# CHAPTER 7. SPECTRUM SHARING 

## Spectrum Sharing



## Spectrum Sharing

Spectrum Sharing $\rightarrow$ similar to MAC Problems

- Multiple CR users try to access the spectrum
- Access must be coordinated
(to prevent collisions in overlapping portions of the spectrum)


## Uniqueness

- Coexistence with licensed (primary) users
- Wide range of available spectrum


## SPECTRUM SHARING CLASSIFICATIOND



Intra-Network SS

- Centralized (Infrastruct.)
- Distributed (Ad hoc)
- Cooperative
* Centralized
* Distributed
- Non-cooperative


## Intra-Network Centralized Spectrum Sharing

Primary Base Station



ECE6616

## Intra-Network Centralized Spectrum Sharing



ECE6616

## Intra-Network (Ad Hoc Network) Spectrum Sharing



Distributed Spectrum Sharing (Cooperative)

## Intra-Network Spectrum Sharing

Spectrum sharing inside a CR network $\leftrightarrow \rightarrow$ same as MACs

- Focuses on "spectrum allocation" between CR users Coordinates multiple accesses among $C R$ users in order to prevent their collision in overlapping portions of the spectrum
$\square$ Also CR users need to access the available spectrum without causing interference to the PUs.


## Inter-Network Spectrum Sharing



Centralized Spectrum Sharing


Distributed Spectrum Sharing

## Inter-Network Spectrum Sharing

Multiple systems are deployed in overlapping locations and spectrum bands

Spectrum sharing among these systems is an important research topic in CR networks

## EXAMPLE: Inter-Network Spectrum Sharing for CR Ad Hoc Networks

A CR Ad Hoc Network co-exists with a WiFi and a Bluetooth.

So far only the interference issues in the ISM band have been investigated in the literature !!
(No centralized control) !!

## Evolution of Game Theory Perspective

- CR users make intelligent decisions on spectrum usage and communication parameters based on the sensed spectrum dynamics and other users' decisions.

To analyze intelligent behaviors of CR Users, $\Rightarrow$ GAME THEORETICAL PERSPECTIVE

## GAME THEORY

Mathematical models and techniques developed in economics to * analyze interactive decision processes * predict the outcomes of interactions, \& * identify optimal strategies

Game theory techniques were adopted to solve many protocol design issues (e.g., resource allocation, power control, cooperation enforcement) in wireless networks

- Fundamental component of game theory is the notion of a game.


## Game Theory - Short History

- John von Neumann (1903-1957)
- 

"Theory of Games and Economic Behavior" with Oskar Morgenstern

This book established game theory as a field


## Game Theory - Short History

- John F. Nash, Jr. (1928- )
- One of the contributions is the introduction of the equilibrium notion now known as Nash equilibrium

1994 Nobel prize winner in economics with the game theorists John Harsanyi and Reinhard Selten


## Game Theory

## Definition

- A collection of mathematical models and techniques for the analysis of interactive decision processes
- Provides strategic interactions among users
- Enables the choice of optimal behavior when costs and benefits of each option depend upon the choices of other users.


## Why Game Theory for Spectrum Sharing?

Excellent match to the spectrum sharing in CR networks

- Provides a well-defined model to describe conflict and cooperation among intelligent rational decision makers


## Why Game Theory for Spectrum Sharing in CR Networks?

- CR users have a common interest to have the spectrum resources as much as possible.
- However, CR users have competing interests to maximize their own share of the spectrum resources, i.e., the activity of one CR user can impact the activities of the others
- Also CR user's rational decisions require anticipating rivals' responses


## Why Game Theory?

$\square$ Provides an efficient distributed spectrum sharing scheme.
Provides the well-defined equilibrium criteria for the spectrum sharing problem to measure the optimality in various network scenarios.

## What is a GAME??

All games involve three features:

- Rules

Strategies

- Payoffs


## GAME THEORY

A game is described by

* A set of rational players
* Strategies associated with the players, and * The payoffs for the players.
- A rational player has his own interest, and therefore, will act by choosing an available strategy to achieve his interest.
- A player is assumed to be able to evaluate exactly or probabilistically the outcome or payoff (usually measured by the utility) of the game which depends not only on his action but also on other players' actions.


## Game Theory: Basic Components

Game: A model of interactive decision process

- Player: A decision making entity

Actions (Strategies): Adaptations available to the player.
$\square$ Outcomes (Payoffs): Outputs determined by the actions and the particular system in which the players are operating

- Preference: A decision maker objective
(To capture the preference relation in a more compact way: we employ utility functions (payoff functions) where each player assigns a real number to each outcome)


## Game Theory: Recap

Output (outcomes) of the process (game) is the function of the inputs (actions) from several different decision makers (players)
who may have potentially conflicting objectives (preferences) with regards to the outcome of the process.

## Non-cooperative Game Theory

- Rational players having conflicting interests - e.g. scheduling in wireless networks

Defined by

- Set of players
- Set of strategies for each player
- Players engage in the game while being selfish
- Each player wishes to maximize his payoff or 'utility'

Solution: the Nash equilibrium

- No user can unilaterally improve his payoff
- Can be inefficient


## Normal Form Games (Strategic Form Games)

Synchronous Single Shot Play: All players make their decisions simultaneously and take only a single decision without knowing the actions of the other

Specified by 3 -tuple $\Gamma=\left\langle N, A,\left\{u_{j}\right\}\right\rangle$

- A set of players $N=\{1,2, \ldots ., N\}$
- Action Space A: formed from the Cartesian product of each players' strategy set $A=A_{1} \times A_{2} \times \ldots . . \times A_{N}$
- PAYOFFS: A set of utility functions $\left\{u_{j}\right\}$ such that each player $j \varepsilon N$ has its own utility function, $u_{j}: A \rightarrow R$ ( $R$ is a set of real numbers)


## Normal Form Games (Strategic Form Games)

Example: Paper (P) - Rock (R) - Scissors (S) Game
$-N=\{P 1, P 2\}$
$-A=\{(P, P),(P, R),(P, S), \ldots,(S, S)\}$
$-\left\{u_{j}\right\}=\{-1,0,1\} \quad$ ( -1 : loss, $0:$ tie, $1:$ win)

| $P 1$ | $P$ | $R$ | $S$ |
| :---: | :---: | :---: | :---: |
| $P$ | $(0,0)$ | $(1,-1)$ | $(-1,1)$ |
| $R$ | $(-1,1)$ | $(0,0)$ | $(1,-1)$ |
| $S$ | $(1,-1)$ | $(-1,1)$ | $(0,0)$ |

No Nash Equilibrium!
Details: http://www.youtube.com/watch?v=sQVbeAEorsc

## Nash Equilibrium (NE)

## DEFINITION:

A set of actions (strategies) where no player has anything to gain by changing only his/her own strategy unilaterally.

NEs correspond to the steady-states of the game and are then predicted as the most probable outcomes of the game.
I. o.w.

When each player is taking the best action given best actions taken by other players !
Under the Nash Equilibrium, no players want to deviate

## Nash Equilibrium (NE)

If each player has chosen a strategy and no player can benefit by changing his/her own strategy while other players keep theirs unchanged,
then the current set of strategy choices and the corresponding payoffs constitute a NE.

## Nash Equilibrium (NE)

## SIMPLY:

You and I are in NE if I make the best decision I can, taking into account your decision, and you make the best decision you can, taking into account my decision.

Likewise, many players are in NE if each one is making the best decision he can, taking into account the decisions of the others.

## Pareto Optimality

## DEFINITION:

A set of actions if some (all) players must/may be hurt in order to improve the payoff of other players

Pareto Optimality is used to measure the efficiency of game outcomes.
A set of actions which is a NE need not to be Pareto optimal. A set of actions which is Pareto optimal need not to be a NE.

Generally, it is desirable for a NE to be Pareto optimal.

## NE vs Pareto

- Pareto Optimal:

Check every column and row (diagonals) and find that all cases are WIN/LOSS or LOSS/WIN or LOSS/LOSS.

If one case is not met, then it is not Pareto Optimal.
NE:
Check the states from each players' perspective and see there is any improvement.

If no improvement, then STUCK $\rightarrow$ NE.

