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Abstract–Sensing (signal detection) is a fundamental prob-
lem in cognitive radio. The statistical covariances of signal and
noise are usually di erent. In this paper, this property is used
to di erentiate signal from noise. The sample covariance matrix
of the received signal is computed and transformed based on
the receiving filter. Then two detection methods are proposed
based on the transformed sample covariance matrix. One is
the covariance absolute value (CAV) detection and the other
is the covariance Frobenius norm (CFN) detection. Theoretical
analysis and threshold setting for the algorithms are discussed.
Both methods do not need any information of the signal,
the channel and noise power as a priori. Simulations based
on captured ATSC DTV signals are presented to verify the
methods.
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I. Introduction

A “cognitive Radio” is a radio which is able to sense

the spectral environment over a wide frequency band

and exploit this information to opportunistically provide

wireless links that best meet the user communications

requirements [1], [2], [3], [4]. Unique to cognitive radio

operation is the requirement that the radio is able to

sense the environment over huge swath of spectrum and

adapt to it. That is, it is necessary to dynamically detect

the existence of signals of primary users. In December

2003, the FCC issued a Notice of Proposed Rule Making

that identifies cognitive radio as the candidate for imple-
menting negotiated/opportunistic spectrum sharing [5]. In

response to this, from 2004, the IEEE has formed the

802.22 Working Group to develop a standard for wireless

regional area networks (WRAN) based on cognitive radio

technology [6], [7], [8]. WRAN systems will operate on

the VHF/UHF bands that are currently allocated for TV

broadcasting services and other services such as wireless

microphone. In particular, a WRAN system will be able

to sense the spectrum, identify unused TV channels, and

utilize these channels to provide broadband services for

fixed wireless subscribers.
As discussed above, sensing is a fundamental component

of cognitive radio. There are several factors which make

the sensing di cult. First, the signal-noise-ratio (SNR)

may be very low. For example, in the TV band, some Part

74 devices (such as wireless microphone) only transmits

signal of about 50mW power in 200 kHz bandwidth. If the

sensor is several hundred meters away from the devices,

the received SNR may be well below -20dB. Secondly,

fading and multipath in wireless signal complicate the

problem. Fading will cause the signal power fluctuates
dramatically (can be 10dB or even higher), while un-

known multipath will cause coherent detection methods

unreliable. Thirdly, noise/interference level changes with

time (noise uncertainty). There are two types of noise

uncertainty: receiver device noise uncertainty and envi-

ronment noise uncertainty. There are several sources of

receiver device noise uncertainty [9], [10], [11], [12]: (a)

non-linearity of components; (b) thermal noise in compo-

nents (non-uniform, time-varying). The environment noise

uncertainty may be caused by transmissions of other users

(unintentional (close-by) or intentional (far-away)). Due

to noise uncertainty, in practice, it is very di cult to

obtain the accurate noise power. Fourthly, sensing time is

limited and the complexity of the sensing scheme should

be low. When a cognitive user is using a spectral band

and a primary user is turned on, the cognitive user must

detect the primary user’s signal and vacant the channel

in a very short time (to avoid interference to the primary

user). To save power and reduce costs, we want the sensing

algorithm to have low complexity.

There have been some sensing algorithms including

the energy detection [13], [9], the matched filtering
(MF) [9], [8] and cyclostationary detection [14], [15],

[16]. These algorithms have di erent requirements and

advantages/disadvantages. Energy detection is a major

and basic method. Unlike other methods, energy detection

does not need any information of the signal to be detected

and is robust to unknown multipath fading. However,

energy detection is vulnerable to the noise uncertainty

[9], [10], [11], [12], because the method relies on the

knowledge of accurate noise power. In practice, it is

very di cult to obtain the accurate noise power. To

overcome this shortage, we propose new methods based

on the statistical covariance or auto-correlations of the

received signal. The statistical covariance matrices or auto-

correlations of signal and noise are generally di erent.

The statistical covariance matrix of noise is determined

by the receiving filter. Therefore its structure is known
to the receiver. Based on this structure, we can turn

the covariance matrix of the received signal into another

matrix. When there is no signal, the o -diagonal elements

of the resultant matrix are zeros. However, when there
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are signals, some of the o -diagonal elements of the

resultant matrix are not zeros. Based on this property, we

can compare the o -diagonal elements with the diagonal

elements of the transformed covariance matrix to detect

signal existence. Two detection methods are proposed.

