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CHAPTER 5.1. 
SPECTRUM SENSING 
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Binary Hypothesis Testing for Transmitter Detection 

   The received signal x(t) to be detected by a CR user is 

where n(t) à Additive white Gaussian noise (AWGN) 
        s(t) à Transmitted signal of a PU 
        h(t) à Amplitude gain of the channel 
 
H0: Null hypothesis à No licensed user signal in a certain spectrum band  
H1: Alternative hypothesis à There exists some licensed user signal 

x(t) =
n(t) H0

h(t)s(t)+ n(t) H1

!
"
#

$#

4 



IFA’2015 ECE6616 5 

Spectrum Sensing Performance 
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Based on the hypothesis testing, spectrum sensing performance is  
evaluated by Prob. of Detection Pd and Prob. of False Alarm Pf: 
 
 
 
 
 
 
  Pd: Probability of CR user claiming H1 when the PU is present (H1) 
  Pf: Probability of CR user claiming H1 when the PU is absent (H0) 
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What do Pd and Pf mean? 

n A low Pd à Missing the correct detection of the 
presence of the PU with high probability à 

  increases the interference to the PU 
 
n A high Pf à  low spectrum utilization  
  (since false alarms increase the number of missed  
  opportunities (white spaces)).  
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What is a Matched Filter? 

 
  DEFINITION: 
  A matched filter is a linear filter whose impulse response h(t) is a conjugated,  
   time-reversed, delayed version of the known signal s(t) 
  

n  Detection of s(t) by a “matched filter” receiver 
–  Received signal x(t) is first convolved with h(t) 
–  Output of the filter is sampled at t=T 
–  The result is then sent to a threshold device for detection 
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Matched Filter for CR 

Need  
■  Transmitted signal information s(t) 
■  Synchronization for sampling timing (t=T) 

s(t): the transmitted signal of the PU 
n(t): AWGN 
T: Symbol interval  
   : Threshold 

€ 

λ
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s(t) x(t) 
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Sample at t = T  
Received Signal  
x(t) = s(t) + n(t) x(τ )s(T − t + τ )dτ
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Example: Matched Filter Detection 
Baseband waveform Primary AM Signal (no noise) 

x(t) = A cos(2 π fc t) 

Total energy: E = P*t = V2 *t = 200 µJ 

Sample at t = T à Output of the matched filter: 

T = 2*10-5 sec 

Ymax=Peak value = total area = 6*10-5
 

x(t) cos(2 π fc t) = A/2 + A/2 cos(4 π fc t) 
à Low-pass filter: A 

Y 
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Matched Filter Detection for CR 

When the characteristics of the PU signal is known to the CR user à  

  Optimal for maximizing SNR in the presence of AWGN 

   

A. Sahai, N. Hoven and R. Tandra,  
“Some Fundamental Limits in Cognitive Radio”,  
Proc. Allerton Conf. on Comm., Control and Computing, 2004. 
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Disadvantages of Matched Filter Detection 

n  It requires a priori knowledge of the PU signal. e.g., 
        * modulation type and order 
        * pulse shape/signal waveform 
        * packet format  

 
* Performs poorly if a priori knowledge is not accurate 
 
n  One matched filter is required for detecting each type of 

PUs è high implementation cost in heterogeneous PUs 
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Example: Matched Filter Detection 

If the PU’s exact waveform is unknown à  
matched filter does not work 

Filter Output 

n No peak value at the sampling period  
   à primary signal is not detected 

Y 
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 Most wireless network systems have     
    *  pilot 

 *  preambles 
 *  synchronization word 
  *  spreading codes 

  These can be used for coherent detection. 
  Due to coherency, it requires less time to achieve high 

processing gain, i.e., detection can be very fast. 

Advantages of Matched Filter Detection 
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Matched Filter Detection When Pilot Signal is Transmitted 
D. Cabric, A. Tkachenko and R. W. Brodersen,  
“Spectrum Sensing Measurements of Pilot, Energy, and Collaborative Detection”,  
Berkeley Wireless Research Center, UC Berkeley, 2006 

n  Assume PU transmitter sends a pilot signal 

n  Signal power is confined inside a priori known BW B around fc 

n  Also, sensing receiver has a perfect knowledge of the pilot signal 
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Detection is the test of the following two hypotheses: 
    
                                   Signal Absent 
                                Signal Present 
 
   where T is the observation interval and t = 1,…,T 
     
    Xp[t] :   Pilot Data 
    n[t]  :   AWGN 

Matched Filter Detection When Pilot Signal is Transmitted 
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■  Y = Σ x[n] Xp[n]* 
 
■  Compare with threshold 

 - Y > λ  Decide Signal Present 
 - Y < λ  Decide Signal Absent 

Matched Filter Using Pilot Signal 

A/D 

Pilot Xp[n] 

x(t) Sum  
N samples of 
x[n] Xp[n]* 

Test Statistics 
Y X x[n] 
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  Energy Detection 
 

n  If the CR user cannot obtain information about the PU signal s(t),  
  the matched filter is not suitable 
 
n Energy detector is a non-coherent detector that does not 

require synchronization at the receivers like matched filter 

 

D. Cabric, S. M. Mishra, and R. W. Brodersen, 
“Implementation Issues in Spectrum Sensing for Cognitive Radios,”  
Proc. 38th Asilomar Conference on Signals, Systems and Computers, Nov. 2004. 
H. Tang,  
“Some Physical Layer Issues of Wideband Cognitive Radio System,”   
Proc. IEEE DySPAN, Nov. 2005. 
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Energy Detection 
A. Ghasemi and E. S. Sousa, “Collaborative Spectrum Sensing for Opportunistic 
Access in Fading Environment,“ in Proc. IEEE DySPAN, Nov. 2005	

Output of bandpass filter with BW W is squared and integrated  
over the observation (sensing) time interval T 
à to measure the energy of the received signal 
 