## Pareto Optimality

## Example Games

Pareto Optimal $\checkmark$


Pareto Optimal


|  |  | Player 2 |  |
| :---: | :---: | :---: | :---: |
|  |  | $a_{2}$ | $b_{2}$ |
| $-\frac{\sigma}{\omega}$ | $a_{1}$ | 1,1 | $-5,5$ |
| $\frac{\sigma}{a}$ |  |  |  |
|  | $b_{1}$ | $5,-5$ | 3,3 |

## Pareto Optimality

Example Games
Pareto Optimal $\checkmark$


Pareto Optimal
NE


|  | Player 2 |  |  |
| :---: | :---: | :---: | :---: |
|  |  | $a_{2}$ | $b_{2}$ |
| $\rightarrow$ | $a_{1}$ | 1,1 | $-5,5$ |
| $\frac{0}{0}$ |  |  |  |
| $\frac{0}{a}$ | $b_{1}$ | $5,-5$ | 3,3 |

## Pareto Optimality

Example Games Pareto Optimal $\checkmark \bigcirc \mathrm{NE}$


Player 2

|  |  | $a_{2}$ | $b_{2}$ |
| :---: | :---: | :---: | :---: |
| $\vec{\sigma}$ | $a_{1}$ | 1,1 | $-5,5$ |
| $\frac{0}{0}$ |  |  |  |
| O. |  |  |  |
|  | $b_{1}$ | $5,-5$ | 3,3 |

## Pareto Optimality

Example Games
Not Pareto Optimal


Pareto Optimal


Player 2

|  |  | $a_{2}$ | $b_{2}$ |
| :---: | :---: | :---: | :---: |
| $\vec{\sigma}$ | $a_{1}$ | 1,1 | $-5,5$ |
| $\frac{\alpha}{0}$ |  |  |  |
| or | $b_{1}$ | $5,-5$ | 3,3 |

## Pareto Optimality

Example Games
Pareto Optimal

Pareto Optimal
NE


Player 2


## Pareto Optimality

Example Games
Pareto Optimal

Pareto Optimal
NE


NE + PO

Player 2


## Pareto Optimality

Example Games
Pareto Optimal


Pareto Optimal
NE


Player 2


## Pareto Optimality

Example Games
Not Pareto Optimal


Player 2


## Pareto Optimality

Example Games


Player 2

|  | $a_{2}$ | $b_{2}$ |
| :---: | :---: | :---: |
| $\vec{~}$ | $a_{1}$ | 1,1 |
| $\frac{0}{\alpha}$ | $-5,5$ |  |
|  | $b_{1}$ | $5,-5$ |
|  | 3,3 |  |

## Pareto Optimality - Graphical Method

Example Games

Player 2

$$
\begin{array}{c|c|c} 
& a_{2} & b_{2} \\
\neg \\
\neg \\
\hline \frac{a_{1}}{\alpha} & 1,1 & -5,5 \\
\hline \frac{0}{\alpha} \\
\hline b_{1} & 5,-5 & -1,-1
\end{array}
$$

Pareto Optimal


## Nash Equilibrium

## Example Games

Start from any state and examine the rule from a single player's perspective at a time



## Nash Equilibrium

## Example Games

Start from any state and examine the rule from a single player's perspective at a time


| Player 2 | Player 2 |  |  |
| :--- | :--- | :--- | :--- |
| Player 1 | $a_{2}$ | $b_{2}$ |  |
| $\frac{\square}{\infty}$ | $a_{1}$ |  |  |
| $\frac{0}{\alpha}$ |  |  |  |
|  |  |  |  |
| $b_{1}$ | , 5 |  |  |

IF $A^{\prime} 2015$
ECE6616

## Nash Equilibrium vs Pareto Optimality

Example Games


Pareto Optimal
NE


Player 2

|  | $a_{2}$ | $b_{2}$ |
| :---: | :---: | :---: |
| $\vec{c}$ | $a_{1}$ | 1,1 |
| $\frac{0}{0}$ | $-5,5$ |  |
| $\frac{c}{a}$ |  |  |
| $b_{1}$ | $5,-5$ | 3,3 |

## EXAMPLE WITH THREE STRATEGIES

RULE: If the $1^{\text {st }}$ P1 payoff \# is the max of the column of the cell and if the $2^{\text {nd }}$ P2 \# is the max of the row of the cell, then the cell represents a Nash equilibrium.

NE: $(B, A),(A, B),(C, C)$
$(B, A) \rightarrow 40$ is the max of the $1^{\text {st }}$ column:

|  |  |  |  |
| :---: | :---: | :---: | :---: |
|  | Option A | Ontion B | Option C |
| Option A | $(0,0)$ | $(25,40)$ | $(5,10)$ |
| Option B | $(40,25)$ | $(0,0)$ | $(5,15)$ |
| Option C | $(10,5)$ | $(15,5)$ | $(10,10)$ | 25 is the max of the $2^{\text {nd }}$ row.

$(A, B) \rightarrow 25$ is the max of the $2^{\text {nd }}$ column: 40 is the max of the $1^{\text {st }}$ row (Same with C,C)

* If these conditions are met, the cell represents a NE.
* Check all columns this way to find all NE cells

Find the max of a column and check if the $2^{\text {nd }}$ member of the pair is the max of the row. IFA'2015 ECE6616

## NE Identification

Direct Application of Definition (Greedy Search)

- Exhaustively evaluate all action tuples in light of the definition of NE to find out which ones are NE.


## NE Identification: Improvement Deviations

- An improvement deviation is a unilateral deviation from one action tuple to another which shows greater utility function.
- All points which have no improvement deviations must be a NE.
- Why not follow improvement deviations until a NE is reached, or a loop is found.

NE Identification: Improvement Deviations (Example)


NE Identification: IEDS (Iterative Elimination of Dominated Strategies)

- Sometimes a player's actions are not preferable, no matter what the other players do.
- These actions would thus never rationally be played and can be eliminated from consideration in any NE action vector.


## NE Identification: IEDS Example

## User 2



## Iteration 1.

Note the following

$$
\begin{array}{ll}
u_{1}(C, D)>u_{1}(D, D) & \begin{array}{l}
\text { So } D \text { is dominated by } C \\
\text { for player } 1 . \text { So we }
\end{array} \\
u_{1}(C, C)>u_{1}(D, C) & \begin{array}{l}
\text { remove } D \text { for player } 1 \\
\text { from the game. }
\end{array}
\end{array}
$$

## Iteration 2.

Note the following

$$
u_{2}(C, C)>u_{2}(C, D)
$$

So in the remaining game $D$ is dominated by $C$ for player 2. So we remove D for player 2 from the game.

As there is only one action tuple left (thus no deviation is possible, nor is a profitable deviation), it must be a NE

## The Prisoners' Dilemma

- Art and Bob been caught stealing a car: sentence is 2 years in jail.
- DA wants to convict them of a big bank robbery: sentence is 10 years in jail.
- DA has no evidence and to get the conviction, he makes the prisoners play a game.


## PRISONER'S DILEMMA: RULES

- Players cannot communicate with one another.

If both confess to the larger crime, each will receive a sentence of 3 years for both crimes.

If one confesses and the accomplice does not, the one who confesses will receive a sentence of 1 year, while the accomplice receives a 10 -year sentence.

- If neither confesses, both receive a 2-year sentence.


## PRISONER'S DILEMMA: STRATEGIES

- The strategies of a game are all the possible outcomes of each player.
- The strategies in the prisoners' dilemma are:
- Confess to the bank robbery
- Deny the bank robbery


## PRISONER'S DILEMMA: PAYOFFS

- Four outcomes:
- Both confess
- Both deny
- Art confesses and Bob denies
- Bob confesses and Art denies
- A payoff matrix is a table that shows the payoffs for every possible action by each player given every possible action by the other player.


## PRISONER'S DILEMMA: PAYOFF MATRIX



In the non-cooperative game, Nash Equilibrium cannot always provide an optimal solution.

## PRISONER'S DILEMMA

## Equilibrium

- Occurs when each player takes the best possible action given the action of the other player.


## Nash equilibrium

- An equilibrium in which each player takes the best possible action given the action of the other player.


## PRISONER'S DILEMMA

- The Nash equilibrium for Art and Bob is to confess.
- Not the Best Outcome
- The equilibrium of the prisoners' dilemma is not the best outcome.


## Example: Prisoner's Dilemma

The action profile (Confess, Confess) is the only NE.
To show that a pair of actions is not a Nash equilibrium, it is enough to show that one player wishes to deviate (an equilibrium is immune to any unilateral deviation).

In general, at the Nash equilibrium, the action for a player is optimal if other players choose their Nash equilibrium actions, but some other action is optimal if the other players choose non-equilibrium actions.

## NE Identification: Best Response Analysis

- If a sequence of improvement deviations exists where a single player deviates without other players deviating,

Why not immediately skip ahead to the action tuple that yields the largest improvement

Best response $\rightarrow$ thus eliminating the intermediate steps.

## NE Identification: Best Response Analysis Example

User 2


## Best Response Function

For any given actions of the players other than $i$, the best actions of player i which yield the highest payoff for player i , denoted by, $\mathrm{B}_{\mathrm{i}}\left(\mathrm{a}_{-\mathrm{i}}\right)$
$B_{i}=$ Best response function of player $i$.
Mathematically:
$B_{i}\left(a_{-i}\right)=\left\{a_{i}\right.$ in $A_{i}: u_{i}\left(a_{i}, a_{-i}\right) \geq u_{i}\left(a_{i}^{\prime}, a_{-i}\right)$ for all $a_{i}^{\prime}$ in $\left.A_{i}\right\}$,
i.e., any action in $B_{i}\left(a_{-i}\right)$ is at least as good for player $i$ as every other action of player i when the other players' actions is given by $a_{-\mathrm{i}}$.

