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Abstract— The new theory of compressive sensing enables direct
analog-to-information conversion of compressible signals at sub-
Nyquist acquisition rates. We develop new theory, algorithms,
performance bounds, and a prototype implementation for an analog-
to-information converter based on random demodulation. The
architecture is particularly apropos for wideband signals that are
sparse in the time-frequency plane. End-to-end simulations of a
complete transistor-level implementation prove the concept under
the effect of circuit nonidealities.

I. INTRODUCTION

The prevalence of digital signal processing in sensing and

communication applications has popularized the use the analog-

to-digital converters (ADC). The ADC process is based on the

Nyquist sampling theorem, which guarantees the reconstruction

of a band-limited signal when it is uniformly sampled with a

rate of at least twice its bandwidth. Emerging applications like

radar detection and ultra-wideband communication are pushing

the performance of ADCs – and sampling systems in general –

toward their physical limits.

In many cases of interest the signals have additional structure

than band-limitedness alone; for example, some signals are

compressible in some transform domain. Over the past two

years, a new theory of compressive sensing (CS) has emerged,

which exploits this knowledge to achieve signal acquisition

using fewer measurements than the number prescribed by the

Nyquist theorem for certain classes of signals. In particular, CS

allows reconstruction of signals which are compressible by some

transform (such as Fourier, wavelet, etc.). By leveraging the CS

theory, an analog-to-information converter (AIC) can be designed

to acquire samples at a lower rate while successfully recovering

the compressible signal of interest.

In this paper, we present a complete transistor-level realization

for a prototype AIC. We present an analysis of the reconstruction

quality that arises in a hardware implementation. Our design is

based on an extension of the CS framework to analog signals, first

described in [1]. We find that for signals that feature considerable

structure – and are thus compressible – the performance of the

AIC system is comparable to that of the standard ADC system

in terms of Signal to Noise Ratio (SNR) or Effective Number of

Bits (ENOB), while the AIC sampling features a rate that is much

lower than the Nyquist rate used by ADCs. We also develop a

circuit implementation as a proof-of-concept, where we consider

the non-idealities inherent in the transistor-level implementation
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Fig. 1. Pseudo-random demodulation scheme for AIC.

for the different blocks in the system.

This paper is organized as follows. First, we present a brief

background of the CS theory and extend the mathematical

framework to AICs in Section II. Second, we we provide a theory

for non-ideal sampling systems to predict the SNR performance

of real-world implementations in Section III. Third, we support

the theory and mathematical concepts through an end-to-end

simulation of a proof of concept implementation of the frame-

work: we provide details of the transistor-level implementation in

Section IV and present results in Section V. Finally we conclude

in Section VI.

II. COMPRESSIVE SENSING FOR AIC SYSTEMS

A. Compressive sensing background

Compressive Sensing (CS) provides a framework for acquisi-

tion of an N × 1 discrete-time signal vector x = Ψα that is

compressible in some sparsity basis or frame matrix Ψ (where

each column is a basis or frame vector ψi). By compressible we

mean that the entries of α = [α1, α2, . . . , αN ], when sorted from

largest to smallest, decay rapidly to zero; such a signal is well

approximated using a K-term representation, consisting of the

terms of α with the K largest magnitudes while setting all the

other terms to zero. Note that, by definition, signals that have

only a few nonzero coefficients are compressible as well.

The CS framework [2], [3], demonstrates that a signal that is

compressible in one basis Ψ can be recovered to a quality similar

to that of a K-term approximation from M = O(K log N
K

)
nonadaptive linear projections onto a second basis Φ that is

incoherent with the first. By incoherent, we mean that the rows

φj of the matrix Φ cannot sparsely represent the elements

of the sparsity-inducing basis ψi, and vice versa. Thus, rather

than measuring the N -point signal x directly, we acquire the

M ≪ N linear projections which are then quantized such that

y = Q(Φx + n). The effect of quantization may be modeled
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as additive noise and thus we view the measurements as y =
Φx + n = ΦΨα + n, where n represents the combination of

the quantization effect and the noise inherent to the measurement

process. For brevity, we define the M ×N matrix Θ = ΦΨ.