One is the covariance absolute value (CAV) detection

and the other is the covariance Frobenius norm (CFN)

detection. The thresholds and the probability of false

alarm are also found. The method can be used for various

signal detection applications without knowledge of the

signal, the channel and noise power. Simulations based

on captured digital television (DTV) signals are done to

verify the methods.

The rest of the paper is organized as follows. The

detection algorithms are presented in Section 2. Section

3 gives theoretical analysis and finds thresholds for the
algorithms. Simulations results by using captured DTV

signals are given in Section 4. Finally, conclusions are

drawn in Section 5.

Some notations are used in the following: superscripts T

and † stand for transpose and Hermitian (transconjugate),
respectively. Iq is the identity matrix of order q.

II. Covariance based detections

Let x(t) = s(t)+ (t) be the received signal, where s(t)

is the possible primary user’s signal and (t) is the white

noise. Assume that we are interested in the frequency band

with central frequency fc and bandwidth W . We sample

the received signal at a sampling rate fs, where fs
W . Let Ts = 1/fs be the sampling period. For notation

simplicity, we define x(n) = x(nTs), s(n) = s(nTs) and

(n) = (nTs). There are two hypothesizes: H0, signal not
exists; and H1, signal exists. The received signal samples
under the two hypothesizes are therefore respectively as

follows:

H0 : x(n) = (n) (1)

H1 : x(n) = s(n) + (n), (2)

where s(n) is the transmitted signal samples passed

through a wireless channel (including fading and multi-

path e ects) and (n) is the white Gaussian noise samples.

Note that s(n) can be the superposition of multiple signals.

The received signal is generally passed through a bandpass

filter. Let f(k), k = 0, 1, · · · ,K, be the normalized
bandpass filter with

K

k=0

|f(k)|2 = 1. After filtering, the

received signal is turned to

x̃(n) =

K

k=0

f(k)x(n k), n = 0, 1, · · · . (3)

(4)

Let

s̃(n) =

K

k=0

f(k)s(n k), (5)

˜(n) =

K

k=0

f(k) (n k). (6)

Then

H0 : x̃(n) = ˜(n) (7)

H1 : x̃(n) = s̃(n) + ˜(n). (8)

Let us consider L (called smoothing factor in the following)

consecutive samples and define

x(n) = x̃(n) x̃(n 1) · · · x̃(n L+ 1)
T
, (9)

s(n) = s̃(n) s̃(n 1) · · · s̃(n L+ 1)
T
, (10)

(n) = ˜(n) ˜(n 1) · · · ˜(n L+ 1)
T
. (11)

Define a L× (L+K) matrix as

H =

f(0) f(1) · · · f(K) 0 · · · 0
0 f(0) · · · f(K 1) f(K) · · · 0

. . .
. . .

0 0 · · · f(0) f(1) · · · f(K)

. (12)

If analog filter is used, the matrix H should be defined
based on the analog filter property. Considering the

statistical covariance matrices of the signals and noise

defined as

Rx = E(x(n)x
†(n)), (13)

Rs = E(s(n)s
†(n)), (14)

R = E( (n) †(n)), (15)

we have

Rx = Rs +R . (16)

From (6), we can verify that

R = 2G, (17)

where 2 is the white noise variance and G = HH†. Note
that G is a positive definite Hermitian matrix. It can be
decomposed to

G = Q2, (18)

where Q is also a positive definite Hermitian matrix.

Define

R̃x = Q
1RxQ

1, (19)

R̃s = Q
1RsQ

1. (20)

Then

R̃x = R̃s +
2IL. (21)

If there is no signal, then R̃s = 0. Hence the o -diagonal

elements of R̃x are all zeros. If there is signal and the

signal samples are correlated, R̃s is not a diagonal matrix.
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Hence, some of the o -diagonal elements of R̃x should not

be zeros. Let rnm be the elements of matrix R̃x. Let

T1 =
1

L

L

n=1

L

m=1

|rnm|, (22)

T2 =
1

L

L

n=1

|rnn|, (23)

T3 =
1

L

L

n=1

L

m=1

|rnm|2, (24)

T4 =
1

L

L

n=1

|rnn|2. (25)

Then, if there is no signal, T1 = T2 and T3 = T4. If there

is signal, T1 > T2 and T3 > T4. Hence, we can detect the

signal presence by comparing T1 with T2 or T3 with T4.