Output of the integrator, Y, is compared with a threshold, λ, to decide whether a  
PU is present or not 
 
 

Input  
2)(

Squaring Device Integrator Threshold Device 

Decide  
H0 or H1 

x(t) x2 (t)dt
0
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∫
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Example 
Energy Detection 
 

Assume the filtered input signal    x(t)= A cos(2πfct) 

x2(t)= A2cos(2πfct)=(A2cos(2π2fct)+A2)/2, by cosine conversion identity 
 
After integration -> Y=(A2sin(4πfcT)+A2T)/2, which is a scalar 
 
Accordingly, threshold can be applied at the receiver 

Decide  
H0 or H1 

oHY
1H
λ>

<



IFA’2015 ECE6616 21 

  Energy Detection 
 

 
  If the power of the random Gaussian noise is known, 
then the energy detector is optimal 
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Energy Detection: Non-Fading Environment 
 

  where γ is the SNR 
         m = TW is the (observation/sensing) time bandwidth product  
         Γ(·) and Γ(·, ·) are complete and incomplete gamma functions  
         Qm( )   is the generalized Marcum Q-function 
                                        λ                   is the threshold value  

Pd = P{Y > λ |H1} =Qm ( 2γ , λ )

Pf = P{Y > λ |H0} =
Γ(m,λ / 2)
Γ(m)

  Probability of Detection Pd and Probability of False Alarm Pf are: 
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Energy Detection: Non-Fading Environment 
 

  where γ is the SNR 
         m = TW is the (observation/sensing) time bandwidth product  
         Γ(·) and Γ(·, ·) are complete and incomplete gamma functions  
         Qm( )   is the generalized Marcum Q-function 
                                        λ                   is the threshold value  

!!

Pd = P{Y > λ |H1}=Qm( 2γ , λ )

Pf = P{Y > λ |H0}=
Γ(m,λ /2)

Γ(m)

  Probability of Detection Pd and Probability of False Alarm Pf are: 
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Energy Detection: Fading Environment  

where fγ(x) is the probability distribution function of SNR under  
fading.  

∫=
x

md dxxfQP )(),2( γλγ

■ The amplitude gain h of the channel varies due to the  
  shadowing/fading  à variation of SNR 
■ Pf is the same as that of non-fading case (independent of SNR, γ) 
■ Pd gives the probability of the detection conditioned on instantaneous  
  SNR as (from Pd = P{Y>λ | H1) à  
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Advantages of Energy Detection 

n  Easy to implement 
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Problems of Energy Detection 

n Increased sensing time (i.e., sensing speed is low) 
 
n Noise  
  - We assumed that noise variance is precisely known to    

      the receiver and the threshold λ  is set accordingly 
 
  - However, noise is an aggregation of various sources and  

      varies continuously 
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 Problems of Energy Detection 

Performance is susceptible to uncertainty in noise power  
à SNR problem !!!  
 
(Pilot tone from PU helps to improve the accuracy of  
the energy detector) 
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Problems of Energy Detection 

n  Cannot differentiate signal types but can only determine the  
    presence of the signal. 
 
n   Cannot differentiate modulated signals, noise and interference. 
 
   (accordingly benefits of detection and interference cancellation  
   techniques cannot be utilized). 
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Problems of Energy Detection 

 
 à Energy detector is prone to the false detection  
     triggered the unintended signals 
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Cyclostationary Feature Detection 
 

n Cyclostationarity 
–  Statistical parameters (e.g., mean and autocorrelation) of a 

cyclostationary random process vary periodically with time 
–  Characteristic properties of cyclostationarity are cyclic features 

n Cyclostationary feature detection 
–  Exploit the periodicity of carriers, pulse trains, repeating spreading codes, 

etc. (cyclic features) in PU signals for detection 
 

W.A. Gardner, “Signal interception: a unifying theoretical framework for feature  
detection,” IEEE Trans. on Communications, vol. 36, no. 8, Aug. 1988. 
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Cyclostationary Signals 
 

n Modulated signals are cyclostationary 
–  They are coupled with several sources of periodicities such as 

sine wave carriers, pulse trains, repeating spreading, hopping 
sequences, or cyclic prefixes 

n  These introduced periodicities cause spectral redundancy 

n  Spectral redundancy can be measured by the correlation between 
spectral components of cyclostationary signals 

D. Cabric, S. M. Mishra, and R. W. Brodersen,  
“Implementation issues in spectrum  sensing for cognitive radios,” 
 in Proc. 38th Asilomar Conf. on Signals, Systems and Computers, Nov. 2004. 
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Sine-based Cyclostationary Detection  
Primary Tx frequency repeats over symbol durations at regular intervals T 

Problem: Can these cyclic regularities be detected at the CR user? 

Example of Cyclostationary Signals 
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Detection of Cyclostationary Signals 

n  This periodicity appearing in transmitted signal of the PUs can be 
used by CR users to detect PUs 

n  Cyclic features in cyclostationary signals can be captured by cyclic 
frequencies α’s in the spectral correlation function (SCF) 

 
n Questions:  

–  What are the cyclic frequencies in PU signals? 
–  How to find the spectral correlation function (SCF)?  
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Cyclic Frequencies of Primary Signals 

Type of Signal  Cyclic Frequencies  
Analog Television  Cyclic frequencies at multiples of the 

TV-signal horizontal line-scan rate 
(15.75 kHz in USA, 15.625 kHz in 
Europe)  

AM signal:   

PM/FM signal:  

Amplitude-Shift Keying:   
                               

Phase-Shift Keying:   
                              

x(t) = a(t)cos(2π f0t +ϕ0 ) ±2 f0

±2 f0

±2 f0 + k /T0 ,k = 0,±1,±2,…

k /T0 (k ≠ 0)

±2 f0 + k /T0 ,k = 0,±1,±2,…
k /T0 (k ≠ 0)x(t) = [ an p(t − nT0 − t0 )

n=−∞

∞

∑ ]cos(2π f0t +ϕ0 )

x(t) = cos[2π f0t + an p(t − nT0 − t0 )
n=−∞

∞

∑ ].

