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Definition of Network Connectivity

A network can be presented by graph 6(V,E)
V ={v,,v,,..,v,} denote nodes in the networks

E ={eij} denote the link between nodes i and j if the
distance between them is less than the transmission

range.

A path is a sequence of nodes such that from each node
there is link to next node in this sequence.

Two nodes is connected if there is at least one path
between them.

A network is fully connected if for any two nodes in this
network, there is at least one path between them
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Definition of Network Connectivity

For the finite network with a fixed topology, full
connectivity can be achieved by topology control.

Note: finite network means limited number of nodes

The primary goal of topology control is to design power-
efficient algorithms that maintain network connectivity and
optimize performance metrics such as network lifetime and
throughput




Definition of Network Connectivity

For the infinite network with a random topology,
full connectivity is difficult achieved.

Note: infinite network means the network covers
infinite area with a certain node density A so that
there exists a infinite number of nodes.

To address this problem, recent research has
focused on a notation of connectivity based on
percolation theory.
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A infinite network is connected if there exists a
infinite connected component (with high probability).

- A is a subgraph of the

network in which any two nodes are connected by
paths.

- A is connected
component consisting of a infinite number of nodes so
that the nodes span almost the entire network

Pu Wang




Definition of Network Connectivity




Keys results regarding network
Aconnectivity based percolation theory

The fundament results of percolation theory concerns a
phase transmission effect,

i.e., there exists a critical density A, so that

1. if A< A_(subcritical), the network only consists of small
isolated components w.h.p

2. if A> A_(supercritical), the network exists a unique infinite
cgnnec're component w.h.p => connectivity in supercritical
phase

Note: Boolean model is used
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Instead of assuming Boolean model, SINR model is
considered, i.e., node x; can connect with x; if

PL(x; —x;)
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where vy is the interference weight. L(.) is the

bounded attenuation function, that is,

L(x) =0 if |x|> d
a< L(x) <b if |x| <d




Connectivity of SINR Graph

Conclusion: if y is small enough, there exists a
critical density so that

if A> A_ (supercritical), the network exists a
unique infinite connected component w.h.p




Connectivity of large-scale cognitive ad-hoc
network




Motivation

Connectivity of secondary network (SN) depends on
behavior of primary network (PN)

Whether two secondary users (SUs) can communicate
depends on the unoccupied spectrum space in the
primary networks (PNs).

The unoccupied spectrum space, called white space, is a
spatial-temporal random process determined by the
topology of PN and PU activities.
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Motivation

Now, we have two questions:

1) Under what conditions (densities) is the secondary
network (SN) connected at all times?

2) what are the bounds of the transmission latency in
the SN ?




Network models

Both PN and SN are ad-hoc networks.

The PN follows Poisson point processes denoted by G(H,P, r) with
density ,/ . We associate each PU with a receiver which is at
distance d from PU. d follows uniform distribution.

The SN follows Poisson point processes denoted by G(H,s, r) with
density ,P and ;.

Both PU and SU has transmission range r







PU activity/MAC model

Random access/contention-based MAC for PU

Assume pure-Aloha MAC or slotted Aloha due to its
simplicity and traceability.

- each node independently transmits its own data
without considering other nodes’ activities.




PU activity/MAC model

PU activity is modeled by stationary ON/OFF
process, denoted by W (t). W) = 1 if PU, is
transmitting at t+ and W,(t) = O if PU. is inactive at t.

Assume W,(1) is probabilistically identical for each
PU. and we use W(t) instead of W.(t).




PU activity/MAC model

Under above assumptions, the stationary distribution of W(t)
is given by
ElT,y]

= 3t Bt

I, = Pr{} (1) =0} = %

where E(Ton) (E(Torr)) is the expectation of the duration of
ON (OFF) period.
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Sufficient conditions of connectivity in

2] secondary network: dynamic percolatio
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Definition 1: let 6, = 6(H,’, 1, W(t)) denote the sampled
graph of PN at time t consisting of all the PUs that are
active at time t, along with their associated links.

Definition 2: let 6, = 6(H,s, 1, W(t)) denote the sampled
graph of SN at time t consisting of all the SUs residing in
the white space at time t, along with their associated links




Sufficient conditions of connectivity in
A secondary network

Theorem 1: Given a SN modeled by 6(H,5, r) and a PN modeled by 6
(H, r), if

A >max{1’ > In :
Crt 1=J1— p exp[2IT, A7 (TR* +4+4/1/5R)]

}

r Inl/\1-p

p

ARTL, ° "II,(nR*>+4+1/5R)

then the SN G(H,s, 1, W(t)) is percolated (or connected) at all t.

where p = (11-2*101/2)/27. r is trans. Range of PU. R is the
isnrtler'ference range of PU. AP and A® are critical densities of PN and

=> connectivity in supercritical phase

A’ <min{

}
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Sufficient conditions of connectivity in
A secondary network

Theorem 2 (latency): If a SN 6(H,., r, w(t)) is not
connected at any time t (subcritical), then the
message from any node in 6(HAs, r) can eventually
reach any destination after a certain T.

=> connectivity in subcritical phase




Connectivity in cognitive ad-hoc networks
with static spectrum pool

W.Ren, Q. Zhao, and A. Swam, “Connectivity of Heterogeneous Wireless
networks,” submitted to IEEE Trans. Information Theory, Aug. 2009

Assume that primary users keep transmitting data all the time.

Conclusion: the SN is connected if

1 —exp(— Ar? )
A7 <min{ 2,5(1) 5> 5 L In 2k81 —1
AR —r? 27R> —I(R,r)  1—(1/3)%*

where Ac is critical density when r = 1. I(R,r) is a certain function of R and
k is some constant.

-The availability of spectrum is not changing over time and only depends on thée
locations of PUs and SUs. Thus, connectivity is not related to PU activities

-If network is not connected (subcritical), it is impossible for any node to
transmit data to the nodes far away. Therefore, there is no latency issue.
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Basic proof steps for connectivity in
A Cognitive radio

Principle: to prove there exists a infinite connected

component w.h.p.

=> To prove the origin belongs to infinite connected
component with a positive probability. (Kolmogorov's zero-one
law)

Steps:

First, map a network to a lattice

Second, show there is a closed circuit around with probability

less than 1
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Basic proof steps

L : original lattice

L': dual lattice of L'
e : edge (bond) of L
e': edge (bond) of

L' (perpendicular to e)

e is open : there exists at
least one node in each
adjacent cell

e’ is close when e is close
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Open edge in L => two
nodes in adjacent cells are
connected d = (1/5)°-5

Open path (edges are

open) in L=> Connected
component

Open path with unlimited
length in L => infinite
connected component
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There is infinite
connected component with
positive probability =>
closed circuits exist with

probability < 1
A circuit is closed => all
edges are closed

Close probability depends
on interested event
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A circuit is closed => all
edges are closed

Close probability depends
on interested event




Next step:

latency




First Passage Percolation

FPP is time dependent model for the flow of liquid through
a porous body

Suppose these exists a two dimensional lattice where each
edge e is associated with a random variable T(e), called
time coordinate.

For any path L, the passage time is the sum of time
coordinates of all edges in L




First Passage Percolation

The first passage time (FPT) is defined as the
infimum of the passages times of all paths
between source and destination.

In our case, we need to reveal the relationship
between FPT and network settings, e.g., ON
and OFF statistics and Euclidean distance
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