Since M < N , recovery of the signal x from the mea-

surements y is ill-posed in general; however, the additional

assumption of signal compressibility in the basis Ψ makes

recovery both feasible and practical. The recovery of the set of

transform coefficients α can be achieved through optimization

[4] by searching for the α with the smallest ℓ1 norm that agrees

with the M observed measurements in y. The margin of error is

given by the magnitude of the noise ǫ ≥ ‖n‖2:

α̂ = arg min ‖α‖1 such that ‖y − Θα‖2 ≤ ǫ (1)

This optimization problem, also known as Basis Pursuit with

Denoising (BPDN) [5] can be solved with traditional convex

programming techniques whose computational complexities are

polynomial in N . At the expense of slightly more measurements,

iterative greedy algorithms like Orthogonal Matching Pursuit

(OMP) [6] can also be applied to the recovery problem.

B. Real-Time CS

1) Analog signal: Suppose our analog signal has finite infor-

mation rate K i.e., the signal can be represented using K param-

eters per unit time in some continuous basis. More concretely, let

the analog signal x(t) be composed of a discrete, finite number

of weighted continuous basis or dictionary components

x(t) =
N∑

n=1

αn ψn(t), (2)

with t, αn ∈ R. In cases where there are a small number of

nonzero entries in α, we may again say that the signal x is

sparse. Although each of the dictionary elements ψn may have

high bandwidth, the signal itself has few degrees of freedom.

2) Analog processing: Our signal acquisition system consists

of three main components; demodulation, filtering, and uniform

sampling. As seen in Figure 1, the signal is modulated by a

psuedo-random maximal-length PN sequence of ±1’s. We call

this the chipping sequence pc(t), and it must alternate between

values at or faster than the Nyquist frequency of the input signal.

The purpose of the demodulation is to spread the frequency

content of the signal so that it is not destroyed by the second

stage of the system, a low-pass filter with impulse response h(t).
Finally, the signal is sampled at rate M using a traditional ADC.

3) Analog system as a CS matrix: Although our system

involves the sampling of continuous-time signals, the discrete

measurement vector y can be characterized as a linear transfor-

mation of the discrete coefficient vector α. As in the discrete

CS framework, we can express this transformation as an M ×N
matrix Θ that combines two operators: Ψ, which maps the

discrete coefficient vector α to an analog signal x, and Φ, which

maps the analog signal x to the discrete set of measurements y.

To find the matrix Θ we start by looking at the output y[m],
which is a result of convolution and demodulation followed

by sampling at rate M. Since our analog input signal (2) is

composed of a finite and discrete number of components of Ψ,

we can write

(a) (b)

Fig. 2. Comparison of Spectrograms obtained from full and CS compressed
versions of a frequency hopping signal. The signal is a single side-band AM
signal, whose carrier frequency changes periodically over time. (a) Spectrogram
from original signal. (b) Spectrogram from CS reconstruction with measurement
rate equal to 25% of Nyquist rate.

y[m] =
N∑

n=1

αn

∫ ∞

−∞

ψn(τ) pc(τ)h(mM− τ) dτ. (3)

It is now clear that we can separate out an expression for each

element θm,n ∈ Θ for row m and column n

θm,n =

∫ ∞

−∞

ψn(τ) pc(τ)h(mM− τ) dτ. (4)

C. Reconstruction for Analog Time-Frequency Sparse Signals

We consider the case of wideband signals that are time-

frequency sparse in the sense that at each point in time they

are well-approximated by a few local sinusoids of constant fre-

quency. As a practical example, consider sampling a frequency-

hopping communications signal that consists of a sequence of

windowed sinusoids with frequencies distributed between f1 and

f2 Hz. The bandwidth of this signal is f2−f1 Hz, which dictates

sampling above the Nyquist rate of 2(f2 − f1) Hz to avoid

aliasing. We are interested in the case where f2 − f1 is very

large and the signal is compressible, since the AIC will achieve

much better performance than an ADC.

It is well known that signals that are localized in the time-

frequency domain have near-sparse representation under the

Gabor transform, which is defined as

x̂(τ, f) = 〈x(t), ψτ,f (t)〉,

i.e. the coefficient measures the inner product of the signal with

the Gabor atoms

ψτ,f (t) = g(t− τ)e±j2πft

where g is a window function with ‖g‖2 = 1 [7]. We will use a

dictionary of Gabor atoms during the reconstruction of the signal

to obtain a representation directly in the time-frequency domain,

without performing reconstruction of the time signal. This rep-

resentation is immediately useful because the Gabor transform

is a uniform sampling of the coefficients of the signal under the

short-time Fourier transform (STFT). Thus, a spectrogram, the

conventional analysis tool for this class of signals, can be quickly

generated by taking the squared magnitudes of the reconstructed

coefficients.