x(t) = cos(2π f0t +ϕ(t))

34 



IFA’2015 ECE6616 35 

Since we have knowledge of the cyclic frequencies of signals  
like TV and wireless microphones,  
 
we only need to compute  
 
the spectral correlation function (SCF)  
 
at very limited number of discrete cyclic frequencies (α’s) 
 

Cyclic Frequencies for Primary Detection 
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Finding SCFs: Cyclic Autocorrelation Approach 

n  Power spectral density is the Fourier transform of the autocorrelation 
n  Since the autocorrelation function Rx(τ) of received signal x(t) is periodic, it can be 

represented by a Fourier Series 

  
 
where Rx

α(τ) is the Fourier Series coefficients called cyclic autocorrelation function  
with spectral components at cyclic frequencies α’s 
 

n  The density of spectral correlation (spectral correlation function (SCF)) is the  
   Fourier Transform of cyclic autocorrelation function Rx

α(τ) 
  

 

 

Rx (τ ) = E[x(t +
τ
2
)x*(t − τ

2
)]= Rx (t +

τ
2
,t − τ

2
) = Rx

α (τ )
α

∑ e j2παt

W.A. Gardner, “Signal interception: a unifying theoretical framework for feature  
detection,” IEEE Trans. on Communications, vol. 36, no. 8, Aug. 1988. 
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Finding SCFs: Spectral Correlation Approach 

n  Spectral correlation function (SCF), Sx
α
 (f), is the density of correlation between 

spectral components at (f+α/2) and (f-α/2) 

  
where X(t,f) is the spectral components of received signal x(t) at frequency f with  
bandwidth 1/T: 
 

n  For α=0, SCF reduces to power spectral density (PSD) 
n  Sx

α
 (f) = Sx(α,f) is two-dimensional transform of Rx(t;τ) where Rx(t;τ) = Rx(τ)  

   is the autocorrelation function of x(t)  

XT (t, f ) = x(u)e− j2π fu
t−T /2

t+T /2
∫ du

Sx
α ( f ) = lim

T→∞
lim
Δt→∞

1
TΔt

XT (t, f +
α
2
)

−Δt /2

+Δt /2
∫ XT (t, f −

α
2
)dt
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Steps of Cyclostationary Feature Detection 
 

n Obtain the spectral components XT(t,f)  of received signal x(t) 

n  Find the correlation between spectral components at frequencies (f+α/2) 
and (f-α/2)  for cyclic frequency α to obtain the SCF: Sx

α
 (f)  

 
n Measure magnitude of SCF at specific cyclic frequencies α’s 
 (detect features) 

 
n Declare primary signal s(t) present if spectral components are detected 

at α’s (i.e. |Sx
α
 (f)| > threshold λ) 
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Implementation of Cyclostationary Feature Detector  

x(t):    Received signal                 
XT(t,f):  Spectral components of x(t) at frequency f with BW 1/T 
α:        Cyclic frequency 
Sx

α
 (f):  Spectral correlation function (SCF) 

If the magnitude of Sx
α
 (f) at cyclic freq α is greater than the 

threshold (high spectral correlation), the primary signal is detected 

Decide 
H1/H0 

Correlate 
XT (t,f+α/2) 
XT*(t,f-α/2) 

Average 
over T 

Detect 
features 

FFT ADC x(t) 

XT(t,f) Sx
α(f) 

D. Cabric, S. M. Mishra, and R. W. Brodersen, “Implementation issues in spectrum  
sensing for cognitive radios,” in Proc. Asilomar Conf. on Signals, Systems and  
Computers, Nov. 2004. 
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Cyclostationary Feature Detection and  
Energy Detection in High SNR 
D. Cabric, S. M. Mishra, and R. W. Brodersen,  
“Implementation issues in spectrum sensing for cognitive radio,” 
 in Proc. Asilomar Conf. on Signals, Systems, and Computers, Nov. 2004. 

Frequency (MHz) 

M
ag

ni
tu

de
 (
dB

) 

§  Primary signal power can be easily detected from the PSD obtained 
by energy detection 

§  Cyclic features are also clear in the SCF obtained by cyclostationary 
feature detection   

Magnitude 

Cyclic 
Freque

ncy α SCF: PSD: 

Frequency f 
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Advantage of Cyclostationary Feature 
Detection over Energy Detection in low SNR 

Frequency (MHz) 

Magnitude 

■
 M
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) 

§  Noise uncertainty limits the effectiveness of Energy detection 
(primary signal cannot be identified in the PSD) 

§  Cyclic features still clearly visible for α≠0 where noise has no 
components 

Cyclic 
Freque

ncy α 

α=0 

SCF: PSD: 

Frequency f 
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§ Advantages over Energy Detection 
èDiscriminate against noise due to its robustness to  
   the uncertainty in noise power 
 
èBetter detector performance even in low SNR regions 

Advantages of Cyclostationary Feature Detection 
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Advantages of Cyclostationary Feature Detection 

n  Signal Classification Capability 
–  Different signals have different cyclic frequencies and 
exhibit distinct spectral characteristics 

–  Detected features from an unknown signal can be used 
as inputs to signal classification 

n Flexibility of Operations 
èCan be used as an energy detector in α = 0 mode 
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Disadvantages of Cyclostationary Feature Detection 

n Computationally complex and requires significantly 
long observation (sensing) time 

n A priori knowledge of target signal characteristics needed  
 èCycle frequency should be known a priori 
 èCannot be applied to detecting unknown signals 
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  a) Consider a received primary signal, AM modulated with frequency fc 
  x(t) = a(t)cos(2πfct + φ0)  

     The autocorrelation of a(t) is 

 
 
     Find the autocorrelation of x(t) in terms of Ra(τ) 
 

                (1) 
 

   

Example  

Steps of Cyclostationary Feature Detection 
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  b) The autocorrelation Rx(τ) can be represented by Fourier Series as 
 
   
 
 (1) can be manipulated to look like a Fourier series 
 
 
   
   Comparing (*) and (**), 
   we find Ra

x(τ) 

n     

(*) 

(**) 

Example  

Steps of Cyclostationary Feature Detection 
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Example  

Steps of Cyclostationary Feature Detection 
 

  c) The spectral correlation Sa
x(f) in terms of Sa(f) is found by F.T. 