## Best Responses in Prisoner's Dilemma

BR of Bob to each action of Art:
Art chooses $C \Rightarrow$ BR of Bob is $C$ (i.e., (C,C))
Art chooses $D \rightarrow B R$ of Bob is $C$ (i.e., (C,D))

- BR of Art to each action of Bob:

Bob chooses $C \Rightarrow B R$ of Art is $C$ (i.e., ( $C, C)$ )
Bob chooses $D \Rightarrow B R$ os Art is $C$ (i.e., ( $D, C$ ))
RULE: If Art picks a strategy, look columns for Bob
If Bob picks a strategy, look for rows for Art

- The game has one NE: $(C, C)$

|  | Arf |  |  |
| :---: | :---: | :---: | :---: |
| Bob |  | Confess | Deny |
|  | $\left(-5^{\star},-5^{\star}\right)$ | $(3,-10)$ |  |
|  | Deny | $(-10,0)$ | $(-2,-2)$ |

## Example for Best Responses

Find the best response of P1 to each action of P2.
If P2 chooses $L$, then P1's best response is $M$ (2 is the highest payoff for P1 in this column)

Indicate the best response by attaching a star to P1's payoff to ( $M, L$ ).

If P2 chooses $C$, then P1's best response is $T$,

|  | $C$ |  |  |
| ---: | :--- | :--- | :--- |
| $T$ | $L$ | $R$ |  |
| $M$ | $\left(1^{*}, 2^{*}\right)$ | $\left(2^{*}, 1\right)$ | $\left(0,1^{*}, 0\right)$ |
| $B$ | $(0,1)$ | $(0,0)$ |  | indicated by the star attached to P1's payoff to ( $T, C$ ).

And if P2 chooses R, then both $T$ and B are best responses for P1; both are indicated by stars.

## Example for Best Responses

Second find the best response of P2 to each action of P1 (for each row find the highest payoff of P2)

- Best responses are indicated by stars to P2's payoffs.

Find the boxes in which both players' payoff are starred.
Such box is a NE:
Star in P1's payoff means that P1's action is a best response to P2's action, and
Star on P2's payoff means that P2's action a best

|  | $C$ |  |  |
| ---: | :--- | :--- | :--- |
| $T$ | $L$ | $R$ |  |
| $M$ | $\left(1^{*}, 2^{*}\right)$ | $\left(2^{*}, 1\right)$ | $(1 *, 0)$ |
|  | $\left(0,1^{*}\right)$ | $(0,0)$ |  |
|  | $(0,1)$ | $(0,0)$ | $\left(1^{*}, 2^{*}\right)$ | response to P1 action.

Conclude that the game has 2 Nash equilibria: $(M, L)$ and (B,R).

## Multi-Player Games Example: Competitive Advantage of 3 Firms

Each firm has the choice between staying put and adopting the new technology

If no firm adopts the new technology then there is no competitive advantage and the payoff vector is $(0,0,0)$

If exactly one firm adopts the new technology then the firm gets the competitive advantage $a$, while each firm at a competitive disadvantage looses $\{-a / 2\} \rightarrow(-a / 2,-a / 2, a)$ for Firm 3:

Thus, only if Firm 1 adopts the new technology, then the payoff vector is $(a,-a / 2,-a /$ 2): i.e., Firm 1 takes market share from both Firm 2 \& 3
$(-a / 2, a,-a / 2)$ for Firm 2

```
Multi-Player Games Example: Competitive Advantage of 3 Firms
```

If exactly two firms adopt the new technology, then these two firms split the competitive advantage, each gaining $a / 2$, and the firm at a disadvantage looses a

Finally if all firms adopt the new technology there is no competitive advantage and the payoff vector is $(0,0,0)$.

Multi-Player Games Example: Competitive Advantage of 3 Firms

## FIRM 3: ADOPT

Firm 2

|  |  | Adopt | Stay put |
| :---: | :---: | :---: | :---: |
| $\boldsymbol{\sigma}$ | Adopt | $(0,0,0)$ | $(a / 2,-a, a / 2)$ |
| $\boldsymbol{e}$ |  |  |  |
| in |  |  |  |
|  | Stay Put | $(-a, a / 2, a / 2)$ | $(-a / 2,-a / 2, a)$ |

## FIRM 3: STAY PUT

 Firm 2|  |  | Adopt | Stay put |
| :--- | :--- | :---: | :---: |
| $\boldsymbol{E}$ | Adopt | $(a / 2, a / 2,-a)$ | $(a,-a / 2,-a / 2)$ |
|  |  |  |  |
|  | Stay put | $(-a / 2, a,-a / 2)$ | $(0,0,0)$ |

Each firm has a dominant strategy which is to adapt the new technology
The unique equilibrium occurs when all 3 firms play the pure strategy: i.e., adopt the new technology

This is precisely what happened with 2 firms
No firm can be left behind in the race to adopt the new technology
This is as just true for $n$ players as it is for 2 or 3.

How to Model CR Networks using Game Theory?

## Player $\rightarrow$ CR Users (and Primary Users)

Action (Strategy)

- CR Networks:

Which licensed channels will be used by the CR users?
Which transmission parameters (transmission power, time duration) to use for CR users? or
The price they agree to pay for leasing certain channels from the primary networks.

```
How to model CR networks using Game Theory?
```


## Action (Strategy) <br> - Primary Networks:

Which unused spectrum they will lease?

- How much they will charge CR users for using their spectrum resources, etc. ?

How to Model CR Networks using Game Theory?

Outcome (Payoff) $\rightarrow$ Network State (SNR, BW, etc)
Utility Functions $\rightarrow$ Target QoS parameters (Throughput, Delay, BER, Cost, etc.)

## Example Models

Player: Two CR Users
Action:
Select either a low-power narrowband waveform N , or a higher power wideband waveform W
Outcome: Network States (SNR, BW)
Utility Function: Throughput
Preference: To maximize throughput

## Example Models




## Repeated Game (Extensive Form Game)

Specified by 4 -tuple $\Gamma=\left\langle N, A,\left\{u_{j}\right\},\left\{d_{j}\right\}\right\rangle$,
$d_{j}$ : Decision rule

- To adapt repeatedly with synchronous timing
- Especially well-suited for wireless networks where users incorporate punishment and reward strategies


## Repeated Game (Extensive Form Game)】



## Other Game Models for CR Networks

## Myopic Repeated Game

- Specified by 5 -tuple $\Gamma=\left\langle N, A,\left\{u_{j}\right\},\left\{d_{j}\right\}, T_{j}\right\rangle$,
$T_{j}$ : decision timing
- Adapts to the most recent state of networks under a variety of different decision timings


## Other Game Models for CR Networks (Normal Form Game)

## Mixed (Probabilistic) Strategy Game

- Specified by 3 -tuple $\Gamma=\left\langle N, \Delta(A),\left\{U_{j}\right\}\right\rangle$,
- $\left\{U_{j}\right\}$ : Expected utility of user $j$
- Mixed strategy for user: the probability of each action for user $j$
- $\Delta(A)$ : all possible mixed strategy tuples
- Models scenarios where users can probabilistically play different waveforms


## Other Game Models for CR Networks

## Potential Game

- A normal form game $\Gamma=\left\langle N, A,\left\{u_{j}\right\}\right\rangle$
which has the property that there exists a function known as the potential function,

$$
V: A \rightarrow R
$$

that reflects the change in value accrued by every unilaterally deviating player.

## Other Game Models for CR Networks

## - Exact Potential Game

If there exists a function, $V: A \rightarrow R$, known as an exact potential function, that satisfies

$$
\frac{\partial u_{i}(a)}{\partial a_{i}}=\frac{\partial V(a)}{\partial a_{i}} \quad \text { or } \quad \frac{\partial^{2} u_{i}(a)}{\partial a_{i} \partial a_{j}}=\frac{\partial^{2} u_{j}(a)}{\partial a_{j} \partial a_{i}}, \quad \forall i, j \in N, a \in A
$$

## Other Game Models for CR Networks

Supermodular Game

- A normal form game, $\Gamma=\left\langle N, A,\left\{u_{j}\right\}\right\rangle$, if all players' utility functions satisfy

$$
\frac{\partial^{2} u_{i}(a)}{\partial a_{i} \partial a_{j}} \geq 0, \quad \forall i \neq j \in N, a \in A
$$

## SPECTRUM SHARING CLASSIFICATIOND



Intra-Network SS

- Centralized (Infrastruct. based)
- Distributed (Ad hoc - based)
- Cooperative

ONon-cooperative

## Intranetwork Spectrum Sharing: Centralized

1. Auction Based Spectrum Sharing Game J. Huang, R. Berry, and M. L. Honig, ACM Monet Journal, 2006

## Intranetwork Spectrum Sharing: Distributed - Cooperative

1. Local Bargaining Cao/Zheng, IEEE SECON 2005.
2. Interference Compensation Based Spectrum Sharing
J. Huang, R. A. Berry, M. L. Honig,
"Spectrum Sharing with Distributed Interference Compensation," Proc. IEEE DySPAN, Nov. 2005.

## Intranetwork Spectrum Sharing: Distributed - Non-Cooperative

1. Device Centric Approach:
H. Zheng and L. Cao,
"Device-centric Spectrum Management," Proc. IEEE DySPAN, Nov. 2005.
2. Belief Assisted Pricing
J. Zhu and Ray Li, Proc. of IEEE SECON, 2006.

