find p,.(N;) by numerically convolving p,.(R;) and p..(X;) for three variance ratios,
0.1, 1.0, 10.0.
(&) Plot In A(R;) for the values in part (a).

Problem 2.2.27. Consider the Generalized Gaussian model in Example 2.4. Plot In A(R,) for
a < 1. Explain your results.

Problem 2.2.28. Extend the results in (2.42)—(2.43) where the observations are vectors R, that are
IID. Explain your results.

P2.3 M Hypotheses
Problem 2.3.1.

l. Verify that the M hypothesis Bayes test always leads to a decision space whose dimension is
less than or equal to M — 1.

2. Assume that the coordinates of the decision space are
A Pr|H;{{R|Hk}

MR = k=12,.... M— 1.
K= PRI

Verify that the decision boundaries are hyperplanes.

Problem 2.3.2. The observed random variable r has a Gaussian density on the three hypotheses,

I [ {R—mk}z} —00 = R =00
exp | —

o (RIH) = ——
P (R1H) J2no, 2 k—=1,2.3,

2!.’]'..3

where the parameter values on the three hypotheses are,

7 ¥

Hiy:m =0, Gy = 0,

2]

o
Hy:pmr =m, u::r% = (m = 0),

i
7 ¥

Hi:m3 =0, oy = dj {r_r_é = CFSJI.
The three hypotheses are equally likely and the criterion is minimum Pr(e).

. Find the optimum Bayes test.

2. Draw the decision regions on the K-axis for the special case,

I3

—2a

'::-':1 =

bt
]

n
g =n.

=

3. Compute the Pr(e) for this special case.
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Problem 2.3.3. The probability density of r on the three hypotheses is

= ] R% R2 —o0 = Ry, K =0
Fra.rzlﬁk{Rl* leHk}z{EIﬂ-lkJHj Cxp |:_§ ( _):| k = 1,2,3‘

where

2 2 2 2
I::rl | f]-” ' ﬂ-l] Errr '
# s 2 2 2
JIE_H';_I_G-H’ {TH _C:I'”,
2 2 2 2 2
qu.- Er.'i' ’ Jl"! = ﬂ-'. + J.u'
The cost matrix is
0 1 17
L. i 2
1 a 0

where 0 < o < 1 and Pr(Hz) = Pr(H3) = p. Define [| = Rf and [, = R%.

1. Find the optimum test and indicate the decision regions in the /[, [>-plane.
2. Write an expression for the error probabilities. (Do not evaluate the integrals.)

3. Verify that for o = 0 this problem reduces to Problem 2.2.17.

Problem 2.3.4. On H; the observation is the value of a Poisson random variable

"

JEI{:J'u —k
Pr{r=n]=—'e m  m=12,..., M,
n!

where k,, = mk. The hypotheses are equally likely and the criterion 1s minimum Prie).

1. Find the optimum test.

2. Find a simple expression for the boundaries of the decision regions and indicate how you would
compute the Pr{e).

Problem 2.3.5. Assume that the received vector on each of the three hypotheses is

fy:r =mp +n,
Hy:r=m; 4+ n,

Hy:r=m> 4+ n,

where
_rl_ _mn_ _ﬂl_
) Fa ¥
= | r m, = | n; n—=|n:
3 iy na

The m; are known vectors, and the components of n are statistically independent, zero-mean Gaussian
. " : #,
random variables with variance o-.
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. Using the results in the text, express the Bayes test in terms of two sufficient statistics:

k)

!r[ — Z Y

i=I

3
[ Zd;r,.

i=lI

Find explicit expressions for ¢; and d;. Is the solution unique?

2. Sketch the decision regions in the [, {>-plane for the particular cost assignment:

Coo = Cyp = Cpn =0,

1 ]
Cip=0g =0y =Cyp= ECDE = ;Cm = 0.

P2.4 Performance Bounds and Approximations

Problem 2.4.1. Consider the binary test with N independent observations r;, where
PrJH;_.{Rr'lHkJ = {ﬁu-. ﬂ'f}l

Find pu(s), fuis), and ji(s).

Problem 2.4.2 (continuation of Problem 2.4.1). Consider the special case in which

g =10
2 2
Op = Oy »

and

2 2 '
II:FI :ﬂ-.':+g.l:|'

. Find pe(s), puis). and ji(s).
2. Assuming equally likely hypotheses, find an upper bound on the minimum Pr(e).

3. With the assumption in part 2, find an approximate expression for the Pr(e) that is valid for
large N.

Problem 2.4.3. 'We derived the Chernoff bound in (2.217) by using tilted densities. This approach
prepared us for the central limit theorem argument in the second part of our discussion. If we are
interested only in (2.217), a much simpler derivation is possible.