   Assume Ra(τ) = sinc2(aτ), then Sa(f) is the triangular function defined as 
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Example  

Steps of Cyclostationary Feature Detection 
 

  c) The spectral correlation Sa
x(f) becomes 

 
 
 
 
 
   The cyclic features at  
   cyclic frequencies a=±2fc 
 
   The cyclic features at  
   cyclic frequencies a=0 
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Spectrum Sensing Techniques: PU Detection Techniques 

NON-COHERENT  
DETECTION 

 
 

no a priori knowledge is  
required for detection 

COHERENT 
DETECTION 

 
primary signal can be coherently  

detected by comparing  
the received signal with a priori  
knowledge of primary signals  
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Spectrum Sensing Techniques: PU Detection Techniques 
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Spectrum Sensing Techniques: PU Detection Techniques 

WIDEBAND  
SENSING NARROWBAND 

SENSING 

Matched Filter 
Detection 

Energy 
Detection 

   Cyclostationary 
   Feature Detection 

Wavelet  
Detection 

Compressed  
Sensing 

Covariance 
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COVARIANCE-MATRIX BASED DETECTION 
S. J. Shellhammer, S. Shankar, N.  Tandra, and J.  Tomcik.  
“Performance of power detector sensors of DTV signals in IEEE 802.22 WRANs.”  
Proc. of the First  ACM Int. Workshop on Technology and Policy for Accessing  
Spectrum (TAPAS), 2006  
 
 

n  Energy detector is  vulnerable to noise uncertainty  because the  
    detection depends on the knowledge of the noise power 

n  There are several sources of noise uncertainty: 
–  RF component non-linearity 
–  Non-uniform and time variant thermal noise  
–  Interference noise 
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COVARIANCE-MATRIX BASED DETECTION 
 
 

n  In practice à difficult to estimate the noise power accurately 

n  Small errors in noise power prediction cause a considerable loss in 
energy detection performance 

Noise Uncertainty  0.1 dB 0.5 dB 1 dB 
Minimum SNR -13.37 dB -6.4 dB -3.3 dB 

Minimum SNR values that can be detected at different noise uncertainty  

Approximately: 1 dB noise uncertainty costs 10 dB loss in detection performance 



IFA’2015 ECE6616 56 

COVARIANCE-MATRIX BASED DETECTION 
 

n  To solve the noise uncertainty problem 

n   Based on covariance matrix of signals received at CR user 

n  PRINCIPLE based on: 
   Difference between the statistical covariance matrices of the signal and noise. 

Y. Zeng and Y.-C. Liang.  
“Covariance based signal detections for cognitive radios”, 
Proc. IEEE Int. Symp. New Frontiers Dynamic Spectrum Access (DySpan),  
Dublin, Ireland, 2007 
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COVARIANCE-MATRIX BASED DETECTION 
 

n  Revisit the HYPOTHESIS formula: 

where N is the number of samples 
        n[i] is the i-th sample of the Gaussian noise n(t) 
        x[i] is the i-th sample of the received signal x(t) 

Y =

1
N

n
i=1

N

∑ i[ ]2  H0

1
N

x i[ ]+ n i[ ]( )2

i=1

N

∑  H1

⎧

⎨

⎪
⎪

⎩

⎪
⎪
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COVARIANCE BASED DETECTION 
 

n  Let x[k], y[k] and n[k] be the vectors of signal components in the previous 
equation 

n  Each vector consists of the L latest outputs at time k which are expressed: 

x k[ ] = x k[ ], x k −1[ ],..., x k − L +1[ ]⎡⎣ ⎤⎦
T

y k[ ] = y k[ ], y k −1[ ],..., y k − L +1[ ]⎡⎣ ⎤⎦
T

n k[ ] = n k[ ],n k −1[ ],...,n k − L +1[ ]⎡⎣ ⎤⎦
T
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COVARIANCE BASED DETECTION 
 

n  Then the statistical covariance matrices of       and       show the following relation: 
 
 
 
   where 

     is the variance of the noise 
        I   is the identity matrix and  
     are covariance matrices of       and 

 
 

x k[ ] y k[ ]

Ry = Rx +σ n
2I

σ n
2

Rx ,Ry x k[ ] y k[ ]
Rx = E x k[ ]xT k[ ]⎡⎣ ⎤⎦
Ry = E y k[ ]yT k[ ]⎡⎣ ⎤⎦
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COVARIANCE BASED DETECTION 
 

n  From this we can derive the maximum       and minimum      
eigenvalues of 

 
   with the maximum      and minimum      eigenvalues of 

λmax λmin
Ry

Rx

λmax = ρmax +σ n
2

λmin = ρmin +σ n
2

ρmax ρmin
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COVARIANCE BASED DETECTION 
 

Thus, the detector can use the ratio            to determine the 
presence of the signal 

These statistical relations lead to the following observations: 
 
■              if and only if          .  
   However, this case is not likely to happen if signal x[n]  is present 

■  If there is no signal, i.e.,    

■  Otherwise, i.e.,           and   

max minρ ρ=
  R x = δ I

  R x = 0,λmax = λmin

  R x ≠ δ I   R x ≠ 0,λmaxλmin >1

 λmax / λmin
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EIGENVALUE BASED DETECTION 
 

n  In practice, a finite number of samples is available, and hence  
   the sample covariance matrix can be used for detection instead of  
   statistical covariance matrix 

EXTENSION: 
n  Using oversampling and Eigen decomposition of the covariance matrix,  
  the detection method can be extended to Eigenvalue–based detection 

PRINCIPLE based on: 
Difference between the eigenvalues of the covariance matrices of the signal and noise.  
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EIGENVALUE BASED DETECTION 
Y. Zeng and Y.-C. Liang.  
”Eigenvalue-based spectrum sensing algorithms for cognitive radio”, 
IEEE Transactions on Communications, June 2009. 
 