## Centralized Intranetwork Spectrum Sharing

A centralized node (e.g., CR base station) controls the spectrum allocation and access procedures.

Each CR user forwards their measurements about the spectrum allocation to the BS
which then constructs a spectrum allocation map.

## Background on Auction Theory

Highest bidder gets the good and pays the bid

- Elements of auction:
* Good: resource
* Auctioneer (Manager): representing seller of the good
* Bidders (Users): buyers of the good
- Rules of auction:
* Bids: what the bidders submit to the auctioneer
* Allocation: how auctioneer allocates the good to the bidders
* Payments: how the bidders pay the auctioneer
- Types of Auctions
* Indivisible Auction
* Divisible Auction: suitable for communication resource allocation


## AUCTION THEORY IN SPECTRUM SHARING

Auction is a process of buying and selling goods or services through a bidding process.

Goods or services are sold to the winning bidders.

- Auction is applied when the price of the goods and services is undetermined and it varies with demand


## Auction Based Spectrum Sharing Game

J. Huang, R. Berry, and M. L. Honig, "Auction-based Spectrum Sharing," ACM/Springer Mobile Networks and Apps., 2006.
Auction mechanisms for Spectrum Sharing subject to interference temperature at a measurement point.

Two Auctions to allocate the received power:

1. Weighted max-min fair SINR Allocation

Users are charged for received SINR combined with logarithmic utilities
2. Auction for Power $\rightarrow$ maximizes total utility when BW is large enough and receivers are co-located.

One-Dimensional Auctions with Pricing (Power-based / SINR-based)

## Two Different Payments

SINR Auction: User $n$ pays $C_{n}(\pi)=\pi$ SINR $_{n}$

* User-centric payment
* Proportional to user's achieved QoS (SINR)
* Leads to fair allocation
- Power Auction: User $n$ pays $C_{n}(\pi)=\pi P_{n} h_{n}$
* Network-centric payment
* Proportional to the allocated resource (power)
* Leads to efficient allocation


## Requirement for Efficient and Fair Spectrum Sharing

Interference Temperature Constraint $P$

Condition for satisfying the above constraint:
Total received power at a specified measurement point must satisfy

$$
\sum_{i=1}^{M} p_{i} h_{i \mathrm{O}} \leq P
$$

where $p_{i}$ - User i's transmitted power
$h_{i 0}$ - Channel gain from User i's tansmitter to measurement point

## System Model

Notations:

$p_{i}-$ User i's Tx power
$h_{i j}$ - channel gain from user i's transmitter to user j's Receiver
$h_{i 0}$ - channel gain from user i's Tx to measurement point

Figure: System Model for M Transmitters-Receiver pairs

## System Model

- Spectrum covers a Bandwidth B
- This spectrum is to be shared among $M$ spread spectrum users.
- User i's evaluation of the spectrum is characterized by a utility $U_{i}\left(Y_{i}\right)$, where $Y_{i}=$ Received SINR at user i's receiver



## System Model

For each $i$, the received SINR at user $i$ is:

$$
\gamma_{i}=\frac{p_{i} h_{i i}}{n_{0}+\frac{1}{B}\left(\sum_{j \neq i} p_{j} h_{j i}\right)}
$$

where $p_{i}$ is user i's transmission power $h_{i j}$ is the channel gain
$n_{0}=$ Background Noise Power (same for all users)

## System Model

Lemma: A power allocation scheme is Pareto optimal if and only if the total received power constraint is tight, i.e.,

$$
\sum_{i=1}^{M} p_{i} h_{i \mathrm{O}} \leq P
$$

thus, a power allocation is Pareto Optimal, if no user's utility is increased without decreasing another user's utility

## System Model

## A Special Case

If all receivers are co-located with the measurement point, then

$$
h_{i, j}=h_{i, 0}, \text { for all } i, j \in\{1,2, \ldots, M\} \quad p_{i}^{r}=p_{i} h_{i 0}
$$

and in the Pareto optimal allocation for each user $i$, SINR for each user $i$ is:

$$
\gamma_{i} \equiv \gamma_{i}\left(p_{i}^{r}\right)=\frac{p_{i}^{r}}{n_{0}+\frac{1}{B}\left(P-p_{i}^{r}\right)}
$$

## System Model

## REMARK:

User i's utility $U_{i}\left(Y_{i}\left(p_{i}\right)\right)$ under a Pareto optimal allocation does NOT depend on how the power is allocated among the interferers.

## Network Objective I: Efficiency

## Efficiency: Maximize the total network Utility:

 Efficiency Problemmaximize $\sum_{n} U_{n}\left(\operatorname{SINR}_{n}(\mathbf{p})\right)$
subject to $\sum_{n}^{n} p_{n} h_{n} \leq P$
variables $p_{n} \geq 0, \forall n$

Example: $U_{n}\left(\operatorname{SINR}_{n}\right)=\theta_{n} \log \left(1+\operatorname{SINR}_{n}\right)$
Maximizing total weighted rate

## Network Objective II: Fairness

Fairness: Fair share of resources, independent of location

$$
\begin{aligned}
\text { maximize } & \operatorname{SINR}_{1}(\mathbf{p}) \\
\text { subject to } & U_{n}^{\prime}\left(\operatorname{SINR}_{n}(\mathbf{p})\right)=U_{m}^{\prime}\left(\operatorname{SINR}_{m}(\mathbf{p})\right), \forall m \neq n \\
& \sum_{n} p_{n} h_{n} \leq P \\
\text { variables } & p_{n} \geq 0, \forall n
\end{aligned}
$$

## Example: $\quad U_{n}\left(\operatorname{SINR}_{n}\right)=\theta_{n} \log \left(\operatorname{SINR}_{n}\right)$

## Challenges

- Non-convexity:
* SINR and utility may not be concave in power
- Physically distributed:
* Local Information: utility functions, channel gains
* Selfish Objectives
- Performance Coupling:
* Mutual Interference
* Shared received power at measurement point
- Solution: Auction-based Resource Allocation Algorithm
* Distributed in nature
* Capture interactions between users


## Evolution of Auction-Based Spectrum Sharing

Each user's utility is PRIVATE information

Manager does NOT have a-priori knowledge of the information for each user

A Mechanism is required for the purpose of power allocation without the manager having prior knowledge of channel gains, $h_{i j}$.

## AUCTION SCHEMES

## AUCTION SCHEMES

## VCG AUCTION

## One-Dimensional Auctions with Pricing

## VCG (Vickrey-Clarke-Groves) AUCTION

- A simple and rudimentary auction technique

A weakly dominant strategy for users to bid truthfully
How is it done?

1. Users are asked to submit their utilities $U_{i}\left(Y_{i}\right)$
2. Manager computes the power allocation $p^{*}=\left(p_{1}{ }^{*}, \ldots, p_{M}{ }^{*}\right)$
3. Manager allocates power to users accordingly

$$
U_{\max }=\sum_{j=1}^{M} U_{j}\left(\gamma_{j}\left(p^{*}\right)\right)
$$

## Drawbacks of VCG Auction

Excessive burden on the users due to several measurements $\rightarrow$

## Computationally expensive for large $M$

Stressful for the Manager due to ( $M+1$ ) optimization problems which are non-convex due to interference

Not suitable for on-line allocations.

## AUCTION SCHEMES



## VCG AUCTION

## One-Dimensional Auction with Pricing

## PRINCIPLE OF AUCTION:

In a shared auction, the user submits his demand curve \& the auctioneer computes a market clearing price based on the set of demand curves

What is a Demand Curve?
The amount of goods/resources of a user desires as a function of the price.

## One-Dimensional Auction with Pricing

In Cognitive Radio Networks, CR users submit the demand curve in terms of Received Power or SINR

Issues with Received Power as Demand Curve:
it depends on the demands of the other users due to Interference

- Issues with SINR as Demand Curve:
it is independent of other users, however, the market clearing price is NOT easy to find due to the received power constraint


## One-Dimensional Auction with Pricing

SOLUTION:
A SIGNALLING SYSTEM (SINR-based or Power-based)

- Role of the users in SS:
they submit one-dimensional bids (i.e., signals) representing their willingness to pay
- Role of the manager (auctioneer) in SS:
it allocates the received power in proportion to the bids


## One-Dimensional Auction with Pricing

How does this auction scheme work?

The ultimate goal is to achieve Nash Equilibrium of the auction.

Assume:
All user's utilities and all channel gains are known to all users.