In practice, we can only approximate the statistical

covariance matrix using limited signal samples. Define the
sample auto-correlations of the received signal as

(l) =
1

Ns

Ns 1

m=0

x̃(m)x̃ (m l), l = 0, 1, · · · , L 1. (26)

The statistical covariance matrix Rx can be approximated
by the sample covariance matrix defined as

Rx(Ns) =

(0) (1) · · · (L 1)
(1) (0) · · · (L 2)

.

.

.
.
.
.

.

.

.
.
.
.

(L 1) (L 2) · · · (0)

. (27)

Note that the sample covariance matrix is Hermitian

and Toeplitz. Based on the sample covariance matrix, we

obtain two detection methods as follows.

Algorithm 1: The covariance absolute value (CAV) de-

tection

Step 1. Sample and filter the received signal as described
above.

Step 2. Choose a smoothing factor L and a threshold

1, where 1 should be chosen to meet the requirement

for the probability of false alarm. This will be discussed

in the next section.

Step 3. Compute the auto-correlations of the received

signal (l), l = 0, 1, · · · , L 1, and form the sample

covariance matrix.

Step 4. Transform the sample covariance matrix to

obtain

R̃x(Ns) = Q
1Rx(Ns)Q

1, (28)

Step 5. Compute

T1(Ns) =
1

L

L

n=1

L

m=1

|rnm(Ns)|, (29)

T2(Ns) =
1

L

L

n=1

|rnn(Ns)|, (30)

where rnm(Ns) are the elements of the transformed sample

covariance matrix R̃x(Ns).

Step 6. Determine the presence of the signal based on

T1(Ns), T2(Ns) and the threshold: if T1(Ns) > 1T2(Ns),

signal exists; otherwise, signal not exists.

Algorithm 2: The covariance Frobenius norm (CFN)

detection

Step 1. Sample and filter the received signal as described
above.

Step 2. Choose a smoothing factor L and a threshold

2, where 2 should be chosen to meet the requirement

for the probability of false alarm. This will be discussed

in the next section.

Step 3. Same as Algorithm 1.

Step 4. Same as Algorithm 1.

Step 5. Compute

T3(Ns) =
1

L

L

n=1

L

m=1

|rnm(Ns)|2, (31)

T4(Ns) =
1

L

L

n=1

|rnn(Ns)|2. (32)

Step 6. Determine the presence of the signal based on

T3(Ns), T4(Ns) and the threshold: if T3(Ns) > 2T4(Ns),

signal exists; otherwise, signal not exists.

III. Theoretic analysis and the thresholds

The validity of the algorithms relies on the assumption

that the signal samples are correlated, that is, R̃s is not a

diagonal matrix (some of the o -diagonal elements of R̃s

should not be zeros). Define

s̄(n) = s(n) s(n 1) · · · s(n L K + 1)
T
, (33)

and the statistical covariance matrix of the transmitted

signal as

R̄s = E(̄s(n)̄s
†(n)). (34)

Then s(n) = Hs̄(n) and

Rs = HR̄sH
†, (35)

R̃s = Q
1HR̄sH

†Q 1. (36)

Obviously, if the signal samples s(n) are statistically

independent and identically distributed (i.i.d), then R̄s =

IL+K , and therefore R̃s = IL+K . At this case, the
assumption is invalid and the algorithms cannot detect

the signal.

However, usually the signal samples should be correlated

due to the following reasons.

(1) The signal is oversampled. Let T0 = 1/W to be the

Nyquist sampling period. Let s(nT0) to be the sampled

signal based on the Nyquist sampling rate. Based on the

sampling theorem, the signal s(t) can be expressed as

s(t) =
n=

s(nT0)g(t nT0), (37)

204



where g(t) is an interpolation function. Hence, the signal

samples s(n) = s(nTs) are only related to s(nT0). If the

sampling rate at the receiver fs > W , that is, Ts < T0,

then s(n) = s(nTs) must be correlated.