 

Based on the sample covariance matrix two detection methods exist: 

   1. Maximum-Minimum Eigenvalue (MME) Detection 

   2. Energy with Minimum Eigenvalue (EME) Detection 
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EIGEN-VALUE BASED DETECTION 
MAX-MIN EIGENVALUE BASED (MME) 
(Informal) 
 

Calculate the sample 
covariance matrix 
using the collected 

signal samples 
The image cannot be displayed. Your computer may not have enough memory to 
open the image, or the image may have been corrupted. Restart your computer, and 
then open the file again. If the red x still appears, you may have to delete the image 
and then insert it again.

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been 
corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and 
then insert it again.

Sample Signal 

Signal Exists 

Signal Does NOT 
Exist 

> 

< 

Transform the 
sample covariance 

matrix 
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EIGEN-VALUE BASED DETECTION 
MAX-MIN EIGENVALUE BASED (MME) (Formal) 

 ■  Step 1: Compute the sample covariance matrix of the received signal 

   where     is the number of collected samples; (* complex conjuguate) 

■  Step 2: Obtain the maximum and minimum eigenvalue of the matrix      
    , that is,     and      

■  Step 3: Decision: if                 , signal exists (“yes” decision); 
otherwise, signal does not exist (“no” decision), where         is a 
threshold 

  
R x (NS ) =

def 1
NS

x̂(n)x̂*(n),
n=L−1

L−2+NS

∑

SN

  R x (NS ) maxλ minλ

 λmax / λmin > γ 1
1 1γ >
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EIGEN-VALUE BASED DETECTION 
ENERGY WITH MINIMUM EIGENVALUE (EME) 
(Informal)  
 

Calculate the sample 
covariance matrix 
using the collected 

signal samples Sample Signal 

Signal Exists 

Signal Does NOT 
Exist 

> 

< 

Transform the 
sample covariance 

matrix 
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EIGEN-VALUE BASED DETECTION 
ENERGY WITH MINIMUM EIGENVALUE (EME) 
(Formal)  
 

■  Step 1: The same as that in Algorithm 1 

■  Step 2: Compute the average power of the received signal         and  
   the minimum eigenvalue      of the matrix                          
 
 
■  Step 3: Decision: if                    , signal exists (“yes” decision);  
   otherwise, signal does not exist (“no” decision), where         is a  
   threshold 

( )ST N

  R x (NS )minλ

  T (NS ) / λmin > γ 2
2 1γ >
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ADVANTAGES OF COVARIANCE MATRIX BASED DETECTION 

n No signal information is needed 

n Robust to multipath propagation compared to coherent 
detection 

n No synchronization is needed 

n No noise uncertainty problem 
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DISADVANTAGES OF COVARIANCE MATRIX BASED DETECTION 

n  Relatively high computational costs 
 
n  It cannot differentiate signal types but can only determine the 

presence of the signal. 

n  It cannot differentiate modulated signals, noise and interference. 
  (accordingly benefits of detection and interference cancellation 

techniques cannot be utilized). 
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Example  
Covariance Matrix-based Detection 

n  Given a received PU signal                   , n=0,1,…,Ns-1  
  where    is the normalized frequency in rad/sample  
n  and v(n) is zero-mean with E[v(n)v*(n-k)]=σ2, for k=0,  
n  and E[v(n)v*(n-k)]=0 for k≠0. 

a) Find the mean of x(n), E[x(n)] 
Since E[v(n)]=0 
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Example: 
Covariance Matrix-based Detection 

b) Find the autocorrelation function r(k) 
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Example 
Covariance Matrix-based Detection 

c) Find the autocorrelation matrix Rx for Ns = 3.  
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Example 
Covariance Matrix-based Detection 

d)   

n MME: maximum-
minimum eigen value 

n  EME: energy with 
minimum eigenvalue 
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Classification of Spectrum Sensing Techniques  

Interference 
Temperature 
Management 

Transmitter  
Detection 

Receiver 
Detection 

Matched Filter 
Detection 

Energy 
Detection 

   Cyclostationary 
   Feature Detection 

Wavelet  
Detection 

Compressed  
Sensing 

Covariance 
Matrix-based  
Detection 
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WAVELET DETECTION 

What is Wavelet Transform? 
 
n A multi-resolution analysis method where an input signal is decomposed 
   into different frequency components 
 
• Each component is studied with resolutions matched to its scales 

• Wavelet transforms use irregularly shaped wavelets  as basic functions 

• They offer better tools to represent sharp changes and local features 
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WAVELET DETECTION PROs 

 
n It enables efficient joint analysis in time and frequency domain.  

à Represent functions with discontinuities and sharp peaks. 

à Capture local irregularities and discontinuities in the spectrum 
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WAVELET DETECTION 
Z. Tian and G. Giannakis,  
“A Wavelet Approach to Wideband Spectrum Sensing for Cognitive Radios”,  
Proc. of Int. Conf on CR Oriented Wireless Networks and  Communications  
(CROWNCOM), June 2006. 
Y. Hur, J. Park, K. Kim, J. Lee, K. Lim, C. Lee, H. Kim, and J. Laskar, 
“A cognitive radio (CR) testbed system employing a wideband multiresolution spectrum  
sensing (MRSS) technique,” in Proc. IEEE Veh.Technol. Conf., Montreal, Sept. 2006 
 

 

n Wavelet transform has been applied to spectrum sensing 

–  In digital domain: Spectral Edge Detection Technique  

–  In analog domain: Multiresolution Spectrum Sensing (MRSS) Technique 
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WAVELET DETECTION: DIGITAL DOMAIN 
Z. Tian and G. Giannakis,  
“A Wavelet Approach to Wideband Spectrum Sensing for Cognitive Radios”,  
Proc. of Int. Conf on CR Oriented Wireless Networks and  Communications  
(CROWNCOM), June 2006 
 

–  Wavelets are used for detecting spectral edges in the wideband channel.  
 