## One-Dimensional Auction with Pricing: Algorithm

1. Manager announces two parameters:

* A reserve bid $\beta>=0$
* A Price for power auction $\pi^{p}>0$ or A Price for SINR auction $\pi^{s}>0$

2. After observing these values, User $i \in\{1, \ldots, M\}$ submits $a$ bid $b_{i}>=0$
3. Manager keeps reserve power $p_{0}$ and allocates to each user $i$, a transmission power $p_{i}$, so that the received power at the measurement point is proportional to the bids, i.e.,

## One-Dimensional Auction with Pricing: Algorithm

$\mathrm{p}_{\mathrm{i}}=$ Assigned power to i

$$
p_{i} h_{i 0}=\frac{b_{i}}{\sum_{i=1}^{M} b_{i}+\beta} P
$$

and

## $\mathrm{P}_{0}=$ Reserved power

$$
p_{0}=\frac{\beta}{\sum_{i=1}^{M} b_{i}+\beta} P
$$

Also, the resulting SINR for user $i$ is

$$
\gamma_{i}=\frac{p_{i} h_{i i}}{n_{0}+\frac{1}{B}\left(\sum_{j \neq i} p_{j} h_{j i}+p_{0} h_{0 i}\right)}
$$

$\mathrm{h}_{\mathrm{oi}} \rightarrow$ channel gain from the manager to user i's receiver. If $\sum^{M} b_{i}+\beta=0$ then $p_{i}=0$. If $h_{o i}=0$ for all $i \varepsilon\{1, \ldots, M\}$ then the manager does ${ }^{i}$ hot interfere with the users. In the co-located case we have $h_{0 i}=1$ for all $i$.

One-Dimensional Auction with Pricing: Algorithm
4. User $i$ pays $C_{i}=\pi^{s} \gamma_{i} \quad$ or $\quad C_{i}=\pi^{p} p_{i} h_{i 0}$

- SINR Auction

$$
C_{i}=\pi^{s} \gamma_{i}=\pi^{s} \frac{p_{i} h_{i i}}{n_{0}+\frac{1}{B}\left(\sum_{j \neq i}^{M} p_{j} h_{j i}+p_{0} h_{0 i}\right)}
$$

- Power Auction

$$
C_{i}=\pi^{p} p_{i} h_{i 0}
$$

## Nash Equilibrium of the Auctions

A bidding profile is the vector containing the user's bids

$$
\underline{b}=\left(b_{1}, \ldots, b_{M}\right)
$$

- The bidding profile of user i's opponents is defined as

$$
\underline{b}_{-i}=\left(b_{1}, \ldots, b_{i-1}, b_{i+1}, \ldots, b_{M}\right)
$$

So that

$$
\mathbf{b}=\left(b_{i} ; b_{-i}\right)
$$

Each user i submits $a$ bid $b_{i}$ to maximize his Surplus Function

$$
S_{i}\left(b_{i} ; b_{-i}\right)=U_{i}\left(\gamma_{i}\left(b_{i} ; b_{-i}\right)\right)-C_{i} \quad \beta \text { and } \Pi \text { are omitted }
$$

## Nash Equilibrium of the Auctions

Nash Equilibrium of the auction is associated with Bidding Profile b* s.t.

$$
\begin{aligned}
& S_{i}\left(b_{i}^{*} ; b_{-i}^{*}\right) \geq S_{i}\left(b_{i}^{\prime} ; b_{-i}^{*}\right) \quad \text { for any } b_{i}^{\prime} \in[0, \infty) \quad \text { \& any user } \mathrm{i} \\
& b^{*}=\left(b_{1}^{*}, b_{2}^{*}, \cdots, b_{M}^{*}\right)
\end{aligned}
$$

Define user i's best response given $\mathrm{b}_{-\mathrm{i}}$ as the set

$$
\begin{aligned}
& B_{i}\left(b_{-i}\right)=\left\{\bar{b}_{i} \mid \bar{b}_{i}=\arg \max S_{i}\left(b_{i} ; b_{-i}\right)\right\} \\
& b_{i} \varepsilon[0, \infty)
\end{aligned}
$$

i.e., the set of $b_{i}^{\prime}$ 's that maximize $S_{i}\left(b_{i} ; b_{-i}\right)$ given $a$ fixed $b_{-i}$.

## Nash Equilibrium of the Auctions

* NE bidding profile b* is a fixed point, i.e., no user has the incentive to deviate unilaterally.
* The existence and uniqueness of an NE depend on $\beta$ and $\pi^{s}$ (or $\pi^{p}$ ).
* Manager can influence the NE by choosing $\beta$ and $\pi^{s}$ (or $\pi^{p}$ ).
* Allows to reach Pareto optimal solutions instead of NE.


## Tracing of the Auction Mechanism

## CONSTRAINTS:

- $P$ is the total power can be transmitted by $C R$ users,
$\square h_{\mathrm{io}}$ is the gain to the measurement (reference) point (BS)
- Assumption of knowledge for all channel gains
- Manager announces to all CR nodes
- A reserve bid, e.g., $\quad \beta=5$
$\square$ A price (based on SINR or power auction), e.g., $p_{i}=1$
- Transmission power is computed at transmitter according to the allowed receiver power

$$
p_{i} h_{i 0}=\frac{b_{i}}{\sum_{i=1}^{M} b_{i}+\beta} P
$$

$$
\gamma_{i}=\frac{p_{i} h_{i i}}{n_{0}+\frac{1}{B}\left(\sum_{j \neq i} p_{j} h_{j i}+p_{0} h_{0 i}\right)}
$$

## Example: Tracing of the Auction Mechanism

Reserve bid

$$
b_{0}=5 \quad P=20
$$

$\square$ User bids $b_{i}=3,5,2 \quad$ for $i=1,2,3$
$p_{1} h_{10}=\frac{3}{\sum_{i=1}^{M} b_{i}+5} 20=4$

$$
p_{2} h_{20}=\frac{5}{\sum_{i=1}^{3} b_{i}+5} 20=\frac{20}{3}
$$

$$
p_{3} h_{30}=\frac{2}{\sum_{i=1}^{3} b_{i}+5} 20=\frac{8}{3}
$$

For same channel gains $h=0.5$,

- Allocation proportional to bid

$$
p_{1}=8 \quad p_{2}=40 / 3 \quad p_{3}=16 / 3
$$

## Example: Tracing of the Auction Mechanism

Note that manager decides on the transmitted power based on the receiver It does not consider PU location in the network, it maybe closer than the CR receiver

Cost is the multiplication of received power by price paid per received power

$$
\begin{array}{ll}
C_{i}=\pi^{p} p_{i} h_{i 0} \quad \pi^{p}=3 & \\
C_{1}=12 & C_{2}=20
\end{array} C_{3}=8 .
$$

## Example: Tracing of the Auction Mechanism

Auction is repeated until SURPLUS is maximized for each transmitter

$$
S_{i}\left(b_{i} ; b_{-i}\right)=U_{i}\left(\gamma_{i}\left(b_{i} ; b_{-i}\right)\right)-C_{i}
$$

$\square$ Example: Utility Function $\boldsymbol{U}_{i}=\ln \left(\gamma_{i}\left(b_{i} ; b_{-i}\right)\right)$,
$\square$ For SNR calculation: $n_{0}=10^{-10} \quad B=10^{6}$

$$
\begin{gathered}
S_{1}=\ln \frac{4}{10^{-10}+\frac{1}{10^{6}} 15}-12=0.4938 \\
S_{3}=\ln \frac{8 / 3}{10^{-10}+\frac{1}{10^{6}} 15}-8=6.7963
\end{gathered}
$$

## SINR AUCTION




## SINR AUCTION



Bids for each user


Convergence of transmit power in the three-user network


Convergence of transmit power in the three-user network

## SPECTRUM SHARING CLASSIFICATIOND



Intra-Network SS

- Centralized (Infrastruct. based)
- Distributed (Ad hoc - based)



## Inter-Network SS

* Centralized
* Distributed
- Cooperative
- Non-cooperative


## Intra-Network Spectrum Sharing - Distributed \& Cooperative

Each CR user is responsible for the spectrum allocation and access is based on local policies.

- CR users exchange their information with other neighboring users for spectrum access

Cooperative (or collaborative) solutions consider the effect of the CR user's communication on other users.
I.o.w. the interference measurements of each CR user are shared among other CR users.

## Local Bargaining - Motivating Factors

L. Cao, H. Zheng, "Distributed Spectrum Allocation via Local Bargaining," Proc. IEEE Sensor and Ad Hoc Communications and Networks (SECON), Sept. 2005.

In a mobile (ad hoc) network, users are constantly moving and the network topology changes.

Therefore, the network needs to completely re-compute spectrum assignments for all users after each change.
$\rightarrow$ Centralized approach based on global optimization is infeasible

## COOPERATIVE LOCAL BARGAINING

- A cooperative local bargaining (LB) scheme $\rightarrow$ for both spectrum utilization and fairness.

Construct local groups according to a poverty line
$\rightarrow$ ensures a minimum spectrum allocation to each user and hence focuses on fairness of users.

## Problem Model and Utility Functions

$N=\{1, \ldots, N\} \quad$ SUs competing for $M=\{1, \ldots, M\}$ spectrum channels

SUs select communication channels and adjust their transmit powers accordingly to avoid interference with PUs.

Spectrum Access Problem $\rightarrow$ A Channel Allocation Problem,
i.e., to obtain a conflict free channel assignment for each user that max. utility.