An example is shown in Figure 2(a) where the spectrogram

of a single sideband amplitude modulated (SSB-AM) frequency

hopping signal is displayed. We see that for small ranges of time,

the signal is well identified by its carrier frequency, but when
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we consider the whole signal length there are many carriers to

isolate. The spectrogram pictured in Figure 2(b) shows recon-

struction of the signal from AIC measurements using a Gabor

dictionary with a boxcar window. The signal was measured

through the random demodulation system at 25% of the Nyquist

rate from the original signal and then reconstructed using OMP.

Since the SSB-AM signal is not represented with exactly K terms

in the Gabor dictionary, we use the same constraint employed in

BPDN(1) on an OMP solver to denoise the reconstruction.

III. ANALOG-TO-INFORMATION SYSTEM PERFORMANCE

We aim to characterize the SNR of the AIC system using

known analysis of CS performance. We present a theorem for

K-sparse signals, which gives insight into the SNR behavior of

the AIC system. The following definition is used in the theorem.

Definition 1: A M ×N matrix Φ has the K-Restricted Isom-

etry Property (K-RIP) with constant δK if for all x ∈ R
N with

‖x‖0 = K,

(1 − δK)‖x‖2 ≤ ‖Φx‖2 ≤ (1 + δK)‖x‖2.

where the norm ‖x‖0 is defined as the number of nonzero

elements in x.

Theorem 1: Let x be an K-sparse signal, i.e. ‖x‖0 = K,

and let y = Φx represent an AIC measurement setup, where

we label reconstruction from the measurements y as x♯ with

AIC reconstruction using BPDN. If Φ holds the K-Restricted

Isometry Property (RIP) with constant δK and if δ3K+3δ4K < 2,

then the SNR of the AIC system obeys the lower bound

SNRAIC = 20 log
(

‖x‖2

‖x♯−x‖2

)

≥ SNRsystem − 20 log((1 + δK)C1,K)

where SNRsystem is the SNR of the sampling subsystem and C1,K

is a constant depending only on K.

The condition on the RIP constants holds for random Gaus-

sian matrices when the number of rows M = O(K log N
K

).
Since Gaussian matrices are order optimal for RIP, the use of

general matrices, including that posed in (4), incurs a loss in

performance.. The theorem is proven in [8]. This bound on the

performance decay will depend on the compressibility of the

signal and the class of matrix Φ applied. As an example, if a

Gaussian random matrix Φ is used with a large enough row-

to-column ratio, and the signal has a sparsity K = N/10, the

loss in performance is approximately 23dB. If the increase in

SNR due to the reduction on the sampling rate is larger than the

performance decay, the AIC performs better than an ADC.

IV. TRANSISTOR-LEVEL IMPLEMENTATION

As a proof of concept, we have designed a transistor-level

circuit implementation of the AIC described in the previous

section. The design of each component is explained except for

the back-end ADC which is assumed to be an off-the-shelf ADC

capable of sampling at certain desired rates. In the hardware

implementation of the AIC, the chipping sequence pc(t) and

the mixer have the most demanding design specifications. Both

components are required to operate at the fastest speeds in the

system, and so they must be precise at such speeds. To make this
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Fig. 3. (a) XOR compact circuit design. (b) The transistor level design for Semi
Dynamic Flip Flop (SDFF). (c) The block diagram for 10 bit LFSR.

possible, the two components are custom designed to efficiently

operate together.

The chipping sequence is implemented with a maximal length

- linear feedback register (ML-LFSR), for which the internal

components are shown in Figure 3. This component produces

values of -1 and 1 in a pseudo-random sequence. The period of

the sequence is 2n−1, with n being the number of registers in the

LFSR, thus the sequence length can be tweaked to application

requirements.