–  Spectral edges correspond to transitions between an occupied and an empty band  

–  Powers within two spectral edges are estimated to check its occupancy.  
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WAVELET DETECTION: Multiscale Wavelet Products 
 
 

Wavelet Smoothing Function ϕ(f)  
with a scale factor s: 
ϕs(f) = (1/s)·ϕ(f/s), s=2j, j=1,2,… 

Examine the power spectral 
densities at bands of interest to 
check their availability 
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wideband of 
interest 

Derivative Wavelet 
Transform 
(Convolution) 

Wavelet Transform Gradients  
W’sX(f) = s·(d/df)(X*ϕs)(f) 

PSD 

ϕ8(f) 

WsX(f)=X(f)*ϕs(f) 

2 

4 

8 

16 
W’16X(f) 

W’2X(f) Multiscale 
Product 

UJX(f) = ∏J W’sX(f) 

f0 fN 

f0 fN 
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X(f): power spectral density (PSD) of the wideband of interest 

1. Select wavelet smooth function ϕ(f) (such as Gaussian) and scale factor s  
l Dilation of ϕ(f): ϕs(f) = (1/s)·ϕ(f/s), s=2j, j=1,2,…, J 

2. Perform continuous waveform transform (CWT) of X(f) with wavelets ϕs(f)  
l WsX(f) = X(f)*ϕs(f), s=2j, where * denotes convolution 

3. Find the first derivative of X(f) smoothed by scaled wavelet ϕs(f) 
l Wavelet transform gradients: W’sX(f) = s·(d/df)(X*ϕs)(f) 

4. Construct multiscale product of J CWT gradients 
l UJX(f) = ∏J W’s=2jX(f) 

5. Identify boundaries {fn} of bands {Bn} by picking local maxima of UJX(f)  
l fn = maximaf {|UJX(f)|}, f in (f0, fN) 

6. Estimate the PSD in the bands of interest to check their availability 

 
 

Spectrum Sensing via Multiscale Wavelet Products 
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ADVANTAGES OF WAVELET DETECTION 

n Effective for Wideband Signal 

n Implementation cost is low 
 
n Flexible 
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  DISADVANTAGES OF WAVELET DETECTION 

n Not useful for spread spectrum signals 

n High computation costs 
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MULTI-RESOLUTION SPECTRUM SENSING (MRSS): 
ANALOG DOMAIN  
Y. Hur, J. Park, K. Kim, J. Lee, K. Lim, C. Lee, H. Kim, and J. Laskar, 
“A Cognitive Radio (CR) Testbed System Employing a Wideband Multiresolution Spectrum  
Sensing (MRSS) Technique,” in Proc. IEEE Veh.Technol. Conf., Montreal, Sept. 2006. 
 

–  Wavelet transform is applied to the input signal in the analog domain 

–  Analog implementation yields low power consumption and enables real-time operation. 
  
–  Multi-resolution spectrum sensing is achieved 

n  Bandwidth, resolution and center frequency can be controlled by wavelet function 
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X ADC 

v(t)*sLO(t) 

Driver Amp CLK#2 

MAC 
Timing  
Clock 

Wavelet Generator: 
 use Hann window function v(t)  * signal s created by  Local Oscillator 

CLK#1 

x(t) 
w(t) 

z(t) y(t) 

 MRSS is energy detector. 
According to this diagram 

accumulated energy is 
calculated. 

MULTI-RESOLUTION SPECTRUM SENSING (MRSS)  
BLOCK DIAGRAM 
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∫

WAVELET 
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MRSS BUILDING BLOCKS 

n  Analog wavelet waveform generator 
–  Wavelet pulse w(t) is generated and modulated with I and Q 

sinusoidal carrier with the given frequency 
–  Hann window with 5 MHz BW is selected as the wavelet. 

n  Analog multiplier, multiply  w(t) with x(t) 

n  Local Oscillator 
–  By sweeping the local oscillator (LO) frequency spectrum range with  
  a certain interval, the signal power and the frequency values are  
  detected over the spectrum range of interest 
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MRSS BUILDING BLOCKS 

 
n  Analog integrator  

–  to compute the correlation with the wavelet waveform w(t) with the 
given spectral width, i.e. the spectral sensing resolution. 

–  Resulting correlation of the received signal x with I and Q 
components of the wavelet waveforms w are input to ADC 

n  Low speed ADC to digitize the calculated analog correlation values 
–  Digitized values are recorded 

86 



IFA’2015 ECE6616 

MRSS OPERATION  

After ADC 
 

n  Y(t) >           à PU 

n  Y(t) <           à no PU 

87 

λ

λ
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MRSS OPERATION  

n Narrow wavelet pulse + large tuning step size of LO 
 
à  fast and coarse spectrum sensing. 

n Wide wavelet pulse + small tuning step size of LO  
 
à fine spectrum sensing. 
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ADVANTAGES OF MRSS 

n Full analog signal processing 
–  Drastically reduce power consumption 
–  Faster recognition 

n Flexible sensing resolution and speed 
 
n Wideband operation  

89 
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 DISADVANTAGES OF MRSS 

n Need to generate wavelet waveform in analog domain 

n Much more complex RF circuitry  

90 
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Classification of Spectrum Sensing Techniques  

Interference 
Temperature 
Management 

Transmitter  
Detection 

Receiver 
Detection 

Matched Filter 
Detection 

Energy 
Detection 

   Cyclostationary 
   Feature Detection 

Wavelet  
Detection 

Compressed  
Sensing 

Covariance 
Matrix-based  
Detection 
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Traditional Signal Acquisition Approach 

Typical Signal Acquisition Approach 
 

Sample a signal very densely (at lease twice the highest frequency), and then 
compress the  information for storage or transmission 

This 18.1 Mega-Pixels digital camera senses 18.1e+6 
samples to construct an image. 
 