## DEFINITIONS

## 1. Channel Availability $L(n)$

Let $L(n)=\left\{1 \leq m \leq M \mid I_{m, n}=1\right\}$ be the set of channels available at $n$. $\mathrm{I}_{\mathrm{m}, \mathrm{n}}=0 \rightarrow$ Channel m is occupied by PU.
2. Interference Constraint $C$

Let $C=\left\{c_{n, k} \mid c_{n, k} \in\{0,1\}\right\}_{N_{x} \times} \rightarrow N \times N$ matrix, represents the interference constraints among users.

If $c_{n, k}=1$, users $n$ and $k$ would interfere with each other if they use the same channel.

## DEFINITIONS

## 3. Conflict Free Assignment $A$

$$
A=\left\{a_{m, n} \mid a_{m, n} \in\{0,1\}\right\}_{M \times N} \quad \text { where } a_{m, n}=1
$$

denotes that spectrum band $m$ is assigned to user $n$, otherwise 0 .
A satisfies all the constraints defined by $C$, i.e...

$$
a_{m, n}+a_{m, k} \leq 1, \text { if } c_{n, k}=1, \forall n, k<N, m<M .
$$

## 4. User Dependent Channel Throughput B

Let $B=\left\{b_{m, n}>0\right\}_{M \times N}$ describe the reward that a user gets by successfully acquiring a spectrum band $m$
$b_{m, n}$ represents the max $B W /$ throughput that user $n$ can acquire through using spectrum band $m$ (assuming no interference from neighbors)

## DEFINITIONS

5. User Throughput of a Conflict Free Assignment

Let $\operatorname{TP}_{A}(n)$ represent the throughput that user $n$ gets under assignment $A$, i.e.,

$$
T P_{A}(n)=\sum_{m=1}^{M}\left(a_{m, n} b_{m, n}\right)
$$

6. OBJECTIVE: Do optimal spectrum allocation (in terms of total user throughput) and maximize the total network utilization, i.e., $A^{*}=\max \operatorname{argmax} U(A)$ with the utility

$$
\begin{gathered}
U(A)=\sum_{n=1}^{N} \log \left(T P_{A}(n)\right) \\
U(A)=\sum_{n=1}^{N}\left(T P_{A}(n)\right) \rightarrow \text { TOTAL USER THROUGHPUT }
\end{gathered}
$$

## Local Bargaining - The Idea

- Devices self-organize themselves into bargaining groups
- Requester becomes group coordinator and performs bargaining computations
- Members of each group coordinate to adjust their spectrum usage
- Advantage:
low cost, quick adaptation to network dynamics



## Local Bargaining - Constraints

Two Bargaining Strategies:

1. Limited Neighbor Bargaining
1.1. One-to-one Bargaining
1.2. One-buyer-multi-seller bargaining
2. Self Contained Group Bargaining
2.1. Restricted Bargainable Channels
2.2. Isolated Bargaining Groups


## Bargaining Procedures

Initialize bargaining request
Acknowledge bargaining request
Bargain group formation
Bargaining
Group dismissed

## Each node has 3 states: <br> Bargaining Procedures

Only enabled nodes can perform bargaining.


Bargaining ends:
Bargaining timer expires


## Local Bargaining Schemes for Fairness

 Global fairness utility increases if nodes with many assigned channels "give" some channels to nodes with few assigned channels.| 1. One-to-One Bargaining | 2. One-buyer-multi-seller bargaining |
| :--- | :--- |
| (Feed Poverty Bargaining) |  |

IFA'2015
ECE6616

## LOCAL BARGAINING SCHEMES 1. One-to-One Fairness Bargaining

Allows two neighboring nodes $n_{1}$ and $n_{2}$ to exchange channels to improve system utility while complying with conflict constraints from other neighbors.

Nash Bargaining Scheme (NBS): Optimization goal of local bargaining
For a current spectrum utilization $A_{\mu \times N}$ ONE-to-ONE FAIRNESS BARGAINING finds nodes $n_{1}$ and $n_{2}$ and their bargaining channel set $C_{b}\left(n_{1}, n_{2}\right)$ and modifies $A_{M \times N}$ to $A_{M \times N}$ related to $n_{1}$, and $n_{2}$ and channels $C_{b}\left(n_{1}, n_{2}\right)$ s.t.

$$
T P_{A^{\prime}}\left(n_{1}\right) \cdot T P_{A^{\prime}}\left(n_{2}\right)>\operatorname{TP} P_{A}\left(n_{1}\right) \cdot T P_{A}\left(n_{2}\right)
$$

$T P_{A}(n)$ represent the throughput that user $n$ gets under assignment $A$

EXAMPLE: LOCAL BARGAINING SCHEMES

1. One-to-One Fairness Bargaining
$n_{2}$ and $n_{1}$ calculate the throughput of each user for $A$ and $A^{\prime}$

- User Throughput: $\quad T P_{A}(n)=\sum^{M}\left(a_{m, n} b_{m, n}\right)$
$n_{1} n_{2} n_{3}$
$A=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] \begin{aligned} & \text { Ch } A \\ & C h \\ & C h \\ & C h\end{aligned} \quad\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right] \quad C H$
$\operatorname{TP}_{A}\left(n_{1}\right)=0+0+0=0 \quad \operatorname{TP}_{A}\left(n_{2}\right)=1+1+0=2$
- If $n_{2}$ gives $C h B$ to $n_{1}$, new channel assignment is denoted by $A^{\prime}$

$$
A^{\prime}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$$
\operatorname{TP}_{A^{\prime}} \cdot\left(n_{1}\right)=0+1+0=1 \quad \operatorname{TP}_{A^{\prime}} \cdot\left(n_{2}\right)=0+1+0=1
$$

## EXAMPLE: LOCAL BARGAINING SCHEMES

1. One-to-One Fairness Bargaining
$n_{2}$ and $n_{1}$ compare the channel assignments $A$ and $A^{\prime}$
Initial assignment A


Assignment after bargaining $A^{\prime}$

$T P_{A}\left(n_{1}\right)=0 \cdot T P_{A}\left(n_{2}\right)=2<T P_{A} \cdot\left(n_{1}\right)=1 \cdot T P_{A} \cdot\left(n_{2}\right)=1$

After bargaining we increase Fairness

## LOCAL BARGAINING SCHEMES Problem of One to One Fairness Bargaining

The effectiveness of one-to-one bargaining is constrained by the size of $C_{b}\left(n_{1}, n_{2}\right) \rightarrow$ Cannot eliminate User Starvation


Cannot have channels; utility is $0 \rightarrow$ User starvation!

- $C_{b}\left(n_{1}, n_{2}\right)$ : \# of bargainable channels between $n_{1}$ and $\left.n_{2}\right)$
- $n_{1}$ and $n_{2}$ cannot bargain due to constraint from $n_{3}$, i.e., $c_{b}\left(n_{1}, n_{2}\right)=\varnothing$
- $n_{1}$ and $n_{3}$ cannot bargain due to constraint from $n_{2}$, i.e., $c_{b}\left(n_{1}, n_{3}\right)=\varnothing$
$\rightarrow$ FAIRNESS BARGAINING is not effective to eliminate USER STARVATION!


## LOCAL BARGAINING SCHEMES

2. ONE BUYER MULTI SELLER: Feed Poverty Bargaining

- Remedy for user starvation:

If $n_{2}$ and $n_{3}$ can give up channel $A$ at the same time and feed it to $n_{0}$, we can remove the starvation at $n_{0}$ (example for one buyer multiseller bargaining)

- If a node (buyer) has very poor channel assignment, the neighboring nodes can collaborate together to feed it with some channels (also called a one-buyer-multi-seller bargaining).

For an assignment $A_{M \times N}$, a feed poverty bargaining is to find some node $n_{1}$ and channel $m_{1}$, modify $A_{M \times N}$ to $A_{M \times N}{ }^{\prime}$, such that

$$
A_{m, n}^{\prime}=\left\{\begin{array}{l}
1: m=m_{1} \text { and } n=n_{1} \\
0: m=m_{1} \text { and } n \in \operatorname{Nbr}\left(n_{1}\right) \\
A_{m, n}: \text { otherwise }
\end{array}\right.
$$

$\operatorname{Nbr}\left(n_{1}\right)$ : A set of neighbors of node $n_{1}$

## Fairness Bargaining with Feed Poverty (BF)

## Combine ONE-TO-ONE FAIRNESS BARGAINING and FEED POVERTY BARGAINING

Each node who wants to improve its spectrum usage starts with negotiating One-to-One Fairness Bargaining with its neighbors.

If there are no bargainable channels between itself and any of its neighbors (i.e., $\left|C_{b}\right|=\varnothing$, ), that node (i.e., a starving node) can broadcast a Feed-Poverty request to its neighbors to initialize Feed Poverty Bargaining.

- The requestor sequentially selects multiple channels to maximize group utility.


## Fairness Bargaining with Feed Poverty (BF)

- Overall, a channel assignment $A$ is said to be $B F$-optimal if no further Fairness Bargaining with Feed Poverty can be performed on it.