(2) The propagation channel has multipath. If the

channel has multipath, the actually signal component at

the receiver is

s(t) = h( )s0(t )d , (38)

where s0(t) is the original transmitted signal and h(t)

is the multipath channel response. Since the sampling

period Ts is usually very small, the integration (38) can

be approximated as

s(t) Ts
k=

h(kTs)s0(t kTs). (39)

Hence,

s(nTs) Ts

K1

k=K0

h(kTs)s0((n k)Ts), (40)

where [K0Ts,K1Ts] is the support of the channel response

h(t), that is, h(t) = 0, t [K0Ts,K1Ts]. If K1 > K0
(multipath channel), obviously the signal samples s(nTs)

are correlated even if the original signal samples s0(nTs)

are i.i.d..

(3) The original signal is correlated. In most cases, the

practical physical signal samples are correlated.

Let Pd be the probability of detection, that is, at

hypothesis H1, the probability of the algorithm having

detected the signal. Let Pfa be the probability of false

alarm, that is, at H0, the probability of the algorithm
having detected the signal. Obviously, for a good detection

algorithm, Pd should be high and Pfa should be low. The

requirements of the Pd and Pfa depend on applications.

The choice of the threshold is a compromise between

the Pd and Pfa. Since we have no information on the

signal (actually we even do not know if there is signal or

not), it is di cult to set the threshold based on the Pd.

Hence, usually we choose the threshold based on the Pfa.

First we set a limit for Pfa, that is, Pfa P0. Then we

find a threshold 0 such that Pfa = P0. Therefore, we can

only choose the threshold satisfying 0. To find the
threshold based on the required Pfa, we can use either

theoretical derivation or simulation. If simulation is used

to find the threshold, we can generate white Gaussian
noises as the input (no signal) and adjust the threshold

such that Pfa P0. Note that the threshold here is

related to the number of samples used for computing the

sample auto-correlations and the smoothing factor L, but

not related to the noise power. If theoretical derivation

is used, we need to find the statistical distributions of
Tj(Ns), j = 1, 2, 3, 4. In general, it is di cult to find the
statistical distributions of Tj(Ns). Here we discuss the

special case when Q = IL.

When Q = IL, Tj(Ns) becomes

T1(Ns) = (0) +

L 1

l=1

2(L l)

L
| (l)|, (41)

T2(Ns) = (0), (42)

T3(Ns) =
2(0) +

L 1

l=1

2(L l)

L
| (l)|2, (43)

T4(Ns) =
2(0). (44)

Now we analyze the Pfa at hypothesis H0. It can be
verified that, for real noise,

E(T1(Ns)) = 1 + (L 1)
2

Ns

2, (45)

E(T2(Ns)) =
2, (46)

Var(T2(Ns)) =
2

Ns

4, (47)

E(T3(Ns)) =
L+Ns + 1

Ns

4, (48)

E(T4(Ns)) =
Ns + 2

Ns

4, (49)

Var(T4(Ns)) =
8

Ns
+
40

N2
s

+
48

N3
s

8. (50)

It is more tough to obtain the variance of T1(Ns).

Since Ns is usually very large, based on the central limit

theorem, T2(Ns) can be approximated by the Gaussian

distribution with mean 2 and variance
2 4

Ns
. Hence, the

probability of false alarm for the CAV algorithm is

Pfa = P (T1(Ns) > 1T2(Ns))

= P T2(Ns) <
1

1
T1(Ns)

P T2(Ns) <
1

1
1 + (L 1)

2

Ns

2

= P
T2(Ns)

2

2
Ns

2
<

1
1
1 + (L 1) 2

Ns
1

2/Ns

1 Q

1
1
1 + (L 1) 2

Ns
1

2/Ns

where

Q(t) =
1

2

+

t

e u2/2du. (51)

If we want Pfa P0, we should choose the threshold such

that

1
1
1 + (L 1) 2

Ns
1

2/Ns
Q 1(1 P0). (52)

That is,

1

1 + (L 1) 2
Ns

1 +Q 1(1 P0)
2
Ns

. (53)
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Similarly, T4(Ns) can be approximated by the

Gaussian distribution with mean Ns+2
Ns

4 and variance

8
Ns
+ 40

N2
s
+ 48

N3
s

8. Using the same derivation as above,

we obtain the threshold for the CFN algorithm as

2
L+Ns + 1

Ns + 2 +Q 1(1 P0) 8Ns + 40 +
48
Ns

. (54)

The computational complexity of the two algorithms is

as follows.