The image is then compressed using JPEG to an average 
size smaller than 3MB – a compression ratio of ~12. 

■ Image Acquisition 
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Move the burden from sampling to reconstruction 

93 

Compressive Sensing? 

A natural question to ask is 
Could the two processes (sensing & compression) be combined? 

 

  

The answer is YES!  
This is what Compressed Sensing (CS) is about. 
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What is Compressive Sensing (CS) About? 

n An emerging field of research 

n Beat Nyquist sampling theorem 

n Explore sparsity & redundancy of signals 

n Construct the combination of sensing & compression 
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COMPRESSED SENSING  
 

n Conventional spectrum sensing techniques operate on signals sampled at 
Nyquist rate.   

n Wideband signal detection requires very high sampling rate devices and 
computing capabilities.  

n Novel approach to sample and recover signals sampled at a sampling rate 
below Nyquist rate.  
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WHY? 
Conventional Sampling Technique 
 
 

For Sensing Large Range of Spectrum (Wideband Sensing)  
  This sampling method is expensive:  

■  High Sampling Rate Requirement (expensive ADC circuit) 
■  Large Number of Samples (High Computational Cost) 

y	x	

Example: To sense 1 GHz of spectrum at 1 KHz resolution, we need 1 Million  
           samples acquired at 2 GHz sampling rate  
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COMPRESSED SAMPLING  
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COMPRESSED SENSING 
Z.  Tian "Compressed Wideband Sensing in Cooperative Cognitive Radio Networks,"  
IEEE Globecom, 2008.  
Y. Tachwali, J. Barnes, F. Basma, H. Refai, "The Feasibility of a Fast Fourier  
Sampling Technique for Wireless Microphone Detection in IEEE 802.22 Air Interface,"  
IEEE INFOCOM, 2010 . 

  
 

Main Idea 

Sampling  
Matrix 

Compressed 
Signal 

Large 
Sparse 
Signal 

Recovered 
Signal 

-Optimization [1] 
-Greedy methods [2] 
 

Multiply A and x 

Randomly generate A 
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EXAMPLE: COMPRESSED SENSING 
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0 0 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 

X = 

Received Signal x(t) Sampling Matrix (A) 
Compressed  
Samples y(t)  

§  Ax=y is underdetermined system (e.g., 8 unknowns and 3 eqns) 

§  However, we know one property of the solution x(t) à X(f) is sparse 
  
§  Sparsity can be measured by  
||X(f)||0 (number of nonzero elements in X(f) ) OR ||X(f)||1 (sum of X(f) elements) 

How to recover x(t) 
from few samples y(t)? 
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COMPRESSED SAMPLING  
 

100 

Recovery technique constructs the X^(f) from the compressed samples  
y so that X^(f) is as close as to the original sparse spectrum X(f) 

 

X( f ) = argminX ( f ) X( f ) 1  s.t. Aix(t) = y(t) :A is sampling matrix

||X(f)||1 (sum of X(f) elements) 
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EXAMPLE: COMPRESSED SENSING: 
RECONSTRUCTION OF ORIGiNAL 
SIGNALS  
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0 0 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 

Sampling Matrix (A) 

Compressed  
Samples  

y(t)  

Search for the 
sparsest solution X(f) 

min ||X(f)||1 

IFFT 

X = 

Repeat if the 
difference is 

high 
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CONDITIONS FOR SUCCESSFUL COMPRESSED SENSING  
 

–  Sparsity:  
 
  Rate of information is small compared to the signal size in its 

representation domain.  
  

102 
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CONDITIONS FOR SUCCESSFUL COMPRESSED SENSING  
 

 Explanation:  
 
   Representation Domain = Frequency Domain and  
   Measurement Domain   = Time Domain.  
 
   In order for compressed sensing scheme to work, the signal in  
   representation domain X(f) has to be sparse,  
   à it has few important samples compared to signal size X(f). 

 
In CR network:  
if wireless spectrum is underutilized à the spectrum is sparse. 
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CONDITIONS FOR SUCCESSFUL COMPRESSED SENSING  
 

–  Incoherency:  

  Representation domain and measurement domain of the 
signal should be incoherent 
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CONDITIONS FOR SUCCESSFUL COMPRESSED SENSING  
 

 Explanation:  
 
  Representation Domain = Frequency Domain  
  Measurement Domain = Time Domain.  
 
   Time and frequency domains are incoherent, à 
   a sudden change ‘spike’ in the  domain spreads to the other one. 

 
In Spectrum Sensing:  
Signal is sampled in time domain and is examined in frequency domain  
 à representation domain = time, measurement domain = frequency 
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Example 
Compressed Sensing 

n  Detect a wireless signal in a wide range of spectrum (e.g., 1GHz). 
Assume the received signal samples satisfy the Nyquist limits  

    (e.g., fs=2 GHz sampling rate).  
 The wireless signal is modeled as an FM signal s(t): 

 
 
 

Where      fc=200MHz: carrier freq.;  
                                          Δ=5kHz: FM deviation factor; 
             m(τ)=sin(2πfmτ/fs) the modulating signal;  
                fm=32kHz: signal freq. 
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Example 
Compressed Sensing 

n  The compressed received signal y(t) is obtained by sub-Nyquist sampling, 
e.g., number of samples m=256, instead of  using a Fourier matrix F with 
N=2*109 frequency components 
–  Considering the given s(t) and assuming SNR=20dB, we create a random vector for y(t) 

in Matlab with m=256 samples 
 
n  The sampling matrix A needs to be pre-determined based on spectrum 

utilization characteristics.  However, here we consider an arbitrary random 
sampling matrix A for m=256 samples: 
–  Matrix A is generated from Fourier Matrix F by randomly selecting m=256 frequencies 

with equal probability, i.e.,  
l A=[exp(-j2πkt/N)/sqrt(N)], where m=256 values of k  are selected from the interval  
    k=[0,…,N-1] with equal probability 
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Example 
Compressed Sensing 