The primary bottleneck in the ML-LFSR is the delay flip flop

(DFF) and so to provide the highest speed possible, we use a

semi-dynamic flip flop (SDFF) [9]. Furthermore, in simulations

we use the BSIM3v3 device models of a commercial 0.13µm

CMOS technology. Other optimizations include using minimum

gate length to reduce gate capacitance, which both reduces power

dissipation and maximizes speed, and also using a compact

and fast balanced XOR circuit design. This design is shown

functioning properly at a 2 GHz clock frequency in the HSPICE

simulation presented in Figure 5(b).

When operating at high rates, the most common artifact of

the mixer, which computes x(t) × pc(t), is non-linearity of

the output. Passive mixers, such as diode and passive field

effect transistor (FET) mixers, have good linearity, good noise

performance, and can operate at frequencies up to 5GHz [10].

However, active mixers are preferred for low-power integrated

circuits since they provide conversion gain, require less power at

the local input port, and have a broader design space. Such mixers

are generally based on the classic Gilbert cell [11]. Several

modifications can be made to this circuit to increase its frequency

response, decrease its nonlinearity, and limit its noise level, such

as the double balanced Gilbert cell design, which is characterized

by its rejection of common mode signals and its ability to

operate as a four quadrant multiplier. Our AIC implementation

uses a highly linear mixer operating at 2GHz using standard

CMOS 0.13µm fabrication technology. The schematic diagram

of the transistor-level implementation of this mixer is shown in

Figure 4(a). For the AIC low pass filter, we utilize an integrator

design. More specifically, a differential-input differential-output
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Fig. 4. (a) Modulator circuit. (b) Integrator circuit.
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Fig. 5. HSPICE simulation results for: (a)The input analog compressible
signal (b)The pseudo-random square wave generated from the random number
generator (c)The multiplication result of both the analog signal and the pseudo-
random square wave (d)The integration result of the randomized version from
the analog signal (e)The result of the quantization (f)The reconstructed signal in
DFT domain.

RC-active integrator is used and is shown in Figure 4(b). Such

integrators have a finite time-constant due to limited amplifier

gain, and therefore act as low pass filters with the time-constant

determining cutoff frequency. In simulations, the cutoff frequency

of the amplifier was adjusted at 100Hz with a linear slope of

20dB/decade that extends to 20GHz to cover the entire range of

the modulated signal.

V. RESULTS AND DISCUSSIONS

To measure the quality of our design, the optimized transistor-

level implementation for each AIC component is simulated with

HSPICE. The end-to-end results are shown in Figure 5, and

demonstrate a successful recovery of the original input signal

at 6x sub-Nyquist sampling rate.

More specifically, Figure 5(a) shows the input AM signal

which is composed of a 100 MHz signal modulated with a

200 MHz carrier. Figure 5(b) presents the output of the ML-

LFSR running at 2GHz. The modulator output in Figure 5(c)

is the result of the multiplication of the input AM wave by

the pseudo-random pattern. As explained earlier, we see in

Figure 5(d) that the integrator acts as a low pass filter, smoothing

the output of the modulator. The signal is then sampled at

sub-Nyquist rate by the back-end ADC, which is shown in

Figure 5(e). Finally it should be noted that in this example,

the sampling frequency is 100 MSample/s, a reduction of one-

sixth of the minimum Nyquist required rate for this signal with a
conventional ADC. The spectrum of the reconstructed AM signal

is shown in Figure 5(f).

Some artifacts appear in the spectrum in Figure 5(f) because

the SNR of the CS reconstruction is sensitive to the non-ideal

behaviors present in a circuit implementation. The most signifi-

cant sources of non-idealities are: the clock jitter of the random

number generator, the linearity and intermodulation distortion of

the mixer, and the quantization error of the back-end ADC. The

sensitivity of reconstruction is partially due to the fact that these

behaviors reduce the feasibility of the system in the CS sense, but

also because during reconstruction we cannot produce a matrix

which is exactly tuned to the non-idealities, some of which which

are stochastic in nature.

VI. CONCLUSION

A new design for analog-to-information converters (AIC) has

been presented and with it, an expanded theory for compressive

sensing on analog signals, bounds on performance, and practical

methods for recovery of time-frequency signals. Furthermore, we

have demonstrated an end-to-end transistor-level implementation

of the AIC, which accurately recovers when sampled at a 6×
sub-Nyquist rate.1
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