Poverty Line Guided Bargaining
A node is entitled to request bargaining if its current throughput is below its poverty line

## Fairness Bargaining with Feed Poverty (BF)

Minimum amount of spectrum a node is entitled to.

$$
\begin{aligned}
& \text { Poverty Line } \\
& T P(n) \geq\left\lfloor\frac{l_{n}}{d_{n}+1}\right\rfloor
\end{aligned}
$$

TP(n):
Spectrum usage of user $n$ (\# of channels)
$\square I_{n}$ : \# of available channels for user n

## Interference Compensation Based Spectrum Sharing

J. Huang, R. A. Berry, M. L. Honig, "Spectrum Sharing with Distributed Interference Compensation," Proc. IEEE DySPAN, Nov. 2005.

## Interference Compensation:

- Each CR user senses the signal at a particular channel
- Calculates how much interference will be created if it transmits on that channel.
- If that limit is below a threshold then it sends on that channel. (Cooperative!!!)

Considers the problem of joint channel selection and power control

## SYSTEM MODEL

- Each user is represented by a transmitter-receiver node pair
- Single-hop and half-duplex transmissions

Multiple channels available with fixed gains (slow fading)
No centralized controller

How to select channel and power in a distributed way with limited (scalable) information exchange ?

## SYSTEM MODEL

I transmitter-receiver pairs (users)
K parallel channels for all users
User $i$ chooses to transmit in one channel, $\varphi(i)$, with power $\mathrm{p}_{\mathrm{i}}{ }^{(i)}$

- Transmission power constraint

$$
P_{i}^{\min } \leq p_{i}^{\phi(i)} \leq P_{i}^{\max }
$$

- Received SINR of user $i$ in channel $\varphi(i)$


$$
\gamma_{i}^{\phi(i)}=\frac{p_{i}^{\phi(i)} h_{i i}^{\phi(i)}}{n_{o}+\sum_{j \neq i} p_{j}^{\phi(i)} h_{j i}^{\phi(i)}}
$$

$h_{i j}{ }^{k}$ : gain between $t \times i$ and $r \times j$ for channel $k$ $n_{0}$ : background noise power

## Utility Function

User i's QoS preference is given by utility $U_{i}\left(Y_{i}{ }^{\varphi(i)}\right)$

- $U_{i}$ is increasing and strictly concave in $\gamma_{i}^{q(i)}$
- Rate-adaptive applications with elastic demands.

Network Performance = Total Network Utility


## OBJECTIVE: Total Utility Maximization Problem

Goal:
Select channel and allocate power in a distributed way to maximize total utility.
Challenges:

- Channel selection is a discrete (combinatorial) and possibly non-convex optimization problem $\rightarrow$ Difficult to solve
- Power assignments across users are coupled due to mutual interference
- Objective function may not be concave in power
- Proposed HEURISTIC SOLUTION: SC-ADP ALGORITHM Distributed cooperation by exchange of interference prices.

Single-Channel Asynchronous Distributed Pricing (SC-ADP) Algorithm

Price Announcement: User i announces an interference price $\pi_{i}{ }_{i}^{(i)}$ in the currently selected channel $\varphi(i)$

$$
\pi_{i}^{\phi(i)}=\left|\frac{\partial U_{i}\left(\gamma_{i}^{\phi(i)}\right)}{\partial\left(\sum_{j \neq i} p_{j}^{\phi(i)} h_{j i}^{\phi(i)}\right)}\right|
$$

Interference price reflects the marginal increase of user i's utility if its received interference (denominator) is decreased by one unit

Single-Channel Asynchronous Distributed Pricing (SC-ADP) Algorithm CHANNEL SELECTION AND POWER UPDATE

Based on the current interference prices and current level of interference, User $i$ chooses channel $\varphi(i)$ and power $p_{i}^{\varphi(i)}$ to maximize its surplus

$$
\left.S_{i}=U_{i}\left(\gamma_{i}^{\phi(i)}\left(p_{i}^{\phi(i)}\right)\right)-p_{i}^{\phi(i)} \sum_{j \neq i} \pi_{j}^{\phi(i)} h_{i j}^{\phi(i)}\right)
$$

Utility gain at user i Utility loss at other users
$\square$ Repeat two steps asynchronously across users.
$\rightarrow$
Announce the price $\pi_{i}{ }^{\varphi(i)}$ and measure local channel gains ( $h_{i j}{ }^{k}$ for all $j$ and $k$ ).

Single-Channel Asynchronous Distributed Pricing (SC-ADP) Algorithm

Consider 2 users sharing 2 channels


Channel 2


Assume that both user starts to use the same channel with max power: $p_{1}(\varphi(1))=p_{2}(\varphi(1))=1$

- User 1 computes its SINR and price where noise power $n_{0}=0.1$ using these formulas assuming a utility function $U(x)=\log (1+x)$

$$
\gamma_{i}^{\phi(i)}=\frac{p_{i}^{\phi(i)} h_{i t}^{\phi(i)}}{n_{o}+\sum_{j \neq i} p_{j}^{\phi(i)} h_{j i}^{\phi(i)}}
$$

$$
\pi_{i}^{\phi(i)}=\left|\frac{\partial U_{i}\left(\gamma_{i}^{\phi(i)}\right)}{\partial\left(\sum_{j \neq i} p_{j}^{\phi(i)} h_{j i}^{\phi(i)}\right)}\right|
$$

## SINR of user 1: <br> $\gamma_{1}=\frac{1 \times 2}{0.1+1 \times 1}=1.82$

- Price of user 1 for using the channel is

$$
\pi_{1}=\frac{\log (1.82+1)-\log (12+1)}{1}=0.69
$$



Single-Channel Asynchronous Distributed Pricing (SC-ADP) Algorithm- Example

User 2 computes its SINR:

$$
\gamma_{2}=\frac{1 \times 2}{0.1+1 \times 1}=1.82
$$

- Price of user 2 for using the channel 1 is

$$
\pi_{2}=\frac{\log (1.82+1)-\log (0+1)}{1}=0.69
$$



The surplus function for user 1 is

$$
\begin{aligned}
& \left.S_{i}=U_{i}\left(\gamma_{i}^{\phi(i)}\left(p_{i}^{\phi(i)}\right)\right)-p_{i}^{\phi(i)} \sum_{j \neq i} \pi_{j}^{\phi(i)} h_{i j}^{\phi(i)}\right) \\
& S_{1}=\log (1+1.82)-1 \times 0.69 \times 1=-0.24
\end{aligned}
$$

- If user 1 drops the channel 1 and grabs the
 channel 2 , its surplus function will become

$$
S_{1}^{\prime}=\log (1+1.82)-1 \times 0 \times 1=0.45
$$

Single-Channel Asynchronous Distributed Pricing (SC-ADP) Algorithm- Example

Since $S_{1}{ }^{\prime}>S_{1}$, user 1 changes its channel from channel 1 to channel 2.

Then it calculates its new SINR and new price and advertise the new price which are:

$$
\gamma_{1}=\frac{1 \times 2}{0.1+0 \times 1}=12
$$

$$
\pi_{1}=\frac{\log (12+1)-\log (12+1)}{1}=0
$$

At this point, since both users are using different channels with maximum power, we reach the optimal point.

## Performance Evaluation: SC-ADP

SC-ADP Max Power:
User i transmits with maximum power $P_{\max } \varphi(i)$ in the channel $\varphi(i)$ that maximizes surplus $S_{i}$.

## Performance Evaluation: SC-ADP

Best SINR:
User i transmits with maximum power in the channel that yields the highest SINR:

$$
\phi(i)=\arg \max _{k} \frac{h_{i i}^{k}}{n_{o}+\sum_{j \neq i} p_{j}^{k} h_{j i}^{k}}
$$

## Performance Evaluation: SC-ADP

Best Channel:
User i transmits with maximum power in the channel with the largest channel gain

$$
\phi(i)=\arg \max _{k} h_{i i}^{k}
$$

## Performance Evaluation: SC-ADP



IF A'2015 ECE6616

## Multi-Channel Asynchronous Distributed Pricing (MC-ADP) Algorithm: <br> Maximum Power

User i allocates max powers across $K$ channels to maximize surplus

Maximize: $\quad \sum_{k=1}^{K} \log \left(1+\gamma_{i}^{k}\right)-\sum_{k=1}^{K} p_{i}^{k} \sum_{j \neq i} \pi_{j}^{k} h_{i j}^{k}$
Subject to:
Total power constraint $\sum_{k=1}^{K} p_{i}^{k} \leq P_{i}^{\max }$

## Iterative Water-filling (IWF)

User i allocates power across K channels to maximize the rate

$$
\text { Maximize: } \quad \sum_{k=1}^{K} \log \left(1+\gamma_{i}^{k}\right)
$$

Subject to:
Total power constraint $\sum_{k=1}^{K} p_{i}^{k} \leq P_{i}^{\max }$
No info is exchanged among users and the power allocation across channels for each user is determined by water filling regarding the interference as noise.

## Performance Evaluation: MC-ADP



MC-ADP achieves significantly higher utility than the other algorithms, since

* it takes into account the interference prices, and
* has the flexibility of allocating power across multiple channels.

SC-ADP algorithm outperforms IWF in a dense network (i.e., more than 40 users), where the interference prices help to mitigate the effects of interference.