Filtering the received signals: (K+1)Ns multiplications

and additions (if Ns is large, FFT can be used to reduce

the complexity);

Computing the auto-correlations of the received signal:

LNs multiplications and additions;

Transforming the sample covariance matrix: 2L3 multi-

plications and additions;

Others: at most L2 multiplications and additions;

Total: (K + L + 1)Ns + 2L
3 + L2 multiplications and

additions.

The energy detection needs about (K + 2)Ns multi-

plications and additions. Usually choosing L 20 is

enough, while Ns is very large. Hence, the computational

complexity of the proposed methods is comparable to that

of the energy detection.

IV. Simulations

In the following, we will give some simulation results

using the captured DTV signals [17]. The real DTV signals

(field measurements) are collected at Washington D.C.,
USA. The data rate of the vestigial sideband (VSB) DTV

signal is 10.762 MHz. The recorded DTV signals were

sampled at 21.524476M samples/sec and down converted

to a low central IF frequency of 5.381119 MHz (one fourth

the sampling rate). The analog-to-digital conversion of the

RF signal used a 10-bit or a 12-bit A/D. Each sample

was encoded into a 2-byte word (signed int16 with a two’s

complement format). The multipath channel and the SNR

of the received signal are unknown. In order to use the

signals for simulating the algorithms at very low SNR, we

need to add white noises to obtain various SNR levels [11].

The captured DTV signal and the added white noise are

passed through a raised cosine filter (bandwidth 6 MHz,
rolling factor 1/2, 89 tapes). The number of samples used

is 400000 (corresponding to 18.60 ms). The smoothing

factor is chosen as L = 16. The threshold is set based on

the Pfa = 0.1 and fixed for signals. The threshold is not
related to noise power.

For comparison, we also simulate the energy detection

(with or without noise uncertainty) for the same system.

The threshold for the energy detection is given in [9]. The

energy detection needs the noise power as a priori. Due

to the noise uncertainty [9], [10], [11], [12], the estimated

(or assumed) noise power may be di erent from the real

noise power. Let the estimated noise power be ˆ2 = 2.

Fig. 1. Probability of detection (WAS-003/27/01)

Fig. 2. Probability of detection (WAS-049/34/01)

The noise uncertainty factor (in dB) is defined as

B = max{10 log10 }. (55)

It is assumed that (in dB) is evenly distributed in an

interval [ B,B] [9], [6]. In practice, the noise uncertainty

factor of receiving device is normally 1 to 2 dB [9], [11].

The environment (interference) noise uncertainty can be

much higher [9].

The probabilities of false alarm (Pfa) are shown in Table

I (note that the probability of false alarm is not related

to the SNR and noise power because there is no signal),

where and in the following “EG-x dB” means the energy

detection with x-dB noise uncertainty. The Pfa for the

proposed methods and the energy detection without noise

uncertainty meet the requirement (Pfa 0.1), but the Pfa
for the energy detection with noise uncertainty far exceeds

the limit. This means that the energy detection is very

unreliable in practical situations with noise uncertainty.

Figure 1 gives the probability of detection results based

on the DTV signal file WAS-003/27/01 (the receiver is
outside and 48.41 miles from the DTV station; antenna
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method EG-2 dB EG-1.5 dB EG-1 dB EG-0.5 dB EG-0dB CAV CFN

Pfa 0.499 0.497 0.495 0.487 0.102 0.103 0.104

TABLE I

Probabilities of false alarm (sensing time 18.60 ms)

height is 30 feet) [17]. Figure 2 gives the results based on

the DTV signal file WAS-049/34/01 (the receiver is indoor
and 20.15 miles from the DTV station; antenna height is 6

feet) [17]. If the noise variance is exactly known (B = 0),

the energy detection is pretty good. The proposed methods

are slightly worse than the energy detection with ideal

noise power. However, as discussed in [9], [11], [12], noise

uncertainty is always present. As shown in the figures,
if there is 1 to 2 dB noise uncertainty, the detection

probability of the energy detection is much worse than

that of the proposed methods.

In summary, all the simulations show that the proposed

methods work well without using information of the signal,

the channel and noise power. The energy detection are not

reliable (low probability of detection and high probability

of false alarm) when there is noise uncertainty.

V. Conclusions

Methods based on the sample covariance matrix of the

received signal have been proposed. Statistical theories

have been used to set the thresholds and obtain the

probability of false alarm. The methods can be used for

various signal detection applications without knowledge

of the signal, the channel and noise power. Simulations

based on the captured DTV signals have been done to

verify the methods.
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