Then, we solve y(t)=Ax(t) for minimum ||X(f)||1, which must be solved by using 
iterative optimization techniques  

–  Initially we predict x(t)=0, and hence, X(f) is also 0.  
–  Apply the numeric solver algorithm to minimize ||X(f)||1 subject to  y(t)=A.x(t)  
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X(f) 

f 

(The problem is formulated in 
time domain, at each iteration x(t) 
can be obtained by IFFT of X(f)) 
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ADVANTAGES OF COMPRESSED SENSING 

n Effective wideband spectrum sensing  

n Low implementation cost   
 
n Reduced overhead in cooperative sensing  
  (less measurements exchange) 
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DISADVANTAGES OF COMPRESSED SENSING 

n  Sparsity of wireless spectrum cannot be guaranteed in CR network 

n Probabilistic signal recovery 

n Sensitivity to the near-far problem  
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Classification of Spectrum Sensing Techniques  

Interference 
Temperature 
Management 

Transmitter  
Detection 

Spectrum Sensing  

Receiver 
Detection 

Matched Filter 
Detection 

Energy 
Detection 

   Cyclostationary 
   Feature Detection 

Wavelet  
Detection 

Compressed  
Sensing 

Covariance 
Matrix-based  
Detection 
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Why Receiver Detection? 

– Eliminates the assumption that a PU is passive 

– Detection of the Exact PU Channel 

– High probability of finding a free Spectrum EVEN IN 
HIGH DENSITY of PU Receivers 
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Primary Receiver Detection 

Primary 
Base-station 

Primary User 

CR User 

Local Oscillator (LO)  
Leakage Power  

CR users detect the 
LO leakage power for 
the detection of PUs 
instead of the 
transmitted signals 

When PUs receive the 
signals from the 
transmitter, they emit 
the LO leakage power.  

B. Wild and K. Ramchandran, “Detecting Primary Receivers for Cognitive Radio  
Applications“ in Proc. IEEE DySPAN, Nov. 2005. 	
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How can the LO Leakage Power be detected? 

n  Same methods as before, i.e., 
   (Matched filter detection, Energy detection or  
   Cyclostationary feature detection)  
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Primary (User) Receiver Detection 
 
n Primary (User) receiver detection can solve the receiver 

uncertainty problem in the transmitter detection 

n However, since the LO leakage signal is typically weak, 
implementation of a reliable detector is not trivial. 

n Currently this method is only feasible in the detection of 
the TV receivers. 
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Pitfalls with Receiver Detection 

n Need a highly sensitive “energy detector” 

n  Require Additional Power margin to account for “bad channel” seen 
by the sensor 

n Near-Far Problem 
–  Two nearby devices use the same frequency tone 
–  CR gets confused about the location of the PU 
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Classification of Spectrum Sensing Techniques  

Interference 
Temperature 
Management 

Transmitter  
Detection 

Spectrum Sensing  

Receiver 
Detection 

Matched Filter 
Detection 

Energy 
Detection 

   Cyclostationary 
   Feature Detection 

Wavelet  
Detection 

Compressed  
Sensing 

Covariance 
Matrix-based  
Detection 
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Interference  Temperature Model  
o 

Power at 
Receiver 

Original Noise Floor 

Interference  
Temperature Limit 

Licensed Signal 

New Opportunities  
for Spectrum Access 

Minimum Service  
Range with 

Interference Cap 

Service Range at 
Original Noise Floor 

Distance from Licensed Transmitting Antenna 
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Interference Temperature (IT) Definition 

€ 

TI ( fc,B) =
PI ( fc,B)
kB

o 
T. C. Clancy, “Formalizing the Interference Temperature Model“  
in Wiley Journal on Wireless Communications and Mobile Computing, 2006. 	

n  TI is the Interference temp in Kelvin 
n  PI is the Average Interference Power 

(Watts) centered at fc 

n  Covering Bandwidth B (Hz) 
n  Center Frequency fc (Hz) 
n  Boltzmann constant, k=1.38*10{-23} 

Joules per Kelvin degree 

ITM is a model that controls the spectrum use. 
Either temperature or power based. 
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Interference Temperature Model #1 (IDEAL) 
 

niforfT
kB
PMBfT iL
i

i
iiI ,...,1)(),( =≤+

o 

n  TL is the Interference Temp. limit set by FCC (location specific) 

n  P is transmit power of the CR over a particular band 

n  This freq. band contains signals from n PUs 

n  The signal from user i has bandwidth Bi centered at freq. fi 

n  Mi is a multiplicative attenuation factor between 0 and 1 representing fading and path loss  
   between CR user and the i-th PU 

n  Then, the transmission of a CR must ensure the following  interference  temperature  
   limit for the PUs: 
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Problems with Model #1 

n No practical way for a CR to measure or estimate the  
  interference temperature.  
  (CR users cannot distinguish between actual signals  
  from the PU and noise/interferences).  

n Interference temperature limit should be location dependent 
of the PUs which is not easy to determine. 
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Interference  Temperature Model #2 
(GENERALIZED MODEL) 

)(),( cLcI fT
kB
MPBfT ≤+

o 

 
n Use a single constant M fixed by FCC 
n Scenario: 1 CR + n PUs 
n Constraint MUST be satisfied for the entire bandwidth 

Model 1 has problem that is not easy to determine unique Mi 
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Overall Problems 
 

 
n Increasing the interference temperature limit will affect  
  primary network’s capacity and coverage. 
 