. Consider a function of the random variable x that we denote as f(x). Assume

flx) =0, all x
fixyz f(Xp) =0, allxz X,.

Prove

ELf ()]

Pr[x = Xp] € —
K gl f(Xn)
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2. Now let

f[-x._] i E.“:.'.'I." Ly -

W
o

and
Xop =17

Use the result in part 1 to derive (2.212). What restrictions on * are needed to obtain (2.217)?

Problem 2.4.4. The reason for using tilted densities and Chernoff bounds is that a straightforward

application of the central limit theorem gives misleading results when the region of interest is on the
tail of the density. A trivial example taken from [WJ63] illustrates this point.

Consider a set of statistically independent random variables x; that assume values 0 and 1 with
equal probability. We are interested in the probability

N
l
o {J”-’“ =5 ) S l} £ Pr{Ay].

(@) Define a standardized variable

a YN — YN
a

4
FN

Use a central limit theorem argument to estimate Pr[ A, ]. Denote this estimate as ﬁr[ﬂ,-,,-].
(b) Calculate Pr[ A ] exactly.

(c) Verify that the fractional error is

Pr{A, .
rlAn] o 19N
Pr[Ay]

Observe that the fractional error grows exponentially with N.

(d) Estimate Pr[ A ] using the Chernoff bound of Problem 2.4.6. Denote this estimate as Pr_[A y].

Pr.[Ax]
Compute prror-

Problem 2.4.5.

(@) Find pe(s), fu(s), and ji(s) for the model in Problem 2.2.1.
() Plot an approximate ROC.

Problem 2.4.6.

(@) Find pe(s), pu(s), and ji(s) for the model in Problem 2.2.23.
(b) Plot an approximate ROC.

Problem 2.4.7.

(@) Find pe(s), fu(s), and ji(s) for the model in Problem 2.2.24.
() Plot an approximate ROC.
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P2.5 Monte Carlo Simulation

Problem 2.5.1. This problem is a continuation of Example 2.16. The observations on the two
hypotheses are:

Hy:ri~N(my. 0", i=12,...,N,
Hy:r; ~N(mg,0%), i=12,....N,

where

preyce= el AL )
mp, = m(1 — 0.2i).

Simulate the optimum detector for N =40, m = 1, and o> = | and compare your results to the
analytic solution.

Problem 2.5.2. This problem is a continuation of Example 2.16. The observations on the two
hypotheses are:

Hy:rp~N(m;al), i=1,2,...;N,
Hy:r; ~N(0,67), i=1,2,....N,

where
o7 =0 (140.05) i=12,...,N.

Simulate the optimum detector for N =40, m = 1, and ¢* = | and compare your results to the
analytic solution.

Problem 2.5.3. This problem is a continuation of Example 2.17. The observations on the two
hypotheses are:

Hy:ri~N(0,00 +0)), i=12....,N,
Hy:r; ~N(0,0;), =l B N

where
o2 =o2(1+0.05)) i=1,2,...,N

Simulate the optimum detector and generate a curve similar to Figure 2.42.

Problem 2.5.4. This problem is a continuation of Examples 2.16 and 2.17. The observations on
the two hypotheses are:

H]I?‘;“‘JN(J‘?’S,E}'E-I—{'IE:]. i=1,2,...,N,
Hy:r; ~N(0,0%), fi= By N

(c) Find the LRT.

(&) Simulate the optimum detector for N = 40 and m
versus a- /o,

1. Plot a figure similar to Figure 2.42

Van Trees, Harry L., and Bell, Kristine L.. Detection Estimation and Modulation Theory, Part | (2nd Edition). Somerset, NJ, USA: John Wiley & Sons, 2013. ProQuest ebrary. Web. 28 October 2014.
Copyright © 2013. John Wiley & Sons. All rights reserved.



124 Detection, Estimation, and Modulation Theory

Problem 2.5.5. This problem is a continuation of Example 2.14.

(a) Find the LRT for the model in Example 2.14.

(b) Simulate the optimum detector and compare your results to the approximate ROC computed

in Example 2.14.
Problem 2.5.6. This problem is a continuation of Example 2.18.

(@) Generalize the results in (2.436)—(2.438) to other values of a; and b;; j =0, 1.
(b) Plot the results corresponding to Figures 2.43-2.45,

Problem 2.5.7. Simulate the model developed in Problems 2.2.23 and 2.4.6.

Problem 2.5.8. Simulate the model developed in Problems 2.2.24 and 2.4.7.
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