## SPECTRUM SHARING CLASSIFICATIOND



Intra-Network SS

- Centralized (Infrastruct. based)
- Distributed (Ad hoc - based)


Inter-Network SS

* Centralized
* Distributed

Cooperative
Non-cooperative

## Intra-Network Spectrum Sharing <br> - Distributed \& Non-Cooperative

- Non-cooperative (or non-collaborative, selfish) solutions consider only the user itself

Selects the channel with the objective of maximum throughput without taking other users into consideration!

May result in reduced spectrum utilization

- Requires minimum communication among other users.


# Intranetwork Spectrum Sharing: Distributed - Non-Cooperative 

1. Device Centric Approach
H. Zheng and L. Cao, Proc. IEEE DySPAN, Nov. 2005.
2. Belief Assisted Pricing
J. Zhu and Ray Li, Proc. of IEEE SECON 2006.

## DEVICE CENTRIC SPECTRUM MANAGEMENT

H. Zheng and L. Cao, "Device-centric Spectrum Management," Proc. IEEE DySPAN, pp. 56-65, Nov. 2005.

## Motivations:

Cooperation increases the number of control messages

- Energy and BW wastage
$\square$ Users do not want to reveal spectrum usage
- Privacy and to avoid jamming attacks

What if CR users do not want to collaborate?

## SOLUTION

- Users are allocated channels based on their observations of interference patterns and neighbors
- Compared to cooperative schemes $\rightarrow$ this scheme results in slightly worse performance.
- But communication overhead is reduced significantly.


## Rule Based Spectrum Management

Users sense environment conditions and neighbor activities
$\square$ Users independently adjust self-behavior following Preset Rules

Recursive procedures

- System reaches equilibrium within small number of steps
- Assuming everyone is well behaved


## Independent Action using Rules

Rules tell each user which channels it should use

- Input: Environment / Network Conditions
- Goal: Maximize system utility
(e.g., proportional fair utility)
- No negotiation necessary


## Independent Action using Rules

## Rules based on Poverty Line Theorem

- Poverty Line:

Minimum amount of spectrum that a user is entitled to, i.e., lower bound

- Theorem:

In a stable and proportional fair system, the number of channels at each user $n \geq P L$ ( $n$ )

- PL(n) depends on the number $L_{n}$ of available channels for user $n$ and the number $D_{n}$ of conflicting neighbors:

$$
P L(n)=\left\lfloor\frac{L_{n}}{D_{n}+1}\right\rfloor
$$

## Access Schemes

- CONFLICT FREE ACCESS SCHEME RULES A, B, C
- CONTENTION-BASED ACCESS SCHEME RULES D, E


## Conflict Free Spectrum Access

- For explicit and guaranteed throughput provisioning and control over packet delay
- To prevent interference, users always select idle channels, i.e., channels unclaimed by neighbors.
- A channel is idle if the spectrum report shows no activity during the previous time period of length $X$, where $X$ is a design parameter.
- To provide fairness, we limit the number of channels each user can access.


## Conflict Free Spectrum Access: Rule A: Uniform Idle Preference

- Each user adjusts its spectrum usage (\# of channels) to

$$
\Omega=\min _{n}\left\lfloor\frac{L_{n}}{D_{n}+1}\right] \text { idle channels }
$$

- Rule A guarantees a conflict free spectrum allocation (See the paper!!)


## Limitation

- A small number of users experiencing intensive interference from PUs (small $L_{n}$ ) or other SUs in a crowded area (large $D_{n}$ ) can limit the value of $\Omega$
$\rightarrow$ leading to less than ideal spectrum utilization.


## Conflict Free Spectrum Access: Rule B: Poverty Exact Idle Preference

- A user n selects exactly

$$
P L(n)=\left\lfloor\frac{L_{n}}{D_{n}+1}\right\rfloor \text { channels from idle channels. }
$$

- If the number of idle channels < PL(n), it "grabs" channels from "richer" users without impacting "poor" users.


## CHANNEL SELECTION PROCEDURE

- To $n$, a neighbor is "rich" if it uses more channels than $n$ : otherwise it is "poor"
- Each user has the knowledge of the number of neighbors $D_{n}$ 。 \& their channel selection so that it can identify "richer" users
- To "grab" non-idle channels, a user $n$ marks the channels occupied by "poor" neighbors as busy, and the rest as idle
- User $n$ then selects a set of channels from the "idle" channels until its channel occupancy reaches PL(n).


## Limitation

- Each user only attempts to use PL(n) channels
- Since PL(n) represents a lower bound on spectrum usage in a stable and proportional fair system. Rule B could under-utilize available spectrum.


## Conflict Free Spectrum Access Rule C: Poverty Guided Idle Preference

- Guarantees the poverty line for each user while letting some users to go beyond their poverty lines
- A user $n$ selects channels from idle channels
- If there are not enough idle channels to reach PL(n) $\rightarrow$ User $n$ "grab" channels from "richer" neighbors.
- The number of channels it can grab from any "richer" user $r$
$\max \left\{0, \min \left\{C_{r}-P L(n), P L(n)-C_{n}\right\}\right\}$
where $C_{n}$ and $C_{r}$ are the current number of channels of user $n$ and $r$.


## Rule C: Poverty Guided Idle Preference

- Rule C allows users who have attained their poverty line to grab additional idle channels
- It still allows users below their poverty line to grab channels from "richer" neighbors, but requires that each grabbing does not reduce a "richer" user's spectrum below the grabber's poverty line.


## Implementation Requirements for Rules B \& C

- Users (especially those below their poverty line) need to know the set of channels each neighbor currently occupies
- This is done by each node broadcasting their channel usage either embedded in beacon broadcasts or in routing hello messages


## Conflict Free Spectrum Access: RECAP



## Theoretical Conclusion

Using B or C, the system reaches an equilibrium after at most $O\left(N^{2}\right)$ local adjustments.

At equilibrium, each user's spectrum is at least its PL (equal to PL for Rule B).

N: \# of nodes

- M: \# of channels


## Contention-based Spectrum Access

- Broadcasting spectrum usage to neighbors might be undesirable for a number of reasons, including privacy concerns and protection against jamming from malicious users
- Contention based spectrum access does not require knowledge of neighbors' spectrum usage


## Contention-based Spectrum Access: Procedures

- On each channel, users follow a set of random access rules such as CSMA to compete fairly for channel access and avoid conflict
- Each user performs contention detection, i.e., listens to the channel before initiating any transmission
- It initiates the transmission only when the channel is idle for some given time $T$
- Otherwise, it backs off and delays the action for a short period


## Contention-based Spectrum Access

- Penalty: Overhead of contention detection (even if there is only one user on the channel)


## - NOTE:

Since channels have different contention conditions, users should invoke independent contention detection and backoff process on each channel

## Contention-based Spectrum Access: SHARING

- Random contention allows multiple users to share one channel but does not specify the number of channels users should use
- Users could be selfish and occupy all the channels, reducing the system to a single channel with full interference
- Therefore, we need to regulate the maximum number of channels each user can use


## Contention-based Spectrum Access: Rule D: Selfish Spectrum Contention

- Each user $n$ can use up to the $\Psi$ channels providing the highest throughput.
- Communication on each channel is through CSMA based time contention.


## Contention-based Spectrum Access

 Rule E: Poverty Guided Selfish Spectrum Contention- The poverty line concept can provide a reference for choosing different value of $\Psi$ for different users.
- The number of channels each user $n$ can use is limited by

$$
\Psi_{n}=\max (\alpha \cdot \operatorname{PL}(n), 1) \quad \alpha \geq 1 .
$$

Since the poverty line represents throughput attainable from conflict free spectrum usage, $\Psi_{n}$ should be larger than PL( $n$ ) to account for channel contention

## Contention-based Spectrum Access: Recap

Probabilistic QoS $\rightarrow$ Contention

## Theoretical Conclusion

Using D or E, the system reaches an equilibrium after at most
$\Lambda$ * $M$ local adjustments, $\Lambda \leq O\left(N^{2}\right)$

- N : \# of nodes
- M: \# of channels


## Performance Analysis (Rule A, B)

Rule $B$ improves both the utilization and fairness by a factor of 2 over Rule $A$



Utilization: $\sum_{i} \beta_{i}\left(\beta_{i}: \#\right.$ of channelsat user i$) \quad$ Fairness: $\sum_{i} \log \beta_{i}\left(\beta_{i}: \#\right.$ of channelsat user i$)$

## Performance Analysis (Rule D, E)

Rule E outperforms Rule D
Rule $E$ with $a=1.8$ and Rule D with optimal $\Psi$.



## Performance Analysis (Rule B, C, E)

- Performance gap between Rule B and C shows that the poverty line is a still a loose bound on spectrum usage. (Rule B)

By opportunistically going beyond the poverty line, users achieve better spectrum utilization (Rule C)

Compared to the bargaining approach, Rule C leads to a graceful 8\% degradation in utilization.


## Performance Analysis (Rule B, C, E)

Performance difference between Rule $C$ and E shows that Rule E provides better fairness, as a PL( $n$ ) provides a proportional increase in spectrum usage

Compared to the bargaining approach, Rule C leads to a $25 \%$ degradation in fairness.


